1
|
Very E, Leroy A, Richaud L, Vaiva G, Jardri R, Roullet P, Taib S, Bourcier A, Loubinoux I, Birmes P. Hippocampal connectivity changes after traumatic memory reactivation with propranolol for posttraumatic stress disorder: a randomized fMRI study. Eur J Psychotraumatol 2025; 16:2466886. [PMID: 40261001 PMCID: PMC12016248 DOI: 10.1080/20008066.2025.2466886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Reactivation of traumatic memory under the influence of propranolol has shown encouraging clinical results in the treatment of posttraumatic stress disorder (PTSD), but the neural correlates remain unknown. To identify these correlates, we examined the changes in brain functional connectivity specifically associated with the influence of propranolol and their correlation with improvement in PTSD symptoms.Objectives: To identify resting-state functional connectivity (rs-FC) changes specifically associated with propranolol after a traumatic memory reactivation procedure (TMRP) in PTSD patients.Method: Thirty patients (50% of women) with PTSD were enrolled in a randomized controlled study comprised of six sessions of a traumatic memory reactivation procedure (TMRP) under the influence of propranolol (n = 16), compared to the same reactivation under a placebo (n = 14). Patients were scanned twice by functional magnetic resonance before and after treatment. Resting state functional connectivity (rs-FC) was compared across groups and over time.Results: Post versus pretreatment comparisons found an increase in rs-FC between the right hippocampus and the left parahippocampal gyrus in the propranolol group, but not in the placebo group. Symptom improvement in both groups were associated with an increase in rs-FC between the parahippocampal gyrus and both the supramarginal gyrus and the amygdala.Conclusions: During TMRP treatment, propranolol appears to constrain functional connectivity changes in the explicit memory brain system. These findings require further replication and exploration but could distinguish the effect of TMRP on the brain from other forms of PTSD psychotherapy.
Collapse
Affiliation(s)
- E. Very
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- CHU de Purpan, Hopital de Psychiatrie, Toulouse, France
| | - A. Leroy
- Univ. Lille, INSERM, Centre Lille Neuroscience & Cognition (U-1172), PSY Team, Lille, France
- CHU de Lille, Hopital Fontan, Plateforme CURE, Lille, France
- Centre National de Ressources et Résilience pour les psychotraumatismes (CN2R Lille-Paris), Lille, France
| | - L. Richaud
- CHU de Purpan, Hopital de Psychiatrie, Toulouse, France
| | - G. Vaiva
- CHU de Lille, Hopital Fontan, Plateforme CURE, Lille, France
- Centre National de Ressources et Résilience pour les psychotraumatismes (CN2R Lille-Paris), Lille, France
| | - R. Jardri
- CHU de Lille, Hopital Fontan, Plateforme CURE, Lille, France
| | - P. Roullet
- University of Toulouse, UPS, Toulouse, France
- Centre Régional du Psychotraumatisme Occitanie, CHU Purpan, Toulouse, France
| | - S. Taib
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- CHU de Purpan, Hopital de Psychiatrie, Toulouse, France
| | - A. Bourcier
- Cabinet de Sante Bonne Nouvelle, Paris, France
| | - I. Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - P. Birmes
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- CHU de Purpan, Hopital de Psychiatrie, Toulouse, France
- Centre Régional du Psychotraumatisme Occitanie, CHU Purpan, Toulouse, France
| |
Collapse
|
2
|
Nejati V. A structured framework for emotion-cognition dynamics: Implications for assessment and intervention. J Neural Transm (Vienna) 2025; 132:793-802. [PMID: 40035829 DOI: 10.1007/s00702-025-02903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
This paper presents a novel framework for understanding the interaction between cognitive and emotional processes, recognizing the complex and dynamic relationship between these two constructs. The framework categorizes cognitive functions into four distinct categories: Cold Cognition, Hot Cognition, Warm Cognition, and Cool Cognition. By distinguishing between the style of processing (intuitive vs. analytical) and the content of information (emotional vs. non-emotional), the framework provides a model for both assessment and intervention. For assessment, it helps categorize cognitive and emotional processes, enabling targeted evaluations based on specific processing styles and content. For interventions, it supports the development of training programs that address processing styles in relation to the target function, improving the effectiveness of therapeutic and developmental strategies. Overall, this framework has the potential to advance both theoretical understanding and practical applications in cognitive and emotional assessment and training.
Collapse
Affiliation(s)
- Vahid Nejati
- Psychology Department, Shahid Beheshti University, Tehran, 1983969411, Iran.
- School of Behavioral and Brain Sciences, University of Texas, Dallas, TX, USA.
| |
Collapse
|
3
|
Zhao S, Wang T, Xiong B. Neural correlates of conspiracy beliefs during information evaluation. Sci Rep 2025; 15:18375. [PMID: 40419620 DOI: 10.1038/s41598-025-03723-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025] Open
Abstract
Conspiracy theories, despite their widespread societal impact, remain poorly understood at the neural level. While previous research has examined general belief processing, the neural mechanisms underlying how conspiracy beliefs influence information evaluation remain unclear. This study examined how individual differences in conspiracy belief modulate neural responses to conspiracy-related versus factual information using functional magnetic resonance imaging (fMRI). Thirty-one participants, pre-screened for high versus low conspiracy beliefs using validated scales, evaluated the veracity of matched conspiracy-related and factual statements during scanning. Behaviorally, high conspiracy believers were more likely to endorse conspiracy statements, whereas both groups evaluated factual information similarly. Neurally, a double dissociation emerged: high conspiracy believers exhibited increased activation in the ventromedial and dorsomedial prefrontal cortices-regions implicated in value-based decision-making and belief uncertainty-when evaluating conspiracy-related content. In contrast, low conspiracy believers showed greater activation in the hippocampus and precuneus, areas associated with episodic and semantic memory retrieval. These findings indicate that conspiracy beliefs engage distinct neurocognitive pathways in a content-specific manner. Rather than reflecting a generalized bias, belief-related neural differences selectively emerge during the processing of conspiratorial information. This study offers novel insight into the neural basis of belief persistence and may inform strategies for promoting critical reasoning in the face of misinformation.
Collapse
Affiliation(s)
- Shuguang Zhao
- Research Center of Journalism and Social Development, School of Journalism and Communication, Renmin University of China, Beijing, 100872, China
| | - Ting Wang
- New Era International Communication Research Institute, Renmin University of China, Beijing, 100872, China.
| | - Bingsen Xiong
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, National Demonstration Center for Experimental Psychology Education, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
4
|
Sampaolo E, Handjaras G, Lettieri G, Cecchetti L. Lights, Camera, Emotion: REELMO's 1060 Hours of Affective Reports to Explore Emotions in Naturalistic Contexts. Sci Data 2025; 12:797. [PMID: 40374710 PMCID: PMC12081935 DOI: 10.1038/s41597-025-05159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025] Open
Abstract
Emotions are central to human experience, yet their complexity and context-dependent nature challenge traditional laboratory studies. We present REELMO (REal-time EmotionaL responses to MOvies), a novel dataset bridging controlled experiments and naturalistic affective experiences. REELMO includes 1,060 hours of moment-by-moment emotional reports across 20 affective states collected during the viewing of 60 full-length movies, along with additional measures of personality traits, empathy, movie synopses, and overall liking from 161 participants. It also features fMRI data from 20 volunteers recorded while watching the full-length movie Jojo Rabbit. Complemented by visual and acoustic features as well as semantic content derived from deep-learning models, REELMO provides a comprehensive platform for advancing emotion research. Its high temporal resolution, rich annotations, and integration with fMRI data enable investigations into the interplay between sensory information, narrative structures, and contextual factors in shaping emotional experiences, as well as the study of affective chronometry, mixed-valence states, psychological trait influences, and machine learning applications in affective (neuro)science.
