1
|
Muner RD, Moaeen-Ud-Din M, Saleem AH, Ullah Q, Abbas G, Maqbool B, Babar ME, Bi Y, Farooq F. Genomic selection, gene editing, and reproductive biotechnology: a triad for the improvement of native buffalo breeds in a developing country perspective like Pakistan. Trop Anim Health Prod 2025; 57:102. [PMID: 40047970 DOI: 10.1007/s11250-025-04352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/18/2025] [Indexed: 04/12/2025]
Abstract
Pakistan is the 2nd largest country in buffalo population in the world. The current population of buffalo in Pakistan is 45.0 million heads whereas the current world buffalo population is 200 million heads. Pakistan is home to one of the best buffalo breeds in the world i.e., Nili, Ravi, Nili-Ravi, Kundi, and Azi Khaili. Moreover, Pakistan is ranked 2nd largest buffalo-milk-producing country in the world. Keeping in consideration, the tremendous role and importance of buffalo, the current study aims to provide a comprehensive overview of the important genetic studies conducted up till now and the need to apply the latest genomic tools, gene editing, and reproductive biotechnologies for the improvement of these native buffalo breeds. The current research is limited to a few diversity studies, basic phylogenetics, evolution, and genetic characterization using only a few loci and phenotypic studies of limited productive traits. The current picture is gloomy as proper genetic characterization and diversity study of these breeds has never been made using reliable, accurate, and advanced genomic techniques. In a developing country like Pakistan where there is no comprehensive data collection coupled with scattered farming without any organized breeding system; genomic selection, gene editing, and application of advanced reproductive biotechnology techniques are the most promising techniques for rapid and sustainable development in the productive and reproductive potential of our Black Gold. Advancement in the methods of genotyping using commercially available SNP Chips at affordable prices along with improvements in reproductive biotechnology and genome editing techniques will provide the framework for the true genetic exploration and optimal utilization of precious native buffalo breeds potential. Conclusively, these techniques have great potential to revolutionize the world's buffalo population.
Collapse
Affiliation(s)
- Raja Danish Muner
- Department of Animal Breeding & Genetics, The University of Agriculture, Dera Ismail Khan, Pakistan.
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
| | - Muhammad Moaeen-Ud-Din
- Department of Animal Breeding & Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Ali Haider Saleem
- Department of Animal Sciences, College of Veterinary and Animal Sciences, Jhang, Pakistan
- Department of Animal Sciences, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Qudrat Ullah
- Department of Theriogenology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Ghulam Abbas
- Department of Biotechnology, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Babar Maqbool
- Department of Veterinary Medicine, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Masroor Ellahi Babar
- Department of Animal Breeding & Genetics, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Farhan Farooq
- Department of Poultry Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Kumari N, Saini S, Thakur S, Sharma S, Punetha M, Kumar P, Sango C, Sharma RK, Datta TK, Yadav PS, Kumar D. Enhancing the quality of inferior oocytes of buffalo for in vitro embryo production: The impact of melatonin on maturation, SCNT, and epigenetic modifications. Tissue Cell 2024; 89:102480. [PMID: 39029316 DOI: 10.1016/j.tice.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Success of animal cloning is limited by oocyte quality, which is closely linked to reprogramming ability. The number of layers of cumulus cells is typically used to assess the quality of oocyte; a minimum of one-third of collected cumulus-oocyte complexes (COCs) are discarded as inferior oocytes because they have less cumulus cells. Melatonin, which has been recognised for its ability to sequester free radicals and perform multiple functions, has emerged as a potentially effective candidate for enhancing inferior oocytes quality and, consequently, embryo development competency. The current study investigates to improve the quality of inferior oocytes by supplementation of melatonin (10-9 M) during in vitro maturation (IVM) and subsequent cloned embryo production and its mechanism. The results indicate that melatonin supplementation significantly (p<0.05) enhances inferior oocytes maturation, reduces oxidative stress by reducing ROS levels, and improves mitochondrial function by boosting GSH levels. The melatonin treatment (10-9 M) enhances the expression of SOD, GPx1, GDF 9, BMP 15, ATPase 6, and ATPase 8 in inferior oocytes. Furthermore, melatonin treatment increases the total cell number in the treated groups, promoting cloned blastocyst formation rates derived from inferior oocytes. Furthermore, compared to the control, 10-9 M melatonin supplementation enhances H3K9ac acetylation and lowers H3K27me3 methylation in cloned blastocysts derived from inferior oocytes. In conclusion, 10-9 M melatonin supplementation during IVM increased inferior oocyte maturation and promoted cloned buffalo embryo development by lowering oxidative stress and promoting epigenetic alterations. These studies show that melatonin may improve the quality of poor oocytes and buffalo cloning.
