1
|
Tsaregorodtseva TS, Gubaidullina AA, Kayumova BR, Shaimardanova AA, Issa SS, Solovyeva VV, Sufianov AA, Sufianova GZ, Rizvanov AA. Neutralizing Antibodies: Role in Immune Response and Viral Vector Based Gene Therapy. Int J Mol Sci 2025; 26:5224. [PMID: 40508043 PMCID: PMC12154255 DOI: 10.3390/ijms26115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/25/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Neutralizing antibodies (nAbs) are an important component of the immune system, which plays a dual role in modern medicine. On the one hand, they significantly limit the effectiveness of gene therapy based on viral vectors, reducing the effectiveness of treatment of diseases such as spinal muscular atrophy, which is especially evident with repeated administration of therapeutic vectors. On the other hand, nAbs is a promising tool for combating viral infections. This review systematizes current data on the mechanisms of nAbs formation against AAV vectors, analyzes the factors influencing their production, and discusses strategies to overcome this limitation, including modification of vectors and the development of methods to suppress the immune response. Special attention is paid to the prospects of using nAbs as therapeutic agents against viral infections. The key problems and possible directions of research development in this area are considered, which is important for improving approaches to the treatment of both rare genetic and infectious diseases.
Collapse
Affiliation(s)
- Tatiana S. Tsaregorodtseva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (T.S.T.); (A.A.G.); (B.R.K.); (A.A.S.); (V.V.S.)
| | - Aigul A. Gubaidullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (T.S.T.); (A.A.G.); (B.R.K.); (A.A.S.); (V.V.S.)
| | - Beata R. Kayumova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (T.S.T.); (A.A.G.); (B.R.K.); (A.A.S.); (V.V.S.)
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (T.S.T.); (A.A.G.); (B.R.K.); (A.A.S.); (V.V.S.)
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (T.S.T.); (A.A.G.); (B.R.K.); (A.A.S.); (V.V.S.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN), 117198 Moscow, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (T.S.T.); (A.A.G.); (B.R.K.); (A.A.S.); (V.V.S.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
2
|
Keeler AM, Zhan W, Ram S, Fitzgerald KA, Gao G. The curious case of AAV immunology. Mol Ther 2025; 33:1946-1965. [PMID: 40156190 DOI: 10.1016/j.ymthe.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Immune responses to adeno-associated virus (AAV) have long been perplexing, from its first discovery to the latest clinical trials of recombinant AAV (rAAV) therapy. Wild-type AAV (wtAAV) does not cause any known disease, making it an ideal vector for gene therapy, as viral vectors retain virus-like properties. Although AAV stimulates only a mild immune response compared with other viruses, it is still recognized by the innate immune system and induces adaptive immune responses. B cell responses against both wtAAV and rAAV are robust and can hinder gene therapy applications and prevent redosing. T cell responses can clear transduced cells or establish tolerance against gene therapy. Immune responses to AAV gene therapy are influenced by many factors. Most clinical immunotoxicities that develop in response to gene therapies have emerged as higher doses of AAV vectors have been utilized and were not properly modeled in preclinical animal studies. Thus, several strategies have been undertaken to reduce or mitigate immune responses to AAV. While we have learned a considerable amount about how the immune system responds to AAV gene therapy since the discovery of AAV virus, it still remains a curious case that requires more investigation to fully understand.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; NeroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA; Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Puzzo F, Kay MA. The deLIVERed promises of gene therapy: Past, present, and future of liver-directed gene therapy. Mol Ther 2025; 33:1966-1987. [PMID: 40156191 DOI: 10.1016/j.ymthe.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Gene therapy has revolutionized modern medicine by offering innovative treatments for genetic and acquired diseases. The liver has been and continues as a prime target for in vivo gene therapy due to its essential biological functions, vascular access to the major target cell (hepatocytes), and relatively immunotolerant environment. Adeno-associated virus (AAV) vectors have become the cornerstone of liver-directed therapies, demonstrating remarkable success in conditions such as hemophilia A and B, with US Food and Drug Administration (FDA)-approved therapies like etranacogene dezaparvovec, Beqvez, and Roctavian marking milestones in the field. Despite these advances, challenges persist, including vector immunogenicity, species-specific barriers, and high manufacturing costs. Innovative strategies, such as capsid engineering, immune modulation, and novel delivery systems, are continuing to address these issues in expanding the scope of therapeutic applications. Some of the challenges with many new therapies result in the discordance between preclinical success and translation into humans. The advent of various genome-editing tools to repair genomic mutations or insert therapeutic DNAs into precise locations in the genome further enhances the potential for a single-dose medicine that will offer durable life-long therapeutic treatments. As advancements accelerate, liver-targeted gene therapy is poised to continue to transform the treatment landscape for both genetic and acquired disorders, for which unmet challenges remain.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Mark A Kay
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Warrington S, Hoang TT, Seirup M, Abdelhamid L, Saha H, Bing S, Saleh S, Phue JN, Mazor R. Unveiling the sex bias: higher preexisting and neutralizing titers against AAV in females and implications for gene therapy. Gene Ther 2025:10.1038/s41434-025-00528-7. [PMID: 40325207 DOI: 10.1038/s41434-025-00528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 05/07/2025]
Abstract
Gene therapy with AAV vectors is a promising approach for treating numerous genetic disorders but is often hindered by preexisting antibodies that neutralize the vectors. Given that females may exhibit stronger immune responses than males, this study hypothesizes that females may have higher preexisting antibody titers against AAV. Serum samples from two U.S. cohorts were analyzed for antibody titers, antibody subtypes, and transduction inhibition activity against AAV serotypes AAV1, AAV2, AAV5, AAV8, and AAV9. We found that among seropositive samples, females had higher preexisting antibody levels and neutralizing activities against AAV9 and other serotypes. Immunoglobulin subclass analysis showed IgG1 dominance in both sexes, but females had higher IgA levels, whereas males had higher levels of IgG2. We further evaluated the cellular level of this differential immune response to AAV by stimulation of male and female human PBMCs. We observed dose-dependent increase in cytokines and chemokines in female PBMCs which suggests a differential inflammatory response. Altogether, our findings suggest that the enhanced immune response in females could lead to neutralization and faster clearance of AAV vectors with potential to impact the efficacy of gene therapy.