Collapse
Affiliation(s)
- Erika Sampaolo
- Social and Affective Neuroscience (SANe) group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giacomo Handjaras
- Methods for Advanced Biosignal Analysis (MABA) group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giada Lettieri
- Affective Physiology and Interoception (API) group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy.
| | - Luca Cecchetti
- Social and Affective Neuroscience (SANe) group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| |
Collapse
|
5
|
Tian X, Zheng Z, Li R, Luo YJ, Feng C. Neural signatures underlying the effect of social structure on empathy and altruistic behaviors. Neuroimage 2025; 315:121267. [PMID: 40368058 DOI: 10.1016/j.neuroimage.2025.121267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025] Open
Abstract
Humans inhabit complex social networks, monitoring social structures that encompass both direct and indirect relationships. However, previous research primarily focused on direct relationships, leaving the neural basis of how social structure influences socioemotional processes understudied. This study addressed this gap by investigating the neural pathways underlying the influence of social structure on empathy and altruistic behaviors. During fMRI scanning, participants viewed painful or non-painful stimulation to innocent strangers who shared preferences with targets who had either treated participants fairly or unfairly. Afterwards, participants rated the pain experienced by these innocents and shared money with other innocents. Participants showed reduced empathic and altruistic responses toward innocents resembling unfair (vs. fair) targets, accompanied by heightened activation in regions crucial for emotion regulation and mentalizing, such as the lateral and medial prefrontal cortex. Furthermore, whole-brain and local neural patterns in the anterior insula and premotor cortex robustly discriminated painful (but not non-painful) stimulation of different innocents, suggesting that social structure altered emotional and sensorimotor aspects of empathy. These alterations might be driven by top-down regulation, as indicated by heightened functional connectivity between the lateral prefrontal cortex and sensorimotor areas, as well as between the anterior insula and subgenual anterior cingulate cortex when witnessing the pain of innocents resembling fair (vs. unfair) targets. Together, our work is the first to uncover the neural underpinnings through which human empathy and altruistic behaviors are shaped by social structure beyond direct self-other relationships.
Collapse
Affiliation(s)
- Xia Tian
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China; Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixin Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Renhui Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Yue-Jia Luo
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing 100875, China; Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao 266113, China; School of Psychology, Chengdu Medical College, Chengdu 610500, China.
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
6
|
Hannapel MM, Aghajani M. Neuroscientific approaches to adolescent social media use: a review of neural correlates and potential associations to social media behaviors. J Neurophysiol 2025; 133:1406-1409. [PMID: 40183450 DOI: 10.1152/jn.00282.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Adolescents' social lives are evolving rapidly, existing largely online. There are mixed findings on the effect of social media on adolescent mental health. However, large gaps remain in this literature. The current review integrates behavioral and neuroimaging studies as they conceptually relate the prefrontal cortex and social media use. In doing so, we emphasize the multifaceted nature of social media use, the difficulties in isolating component behaviors, and the usefulness of utilizing neuroimaging for future research.
Collapse
Affiliation(s)
- Madison M Hannapel
- Department of Neuroscience, Eastern Michigan University, Ypsilanti, Michigan, United States
| | - Minella Aghajani
- Department of Neuroscience, Eastern Michigan University, Ypsilanti, Michigan, United States
| |
Collapse
|
7
|
Cohen-Zimerman S, Cristofori I, McNamara P, Krueger F, Gordon B, Grafman J. Attachment style and its impact on connection to God in individuals with brain injury: behavioral and lesion-based findings. Front Neurol 2025; 16:1488890. [PMID: 40343178 PMCID: PMC12058672 DOI: 10.3389/fneur.2025.1488890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Attachment style shapes one's connections with important figures in their life. One such unique relationship is the connection to God (CTG), which may be shaped by attachment style. Stronger CTG has been associated with secure attachment, yet the neural mechanisms underlying this relationship remain unclear. While previous research has implicated the prefrontal cortex (PFC) in CTG, findings have been mixed and may depend on attachment style-an idea that has yet to be directly tested. This study aimed to (1) examine whether individuals with a secure attachment style report higher levels of CTG compared to those with a non-secure attachment style, and (2) identify the brain regions associated with CTG in individuals with secure vs. non-secure attachment. We assessed attachment style and CTG in a sample of male combat veterans (N = 150), the majority of whom had focal traumatic brain injuries (pTBI; N = 119). Brain imaging (CT scans) was also obtained. Behaviorally, after controlling for age, years of education, and brain volume loss, individuals with a secure attachment style reported stronger CTG. Voxel-based lesion-symptom mapping revealed that damage to the right orbitofrontal cortex was associated with stronger CTG in individuals with secure-but not insecure-attachment. These findings suggest that attachment style shapes CTG at both behavioral and neural levels. Moreover, they highlight the potential role of attachment style in TBI recovery, offering insights that could inform spiritually integrated therapeutic interventions and support strategies.
Collapse
Affiliation(s)
- Shira Cohen-Zimerman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Irene Cristofori
- Institute of Cognitive Sciences Marc Jeannerod, CNRS/UMR 5229, Bron, France
- University Claude Bernard Lyon 1, Villeurbanne, France
| | - Patrick McNamara
- Department of Psychology, National University, San Diego, CA, United States
- Department of Neurology, Boston University, Boston, MA, United States
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Barry Gordon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Departments of Neurology, Northwestern University, Chicago, IL, United States
- Departments of Psychiatry, Northwestern University, Chicago, IL, United States
- Cognitive Neurology & Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Psychology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Wang X, Becker B, Tong SX. The power of pain: The temporal-spatial dynamics of empathy induced by body gestures and facial expressions. Neuroimage 2025; 310:121148. [PMID: 40096953 DOI: 10.1016/j.neuroimage.2025.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
Abstract
Two non-verbal pain representations, body gestures and facial expressions, can communicate pain to others and elicit our own empathic responses. However, the specific impact of these representations on neural responses of empathy, particularly in terms of temporal and spatial neural mechanisms, remains unclear. To address this issue, the present study developed a kinetic pain empathy paradigm comprising short animated videos depicting a protagonist's "real life" pain and no-pain experiences through body gestures and facial expressions. Electroencephalographic (EEG) recordings were conducted on 52 neurotypical adults; while they viewed the animations. Results from multivariate pattern, event-related potential, event-related spectrum perturbation, and source localization analyses revealed that pain expressed through facial expressions, but not body gestures, elicited increased N200 and P200 responses and activated various brain regions, i.e., the anterior cingulate cortex, insula, thalamus, ventromedial prefrontal cortex, temporal gyrus, cerebellum, and right supramarginal gyrus. Enhanced theta power with distinct spatial distributions were observed during early affective arousal and late cognitive reappraisal stages of the pain event. Multiple regression analyses showed a negative correlation between the N200 amplitude and pain catastrophizing, and a positive correlation between the P200 amplitude and autism traits. These findings demonstrate the temporal evolution of empathy evoked by dynamic pain display, highlighting the significant impact of facial expression and its association with individuals' unique psychological traits.