Collapse
Affiliation(s)
- Nidhi Kumari
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India; Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Swati Thakur
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Surabhi Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Chakarvati Sango
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - R K Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - T K Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| |
Collapse
|
3
|
Sharma M, Punetha M, Saini S, Chaudhary S, Jinagal S, Thakur S, Kumar P, Kumar R, Sharma RK, Yadav PS, Kumar D. Mito-Q supplementation of in vitro maturation or in vitro culture medium improves maturation of buffalo oocytes and developmental competence of cloned embryos by reducing ROS production. Anim Reprod Sci 2024; 260:107382. [PMID: 38035499 DOI: 10.1016/j.anireprosci.2023.107382] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Mito-Q is a well-known mitochondria-specific superoxide scavenger. To our knowledge, the effect of Mito-Q on buffalo oocyte maturation and developmental competency of cloned embryos has not been examined. To investigate the effects of Mito-Q on the in vitro maturation (IVM) of buffalo oocytes and the developmental competence of cloned embryos, different concentration of Mito-Q were supplemented with IVM (0, 0.1, 0.5, 1, 2 μM) and in vitro culture (IVC) medium (0, 0.1 μM). Supplementation of IVM medium with 0.1 μM Mito-Q significantly (P ≤ 0.05) increased the cumulus expansion, nuclear maturation, mitochondrial membrane potential (MMP) and antioxidants genes (GPX1 and SOD2) expression and effectively reduced ROS production leading to a significant improvement in the maturation rate of buffalo oocytes. Further, the supplementation of 0.1 μM Mito-Q in IVC medium promotes the cleavage and blastocyst rate significantly over the control. Mito-Q supplementation improves (P ≤ 0.05) MMP, antioxidant gene (GPX1) expression and reduced the ROS level and apoptosis related genes (caspase 9) expression in cloned blastocysts. In conclusion, the present study demonstrated that the supplementation of 0.1 μM Mito-Q in IVM and IVC media exerts a protective role against oxidative stress by reducing ROS production and improving MMP, fostering improved maturation of buffalo oocytes and enhanced developmental competence of cloned embryos. These findings contribute valuable insights into the optimization of assisted reproductive technologies protocols for buffalo breeding and potentially offer novel strategies to enhance reproductive outcomes in livestock species.
Collapse
Affiliation(s)
- Maninder Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India; Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India
| | - Suman Chaudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India
| | - Sujata Jinagal
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India
| | - Swati Thakur
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India
| | - Rajesh Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India
| | - R K Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India.
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001 Haryana, India.
| |
Collapse
|
4
|
Bajwa KK, Punetha M, Kumar D, Yadav PS, Long CR, Selokar NL. Electroporation-based CRISPR gene editing in adult buffalo fibroblast cells. Anim Biotechnol 2023; 34:5055-5066. [PMID: 37870061 DOI: 10.1080/10495398.2023.2271030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Electroporation is a widely used method for delivering CRISPR components into cells; however, it presents challenges when applied to difficult-to-transfect cells like adult buffalo fibroblasts. In this study, the ITGB2 gene (encoding the CD18 protein), plays vital for cellular adhesion and immune responses, was selected for editing experiments. To optimize electroporation conditions, we investigated parameters such as electric field strength, pulse duration, plasmid DNA amount, cuvette type, and cell type. The best transfection rates were obtained in a 4 mm gap cuvette with a single 20-millisecond pulse of 300 V using a 10 μg of all-in-one CRISPR plasmid for 106 cells in 100 μL of electroporation buffer. Increasing DNA quantity enhanced transfection rates but compromised cell viability. The 4 mm cuvette gap had high transfection rates than the 2 mm gap, and newborn cells exhibited higher transfection rates than adult cells. We achieved transfection rates of 10-12% with a cell viability of 25-30% for adult fibroblast cells. Subsequently, successfully edited the ITGB2 gene with a 30% editing efficiency, confirmed through various analysis methods, including T7E1 assay, TIDE and ICE analysis, and TA cloning. In conclusion, electroporation conditions reported here can edit buffalo gene(s) for various biotechnological research applications.