Collapse
Affiliation(s)
- Stephanee Warrington
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | | | - Leila Abdelhamid
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hrittal Saha
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Sojin Bing
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Sima Saleh
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
- Office of Nonprescription Drugs, Office of New Drugs, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Center for Biologics Evaluation & Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ronit Mazor
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
5
|
Cao M, Katial R, Liu Y, Lu X, Gu Q, Chen C, Liu K, Zhu Z, Marshall MR, Yu Y, Wang Z. Safety, efficacy, and immunogenicity of a novel IgG degrading enzyme (KJ103): results from two randomised, blinded, phase 1 clinical trials. Gene Ther 2025; 32:223-236. [PMID: 39825100 DOI: 10.1038/s41434-025-00512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
The approved intravenous adeno-associated virus (AAV) therapies are limited by the widespread prevalence of pre-existing anti-AAV antibodies in the general population, which are known to restrict patients' ability to receive gene therapy and limit transfection efficacy in vivo. To address this challenge, we have developed a novel recombinant human immunoglobulin G degrading enzyme KJ103, characterized by low immunogenicity and clinical value for the elimination of anti-AAV antibodies in gene transfer. Herein, we conducted two randomized, blinded, placebo-controlled, single ascending dose Phase I studies in China and New Zealand, to evaluate the pharmacokinetics, pharmacodynamics, safety and immunogenicity of KJ103 in healthy volunteers. The results confirmed that KJ103 rapidly reduced IgG and maintained plasma IgG at low levels for one week. Dose of KJ103 ranging from 0.01 to 0.40 mg/kg had a favorable safety and tolerability profile across diverse ethnic and gender groups. KJ103 demonstrated a lower incidence of pre-existing anti-drug antibodies (ADAs) compared to currently approved human IgG degrading enzyme Imlifidase, with most induced ADAs predominantly reverting to baseline six months after administration. These properties are ideal for the management of immune disorders, rejection responses, and immunotherapies where pre-existing antibodies can reduce efficacy. Furthermore, we tested AAV2 neutralizing antibodies to confirm the potential utility of KJ103 in enhancing gene therapy.
Collapse
Affiliation(s)
- Mengdie Cao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China
| | - Rohit Katial
- New Zealand Clinical Research, Grd floor, 3 Ferncroft St, Grafton, Auckland, 1010, New Zealand
| | - Yanjun Liu
- Shanghai Bao Pharmaceuticals Co., Ltd., No. 28 Luoxin Road, Baoshan, Shanghai, China
| | - Xiaoyu Lu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China
| | - Qin Gu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China
| | - Chen Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China
| | - Katie Liu
- New Zealand Clinical Research, Grd floor, 3 Ferncroft St, Grafton, Auckland, 1010, New Zealand
| | - Zhen Zhu
- Shanghai Bao Pharmaceuticals Co., Ltd., No. 28 Luoxin Road, Baoshan, Shanghai, China
| | - Mark R Marshall
- Tauranga Hospital, Hauora a Toi Bay of Plenty, 829 Cameron Road, Tauranga, 3112, New Zealand
| | - Yanxia Yu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No.26 Daoqianjie Street, Canglang District, Suzhou, Jiangsu Province, China.
| | - Zheng Wang
- Shanghai Bao Pharmaceuticals Co., Ltd., No. 28 Luoxin Road, Baoshan, Shanghai, China.
| |
Collapse
|
6
|
O’Donohue AK, Ginn SL, Burgio G, Berman Y, Dabscheck G, Schindeler A. The evolving landscape of NF gene therapy: Hurdles and opportunities. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102475. [PMID: 40034205 PMCID: PMC11872496 DOI: 10.1016/j.omtn.2025.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neurofibromatosis type 1 (NF1)- and NF2-related schwannomatosis are rare autosomal dominant monogenic disorders characterized by a predisposition for nerve-associated tumors. Current treatments focus on symptomatic management, but advancements in the gene therapy field present unique opportunities to treat the genetic underpinnings and develop curative therapies for NF. Approaches such as nonsense suppression agents and oligonucleotide therapies are becoming more mature and have emerging preclinical data in the context of NF. Furthermore, there has been progress in developing gene therapy vectors that can be delivered locally into tumors to ablate or shrink their size. While still a nascent research area, gene addition and gene repair strategies hold tremendous promise for the prevention and treatment of NF-related tumors. These technologies will also require parallel development of delivery vectors able to target the Schwann cells from which tumors most commonly arise. This review seeks to contextualize these advancements and which hurdles remain for their clinical adoption.
Collapse
Affiliation(s)
- Alexandra K. O’Donohue
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Gaetan Burgio
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Yemima Berman
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gabriel Dabscheck
- Department of Neurology, Royal Children’s Hospital and Murdoch Children’s Research Institute, Melbourne, VIC 3050, Australia
| | - Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
7
|
Gadenstaetter AJ, Krumpoeck PE, Landegger LD. Inner Ear Gene Therapy: An Overview from Bench to Bedside. Mol Diagn Ther 2025; 29:161-181. [PMID: 39625555 PMCID: PMC11861411 DOI: 10.1007/s40291-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 02/26/2025]
Abstract
Hearing loss represents a highly prevalent and debilitating sensory disorder affecting roughly one in five people worldwide. In a majority of patients with congenital hearing loss, genetic mutations cause the disease. Up until recently, therapeutic options for individuals with hearing loss were limited to hearing aids and different types of auditory implants. However, after numerous years of intensive basic and translational research, gene therapy strategies are now being investigated in clinical trials. First results show significant hearing improvement in treated patients, highlighting gene therapy's role as a promising treatment for certain forms of genetic hearing loss. In this article, we provide an overview of genetic hearing loss and inner ear gene therapy research including relevant strategies that have been established in animal models and will likely be investigated in human patients soon. Furthermore, we summarize and contextualize the novel findings of recently completed and ongoing clinical trials, and discuss future hurdles needed to be overcome to allow for a broad and safe clinical application of inner ear gene therapy.