Collapse
Affiliation(s)
- Xin Wang
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Benjamin Becker
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| | - Shelley Xiuli Tong
- Human Communication, Learning, and Development, Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Carollo A, Stella M, Lim M, Bizzego A, Esposito G. Emotional content and semantic structure of dialogues are associated with Interpersonal Neural Synchrony in the Prefrontal Cortex. Neuroimage 2025; 309:121087. [PMID: 39993613 DOI: 10.1016/j.neuroimage.2025.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
A fundamental characteristic of social exchanges is the synchronization of individuals' behaviors, physiological responses, and neural activity. However, the association between how individuals communicate in terms of emotional content and expressed associative knowledge and interpersonal synchrony has been scarcely investigated so far. This study addresses this research gap by bridging recent advances in cognitive neuroscience data, affective computing, and cognitive data science frameworks. Using functional near-infrared spectroscopy (fNIRS) hyperscanning, prefrontal neural data were collected during social interactions involving 84 participants (i.e., 42 dyads) aged 18-35 years. Wavelet transform coherence was used to assess interpersonal neural synchrony between participants. We used manual transcription of dialogues and automated methods to codify transcriptions as emotional levels and syntactic/semantic networks. Our quantitative findings reveal higher than random expectations levels of interpersonal neural synchrony in the superior frontal gyrus (q = .038) and the bilateral middle frontal gyri (q< .001, q< .001). Linear mixed models based on dialogues' emotional content only significantly predicted interpersonal neural synchrony across the prefrontal cortex (Rmarginal2=3.62%). Conversely, models relying on syntactic/semantic features were more effective at the local level, for predicting brain synchrony in the right middle frontal gyrus (Rmarginal2=9.97%). Generally, models based on the emotional content of dialogues were not effective when limited to data from one region of interest at a time, whereas models based on syntactic/semantic features show the opposite trend, losing predictive power when incorporating data from all regions of interest. Moreover, we found an interplay between emotions and associative knowledge in predicting brain synchrony, providing quantitative support to the major role played by these linguistic components in social interactions and in prefrontal processes. Our study identifies a mind-brain duality in emotions and associative knowledge reflecting neural synchrony levels, opening new ways for investigating human interactions.
Collapse
Affiliation(s)
- Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy.
| | - Massimo Stella
- CogNosco Lab, Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Mengyu Lim
- Psychology Program, Nanyang Technological University, Singapore 639818, Singapore
| | - Andrea Bizzego
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy.
| |
Collapse
|
10
|
Ouyang Z, Jiang H, Zhang F, Wang X, Geng C, Zhao M, Cui D, Zheng Z, Dong L, Jiao Q, Cao W. Enhanced reciprocal connections of the prefrontoparietal-thalamo-hippocampal circuit in older adults. Cereb Cortex 2025; 35:bhaf080. [PMID: 40253694 DOI: 10.1093/cercor/bhaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/19/2025] [Accepted: 03/12/2025] [Indexed: 04/22/2025] Open
Abstract
Cognitive functions rely on specific brain circuits involving cortical and subcortical regions. However, how age-related changes in effective connectivity within the prefrontoparietal-thalamo-hippocampal circuit affect cognition remains unclear. This study included 143 healthy older adults (60 to 88 yrs) and 124 young adults (18 to 44 yrs), using regression dynamic causal modeling to analyze resting-state functional magnetic resonance imaging data. Compared to young adults, older adults showed increased reciprocal effective connectivity within the ventromedial prefrontal cortex-lateral thalamic nuclei-right caudal hippocampus circuit. Enhanced bidirectional connectivity was also observed within the frontoparietal network, between the pregenual cingulate gyrus and superior frontal gyrus, and between lateral thalamic nuclei (LTN) and frontal pole. Additionally, heightened connectivity between thalamus and hippocampus negatively correlated with cognitive performance. Our findings reveal significant age-related increases in effective connectivity within the prefrontoparietal-thalamo-hippocampal circuit, linked to cognitive performance levels. Increased connectivity may indicate compensatory mechanisms helping preserve cognitive function in healthy aging. These results advance our understanding of neural dynamics underlying cognitive aging and potential adaptive mechanisms in older adults.
Collapse
Affiliation(s)
- Zhen Ouyang
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, Shandong Province 271000, China
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Haixia Jiang
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Feng Zhang
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Xue Wang
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Chuqiao Geng
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Mingjuan Zhao
- Department of Radiology, Tai'an City Central Hospital, Qingdao University, No. 29 Longtan Road, Tai'an, Shandong Province 271000, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, Shandong Province 271000, China
| | - Zihao Zheng
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-Tech District, Chengdu, Sichuan Province 611731, China
| | - Li Dong
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-Tech District, Chengdu, Sichuan Province 611731, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, Shandong Province 271000, China
| | - Weifang Cao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Tai'an, Shandong Province 271000, China
| |
Collapse
|
11
|
Puccetti NA, Stamatis CA, Timpano KR, Heller AS. Worry and rumination elicit similar neural representations: neuroimaging evidence for repetitive negative thinking. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025; 25:488-500. [PMID: 39562474 PMCID: PMC11906554 DOI: 10.3758/s13415-024-01239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 11/21/2024]
Abstract
Repetitive negative thinking (RNT) captures shared cognitive and emotional features of content-specific cognition, including future-focused worry and past-focused rumination. The degree to which these distinct but related processes recruit overlapping neural structures is undetermined, because most neuroscientific studies only examine worry or rumination in isolation. To address this, we developed a paradigm to elicit idiographic worries and ruminations during an fMRI scan in 39 young adults with a range of trait RNT scores. We measured concurrent emotion ratings and heart rate as a physiological metric of arousal. Multivariate representational similarity analysis revealed that regions distributed across default mode, salience, and frontoparietal control networks encode worry and rumination similarly. Moreover, heart rate did not differ between worry and rumination. Capturing the shared neural features between worry and rumination throughout networks supporting self-referential processing, memory, salience detection, and cognitive control provides novel empirical evidence to bolster cognitive and clinical models of RNT.
Collapse
Affiliation(s)
- Nikki A Puccetti
- Department of Psychiatry, The Ohio State University Wexner Medical Center, 1670 Upham Dr, Columbus, OH, 43210, USA.
- Department of Psychology, University of Miami, PO Box 248185, Coral Gables, FL, 33124, USA.
| | - Caitlin A Stamatis
- Department of Preventative Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
- Bruin Health Inc., New York, NY, USA
| | - Kiara R Timpano
- Department of Psychology, University of Miami, PO Box 248185, Coral Gables, FL, 33124, USA
| | - Aaron S Heller
- Department of Psychology, University of Miami, PO Box 248185, Coral Gables, FL, 33124, USA.
| |
Collapse
|
12
|
Masciari CF. Motivational Barriers to Care and the Ethics of Encouragement. AJOB Neurosci 2025:1-13. [PMID: 40085683 DOI: 10.1080/21507740.2025.2474228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
In this paper I argue that by using methods of encouragement, derived from the fields of social psychology, cognitive neuroscience, and behavioral economics, healthcare workers can potentially provide their patients with tools for increasing adherence to their treatment plans. I claim that the shared decision-making model can, and should, be enriched to include a component that encourages patients to follow through with their plans. It is commonsense that it is one thing to decide on a plan, and quite another to stick to it. Even if a plan is one's own, people often backslide with respect to their prior commitments. I appeal to the extensive literatures on decision-making, delay discounting, and willpower to provide some empirically verified tools for motivating patients. Importantly, I argue that contrary to appearances, motivating others to act with respect to their commitments expresses a respect for autonomy and is non-paternalistic.