Collapse
Affiliation(s)
- Kamlesh Kumari Bajwa
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Meeti Punetha
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Dharmendra Kumar
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Prem Singh Yadav
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
| | - Chares R Long
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Naresh L Selokar
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, India
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
5
|
Srirattana K, Hufana‐Duran D, Atabay EP, Duran PG, Atabay EC, Lu K, Liang Y, Chaikhun‐Marcou T, Theerakittayakorn K, Parnpai R. Current status of assisted reproductive technologies in buffaloes. Anim Sci J 2022; 93:e13767. [PMID: 36123790 PMCID: PMC9787342 DOI: 10.1111/asj.13767] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Buffaloes are raised by small farm holders primarily as source of draft power owing to its resistance to hot climate, disease, and stress conditions. Over the years, transformation of these animals from draft to dairy was deliberately carried out through genetic improvement program leading to the development of buffalo-based enterprises. Buffalo production is now getting more attention and interest from buffalo raisers due to its socioeconomic impact as well as its contribution to propelling the livestock industry in many developing countries. Reproduction of buffaloes, however, is confronted with huge challenge and concern as being generally less efficient to reproduce compared with cattle due to both intrinsic and extrinsic factors such as poor estrus manifestation, silent heat, marked seasonal infertility, postpartum anestrus, long calving interval, delayed puberty, inherently low number of primordial follicles in their ovaries, high incidence of atresia, and apoptosis. Assisted reproductive technologies (ARTs) are major interventions for the efficient utilization of follicle reserve in buffaloes. The present review focuses on estrus and ovulation synchronization for fixed time artificial insemination, in vitro embryo production, intracytoplasmic sperm injection, cryopreservation of oocytes and embryos, somatic cell nuclear transfer, the factors affecting utilization in various ARTs, and future perspectives in buffaloes.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Danilda Hufana‐Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Eufrocina P. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines
| | - Peregrino G. Duran
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Edwin C. Atabay
- Reproduction and Physiology SectionDepartment of Agriculture‐Philippine Carabao CenterScience City of MunozNueva EcijaPhilippines,Department of Animal ScienceCentral Luzon State UniversityScience City of MunozNueva EcijaPhilippines
| | - Kehuan Lu
- Animal Reproduction InstituteGuangxi UniversityNanningGuangxiChina
| | - Yuanyuan Liang
- Department of Reproductive MedicineLiuzhou General HospitalLiuzhouGuangxiChina
| | - Thuchadaporn Chaikhun‐Marcou
- Obstetrics Gynecology Andrology and Animal Biotechnology Clinic, Faculty of Veterinary MedicineMahanakorn University of TechnologyBangkokThailand
| | - Kasem Theerakittayakorn
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural TechnologySuranaree University of TechnologyNakhon RatchasimaThailand
| |
Collapse
|
6
|
Singh B, Mal G, Kues WA, Yadav PS. The domesticated buffalo - An emerging model for experimental and therapeutic use of extraembryonic tissues. Theriogenology 2020; 151:95-102. [PMID: 32320839 DOI: 10.1016/j.theriogenology.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022]
Abstract
Large animals play important roles as model animals for biomedical sciences and translational research. The water buffalo (Bubalus bubalis) is an economically important, multipurpose livestock species. Important assisted reproduction techniques, such as in vitro fertilization, cryo-conservation of sperm and embryos, embryo transfer, somatic cell nuclear transfer, genetic engineering, and genome editing have been successfully applied to buffaloes. Recently, detailed whole genome data and transcriptome maps have been generated. In addition, rapid progress has been made in stem cell biology of the buffalo. Apart from embryonic stem cells, bubaline extra-embryonic stem cells have gained particular interest. The multipotency of non-embryonic stem cells has been revealed, and their utility in basic and applied research is currently investigated. In particular, success achieved in bubaline extra-embryonic stem cells may have important roles in experimental biology and therapeutic regenerative medicine. Progress in other farm animals in assisted reproduction techniques, stem cell biology and genetic engineering, which could be of importance for buffalo, will also be briefly summarized.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | | | - Prem S Yadav
- ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, India.