Collapse
Affiliation(s)
- Anselm Joseph Gadenstaetter
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Paul Emmerich Krumpoeck
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Lukas David Landegger
- Christian Doppler Laboratory for Inner Ear Research, Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
- Department of Otolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
- Department of Otolaryngology, Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
8
|
Rubio‐Gozalbo ME, Vos EN, Rivera I, Lai K, Berry GT. Reshaping the Treatment Landscape of a Galactose Metabolism Disorder. J Inherit Metab Dis 2025; 48:e70013. [PMID: 39953772 PMCID: PMC11829187 DOI: 10.1002/jimd.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
The Leloir pathway was elucidated decades ago, unraveling how galactose is metabolized in the body. Different inborn errors of metabolism in this pathway are known, the most frequent and well-studied being Classic Galactosemia (CG) (OMIM 230400) due to pathogenic variants in the GALT gene. Substrate reduction using dietary restriction of galactose is currently the only available treatment option. Although this burdensome diet resolves the life-threatening clinical picture in neonates, patients still face long-term complications, including cognitive and neurological deficits as well as primary ovarian insufficiency. Emerging therapies aim to address these challenges on multiple fronts: (1) restoration of GALT activity with nucleic acid therapies, pharmacological chaperones, or enzyme replacement; (2) influencing the pathological cascade of events to prevent accumulation of metabolites (Galactokinase 1 (GALK1) inhibitors, aldose reductase inhibitors), address myo-inositol deficiency, or alleviate cellular stress responses; (3) substrate reduction with synthetic biotics or galactose uptake inhibitors to eliminate the need for lifelong diet; and (4) novel approaches to mitigate existing symptoms, such as non-invasive brain stimulation and reproductive innovations. Early, personalized intervention remains critical for optimizing patient outcomes. We review the advances in the development of different treatment modalities for CG and reflect on the factors that need to be considered and addressed to reshape the landscape of treatment.
Collapse
Affiliation(s)
- M. Estela Rubio‐Gozalbo
- Department of Pediatrics, MosaKids Children's HospitalMaastricht University Medical CentreMaastrichtthe Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) MemberPadovaItaly
- United for Metabolic Diseases (UMD)Amsterdamthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical CentreMaastrichtthe Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
| | - E. Naomi Vos
- Department of Pediatrics, MosaKids Children's HospitalMaastricht University Medical CentreMaastrichtthe Netherlands
- European Reference Network for Hereditary Metabolic Disorders (MetabERN) MemberPadovaItaly
- United for Metabolic Diseases (UMD)Amsterdamthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical CentreMaastrichtthe Netherlands
- GROW School for Oncology and Reproduction, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtthe Netherlands
| | - Isabel Rivera
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmaceutical Sciences and Medicines, Faculty of PharmacyUniversidade de LisboaLisbonPortugal
| | - Kent Lai
- Division of Medical Genetics, Department of PediatricsUniversity of Utah Spencer Fox Eccles School of MedicineSalt Lake CityUtahUSA
| | - Gerard T. Berry
- Division of Genetics & GenomicsBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Manton Center for Orphan Disease ResearchBoston Children's HospitalBostonMassachusettsUSA
| |
Collapse
|
9
|
Hinsch VG, Boye SL, Boye SE. A Comprehensive Review of Clinically Applied Adeno-Associated Virus-Based Gene Therapies for Ocular Disease. Hum Gene Ther 2025. [PMID: 39989340 DOI: 10.1089/hum.2024.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
The eye is an ideal target for gene therapy due its accessibility, immune privilege, small size, and compartmentalization. Adeno-associated virus (AAV) is the gold standard vector for gene delivery and can be injected via multiple routes of administration to target different parts of this organ. The approval of Luxturna™, a subretinally delivered gene therapy for RPE65-associated Leber's congenital amaurosis, and the large number of successful proof of concept studies performed in animal models injected great momentum into the pursuit of additional AAV-based gene therapies for the treatment of retinal disease. This review provides a comprehensive summary of all subretinally, intravitreally, and suprachoroidally delivered AAV-based ocular gene therapies that have progressed to clinical stage. Attention is given to primary (safety) and secondary (efficacy) outcomes, or lack thereof. Lessons learned and future directions are addressed, both of which point to optimism that the ocular gene therapy field is poised for continued momentum and additional regulatory approvals.
Collapse
Affiliation(s)
- Valerie G Hinsch
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Li X, Ma M, An N, Yao X, Yasen G, Zhong M, Jin Z, He Z, Wang Y, Liu H. Lipid-Rapamycin Nanovaccines Overcome the Antidrug Antibody Barrier in Biologic Therapies. ACS NANO 2025; 19:4309-4323. [PMID: 39847793 DOI: 10.1021/acsnano.4c11928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance. The nanovaccine significantly decreased ADA responses when used in a tolerogenic regimen with keyhole limpet hemocyanin (KLH), uricase, pegylated uricase, and AAV8 vector gene therapy. This approach facilitated three rechallenges with pegylated uricase after a 5 week rest from the nanovaccine, thereby enhancing its urate-lowering efficacy. Furthermore, the nanovaccine allowed for the successful intravenous readministration of AAV8 vector expressing secreted embryonic alkaline phosphatase (AAV8-SEAP), achieving sustained viral DNA and transcript levels in target tissues. The nanovaccine prompted antigen-presenting cells (APCs) in the liver to exhibit dynamic changes in CD80, CD86, MHCII, and PD-L1, which promoted the development of immunoregulatory T cells in response to biologic challenges. Notably, the nanovaccine exerted a minimal impact on CD8+ T cells, natural killer (NK) cells, and NK T cells, preserving the body's normal immune response to pathogens and tumors. Overall, the universal nanovaccine addressed biologic resistance by mitigating ADA-related issues, thereby enabling a prolonged therapeutic efficacy for antibodies, proteins, and gene therapies.