Collapse
|
13
|
Wang LL, Li GY, Yan C, Wang Y, Gao Y, Wang Y, Lui SSY, Li JQ, Chan RCK. The Relationship Among Range Adaptation, Social Anhedonia, and Social Functioning: A Combined Magnetic Resonance Spectroscopy and Resting-State fMRI Study. Schizophr Bull 2025; 51:S160-S172. [PMID: 40037829 PMCID: PMC11879587 DOI: 10.1093/schbul/sbad116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
BACKGROUND AND HYPOTHESIS Social anhedonia is a core feature of schizotypy and correlates significantly with social functioning and range adaptation. Range adaptation refers to representing a stimulus value based on its relative position in the range of pre-experienced values. This study aimed to examine the resting-state neural correlates of range adaptation and its associations with social anhedonia and social functioning. STUDY DESIGN In study 1, 60 participants completed resting-state magnetic resonance spectroscopy and fMRI scans. Range adaptation was assessed by a valid effort-based decision-making paradigm. Self-reported questionnaires was used to measure social anhedonia and social functioning. Study 2 utilized 26 pairs of participants with high (HSoA) and low levels of social anhedonia (LSoA) to examine the group difference in range adaptation's neural correlates and its relationship with social anhedonia and social functioning. An independent sample of 40 pairs of HSoA and LSoA was used to verify the findings. STUDY RESULTS Study 1 showed that range adaptation correlated with excitation-inhibition balance (EIB) and ventral prefrontal cortex (vPFC) functional connectivity, which in turn correlating positively with social functioning. Range adaptation was specifically determined by the EIB via mediation of ventral-medial prefrontal cortex functional connectivities. Study 2 found HSoA and LSoA participants exhibiting comparable EIB and vPFC connectivities. However, EIB and vPFC connectivities were negatively correlated with social anhedonia and social functioning in HSoA participants. CONCLUSIONS EIB and vPFC functional connectivity is putative neural correlates for range adaptation. Such neural correlates are associated with social anhedonia and social functioning.
Collapse
Affiliation(s)
- Ling-ling Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gai-ying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Gao
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Bezmaternykh DD, Melnikov MY, Petrovskiy ED, Mazhirina KG, Savelov AA, Shtark MB, Vuilleumier P, Koush Y. Attenuation processes in positive social emotion upregulation: Disentangling functional role of ventrolateral prefrontal cortex. iScience 2025; 28:111909. [PMID: 39995856 PMCID: PMC11849593 DOI: 10.1016/j.isci.2025.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/27/2024] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
Positive emotions determine individual well-being and sustainable social relationships. Here, we examined the neural processes mediating upregulation of positive social emotions using functional magnetic resonance imaging in healthy female volunteers. We identified brain regions engaged in upregulation of positive social emotions and applied a parametric empirical Bayes approach to isolate modulated network connectivity patterns and assess how these effects relate to individual measures of social perception. Our findings indicate that upregulation of positive social emotions shapes the functional interplay between affective valuation and cognitive control functions. We revealed a selective increase of bilateral posterior ventrolateral prefrontal cortex (vlPFC) activity and attenuation of activity in right anterior vlPFC under control influences from more superior prefrontal regions. We also found that individual perception of sociality modulates connectivity between affective and social networks. This study expands our understanding of neural circuits required to balance positive emotions in social situations and their rehabilitative potential.
Collapse
Affiliation(s)
- Dmitriy D. Bezmaternykh
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Mikhail Ye. Melnikov
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Department of Biophysics, Biomedicine, and Neuroscience, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | - Ksenia G. Mazhirina
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | | | - Mark B. Shtark
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Patrik Vuilleumier
- Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland
- Swiss Center of Affective Sciences, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Yury Koush
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Technology, Moscow, Russia
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Handoko K, Neppach A, Snyder I, Karim HT, Dombrovski AY, Peciña M. Expectancy-Mood Neural Dynamics Predict Mechanisms of Short- and Long-Term Antidepressant Placebo Effects. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00024-2. [PMID: 39805555 DOI: 10.1016/j.bpsc.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Acute experimental models of antidepressant placebo effects suggest that expectancies, encoded within the salience network (SN), are reinforced by sensory evidence and mood fluctuations. However, whether these dynamics extend to longer timescales remains unknown. To answer this question, we investigated how SN and default mode network (DMN) functional connectivity during the processing of antidepressant expectancies facilitates the shift from salience attribution to contextual cues in the SN to belief-induced mood responses in the DMN, both acutely and long term. METHODS Sixty psychotropic-free patients with major depressive disorder completed an acute antidepressant placebo functional magnetic resonance imaging experiment manipulating placebo-associated expectancies and their reinforcement while assessing trial-by-trial mood improvement before entering an 8-week double-blind, randomized, placebo-controlled trial of a selective serotonin reuptake inhibitor or placebo. RESULTS Learned antidepressant expectancies predicted by a reinforcement learning model modulated SN-DMN connectivity. Acutely, greater modulation predicted higher effects of expectancy and reinforcement manipulations on reported expectancies and mood. Over 8 weeks, no significant drug effects on mood improvement were observed. However, participants who believed that they were receiving an antidepressant exhibited significantly greater mood improvement irrespective of the actual treatment received. Moreover, increased SN-DMN connectivity predicted mood improvement, especially in placebo-treated participants who believed that they received a selective serotonin reuptake inhibitor. CONCLUSIONS SN-DMN interactions may play a critical role in the evolution of antidepressant response expectancies, drug-assignment beliefs, and their effects on mood.
Collapse
Affiliation(s)
- Kevin Handoko
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alyssa Neppach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ian Snyder
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
16
|
Riegner G, Dean J, Wager TD, Zeidan F. Mindfulness Meditation and Placebo Modulate Distinct Multivariate Neural Signatures to Reduce Pain. Biol Psychiatry 2025; 97:81-88. [PMID: 39216636 PMCID: PMC11608143 DOI: 10.1016/j.biopsych.2024.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Rather than a passive reflection of nociception, pain is shaped by the interplay between one's experiences, current cognitive-affective states, and expectations. The placebo response, a paradoxical yet reliable phenomenon, is postulated to reduce pain by engaging mechanisms shared with active therapies. It has been assumed that mindfulness meditation, practiced by sustaining nonjudgmental awareness of arising sensory events, merely reflects mechanisms evoked by placebo. Recently, brain-based multivariate pattern analysis has been validated to successfully disentangle nociceptive-specific, negative affective, and placebo-based dimensions of the subjective pain experience. METHODS To determine whether mindfulness meditation engages distinct brain mechanisms from placebo and sham mindfulness to reduce pain, multivariate pattern analysis pain signatures were applied across 2 randomized clinical trials that employed overlapping psychophysical pain testing procedures (49 °C noxious heat; visual analog pain scales) and distinct functional magnetic resonance imaging techniques (blood oxygen level-dependent; perfusion based). After baseline pain testing, 115 healthy participants were randomized into a 4-session mindfulness meditation (n = 37), placebo-cream conditioning (n = 19), sham mindfulness meditation (n = 20), or book-listening control (n = 39) intervention. After each intervention, noxious heat was administered during functional magnetic resonance imaging and each manipulation. RESULTS A double dissociation in the multivariate pattern analysis signatures supporting pain regulation was revealed by mindfulness meditation compared with placebo cream. Mindfulness meditation produced significantly greater reductions in pain intensity and pain unpleasantness ratings and nociceptive-specific and negative affective pain signatures than placebo cream, sham mindfulness meditation, and control interventions. The placebo-cream group significantly lowered the placebo-based signature. CONCLUSIONS Mindfulness meditation and placebo engaged distinct and granular neural pain signatures to reduce pain.
