1
|
Butolo NP, Azevedo P, de Alencar LD, Domingues CEC, Miotelo L, Malaspina O, Nocelli RCF. A high quality method for hemolymph collection from honeybee larvae. PLoS One 2020; 15:e0234637. [PMID: 32555675 PMCID: PMC7302910 DOI: 10.1371/journal.pone.0234637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
The drastic decline of bees is associated with several factors, including the immune system suppression due to the increased exposure to pesticides. A widely used method to evaluate these effects on these insects' immune systems is the counting of circulating hemocytes in the hemolymph. However, the extraction of hemolymph from larvae is quite difficult, and the collected material is frequently contaminated with other tissues and gastrointestinal fluids, which complicates counting. Therefore, the present work established a high quality and easily reproducible method of extracting hemolymph from honeybee larvae (Apis mellifera), the extraction with ophthalmic scissors. Extraction methods with the following tools also were tested: 30G needle, fine-tipped forceps, hypodermic syringe, and capillaries tubes. The hemolymph was obtained via an incision on the larvae’s right side for all methods, except for the extraction with ophthalmic scissors, in which the hemolymph was extracted from the head region. To assess the purity of the collected material, turbidity analyses of the samples using a turbidimeter were proposed, tested, and evaluated. The results showed that the use of ophthalmic scissors provided the clearest samples and was free from contamination. A reference range between 22,432.35 and 24,504.87 NTU (nephelometric turbidity units) was established, in which the collected samples may be considered of high quality and free from contamination.
Collapse
Affiliation(s)
- Nicole Pavan Butolo
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
- * E-mail: (NPB); (PA)
| | - Patricia Azevedo
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia–Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil
- * E-mail: (NPB); (PA)
| | - Luciano Delmondes de Alencar
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia–Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil
| | - Caio E. C. Domingues
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Lucas Miotelo
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
- Departamento de Ciências da Natureza, Matemática e Educação, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar-SP), Araras, SP, Brazil
| |
Collapse
|
2
|
Moriconi DE, Dulbecco AB, Juárez MP, Calderón-Fernández GM. A fatty acid synthase gene (FASN3) from the integument tissue of Rhodnius prolixus contributes to cuticle water loss regulation. INSECT MOLECULAR BIOLOGY 2019; 28:850-861. [PMID: 31125161 DOI: 10.1111/imb.12600] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/29/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Fatty acid synthase is a multifunctional enzyme involved in the formation of fatty acids. Despite the role of fatty acids in cell signalling and energy metabolism, and as precursors to pheromones and hydrocarbons that waterproof the cuticle, the insect fatty acid synthases have been scarcely studied. Here we perform the molecular characterization of three fatty acid synthase genes (fatty acid synthase RPRC000123, RPRC000269 and RPRC002909) in the Chagas disease vector, Rhodnius prolixus. Gene expression screening by reverse transcription quantitative PCR showed that RPRC000123 and RPRC002909 are expressed almost exclusively in the integument tissue whilst RPRC000269 is mostly expressed in the fat body and also in several body organs. Phylogenetic analysis, together with gene expression results, showed that RPRC000269, RPRC002909 and RPRC000123 are orthologues of Drosophila melanogaster fatty acid synthase 1 (FASN1), FASN2 and FASN3 genes, respectively. After RNA interference-mediated knockdown of RPRC000123, insects died immediately after moulting to the next developmental stage. However, mortality was prevented by placing the insects under saturated humidity conditions, suggesting that dehydration might play a role in the insects' death. Lipid analyses in RPRC000123-silenced insects showed reduced amounts of integument fatty acids and methyl-branched hydrocarbons, compared to controls. These data support an important role for FASN3 in the biosynthesis of the precursors to hydrocarbons that waterproof the insect cuticle.