Collapse
Affiliation(s)
- Ximu Li
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengyao Ma
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ni An
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxuan Yao
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guzailinuer Yasen
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mingyuan Zhong
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zheng Jin
- Shenyang Sunshine Pharmaceutical Co., Ltd. 3A1, Road 10, Shenyang Economy & Technology Development Zone, Shenyang 110027, China
| | - Zhonggui He
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yongjun Wang
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hongzhuo Liu
- Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
11
|
Jabbari K, Mietzsch M, Hsi J, Chipman P, Qiu J, McKenna R. The Structural, Biophysical, and Antigenic Characterization of the Goose Parvovirus Capsid. Microorganisms 2025; 13:80. [PMID: 39858848 PMCID: PMC11768072 DOI: 10.3390/microorganisms13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Goose parvovirus (GPV) is an etiological agent of Derzsy's disease, afflicting geese and Muscovy ducks worldwide. Its high mortality rate among goslings and ducklings causes large losses to the waterfowl industry. Toward molecular and structural characterization, virus-like particles (VLPs) of GPV were produced, and the capsid structure was determined by cryogenic electron microscopy (cryo-EM) at a resolution of 2.4 Å. The capsid exhibited structural features conserved among parvoviruses, including surface two-fold depressions, three-fold protrusions, and five-fold channels. A structural comparison of the GPV viral protein (VP) structure with other adeno-associated viruses (AAVs), including human AAV2, AAV5, and quail AAV (QAAV), revealed unique conformations of several surface-accessible variable regions (VRs). Furthermore, the GPV capsid was found to be thermally stable at physiological pH, but less so under lower pH conditions. As a member of the genus Dependoparvovirus, GPV could also be bound by cross-reactive anti-AAV capsid antibodies that bind to the five-fold region of the viruses, as shown by native immuno-dot blot analysis. Finally, the GPV VP structure was compared to those of other bird dependoparvoviruses, which revealed that VR-III may be important for GPV and Muscovy duck parvovirus (MDPV) infection.
Collapse
Affiliation(s)
- Korosh Jabbari
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (K.J.); (J.H.); (P.C.)
| |
Collapse
|
12
|
Ortega A, Chernicki B, Ou G, Parmar MS. From Lab Bench to Hope: Emerging Gene Therapies in Clinical Trials for Alzheimer's Disease. Mol Neurobiol 2025; 62:1112-1135. [PMID: 38958888 DOI: 10.1007/s12035-024-04285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder that affects memory and cognitive abilities, affecting millions of people around the world. Current treatments focus on the management of symptoms, as no effective therapy has been approved to modify the underlying disease process. Gene therapy is a promising approach that can offer disease-modifying treatment for AD, targeting various aspects of the pathophysiology of the disease. This review presents a comprehensive overview of the current state of gene therapy research for AD, with a specific focus on clinical trials and preclinical studies that have used nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), apolipoprotein E2 (APOE2), and human telomerase reverse transcriptase (hTERT) as therapeutic gene therapy approaches. These gene targets have shown potential to alleviate the neuropathology of AD in animal studies and have demonstrated feasibility and safety in non-human primates. Despite the failure of the NGF gene therapy approach in clinical trials, we have reviewed and highlighted the reported findings and evaluations from the trials. Furthermore, the review included the conclusions of postmortem brain tissue analysis of AD patients who received NGF gene therapy. The goal is to learn from the failed trials and improve the approach in the future. Although gene therapy shows promise, it faces several challenges and limitations, including optimizing gene delivery methods, enhancing safety and efficacy profiles, and determining long-term results. This review contributes to the growing body of literature on innovative treatments for AD and highlights the need for more research and development to advance gene therapy as a viable treatment option for AD.
Collapse
Affiliation(s)
- Angelica Ortega
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Brendan Chernicki
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Grace Ou
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
13
|
Dagotto G, Fisher JL, Li D, Li Z, Jenni S, Li Z, Tartaglia LJ, Abbink P, Barouch DH. Identification of a novel neutralization epitope in rhesus AAVs. Mol Ther Methods Clin Dev 2024; 32:101350. [PMID: 39469420 PMCID: PMC11513466 DOI: 10.1016/j.omtm.2024.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Adeno-associated viruses (AAVs) are popular gene therapy delivery vectors, but their application can be limited by anti-vector immunity. Both preexisting neutralizing antibodies (NAbs) and post-administration NAbs can limit transgene expression and reduce the clinical utility of AAVs. The development of novel AAVs will advance our understanding of AAV immunity and may also have practical applications. In this study, we identified five novel AAV capsids from rhesus macaques. RhAAV4282 exhibited 91.4% capsid sequence similarity with AAV7 and showed similar tissue tropism with slightly diminished overall signal. Despite this sequence homology, RhAAV4282 and AAV7 showed limited cross-neutralization. We determined a cryo-EM structure of the RhAAV4282 capsid at 2.57 Å resolution and identified a small segment within the hypervariable region IV, involving seven amino acids that formed a shortened external loop in RhAAV4282 compared with AAV7. We generated RhAAV4282 and AAV7 mutants that involved swaps of this region and showed that this region partially determined neutralization phenotype. We termed this region the hypervariable region IV neutralizing epitope (HRNE). Our data suggests that modification of the HRNE can lead to AAVs with altered neutralization profiles.