Collapse
Affiliation(s)
- Gabriel Riegner
- Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - Jon Dean
- Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - Tor D Wager
- Department of Psychological and Brain Science, Dartmouth College, Hanover, New Hampshire
| | - Fadel Zeidan
- Department of Anesthesiology, University of California San Diego, La Jolla, California.
| |
Collapse
|
17
|
Wyczesany M, Leśniewska A, Winker C, Domagała M, Kroker T, Kałamała P, Ligeza TS, Rehbein MA, Roesmann K, Wessing I, Junghöfer M. Stimulation of the ventromedial prefrontal cortex and the perception of affective faces. An effective connectivity analysis. Biol Psychol 2025; 194:108980. [PMID: 39743176 DOI: 10.1016/j.biopsycho.2024.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
The ventromedial prefrontal cortex is widely linked with emotional phenomena, including appraisal, modulation, and reward processing. Its perigenual part is suggested to mediate the appetitive value of stimulation. In our previous study, besides changes in evoked MEG responses, we were able to induce an apparent behavioral bias toward more positive valence while interpreting the ambiguous, morphed faces after the effect of excitatory tDCS stimulation of the perigenual ventromedial cortex (pgVM). In the present study, we reanalyze these data to reveal the importance of functional links between the vmPFC and other brain areas during the perception of emotional (fearful or happy) faces. Using the Directed Transfer Function method, we estimated MEG source-based effective connectivity on the 1.5 sec epochs during the passive presentation of facial stimuli in two counterbalanced sessions, preceded by either an excitatory or inhibitory tDCS session. We observed a prominent session effect as the connectivity changed after excitatory compared to inhibitory stimulation. These included increased outflows from the pgVM to most analyzed cortical regions, especially in the right hemisphere, a massive decrease in source activity in the right temporal region, and increased transfer of visual information towards many network nodes. Some interaction effects were also visible, with no involvement of the pgVM itself but with other nodes of the considered network. Overall, our data show that the stimulation focused at the pgVM elicited widespread network effects, including the areas mediating attention, visual processing, and emotions, as well as those associated with regulatory functions.
Collapse
Affiliation(s)
| | - Anna Leśniewska
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Constantin Winker
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany
| | - Michal Domagała
- Department of Cognitive Science, Jagiellonian University, Kraków, Poland
| | - Thomas Kroker
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany
| | - Patrycja Kałamała
- Department of Cognitive Science, Jagiellonian University, Kraków, Poland; University of Illinois, Urbana-Champaign, United States
| | - Tomasz S Ligeza
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Maimu Alissa Rehbein
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Institute for Psychology, Unit for Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrück, Germany
| | - Kati Roesmann
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Institute for Psychology, Unit for Clinical Psychology and Psychotherapy in Childhood and Adolescence, University of Osnabrück, Germany
| | - Ida Wessing
- Department of Child and Adolescent Psychiatry, University of Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| |
Collapse
|
18
|
Walker SL, Glasper ER. Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity. Front Neuroendocrinol 2025; 76:101162. [PMID: 39561882 PMCID: PMC11811932 DOI: 10.1016/j.yfrne.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Early-life stress (ELS) affects the development of prosocial behaviors and social-cognitive function, often leading to structural brain changes and increased psychosocial disorders. Recent studies suggest that mother- and father-child relationships independently influence social development in a sex-specific manner, but the effects of impaired father-child relationships are often overlooked. This review examines preclinical rodent studies to explore how parental neglect impacts neuroplasticity and social behaviors in offspring. We highlight that disruptions in maternal interactions may affect male pups more in uniparental rodents, while impaired paternal interactions in biparental rodents tend to impact female pups more. Due to limited research, the separate effects of maternal and paternal neglect on brain development and social behaviors in biparental species remain unclear. Addressing these gaps could clarify the sex-specific mechanisms underlying social and neurobiological deficits following parental neglect.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, United States; Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, United States; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
19
|
Tashjian SM, Cussen J, Deng W, Zhang B, Mobbs D. Subregions in the ventromedial prefrontal cortex integrate threat and protective information to meta-represent safety. PLoS Biol 2025; 23:e3002986. [PMID: 39804855 PMCID: PMC11730396 DOI: 10.1371/journal.pbio.3002986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here, we examine the neural systems underlying the online dynamic encoding of safety. The current preregistered study used 2 novel tasks to test 4 facets of safety estimation: Safety Prediction, Meta-representation, Recognition, and Value Updating. We experimentally manipulated safety estimation changing both levels of external threats and self-protection. Data were collected in 2 independent samples (behavioral N = 100; MRI N = 30). We found consistent evidence of subjective changes in the sensitivity to safety conferred through protection. Neural responses in the ventromedial prefrontal cortex (vmPFC) tracked increases in safety during all safety estimation facets, with specific tuning to protection. Further, informational connectivity analyses revealed distinct hubs of safety coding in the posterior and anterior vmPFC for external threats and protection, respectively. These findings reveal a central role of the vmPFC for coding safety.
Collapse
Affiliation(s)
- Sarah M. Tashjian
- School of Psychological Sciences, University of Melbourne, Parkville, Australia
- Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Joseph Cussen
- School of Psychological Sciences, University of Melbourne, Parkville, Australia
| | - Wenning Deng
- Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Bo Zhang
- Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Dean Mobbs
- Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
- Computation and Neural Systems, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
20
|
Pan Y, Sequestro M, Golkar A, Olsson A. Handholding reduces the recovery of threat memories and magnifies prefrontal hemodynamic responses. Behav Res Ther 2024; 183:104641. [PMID: 39366088 DOI: 10.1016/j.brat.2024.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Human touch is a powerful means of social and affective regulation, promoting safety behaviors. Yet, despite its importance across human contexts, it remains unknown how touch can promote the learning of new safety memories and what neural processes underlie such effects. The current study used measures of peripheral physiology and brain activity to examine the effects of interpersonal touch during safety learning (extinction) on the recovery of previously learned threat. We observed that handholding during extinction significantly reduced threat recovery, which was reflected in enhanced prefrontal hemodynamic responses. This effect was absent when learners were instructed to hold a rubber ball, independent of the presence of their partners. Our findings indicate that social touch contributes to safety learning, potentially influencing threat memories via prefrontal circuitry.
Collapse
Affiliation(s)
- Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Matteo Sequestro
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Armita Golkar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Godfrey KJ, Rai S, Graff K, Yin S, Merrikh D, Tansey R, Vanderwal T, Harris AD, Bray S. Minimal Variation in Functional Connectivity in Relation to Daily Affect. eNeuro 2024; 11:ENEURO.0209-24.2024. [PMID: 39592226 DOI: 10.1523/eneuro.0209-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Reported associations between functional connectivity and affective disorder symptoms are minimally reproducible, which can partially be attributed to difficulty capturing highly variable clinical symptoms in cross-sectional study designs. "Dense sampling" protocols, where participants are sampled across multiple sessions, can overcome this limitation by studying associations between functional connectivity and variable clinical states. Here, we characterized effect sizes for the association between functional connectivity and time-varying positive and negative daily affect in a nonclinical cohort. Data were analyzed from 24 adults who attended four research visits, where participants self-reported daily affect using the PANAS-X questionnaire and completed 39 min of functional magnetic resonance imaging across three passive viewing conditions. We modeled positive and negative daily affect in relation to network-level functional connectivity, with hypotheses regarding within-network connectivity of the default mode, salience/cingulo-opercular, frontoparietal, dorsal attention, and visual networks and between-network connectivity of affective subcortical regions (amygdala and nucleus accumbens) with both default mode and salience/cingulo-opercular networks. Effect sizes for associations between affect and network-level functional connectivity were small and nonsignificant across analyses. We additionally report that functional connectivity variance is largely attributable to individual identity with small relative variance (<3%) accounted for by within-subject daily affect variation. These results support previous reports that functional connectivity is dominated by stable subject-specific connectivity patterns, while additionally suggesting relatively minimal influence of day-to-day affect. Researchers planning studies examining functional connectivity in relation to daily affect, or other varying stable states, should therefore anticipate small effect sizes and carefully consider power in study planning.