Collapse
Affiliation(s)
- D E Moriconi
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - A B Dulbecco
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - M P Juárez
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - G M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Turgay-İzzetoğlu G, Gülmez M. Characterization of fat body cells at different developmental stages of Culex pipiens. Acta Histochem 2019; 121:460-471. [PMID: 30979430 DOI: 10.1016/j.acthis.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/15/2022]
Abstract
The fat body, originates from mesoderm, has many metabolic functions which changes as the embryonic development of the insect progresses. It plays an important role in the intermediate metabolism and in the metabolism of proteins, lipids and carbohydrates. It has roles in synthesis, absorption and storage of nutrients from hemolymph. It is also responsible for the production of immunological system components, antibacterial compounds and blood clotting proteins. The most common type of fat body cells are trophocytes (the basic cells of the fat body) and oenocytes are found associated with the fat body. In this study, it is aimed at determining the cell types contained in the fat body of Culex pipiens at different developmental stages as well as identifying the molecules such as carbohydrate, protein and lipid contained in each of these cells. Knowing the regional distribution of the fat body cells and the concentration of its content at each developmental stage is important in understanding the process related to its physiology and it may help in fighting against the pest C. pipiens, which is a vector species for many contagious diseases observed in humans and other species. To achieve our goal, we have employed different histochemical techniques (fixatives and staining methods) for staining C. pipiens preparates of different developmental stages and analyzed the structure of the fat body, its distribution, its cell types and the macromolecular contents of the cells. We only observed trophocytes and oenocytes as fat body components in C. pipiens. The trophocytes had all the three macromolecules (lipids, proteins, carbohydrates) in the cytoplasm varying in concentration between the different regions and different stages. The oenocytes were observed below the integument as well as between the muscles in the larvae of Culex pipiens. They were present either as single cells or in clusters and also varied in size. Their cytoplasm was stained strongly for proteins when bromophenol blue staining was applied, but it was rather heterogeneous due to the lipid inclusions. On the contrary, oenocytes were not observed among the adult C. pipiens preparations.
Collapse
Affiliation(s)
- Gamze Turgay-İzzetoğlu
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, İzmir, Turkey.
| | - Mehtap Gülmez
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, İzmir, Turkey
| |
Collapse
|
4
|
Huang K, Chen W, Zhu F, Li PWL, Kapahi P, Bai H. RiboTag translatomic profiling of Drosophila oenocytes under aging and induced oxidative stress. BMC Genomics 2019; 20:50. [PMID: 30651069 PMCID: PMC6335716 DOI: 10.1186/s12864-018-5404-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, liver shows age-related dysregulation of lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear. In the fruit fly, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat body and oenocytes. Compared to fat body, little is known about how oenocytes age and what are their roles in aging regulation. To characterize age- and stress-regulated gene expression in oenocytes, we performed cell-type-specific ribosome profiling (RiboTag) to examine the impacts of aging and oxidative stress on oenocyte translatome in Drosophila. RESULTS We show that aging and oxidant paraquat significantly increased the levels of reactive oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among all age-regulated genes, oxidative phosphorylation, ribosome, proteasome, fatty acid metabolism, and cytochrome P450 pathways were down-regulated, whereas DNA replication and immune response pathways were up-regulated. In addition, most of the peroxisomal genes were down-regulated in aged oenocytes, including genes involved in peroxisomal biogenesis factors and fatty acid beta-oxidation. Many age-related mRNA translational changes in oenocytes are similar to aged mammalian liver, such as up-regulation of innate immune response and Ras/MAPK signaling pathway and down-regulation of peroxisome and fatty acid metabolism. Furthermore, oenocytes highly expressed genes involving in liver-like processes (e.g., ketogenesis). CONCLUSIONS Our oenocyte-specific translatome analysis identified many genes and pathways that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular and functional similarities between the two tissues. Many of these genes were altered in both oenocytes and liver during aging. Thus, our translatome analysis provide important genomic resource for future dissection of oenocyte function and its role in lipid metabolism, stress response and aging regulation.
Collapse
Affiliation(s)
- Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Wenhao Chen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Calderón-Fernández GM, Moriconi DE, Dulbecco AB, Juárez MP. Transcriptome Analysis of the Triatoma infestans (Hemiptera: Reduviidae) Integument. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1531-1542. [PMID: 29029205 DOI: 10.1093/jme/tjx151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 06/07/2023]
Abstract
The insect integument, formed by the cuticle and the underlying epidermis, is essential for insect fitness, regulation of lipid biosynthesis and storage, insect growth and feeding, together with development progress. Its participation in insecticide resistance has also been outlined. Triatoma infestans Klug (Hemiptera: Reduviidae) is one of the major vectors of Chagas disease in South America; however, genomic data are scarce. In this study, we performed a transcriptome analysis of the nymph integument in order to identify which genes are expressed and their putative role. Using the 454 GS-FLX sequencing platform, we obtained approximately 144,620 reads from the integument tissue. These reads were assembled into 6,495 isotigs and 8,504 singletons. Based on BLAST similarity searches, about 8,000 transcripts were annotated with known genes, conserved domains, and/or Gene Ontology terms.The most abundant transcripts corresponded to transcription factors and nucleic acid metabolism, membrane receptors, cell signaling, and proteins related to cytoskeleton, transport, and cell energy processes, among others. More than 10% of the transcripts-encoded proteins putatively involved in the metabolism of fatty acids and related components (fatty acid synthases, elongases, desaturases, fatty alcohol reductases), structural integument proteins, and the insecticide detoxification system (among them, cytochrome P450s, esterases, and glutathione transferases). Real-time qPCR assays were used to investigate their putative participation in the resistance mechanism. This preliminary study is the first transcriptome analysis of a triatomine integument, and together with prior biochemical information, will help further understandthe role of the integument in a wide array of mechanisms.