Collapse
Affiliation(s)
- Gabriel Dagotto
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jana L. Fisher
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhenyu Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Shi X, Bortolussi G, Collaud F, Le Brun PR, Bloemendaal LT, Guerchet N, Rudi de Waart D, Sellier P, Duijst S, Veron P, Mingozzi F, Kishimoto TK, Ronzitti G, Bosma P, Muro AF. Repeated dosing of AAV-mediated liver gene therapy in juvenile rat and mouse models of Crigler-Najjar syndrome type I. Mol Ther Methods Clin Dev 2024; 32:101363. [PMID: 39618425 PMCID: PMC11607602 DOI: 10.1016/j.omtm.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 01/30/2025]
Abstract
Crigler-Najjar syndrome is an ultra-rare monogenic recessive liver disease caused by UGT1A1 gene mutations. Complete UGT1A1 deficiency results in severe unconjugated hyperbilirubinemia in newborns that, if not treated, may lead to brain damage and death. Treatment is based on intensive phototherapy, but its efficacy decreases with age, rendering liver transplantation the only curative option. Adeno-associated virus (AAV)-mediated gene therapy has shown long-term correction in adult patients, but loss of viral DNA and therapeutic efficacy are expected in younger patients associated with liver growth. Effective vector re-administration is hindered by anti-AAV neutralizing antibodies generated during the first administration. Here, we investigated AAV vector re-administration by modulating the immune response with rapamycin-loaded nanoparticles (ImmTOR) in Gunn rats (Ugt1a -/- ) and Ugt1a -/- mice. We administered a liver-specific AAV8 vector expressing a codon-optimized hUGT1A1 cDNA (1.0E11 vg/kg) in P25-P28 mutant animals and, upon loss of efficacy after 3 to 5 weeks, a higher second dose (1.0E12 or 5.0E12 vg/kg) was given. ImmTOR co-administration reduced anti-AAV neutralizing antibodies and immunoglobulin Gs generation in male animals of both models allowing effective re-dosing, underscored by a significant and long-term decrease in plasma bilirubin, although efficacy was affected by low-titer residual anti-AAV antibodies suggesting that re-administration in patients may require combination with other methods.
Collapse
Affiliation(s)
- Xiaoxia Shi
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116082, P.R. China
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Fanny Collaud
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | | - Lysbeth ten Bloemendaal
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | | | - Dirk Rudi de Waart
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | - Pauline Sellier
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Suzanne Duijst
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | | | | | | | - Giuseppe Ronzitti
- Genethon, 91000 Evry, France
- Université Paris-Saclay, Université d’Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Piter Bosma
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Meibergdreef 69-71, 1105 BK Amsterdam, the Netherlands
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
15
|
Pitner RA, Chao JL, Dahl NP, Fan MN, Cai X, Avery NG, Roe K, Spiegel PC, Miao CH, Gerner MY, James RG, Rawlings DJ. Blunting specific T-dependent antibody responses with engineered "decoy" B cells. Mol Ther 2024; 32:3453-3469. [PMID: 39192583 PMCID: PMC11489556 DOI: 10.1016/j.ymthe.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Antibody inhibitors pose an ongoing challenge to the treatment of subjects with inherited protein deficiency disorders, limiting the efficacy of both protein replacement therapy and corrective gene therapy. Beyond their central role as producers of serum antibody, B cells also exhibit many unique properties that could be exploited in cell therapy applications, notably including antigen-specific recognition and the linked capacity for antigen presentation. Here we employed CRISPR-Cas9 to demonstrate that ex vivo antigen-primed Blimp1-knockout "decoy" B cells, incapable of differentiation into plasma cells, participated in and downregulated host antigen-specific humoral responses after adoptive transfer. Following ex vivo antigen pulse, adoptively transferred high-affinity antigen-specific decoy B cells were diverted into germinal centers en masse, thereby reducing participation by endogenous antigen-specific B cells in T-dependent humoral responses and suppressing both cognate and linked antigen-specific immunoglobulin (Ig)G following immunization with conjugated antigen. This effect was dose-dependent and, importantly, did not impact concurrent unrelated antibody responses. We demonstrated the therapeutic potential of this approach by treating factor VIII (FVIII)-knockout mice with antigen-pulsed decoy B cells prior to immunization with an FVIII conjugate protein, thereby blunting the production of serum FVIII-specific IgG by an order of magnitude as well as reducing the proportion of animals exhibiting functional FVIII inhibition by 6-fold.
Collapse
Affiliation(s)
- Ragan A Pitner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jaime L Chao
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Noelle P Dahl
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Meng-Ni Fan
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Xiaohe Cai
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Nathan G Avery
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Kelsey Roe
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - P Clint Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michael Y Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Richard G James
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David J Rawlings
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Ma D, Xie A, Lv J, Min X, Zhang X, Zhou Q, Gao D, Wang E, Gao L, Cheng L, Liu S. Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins. Protein Cell 2024; 15:724-743. [PMID: 38518087 PMCID: PMC11443452 DOI: 10.1093/procel/pwae015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024] Open
Abstract
Developing an intracellular delivery system is of key importance in the expansion of protein-based therapeutics acting on cytosolic or nuclear targets. Recently, extracellular vesicles (EVs) have been exploited as next-generation delivery modalities due to their natural role in intercellular communication and biocompatibility. However, fusion of protein of interest to a scaffold represents a widely used strategy for cargo enrichment in EVs, which could compromise the stability and functionality of cargo. Herein, we report intracellular delivery via EV-based approach (IDEA) that efficiently packages and delivers native proteins both in vitro and in vivo without the use of a scaffold. As a proof-of-concept, we applied the IDEA to deliver cyclic GMP-AMP synthase (cGAS), an innate immune sensor. The results showed that cGAS-carrying EVs activated interferon signaling and elicited enhanced antitumor immunity in multiple syngeneic tumor models. Combining cGAS EVs with immune checkpoint inhibition further synergistically boosted antitumor efficacy in vivo. Mechanistically, scRNA-seq demonstrated that cGAS EVs mediated significant remodeling of intratumoral microenvironment, revealing a pivotal role of infiltrating neutrophils in the antitumor immune milieu. Collectively, IDEA, as a universal and facile strategy, can be applied to expand and advance the development of protein-based therapeutics.