Collapse
Affiliation(s)
- Kate J Godfrey
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shefali Rai
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Kirk Graff
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shelly Yin
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Daria Merrikh
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ryann Tansey
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Department of Psychiatry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Signe Bray
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
22
|
Huang Y, Butelman ER, Ceceli AO, Kronberg G, King SG, McClain NE, Wong YY, Boros M, Drury KR, Sinha R, Alia-Klein N, Goldstein RZ. Sex and hormonal effects on drug cue-reactivity and its regulation in human addiction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317491. [PMID: 39606326 PMCID: PMC11601698 DOI: 10.1101/2024.11.18.24317491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Objective To study the sex and hormonal effects on cortico-striatal engagement during drug cue-reactivity and its regulation focusing on drug reappraisal. Methods Forty-nine men (age=41.96±9.71) with heroin use disorder (HUD) and 32 age-matched women (age=38.85±9.84) with HUD (n=16) or cocaine use disorder (CUD; n=16) were scanned using functional MRI, with a subgroup of women scanned twice, during the late-follicular and mid-luteal phases, to examine sex and menstrual phase differences in cortico-striatal drug cue-reactivity and its cognitive reappraisal and their correlations with ovarian hormones and drug craving. Results Women showed higher medial prefrontal cortex (PFC) drug cue-reactivity while men showed higher frontal eye field (FEF)/dorsolateral PFC (dlPFC) drug reappraisal as associated with lower cue-induced drug craving. In the women, drug cue-reactivity was higher during the follicular phase in the FEF/dlPFC, whereas drug reappraisal was higher during the luteal phase in the anterior PFC/orbitofrontal cortex. The more the estradiol during the follicular vs. luteal phase (Δ), the higher the Δdrug cue-reactivity in the vmPFC, which also correlated with higher Δdrug craving (observed also in the inferior frontal gyrus). The more this Δestradiol, the lower the Δdrug reappraisal in the vmPFC, anterior PFC and striatum. Conversely, Δprogesterone/estradiol ratio was positively associated with Δdrug reappraisal in the dlPFC. Conclusions Compared to men, women with addiction show more cortico-striatal reactivity to drug cue exposure and less PFC activity during drug reappraisal, driven by the follicular compared to luteal phase and directly related to craving and fluctuations in estrogen and progesterone with the former constituting a vulnerability and the latter a protective factor. This study provides insights for developing precisely timed and hormonally informed treatments for women with addiction.
Collapse
Affiliation(s)
- Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Eduardo R. Butelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ahmet O. Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Greg Kronberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sarah G. King
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Natalie E. McClain
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yui Ying Wong
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maggie Boros
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - K Rachel Drury
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rajita Sinha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
- Yale Stress Center, Yale University School of Medicine, New Haven, CT 06510
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rita Z. Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
23
|
Feldman MJ, Capella J, Dai J, Bonar AS, Field NH, Lewis K, Prinstein MJ, Telzer EH, Lindquist KA. Proximity within adolescent peer networks predicts neural similarity during affective experience. Soc Cogn Affect Neurosci 2024; 19:nsae072. [PMID: 39412190 PMCID: PMC11540295 DOI: 10.1093/scan/nsae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Individuals befriend others who are similar to them. One important source of similarity in relationships is similarity in felt emotion. In the present study, we used novel methods to assess whether greater similarity in the multivoxel brain representation of affective stimuli was associated with adolescents' proximity within real-world school-based social networks. We examined dyad-level neural similarity within a set of brain regions associated with the representation of affect including the ventromedial prefrontal cortex (vmPFC), amygdala, insula, and temporal pole. Greater proximity was associated with greater vmPFC neural similarity during pleasant and neutral experiences. Moreover, we used unsupervised clustering on social networks to identify groups of friends and observed that individuals from the same (versus different) friend groups were more likely to have greater vmPFC neural similarity during pleasant and negative experiences. These findings suggest that similarity in the multivoxel brain representation of affect may play an important role in adolescent friendships.
Collapse
Affiliation(s)
- Mallory J Feldman
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Jimmy Capella
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Junqiang Dai
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, Atlanta, GA 30303, USA
- Department of Psychology, Georgia State University, Atlanta, GA 30303, United States
| | - Adrienne S Bonar
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nathan H Field
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, United States
| | - Kevin Lewis
- Department of Sociology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Eva H Telzer
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
24
|
Motzkin JC, Basbaum AI, Crowther AJ. Neuroanatomy of the nociceptive system: From nociceptors to brain networks. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:1-39. [PMID: 39580210 DOI: 10.1016/bs.irn.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
This chapter reviews the neuroanatomy of the nociceptive system and its functional organization. We describe three main compartments of the nervous system that underlie normal nociception and the resulting pain percept: Peripheral, Spinal Cord, and Brain. We focus on how ascending nociceptive processing streams traverse these anatomical compartments, culminating in the multidimensional experience of pain. We also describe neuropathic pain conditions, in which nociceptive processing is abnormal, not only because of the primary effects of a lesion or disease affecting peripheral nerves or the central nervous system (CNS), but also due to secondary effects on ascending pathways and brain networks. We discuss how the anatomical components (circuits/networks) reorganize under various etiologies of neuropathic pain and how these changes can give rise to pathological pain states.
Collapse
Affiliation(s)
- Julian C Motzkin
- Department of Neurology and Department Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States.
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Andrew J Crowther
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
McIntosh R, Lobo J, Szeto A, Hidalgo M, Kolber M. Medial prefrontal cortex connectivity with the nucleus accumbens is related to HIV serostatus, perceptions of psychological stress, and monocyte expression of TNF-a. Brain Behav Immun Health 2024; 41:100844. [PMID: 39328275 PMCID: PMC11424805 DOI: 10.1016/j.bbih.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Post-menopausal persons living with HIV (PWH) report elevated levels of psychological stress and monocyte activation compared to persons living without HIV (PWOH). Resting state functional connectivity (rsFC) of mesolimbic brain regions underpinning stress and emotion regulation are susceptible to inflammatory insult. Although psychological stress is elevated, rsFC reduced, and CD16+ monocytes overexpressed in the brains of PWH, it is unclear whether the relationships amongst these variables differ compared to PWOH. An ethnically diverse sample of postmenopausal women, 24 PWH and 30 PWOH provided self-report mood surveys and provided peripheral blood specimens to quantify LPS-stimulated CD16+/- expression of TNF-α via flow cytometric analysis. An anatomical and resting state functional MRI scan were used to derive time-series metrics of connectivity between the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAcc) as well as the amygdala. A positive association was observed between levels of perceived stress and CD16+/- TNF-α in both LPS-stimulated and unstimulated cells. PLWH showed lower connectivity between mPFC and NAcc. In turn, lower rsFC between these regions predicted greater psychological stress and proportion of CD16-, but not CD16+, cells expression of TNF-α. Neuroimmune effects of monocyte inflammation on the functional connectivity of mesolimbic regions critical for discrimination of uncertainty-safety and reward signals were observed in an ethnically diverse sample of postmenopausal women living with and without HIV. PWH showed lower mPFC-NAcc functional connectivity, which in turn was associated with greater perceived stress.
Collapse
Affiliation(s)
- Roger McIntosh
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | - Judith Lobo
- University of California San Diego, HIV Neurobehavioral Research Program, United States
| | - Angela Szeto
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | | | - Michael Kolber
- University of Miami, Miller School of Medicine, United States
| |
Collapse
|
26
|
Song M, Wang J, Cai Q. The unique contribution of uncertainty reduction during naturalistic language comprehension. Cortex 2024; 181:12-25. [PMID: 39447486 DOI: 10.1016/j.cortex.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/21/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Language comprehension is an incremental process with prediction. Delineating various mental states during such a process is critical to understanding the relationship between human cognition and the properties of language. Entropy reduction, which indicates the dynamic decrease of uncertainty as language input unfolds, has been recognized as effective in predicting neural responses during comprehension. According to the entropy reduction hypothesis (Hale, 2006), entropy reduction is related to the processing difficulty of a word, the effect of which may overlap with other well-documented information-theoretical metrics such as surprisal or next-word entropy. However, the processing difficulty was often confused with the information conveyed by a word, especially lacking neural differentiation. We propose that entropy reduction represents the cognitive neural process of information gain that can be dissociated from processing difficulty. This study characterized various information-theoretical metrics using GPT-2 and identified the unique effects of entropy reduction in predicting fMRI time series acquired during language comprehension. In addition to the effects of surprisal and entropy, entropy reduction was associated with activations in the left inferior frontal gyrus, bilateral ventromedial prefrontal cortex, insula, thalamus, basal ganglia, and middle cingulate cortex. The reduction of uncertainty, rather than its fluctuation, proved to be an effective factor in modeling neural responses. The neural substrates underlying the reduction in uncertainty might imply the brain's desire for information regardless of processing difficulty.