| |
Collapse
|
7
|
Mehta P, Kaushik R, Singh KP, Sharma A, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. Comparative analysis of buffalo (Bubalus bubalis) non-transgenic and transgenic embryos containing human insulin gene, produced by SCNT. Theriogenology 2019; 135:25-32. [PMID: 31195358 DOI: 10.1016/j.theriogenology.2019.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
Somatic cell nuclear transfer (SCNT), using transgenic donor cells, is a highly efficient method for producing transgenic embryos. We compared the developmental competence, quality and gene expression of transgenic embryos produced by Hand-made cloning from buffalo fetal fibroblasts (BFFs) containing human insulin gene, with non-transgenic embryos produced from BFFs (Controls). The expression vector (pAcISUBC), constructed by inserting human insulin gene between DNA fragments containing mammary gland-specific buffalo β-lactoglobulin (buBLG) promoter and terminator buBLG 3'UTR regions into pAcGFP-N1 vector, was used for obtaining the 11 kb insert for transfection of BFFs by nucleofection. Presence of the transgene in embryos was confirmed by examining GFP expression by RT-PCR and immunofluorescence. The blastocyst rate was lower (P < 0.05) for transgenic embryos than for controls (35.7 ± 1.8% vs 48.7 ± 2.4%). The apoptotic index was higher (P < 0.05) for transgenic than for control blastocysts which, in turn, was higher (P < 0.05) than for IVF counterparts (6.9 ± 0.9, 3.8 ± 0.5 and 1.8 ± 0.3, respectively). The total cell number was similar for transgenic and non-transgenic blastocysts (143.2 ± 17.0 and 137.2 ± 7.6, respectively). The expression level of pro-apoptotic genes BAX and BID but not that of CASP3 and CASP9, and cell cycle check point control-related gene P53 was higher (P < 0.05), and that of development- (IGF-1R and G6PD) and pluripotency-related gene NANOG was lower (P < 0.05) in transgenic than in control embryos. The expression level of epigenetic-related genes DNMT1, DNMT3a and HDAC1 and pluripotency-related gene OCT4 was similar in the two groups. The expression level of BAX, BID, CASP9, P53, DNMT1 and DNMT3a was higher (P < 0.05) and that of OCT4, NANOG IGF-1R and G6PD was lower (P < 0.05) in cloned transgenic than in IVF blastocysts whereas, that of CASP3 and HDAC1 was similar between the two groups. In conclusion, these results suggest that transgenic embryos produced by SCNT have lower developmental competence and quality, and altered gene expression compared to non-transgenic embryos.
Collapse
Affiliation(s)
- P Mehta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India.