Collapse
Affiliation(s)
- Ding Ma
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - An Xie
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiahui Lv
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolin Min
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xinye Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qian Zhou
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Daxing Gao
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Enyu Wang
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Lei Gao
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Linzhao Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Senquan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
17
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
18
|
Esposito F, Dell'Aquila F, Rhiel M, Auricchio S, Chmielewski KO, Andrieux G, Ferla R, Horrach PS, Padmanabhan A, Di Cunto R, Notaro S, Santeularia ML, Boerries M, Dell'Anno M, Nusco E, Padula A, Nutarelli S, Cornu TI, Sorrentino NC, Piccolo P, Trapani I, Cathomen T, Auricchio A. Safe and effective liver-directed AAV-mediated homology-independent targeted integration in mouse models of inherited diseases. Cell Rep Med 2024; 5:101619. [PMID: 38897206 PMCID: PMC11293346 DOI: 10.1016/j.xcrm.2024.101619] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Liver-directed adeno-associated viral (AAV) vector-mediated homology-independent targeted integration (AAV-HITI) by CRISPR-Cas9 at the highly transcribed albumin locus is under investigation to provide sustained transgene expression following neonatal treatment. We show that targeting the 3' end of the albumin locus results in productive integration in about 15% of mouse hepatocytes achieving therapeutic levels of systemic proteins in two mouse models of inherited diseases. We demonstrate that full-length HITI donor DNA is preferentially integrated upon nuclease cleavage and that, despite partial AAV genome integrations in the target locus, no gross chromosomal rearrangements or insertions/deletions at off-target sites are found. In line with this, no evidence of hepatocellular carcinoma is observed within the 1-year follow-up. Finally, AAV-HITI is effective at vector doses considered safe if directly translated to humans providing therapeutic efficacy in the adult liver in addition to newborn. Overall, our data support the development of this liver-directed AAV-based knockin strategy.
Collapse
Affiliation(s)
- Federica Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Fabio Dell'Aquila
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Stefano Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Kay Ole Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; PhD Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rita Ferla
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Arjun Padmanabhan
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Roberto Di Cunto
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Simone Notaro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Agnese Padula
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Sofia Nutarelli
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Tatjana I Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Gene Therapy Joint lab, Dept. of Advanced Biomedical Sciences and Dept. of Translational Medicine, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
19
|
Chernyi N, Gavrilova D, Saruhanyan M, Oloruntimehin ES, Karabelsky A, Bezsonov E, Malogolovkin A. Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules 2024; 14:854. [PMID: 39062568 PMCID: PMC11274510 DOI: 10.3390/biom14070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
One of the well-known X-linked genetic disorders is hemophilia, which could be hemophilia A as a result of a mutation in the F8 (factor VIII) gene or hemophilia B as a result of a mutation in the F9 (factor IX) gene, leading to insufficient levels of the proteins essential for blood coagulation cascade. In patients with severe hemophilia, factor VIII or factor IX activities in the blood plasma are considerably low, estimated to be less than 1%. This is responsible for spontaneous or post-traumatic bleeding episodes, or both, leading to disease complications and death. Current treatment of hemophilia relies on the prevention of bleeding, which consists of expensive lifelong replacement infusion therapy of blood plasma clotting factors, their recombinant versions, or therapy with recombinant monoclonal antibodies. Recently emerged gene therapy approaches may be a potential game changer that could reshape the therapeutic outcomes of hemophilia A or B using a one-off vector in vivo delivery and aim to achieve long-term endogenous expression of factor VIII or IX. This review examines both traditional approaches to the treatment of hemophilia and modern methods, primarily focusing on gene therapy, to update knowledge in this area. Recent technological advances and gene therapeutics in the pipeline are critically reviewed and summarized. We consider gene therapy to be the most promising method as it may overcome the problems associated with more traditional treatments, such as the need for constant and expensive infusions and the presence of an immune response to the antibody drugs used to treat hemophilia.
Collapse
Affiliation(s)
- Nikita Chernyi
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Darina Gavrilova
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia;
| | - Mane Saruhanyan
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Ezekiel S. Oloruntimehin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
| | - Alexander Karabelsky
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia;
| | - Evgeny Bezsonov
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
- Department of Biology and General Genetics, First Moscow State Medical University (Sechenov University), Moscow 105043, Russia;
| | - Alexander Malogolovkin
- Laboratory of Molecular Virology, First Moscow State Medical University (Sechenov University), Moscow 119435, Russia; (N.C.); (M.S.); (E.S.O.)
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354530, Russia;
| |
Collapse
|
20
|
Metovic J, Li Y, Gong Y, Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21:e00443. [PMID: 39276676 PMCID: PMC11418141 DOI: 10.1016/j.neurot.2024.e00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yedda Li
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Muñoz-Melero M, Biswas M. Role of FoxP3 + Regulatory T Cells in Modulating Immune Responses to Adeno-Associated Virus Gene Therapy. Hum Gene Ther 2024; 35:439-450. [PMID: 38450566 PMCID: PMC11302314 DOI: 10.1089/hum.2023.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Adeno-associated virus (AAV) gene therapy is making rapid strides owing to its wide range of therapeutic applications. However, development of serious immune responses to the capsid antigen or the therapeutic transgene product hinders its full clinical impact. Immune suppressive (IS) drug treatments have been used in various clinical trials to prevent the deleterious effects of cytotoxic T cells to the viral vector or transgene, although there is no consensus on the best treatment regimen, dosage, or schedule. Regulatory T cells (Tregs) are crucial for maintaining tolerance against self or nonself antigens. Of importance, Tregs also play an important role in dampening immune responses to AAV gene therapy, including tolerance induction to the transgene product. Approaches to harness the tolerogenic effect of Tregs include the use of selective IS drugs that expand existing Tregs, and skew activated conventional T cells into antigen-specific peripherally induced Tregs. In addition, Tregs can be expanded ex vivo and delivered as cellular therapy. Furthermore, receptor engineering can be used to increase the potency and specificity of Tregs allowing for suppression at lower doses and reducing the risk of disrupting protective immunity. Because immune-mediated toxicities to AAV vectors are a concern in the clinic, strategies that can enhance or preserve Treg function should be considered to improve both the safety and efficacy of AAV gene therapy.