Collapse
Affiliation(s)
- Ming Song
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Jing Wang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Qing Cai
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| |
Collapse
|
27
|
Capella J, Telzer EH. A framework for integrating neural development and social networks in adolescence. Dev Cogn Neurosci 2024; 69:101442. [PMID: 39241455 PMCID: PMC11408384 DOI: 10.1016/j.dcn.2024.101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/12/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Adolescence is a developmental period characterized by increasingly complex and influential peer contexts. Concurrently, developmental changes in neural circuits, particularly those related to social cognition, affective salience, and cognitive control, contribute to individuals' social interactions and behaviors. However, while adolescents' behaviors and overall outcomes are influenced by the entirety of their social environments, insights from developmental and social neuroscience often come from studies of individual relationships or specific social actors. By capturing information about both adolescents' individual relations and their larger social contexts, social network analysis offers a powerful opportunity to enhance our understanding of how social factors interact with adolescent development. In this review, we highlight the relevant features of adolescent social and neural development that should be considered when integrating social network analysis and neuroimaging methods. We focus on broad themes of adolescent development, including identity formation, peer sensitivity, and the pursuit of social goals, that serve as potential mechanisms for the relations between neural processes and social network features. With these factors in mind, we review the current research and propose future applications of these methods and theories.
Collapse
Affiliation(s)
- Jimmy Capella
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, USA.
| | - Eva H Telzer
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
28
|
McAfee SS, Robinson G, Gajjar A, Phillips NS, Zhang S, Zou Stinnett P, Sitaram R, Raches D, Conklin HM, Khan RB, Scoggins MA. Secondary cerebro-cerebellar and intra-cerebellar dysfunction in cerebellar mutism syndrome. Neuro Oncol 2024; 26:1700-1711. [PMID: 38581226 PMCID: PMC11376456 DOI: 10.1093/neuonc/noae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Cerebellar mutism syndrome (CMS) is characterized by deficits of speech, movement, and affect that can occur following tumor removal from the posterior fossa. The role of cerebro-cerebellar tract injuries in the etiology of CMS remains unclear, with recent studies suggesting that cerebro-cerebellar dysfunction may be related to chronic, rather than transient, symptomatology. METHODS We measured functional connectivity between the cerebellar cortex and functional nodes throughout the brain using fMRI acquired after tumor removal but prior to adjuvant therapy in a cohort of 70 patients diagnosed with medulloblastoma. Surgical lesions were mapped to the infratentorial anatomy, and connectivity with cerebral cortex was tested for statistical dependence on extent of cerebellar outflow pathway injury. RESULTS CMS diagnosis was associated with an increase in connectivity between the right cerebellar and left cerebral hemisphere, maximally between cerebellum and ventromedial prefrontal cortex (VM-PFC). Connectivity dependence on cerebellar outflow was significant for some speech nodes but not for VM-PFC, suggesting altered input to the cerebellum. Connectivity between posterior regions of cerebellar cortex and ipsilateral dentate nuclei was abnormal in CMS participants, maximally within the right cerebellar hemisphere. CONCLUSIONS The functional abnormalities we identified are notably upstream of where causal surgical injury is thought to occur, indicating a secondary phenomenon. The VM-PFC is involved in several functions that may be relevant to the symptomatology of CMS, including emotional control and motor learning. We hypothesize that these abnormalities may reflect maladaptive learning within the cerebellum consequent to disordered motor and limbic function by the periaqueductal gray and other critical midbrain targets.
Collapse
Affiliation(s)
- Samuel S McAfee
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Giles Robinson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Nicholas S Phillips
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Silu Zhang
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ping Zou Stinnett
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ranganatha Sitaram
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Darcy Raches
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Heather M Conklin
- Department of Psychology and Biobehavioral Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Raja B Khan
- Division of Neurology, Department of Pediatrics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew A Scoggins
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
29
|
Gao K, Wong AB, Li S, Zhang Y, Zhang D. The ventromedial prefrontal cortex plays an important role in implicit emotion regulation: A focality-optimized multichannel tDCS study in anxiety individuals. Hum Brain Mapp 2024; 45:e26812. [PMID: 39254109 PMCID: PMC11386327 DOI: 10.1002/hbm.26812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024] Open
Abstract
The regulation of emotions is a crucial facet of well-being and social adaptability, with explicit strategies receiving primary attention in prior research. Recent studies, however, emphasize the role of implicit emotion regulation, particularly implicating the ventromedial prefrontal cortex (VMPFC) in association with its implementation. This study delves into the nuanced role of the VMPFC through focality-optimized multichannel transcranial direct current stimulation (tDCS), shedding light on its causal involvement in implicit reappraisal. The primary goal was to evaluate the effectiveness of VMFPC-targeted tDCS and elucidate its role in individuals with high trait anxiety. Participants engaged in implicit and explicit emotion regulation tasks during multichannel tDCS targeting the VMPFC. The outcome measures encompassed negative emotion ratings, pupillary diameter, and saccade count, providing a comprehensive evaluation of emotion regulation efficiency. The intervention exhibited a notable impact, resulting in significant reductions in negative emotion ratings and pupillary reactions during implicit reappraisal, highlighting the indispensable role of the VMPFC in modulating emotional responses. Notably, these effects demonstrated sustained efficacy up to 1 day postintervention. This study underscores the potency of VMPFC-targeted multichannel tDCS in augmenting implicit emotion regulation. This not only contributes insights into the neural mechanisms of emotion regulation but also suggests innovative therapeutic avenues for anxiety disorders. The findings present a promising trajectory for future mood disorder interventions, bridging the gap between implicit emotion regulation and neural stimulation techniques.
Collapse
Affiliation(s)
- Kexiang Gao
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Aslan B. Wong
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Sijin Li
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Yueyao Zhang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
| | - Dandan Zhang
- Institute of Brain and Psychological SciencesSichuan Normal UniversityChengduChina
- China Center for Behavioral Economics and Finance & School of EconomicsSouthwestern University of Finance and EconomicsChengduChina
- School of Psychology, Chengdu Medical CollegeChengduChina
| |
Collapse
|
30
|
Yuan X, Yu Q, Liu Y, Chen J, Gao J, Liu Y, Song R, Zhang Y, Hou Z. Microstructural alterations in white matter and related neurobiology based on the new clinical subtypes of Parkinson's disease. Front Neurosci 2024; 18:1439443. [PMID: 39148522 PMCID: PMC11324559 DOI: 10.3389/fnins.2024.1439443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Background and objectives The advent of new clinical subtyping systems for Parkinson's disease (PD) has led to the classification of patients into distinct groups: mild motor predominant (PD-MMP), intermediate (PD-IM), and diffuse malignant (PD-DM). Our goal was to evaluate the efficacy of diffusion tensor imaging (DTI) in the early diagnosis, assessment of clinical progression, and prediction of prognosis of these PD subtypes. Additionally, we attempted to understand the pathological mechanisms behind white matter damage using single-photon emission computed tomography (SPECT) and cerebrospinal fluid (CSF) analyses. Methods We classified 135 de novo PD patients based on new clinical criteria and followed them up after 1 year, along with 45 healthy controls (HCs). We utilized tract-based spatial statistics to assess the microstructural changes of white matter at baseline and employed multiple linear regression to examine the associations between DTI metrics and clinical data at baseline and after follow-up. Results Compared to HCs, patients with the PD-DM subtype demonstrated reduced fractional anisotropy (FA), increased axial diffusivity (AD), and elevated radial diffusivity (RD) at baseline. The FA and RD values correlated with the severity of motor symptoms, with RD also linked to cognitive performance. Changes in FA over time were found to be in sync with changes in motor scores and global composite outcome measures. Furthermore, baseline AD values and their rate of change were related to alterations in semantic verbal fluency. We also discovered the relationship between FA values and the levels of α-synuclein and β-amyloid. Reduced dopamine transporter uptake in the left putamen correlated with RD values in superficial white matter, motor symptoms, and autonomic dysfunction at baseline as well as cognitive impairments after 1 year. Conclusions The PD-DM subtype is characterized by severe clinical symptoms and a faster progression when compared to the other subtypes. DTI, a well-established technique, facilitates the early identification of white matter damage, elucidates the pathophysiological mechanisms of disease progression, and predicts cognitively related outcomes. The results of SPECT and CSF analyses can be used to explain the specific pattern of white matter damage in patients with the PD-DM subtype.