| | - R Kaushik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - K P Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - A Sharma
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - M K Singh
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - M S Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - P Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - S K Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - R S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
8
|
Kumar D, Anand T, Vijayalakshmy K, Sharma P, Rajendran R, Selokar NL, Yadav PS, Kumar D. Transposon mediated reprogramming of buffalo fetal fibroblasts to induced pluripotent stem cells in feeder free culture conditions. Res Vet Sci 2019; 123:252-260. [PMID: 30703616 DOI: 10.1016/j.rvsc.2019.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Commonly, induced pluripotent stem (iPS) cells are generated by viral transduction of four core reprogramming genes, but recent evidences suggest that slightly different combination of transcription factors improve the efficiency and quality of generated iPS cells. However, vectors like retro- and lentiviral may cause insertional mutagenesis due to its integrating ability. Hence, alternate methods with safety concerns are needed to be investigated. Therefore, the present study was undertaken to reprogram buffalo fibroblasts using non-viral piggyBac (PB) transposon mediated transfer of six transcription factors. To generate buffalo iPS cells, fibroblasts were isolated from buffalo fetus at passage 2. The cells were co-electroporated with a PB transposon having CAGGS promoter driven cassette of Oct4, Sox2, Klf4, cMyc, Nanog, and Lin28 transcription factors separated by self-cleaving 2A peptide and a helper plasmid pCMV-PB transposase. After 12-14 days post electroporation, fibroblast cells morphology was observed to change to round structures which formed loose aggregates of cells on day 18. Putative iPS cell colonies were propagated in feeder free system and characterized through expression of pluripotency markers such as alkaline phosphatase, SSEA-1, SSEA-4, SSEA-5, TRA-1-81, Oct4, Nanog and Sox2 and endogenous genes supported the stemness property of the generated cells. These cells differentiated in vitro to form embryoid bodies and were found to express three germ layers markers. In conclusion, generation of buffalo iPS cells using transposon system provides insights into viral-free iPS technology which will facilitate genetic modification of the buffalo genome and help in the production of transgenic animals using genetically modified iPS cells.
Collapse
Affiliation(s)
- Deepak Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Taruna Anand
- NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Kennady Vijayalakshmy
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Papori Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Rasika Rajendran
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffalo, Hisar 125001, Haryana, India.
| |
Collapse
|
9
|
He Z, Lu R, Zhang T, Jiang L, Zhou M, Wu D, Cheng Y. A novel recombinant human plasminogen activator: Efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. PLoS One 2018; 13:e0201788. [PMID: 30118482 PMCID: PMC6097695 DOI: 10.1371/journal.pone.0201788] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Thromboses is a rapidly growing medical problem worldwide. Low-cost, high-scale production of thrombotic drugs is needed to meet the demand. The production of biomolecules in transgenic animals might help address this issue. To our knowledge, the expression of recombinant human plasminogen activator (rhPA) in goat mammary glands has never been reported before. METHODS We constructed a mammary gland-specific expression vector, BLC14/rhPA, which encodes only the essential K2 fibrin-binding and P domains of wild-type tPA (deletion mutant of tPA lacking the F, E, and K1 domains), along with the goat β-lactoglobulin gene signal peptide-coding sequence. The mammary gland-specific expression vector BLC14/rhPA was transfected into goat fetal fibroblast cells by electroporation. After selection for 3 weeks by G418, stably transfected cell colonies were obtained. PCR analysis results indicated that 24 of the resistant clones were transgenic cell lines; of these, 8 lines were selected as the donor cells. The positive cells were starved for 72 h with DMEM/F12 medium containing 0.5% FBS and were then used as do. Finally, 256 reconstructed oocytes were transferred into 26 recipients, and 7 of them became pregnant (pregnancy rate, 26.9%). Two kids were obtained (BP21 and BP22). PCR analysis confirmed that both were transgenic goats. To analyze the heredity of the rhPA expressed in BP21 F0 and F1 transgenic goats, the F0 transgenic goat BP21 was mated with a normal male goat to generate an F1 transgenic goat. Enucleated metaphase II (MII) oocytes and positive donor cells were used to reconstruct embryos, which were transplanted into the oviducts of the recipients. RESULTS Western blot results showed a specific 39 kDa band. The rhPA expression level in transgenic goat whey was about 78.32 μg/mL by ELISA. Results of ELISA and the in vitro thrombolysis test (FAPA) showed that specific activity of the rhPA in the milk of F0 and F1 transgenic goats was 13.3 times higher than that of the reteplase reference material. CONCLUSION Thus, we demonstrated that BLC14/rhPA was reasonably effective for expression in the mammary glands of transgenic goats, and was stably inherited by the offspring. This study provides the basis for the large-scale production of biological pharmaceuticals in transgenic animals. The expression of biopharmaceuticals by transgenic animals can be used for pharmacological research and bioactive analysis, and transgenic goats were demonstrated to be promising animals for the large-scale production of thrombolytic biopharmaceuticals.
Collapse
Affiliation(s)
- Zhengyi He
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Lu
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Zhang
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Jiang
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Minya Zhou
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daijin Wu
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong Cheng
- College of Veterinary Medicine/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|