Collapse
Affiliation(s)
- Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Meier N, Fuchs H, Galactionova K, Hermans C, Pletscher M, Schwenkglenks M. Cost-Effectiveness Analysis of Etranacogene Dezaparvovec Versus Extended Half-Life Prophylaxis for Moderate-to-Severe Haemophilia B in Germany. PHARMACOECONOMICS - OPEN 2024; 8:373-387. [PMID: 38520664 PMCID: PMC11058170 DOI: 10.1007/s41669-024-00480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Haemophilia B is a rare genetic disease that is caused by a deficiency of coagulation factor IX (FIX) in the blood and leads to internal and external bleeding. Under the current standard of care, haemophilia is treated either prophylactically or on-demand via intravenous infusions of FIX. These treatment strategies impose a high burden on patients and health care systems as haemophilia B requires lifelong treatment, and FIX is costly. Etranacogene dezaparvovec (ED) is a gene therapy for haemophilia B that has been recently approved by the United States Food and Drug Administration and has received a recommendation for conditional marketing authorization by the European Medicines Agency. We aimed to examine the cost-effectiveness of ED versus extended half-life FIX (EHL-FIX) prophylaxis for moderate-to-severe haemophilia B from a German health care payer perspective. METHODS A microsimulation model was implemented in R. The model used data from the ED phase 3 clinical trial publication and further secondary data sources to simulate and compare patients receiving ED or EHL-FIX prophylaxis over a lifetime horizon, with the potential for ED patients to switch treatment to EHL-FIX prophylaxis when the effectiveness of ED waned. Primary outcomes of this analysis included discounted total costs, discounted quality-adjusted life years (QALYs), incremental cost-effectiveness, and the incremental net monetary benefit. The annual discount rate for costs and effects was 3%. Uncertainty was examined via probabilistic analysis and additional univariate sensitivity analyses. RESULTS Probabilistic analysis indicated that patients treated with ED instead of EHL-FIX prophylaxis gained 0.50 QALYs and experienced cost savings of EUR 1,179,829 at a price of EUR 1,500,000 per ED treatment. ED was the dominant treatment strategy. At a willingness to pay of EUR 50,000/QALY, the incremental net monetary benefit amounted to EUR 1,204,840. DISCUSSION Depending on the price, ED can save costs and improve health outcomes of haemophilia patients compared with EHL-FIX prophylaxis, making it a potentially cost-effective alternative. These results are uncertain due to a lack of evidence regarding the long-term effectiveness of ED.
Collapse
Affiliation(s)
- Niklaus Meier
- Institute of Pharmaceutical Medicine (ECPM), University of Basel, Basel, Switzerland.
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katya Galactionova
- Institute of Pharmaceutical Medicine (ECPM), University of Basel, Basel, Switzerland
| | - Cedric Hermans
- Haemostasis and Thrombosis Unit, Division of Hematology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Mark Pletscher
- Institute of Health Economics and Health Policy, Bern University of Applied Sciences, Bern, Switzerland
| | - Matthias Schwenkglenks
- Institute of Pharmaceutical Medicine (ECPM), University of Basel, Basel, Switzerland
- Health Economics Facility, Department of Public Health, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Silver E, Argiro A, Hong K, Adler E. Gene therapy vector-related myocarditis. Int J Cardiol 2024; 398:131617. [PMID: 38030043 DOI: 10.1016/j.ijcard.2023.131617] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Gene therapy is a technique to correct genetic abnormalities, through introduction of a functional gene or through direct genome editing. Adeno-associated virus (AAV)-mediated gene replacement shows promise for targeted therapies in treatment of inherited cardiomyopathies and is the most used approach in clinical trials. However, immune responses from the host to the virus and gene product pose delivery and safety challenges. This review explores the immunological reactions to AAV-based gene therapy, their potential toxic effects, with a focus on myocarditis, and future directions for gene therapy.
Collapse
Affiliation(s)
- Elizabeth Silver
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, San Diego, CA, United States; School of Medicine, University of Connecticut Health Center, Farmington, CT, United States.
| | - Alessia Argiro
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Kimberly Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Eric Adler
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
24
|
Slezak A, Chang K, Hossainy S, Mansurov A, Rowan SJ, Hubbell JA, Guler MO. Therapeutic synthetic and natural materials for immunoengineering. Chem Soc Rev 2024; 53:1789-1822. [PMID: 38170619 PMCID: PMC11557218 DOI: 10.1039/d3cs00805c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.
Collapse
Affiliation(s)
- Anna Slezak
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kevin Chang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Samir Hossainy
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aslan Mansurov
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Stuart J Rowan
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
25
|
Castiello MC, Brandas C, Ferrari S, Porcellini S, Sacchetti N, Canarutto D, Draghici E, Merelli I, Barcella M, Pelosi G, Vavassori V, Varesi A, Jacob A, Scala S, Basso Ricci L, Paulis M, Strina D, Di Verniere M, Sergi Sergi L, Serafini M, Holland SM, Bergerson JRE, De Ravin SS, Malech HL, Pala F, Bosticardo M, Brombin C, Cugnata F, Calzoni E, Crooks GM, Notarangelo LD, Genovese P, Naldini L, Villa A. Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency. Sci Transl Med 2024; 16:eadh8162. [PMID: 38324638 PMCID: PMC11149094 DOI: 10.1126/scitranslmed.adh8162] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Chiara Brandas
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Samuele Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simona Porcellini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Nicolò Sacchetti
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Daniele Canarutto
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Merelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Matteo Barcella
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Gabriele Pelosi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Dario Strina
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Lucia Sergi Sergi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marta Serafini
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza (MI) 20900, Italy
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Enrica Calzoni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pietro Genovese
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Naldini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| |
Collapse
|
26
|
Rouse CJ, Jensen VN, Heldermon CD. Mucopolysaccharidosis type IIIB: a current review and exploration of the AAV therapy landscape. Neural Regen Res 2024; 19:355-359. [PMID: 37488890 PMCID: PMC10503619 DOI: 10.4103/1673-5374.377606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 07/26/2023] Open
Abstract
Mucopolysaccharidoses type IIIB is a rare genetic disorder caused by mutations in the gene that encodes for N-acetyl-alpha-glucosaminidase. This results in the aggregation of heparan sulfate polysaccharides within cell lysosomes that leads to progressive and severe debilitating neurological dysfunction. Current treatment options are expensive, limited, and presently there are no approved cures for mucopolysaccharidoses type IIIB. Adeno-associated virus gene therapy has significantly advanced the field forward, allowing researchers to successfully design, enhance, and improve potential cures. Our group recently published an effective treatment using a codon-optimized triple mutant adeno-associated virus 8 vector that restores N-acetyl-alpha-glucosaminidase levels, auditory function, and lifespan in the murine model for mucopolysaccharidoses type IIIB to that seen in healthy mice. Here, we review the current state of the field in relation to the capsid landscape, adeno-associated virus gene therapy and its successes and challenges in the clinic, and how novel adeno-associated virus capsid designs have evolved research in the mucopolysaccharidoses type IIIB field.