Collapse
Affiliation(s)
- Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - Débora E Moriconi
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - Andrea B Dulbecco
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| |
Collapse
|
6
|
Domingues CEC, Abdalla FC, Balsamo PJ, Pereira BVR, Hausen MDA, Costa MJ, Silva-Zacarin ECM. Thiamethoxam and picoxystrobin reduce the survival and overload the hepato-nephrocitic system of the Africanized honeybee. CHEMOSPHERE 2017; 186:994-1005. [PMID: 28835008 DOI: 10.1016/j.chemosphere.2017.07.133] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/30/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Apis mellifera perform important pollination roles in agroecosystems. However, there is often intensive use of systemic pesticides in crops, which can be carried to the colony by forage bees through the collection of contaminated pollen and nectar. Inside the colony, pollen loads are stored by bees that add honey and several enzymes to this pollen. Nevertheless, intra-colonial chronic exposure could induce sublethal effects in young bees exposed to a wide range of pesticides present in these pollen loads. This study was aimed to both determine the survival rate and evaluate the sublethal effects on the hepato-nephrocitic system in response to continuous oral exposure to lower concentrations of neonicotinoid thiamethoxam (TXT) and picoxystrobin fungicide (PXT). Exposure to a single chemical and co-exposure to both pesticides were performed in newly emerged honeybee workers. A significant decrease in the bee survival rates was observed following exposure to TXT (0.001 ng a.i./μL) and PXT (0.018 ng a.i./μL), as well as following co-exposure to TXT+PXT/2. After five days of continuous exposure, TXT induced sub-lethal effects in the organs involved in the detoxification of xenobiotics, such as the fat body and pericardial cells, and it also induced a significant increase in the hemocyte number. Thus, the hepato-nephrocitic system (HNS) reached the greatest level of activity of pericardial cells as an attempt to eliminate this toxic compound from hemolymph. The HNS was activated at low levels by PXT without an increase in the hemocyte number; however, the mobilization of neutral glycoconjugates from the trophocytes of the fat body was prominent only in this group. TXT and PXT co-exposure induced intermediary morphological effects in trophocytes and pericardial cells, but oenocytes from the fat body presented with atypical cytoplasm granulation only in this group. These data showed that the realistic concentrations of these pesticides are harmful to newly emerged Africanized honeybees, indicating that intra-colonial chronic exposure drastically reduces the longevity of bees exposed to neonicotinoid insecticide (TXT) and the fungicide strobilurin (PXT) as in single and co-exposure. Additionally, the sublethal effects observed in the organs constituting the HNS suggest that the activation of this system, even during exposure to low concentrations of theses pesticides, is an attempt to maintain homeostasis of the bees. These data together are alarming because these pesticides can affect the performance of the entire colony.
Collapse
Affiliation(s)
- Caio E C Domingues
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Biologia Estrutural e Funcional (LABEF), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Ecotoxicologia e Biomarcadores em Abelhas (LEBA), Sorocaba, SP, Brazil
| | - Fábio Camargo Abdalla
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Biologia Estrutural e Funcional (LABEF), Sorocaba, SP, Brazil.