Collapse
|
27
|
Khalil B, Linsenmeier M, Smith CL, Shorter J, Rossoll W. Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD. Mol Neurodegener 2024; 19:8. [PMID: 38254150 PMCID: PMC10804745 DOI: 10.1186/s13024-023-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders on a disease spectrum that are characterized by the cytoplasmic mislocalization and aberrant phase transitions of prion-like RNA-binding proteins (RBPs). The common accumulation of TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), and other nuclear RBPs in detergent-insoluble aggregates in the cytoplasm of degenerating neurons in ALS/FTD is connected to nuclear pore dysfunction and other defects in the nucleocytoplasmic transport machinery. Recent advances suggest that beyond their canonical role in the nuclear import of protein cargoes, nuclear-import receptors (NIRs) can prevent and reverse aberrant phase transitions of TDP-43, FUS, and related prion-like RBPs and restore their nuclear localization and function. Here, we showcase the NIR family and how they recognize cargo, drive nuclear import, and chaperone prion-like RBPs linked to ALS/FTD. We also discuss the promise of enhancing NIR levels and developing potentiated NIR variants as therapeutic strategies for ALS/FTD and related neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - Miriam Linsenmeier
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Neuroscience Track, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A..
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A..
| |
Collapse
|
28
|
Asokan A, Shen S. Redirecting AAV vectors to extrahepatic tissues. Mol Ther 2023; 31:3371-3375. [PMID: 37805712 PMCID: PMC10727976 DOI: 10.1016/j.ymthe.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors are the current benchmark for systemic delivery of gene therapies to multiple organs in vivo. Despite clinical successes, safe and effective gene delivery to extrahepatic tissues has proven challenging due to dose limiting toxicity arising from high liver uptake of AAV vectors. Deeper understanding of AAV structure, receptor biology, and pharmacology has enabled the design and engineering of liver-de-targeted capsids ushering in several new vector candidates. This next generation of AAVs offers significant promise for extrahepatic gene delivery to cardiovascular, musculoskeletal, and neurological tissues with improved safety profiles.
Collapse
Affiliation(s)
- Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Shen Shen
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA, USA.
| |
Collapse
|
29
|
Brunet de Courssou JB, Deiva K. Les thérapies géniques en neurologie. PRATIQUE NEUROLOGIQUE - FMC 2023; 14:208-224. [DOI: 10.1016/j.praneu.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
31
|
Seker Yilmaz B, Gissen P. Genetic Therapy Approaches for Ornithine Transcarbamylase Deficiency. Biomedicines 2023; 11:2227. [PMID: 37626723 PMCID: PMC10452060 DOI: 10.3390/biomedicines11082227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle disorder with high unmet needs, as current dietary and medical treatments may not be sufficient to prevent hyperammonemic episodes, which can cause death or neurological sequelae. To date, liver transplantation is the only curative choice but is not widely available due to donor shortage, the need for life-long immunosuppression and technical challenges. A field of research that has shown a great deal of promise recently is gene therapy, and OTCD has been an essential candidate for different gene therapy modalities, including AAV gene addition, mRNA therapy and genome editing. This review will first summarise the main steps towards clinical translation, highlighting the benefits and challenges of each gene therapy approach, then focus on current clinical trials and finally outline future directions for the development of gene therapy for OTCD.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
32
|
Ertl HCJ. Mitigating Serious Adverse Events in Gene Therapy with AAV Vectors: Vector Dose and Immunosuppression. Drugs 2023; 83:287-298. [PMID: 36715794 DOI: 10.1007/s40265-023-01836-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
Gene transfer with high doses of adeno-associated viral (AAV) vectors has resulted in serious adverse events and even death of the recipients. Toxicity could most likely be circumvented by repeated injections of lower and less toxic doses of vectors. This has not been pursued as AAV vectors induce potent neutralizing antibodies, which prevent cell transduction upon reinjection of the same vector. This review discusses different types of immune responses against AAV vectors and how they offer targets for the elimination or inhibition of vector-specific neutralizing antibodies. Such antibodies can be circumvented by using different virus serotypes for sequential injections, they can be removed by plasmapheresis, or they can be destroyed by enzymatic degradation. Antibody producing cells can be eliminated by proteasome inhibitors. Drugs that inhibit T-cell responses, B-cell signaling, or presentation of the vector's antigens to B cells can prevent or reduce induction of AAV-specific antibodies. Combinations of different approaches and drugs are likely needed to suppress or eliminate neutralizing antibodies, which would then allow for repeated dosing. Alternatively, novel AAV vectors with higher transduction efficacy are being developed and may allow for a dose reduction, although it remains unknown if this will completely address the problem of high-dose adverse events.
Collapse
|