| | - Paulo José Balsamo
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Biologia Estrutural e Funcional (LABEF), Sorocaba, SP, Brazil
| | - Beatriz V R Pereira
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Ecotoxicologia e Biomarcadores em Abelhas (LEBA), Sorocaba, SP, Brazil
| | - Moema de Alencar Hausen
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil
| | - Monica Jones Costa
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil
| | - Elaine C M Silva-Zacarin
- Universidade Federal de São Carlos (UFSCar), Programa de Pós-Graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Sorocaba, SP, Brazil; Universidade Federal de São Carlos (UFSCar), Departamento de Biologia (DBio), Laboratório de Ecotoxicologia e Biomarcadores em Abelhas (LEBA), Sorocaba, SP, Brazil
| |
Collapse
|
7
|
Marriel NB, Tomé HVV, Guedes RCN, Martins GF. Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti). Acta Trop 2016; 158:88-96. [PMID: 26943998 DOI: 10.1016/j.actatropica.2016.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 11/30/2022]
Abstract
Insecticide use is the prevailing control tactic for the mosquito Aedes aegypti, a vector of several human viruses, which leads to ever-increasing problems of insecticide resistance in populations of this insect pest species. The underlying mechanisms of insecticide resistance may be linked to the metabolism of insecticides by various cells, including oenocytes. Oenocytes are ectodermal cells responsible for lipid metabolism and detoxification. The goal of this study was to evaluate the sublethal effects of deltamethrin on survival, behavior, and oenocyte structure in the immature mosquitoes of insecticide-susceptible and resistant strains of A. aegypti. Fourth instar larvae (L4) of both strains were exposed to different concentrations of deltamethrin (i.e., 0.001, 0.003, 0.005, and 0.007 ppm). After exposure, L4 were subjected to behavioral bioassays. Insecticide effects on cell integrity after deltamethrin exposure (at 0.003 or 0.005 ppm) were assessed by processing pupal oenocytes for transmission electron microscopy or TUNEL reaction. The insecticide resistant L4 survived all the tested concentrations, whereas the 0.007-ppm deltamethrin concentration had lethal effects on susceptible L4. Susceptible L4 were lethargic and exhibited less swimming activity than unexposed larvae, whereas the resistant L4 were hyperexcited following exposure to 0.005 ppm deltamethrin. No sublethal effects and no significant cell death were observed in the oenocytes of either susceptible or resistant insects exposed to deltamethrin. The present study illustrated the different responses of susceptible and resistant strains of A. aegypti following exposure to sublethal concentration of deltamethrin, and demonstrated how the behavior of the immature stage of the two strains varied, as well as oenocyte structure following insecticide exposure.
Collapse
Affiliation(s)
- Nadja Biondine Marriel
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil
| | - Hudson Vaner Ventura Tomé
- Departamento de Entomologia, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil
| | - Raul Carvalho Narciso Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| |
Collapse
|
8
|
de Assis WA, Malta J, Pimenta PFP, Ramalho-Ortigão JM, Martins GF. The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:501-9. [PMID: 24863740 DOI: 10.1016/j.asd.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The fat body (FB) is responsible for the storage and synthesis of the majority of proteins and metabolites secreted into the hemolymph. Oenocytes are responsible for lipid processing and detoxification. The FB is distributed throughout the insect body cavity and organized as peripheral and perivisceral portions in the abdomen, with trophocytes and oenocytes attached to the peripheral portion. Here, we investigated the morphology and the subcellular changes in the peripheral and perivisceral FBs and in oenocytes of the sand flies Lutzomyia longipalpis and Phlebotomus papatasi after blood feeding. In L. longipalpis two-sized oenocytes (small and large) were identified, with both cell types displaying well-developed reticular system and smooth endoplasmic reticulum, whereas in P. papatasi, only small cells were observed. Detailed features of FBs of L. longipalpis and P. papatasi are shared either prior to or after blood feeding. The peripheral and perivisceral FBs responded to blood feeding with the development of glycogen zones and rough endoplasmic reticulum. This study provides the first detailed description of the FBs and oenocytes in sand flies, contributing significantly towards are better understanding of the biology of such important disease vectors.
Collapse
Affiliation(s)
- Wiviane Alves de Assis
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Juliana Malta
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Paulo Filemon P Pimenta
- Laboratório de Entomologia Médica, Instituto de Pesquisas René Rachou-CPqRR, Fundação Oswaldo Cruz (Fiocruz-MG), Avenida Augusto de Lima, 1715, Belo Horizonte, Minas Gerais CEP 30190-002, Brazil.
| | | | - Gustavo Ferreira Martins
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| |
Collapse
|
9
|
Furtado WCA, Azevedo DO, Martins GF, Zanuncio JC, Serrão JE. Histochemistry and ultrastructure of urocytes in the pupae of the stingless bee Melipona quadrifasciata (Hymenoptera: Meliponini). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1502-1510. [PMID: 24016411 DOI: 10.1017/s1431927613013445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The main cell types of the adult bee fat body are trophocytes and oenocytes; however, in pupae of some newly emerged bees, trophocytes are modified into cells called urocytes, which possibly function as a substitute for Malpighian tubules during metamorphosis when larval tubules are not functional and/or storage of urate salts is required. This study evaluated the morphology of urocytes in the stingless bee Melipona quadrifasciata and the possibility of maintaining these cells in primary culture. The urocytes M. quadrifasciata are white spherical cells with an irregular surface as observed by stereomicroscopy. They may be found individually or in groups associated with tracheae. Urocytes have a single, small, and spherical nucleus and cytoplasm rich in neutral polysaccharides, lipid droplets, protein, and granules containing calcium and urate salts. Our findings suggest that urocytes play a role in storage of neutral polysaccharides and calcium in M. quadrifasciata pupae and that these cells can be cultured for 72 h.
Collapse
Affiliation(s)
- Waléria C A Furtado
- Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
10
|
de Sousa CS, Serrão JE, Bonetti AM, Amaral IMR, Kerr WE, Maranhão AQ, Ueira-Vieira C. Insights into the Melipona scutellaris (Hymenoptera, Apidae, Meliponini) fat body transcriptome. Genet Mol Biol 2013; 36:292-7. [PMID: 23885214 PMCID: PMC3715298 DOI: 10.1590/s1415-47572013000200022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 03/11/2013] [Indexed: 12/21/2022] Open
Abstract
The insect fat body is a multifunctional organ analogous to the vertebrate liver. The fat body is involved in the metabolism of juvenile hormone, regulation of environmental stress, production of immunity regulator-like proteins in cells and protein storage. However, very little is known about the molecular mechanisms involved in fat body physiology in stingless bees. In this study, we analyzed the transcriptome of the fat body from the stingless bee Melipona scutellaris. In silico analysis of a set of cDNA library sequences yielded 1728 expressed sequence tags (ESTs) and 997 high-quality sequences that were assembled into 29 contigs and 117 singlets. The BLAST X tool showed that 86% of the ESTs shared similarity with Apis mellifera (honeybee) genes. The M. scutellaris fat body ESTs encoded proteins with roles in numerous physiological processes, including anti-oxidation, phosphorylation, metabolism, detoxification, transmembrane transport, intracellular transport, cell proliferation, protein hydrolysis and protein synthesis. This is the first report to describe a transcriptomic analysis of specific organs of M. scutellaris. Our findings provide new insights into the physiological role of the fat body in stingless bees.
Collapse
Affiliation(s)
- Cristina Soares de Sousa
- Laboratório de Genética, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Martins GF, Ramalho-Ortigão JM, Lobo NF, Severson DW, McDowell MA, Pimenta PFP. Insights into the transcriptome of oenocytes from Aedes aegypti pupae. Mem Inst Oswaldo Cruz 2011; 106:308-15. [PMID: 21655818 DOI: 10.1590/s0074-02762011000300009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/24/2011] [Indexed: 11/21/2022] Open
Abstract
Oenocytes are ectodermic cells present in the fat body of several insect species and these cells are considered to be analogous to the mammalian liver, based on their role in lipid storage, metabolism and secretion. Although oenocytes were identified over a century ago, little is known about their messenger RNA expression profiles. In this study, we investigated the transcriptome of Aedes aegypti oenocytes. We constructed a cDNA library from Ae. aegypti MOYO-R strain oenocytes collected from pupae and randomly sequenced 687 clones. After sequences editing and assembly, 326 high-quality contigs were generated. The most abundant transcripts identified corresponded to the cytochrome P450 superfamily, whose members have roles primarily related to detoxification and lipid metabolism. In addition, we identified 18 other transcripts with putative functions associated with lipid metabolism. One such transcript, a fatty acid synthase, is highly represented in the cDNA library of oenocytes. Moreover, oenocytes expressed several immunity-related genes and the majority of these genes were lysozymes. The transcriptional profile suggests that oenocytes play diverse roles, such as detoxification and lipid metabolism, and increase our understanding of the importance of oenocytes in Ae. aegypti homeostasis and immune competence.
Collapse
|
12
|
Martins GF, Serrão JE, Ramalho-Ortigão JM, Pimenta PFP. A comparative study of fat body morphology in five mosquito species. Mem Inst Oswaldo Cruz 2011; 106:742-7. [DOI: 10.1590/s0074-02762011000600015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/17/2011] [Indexed: 11/22/2022] Open
|