Collapse
Affiliation(s)
- Xiaorong Yuan
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Yanyan Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinge Chen
- Department of Radiology, Shandong Mental Health Center, Jinan, Shandong, China
| | - Jie Gao
- Department of Medical Imaging, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Yujia Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruxi Song
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Yingzhi Zhang
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongyu Hou
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
31
|
Kornisch M, Gonzalez C, Ikuta T. Functional connectivity of the posterior cingulate cortex in autism spectrum disorder. Psychiatry Res Neuroimaging 2024; 342:111848. [PMID: 38896910 DOI: 10.1016/j.pscychresns.2024.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The purpose of this study was to assess the functional connectivity of the posterior cingulate cortex in autism spectrum disorder (ASD). We used resting-state functional magnetic resonance imaging (rsfMRI) brain scans of adolescents diagnosed with ASD and a neurotypical control group. The Autism Brain Imaging Data Exchange (ABIDE) consortium was utilized to acquire data from the University of Michigan (145 subjects) and data from the New York University (183 subjects). The posterior cingulate cortex showed reduced connectivity with the anterior cingulate cortex for the ASD group compared to the control group. These two brain regions have previously both been linked to ASD symptomology. Specifically, the posterior cingulate cortex has been associated with behavioral control and executive functions, which appear to be responsible for the repetitive and restricted behaviors (RRB) in ASD. Our findings support previous data indicating a neurobiological basis of the disorder, and the specific functional connectivity changes involving the posterior cingulate cortex and anterior cingulate cortex may be a potential neurobiological biomarker for the observed RRBs in ASD.
Collapse
Affiliation(s)
- Myriam Kornisch
- Department of Communication Sciences & Disorders, University of Mississippi, Oxford, MS, USA; Department of Communication Sciences & Disorders, University of Maine, Orono, ME, USA.
| | - Claudia Gonzalez
- Department of Communication Sciences & Disorders, University of Mississippi, Oxford, MS, USA
| | - Toshikazu Ikuta
- Department of Communication Sciences & Disorders, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
32
|
Romeo Z, Spironelli C. Theta oscillations underlie the interplay between emotional processing and empathy. Heliyon 2024; 10:e34581. [PMID: 39148968 PMCID: PMC11325776 DOI: 10.1016/j.heliyon.2024.e34581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Emotional reactions to salient stimuli are well documented in psychophysiological research. However, some individual variables that can influence how people process emotions (i.e., empathy traits) have received little consideration. The present study investigated the relationship between emotions and empathy. Forty participants completed the Interpersonal Reactivity Index, a questionnaire that measure general and specific empathy dimensions. Then, emotional (erotic and mutilation) and non-emotional pictures were presented, during electroencephalographic recording. Valence and arousal were evaluated for each stimulus. Behavioral results revealed a positive correlation between the arousal induced by mutilation pictures and personal distress (i.e., feeling discomfort in emergency situations). At the electrophysiological level, theta activity elicited by positive and negative emotion processing in the superior frontal gyrus was associated with personal distress. Moreover, erotic-related theta in the middle frontal gyrus was associated with subjective judgement of erotic stimulus valence. Overall, theta activity modulated the interplay between emotions and empathy.
Collapse
Affiliation(s)
- Zaira Romeo
- Department of General Psychology, University of Padova, Padova, Italy
- Neuroscience Institute, National Research Council (CNR), Padova, Italy
| | - Chiara Spironelli
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
33
|
Tashjian SM, Cussen J, Deng W, Zhang B, Mobbs D. Adaptive Safety Coding in the Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604228. [PMID: 39091862 PMCID: PMC11291074 DOI: 10.1101/2024.07.19.604228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Pivotal to self-preservation is the ability to identify when we are safe and when we are in danger. Previous studies have focused on safety estimations based on the features of external threats and do not consider how the brain integrates other key factors, including estimates about our ability to protect ourselves. Here we examine the neural systems underlying the online dynamic encoding of safety. The current preregistered study used two novel tasks to test four facets of safety estimation: Safety Prediction, Meta-representation, Recognition, and Value Updating. We experimentally manipulated safety estimation changing both levels of external threats and self-protection. Data were collected in two independent samples (behavioral N=100; fMRI N=30). We found consistent evidence of subjective changes in the sensitivity to safety conferred through protection. Neural responses in the ventromedial prefrontal cortex (vmPFC) tracked increases in safety during all safety estimation facets, with specific tuning to protection. Further, informational connectivity analyses revealed distinct hubs of safety coding in the posterior and anterior vmPFC for external threats and protection, respectively. These findings reveal a central role of the vmPFC for coding safety.
Collapse
Affiliation(s)
- Sarah M. Tashjian
- School of Psychological Sciences, University of Melbourne, Parkville, VIC 3052, Australia
- Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joseph Cussen
- School of Psychological Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wenning Deng
- Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bo Zhang
- Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dean Mobbs
- Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
34
|
Botvinik-Nezer R, Petre B, Ceko M, Lindquist MA, Friedman NP, Wager TD. Placebo treatment affects brain systems related to affective and cognitive processes, but not nociceptive pain. Nat Commun 2024; 15:6017. [PMID: 39019888 PMCID: PMC11255344 DOI: 10.1038/s41467-024-50103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Drug treatments for pain often do not outperform placebo, and a better understanding of placebo mechanisms is needed to improve treatment development and clinical practice. In a large-scale fMRI study (N = 392) with pre-registered analyses, we tested whether placebo analgesic treatment modulates nociceptive processes, and whether its effects generalize from conditioned to unconditioned pain modalities. Placebo treatment caused robust analgesia in conditioned thermal pain that generalized to unconditioned mechanical pain. However, placebo did not decrease pain-related fMRI activity in brain measures linked to nociceptive pain, including the Neurologic Pain Signature (NPS) and spinothalamic pathway regions, with strong support for null effects in Bayes Factor analyses. In addition, surprisingly, placebo increased activity in some spinothalamic regions for unconditioned mechanical pain. In contrast, placebo reduced activity in a neuromarker associated with higher-level contributions to pain, the Stimulus Intensity Independent Pain Signature (SIIPS), and affected activity in brain regions related to motivation and value, in both pain modalities. Individual differences in behavioral analgesia were correlated with neural changes in both modalities. Our results indicate that cognitive and affective processes primarily drive placebo analgesia, and show the potential of neuromarkers for separating treatment influences on nociception from influences on evaluative processes.
Collapse
Affiliation(s)
- Rotem Botvinik-Nezer
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Bogdan Petre
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Marta Ceko
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Naomi P Friedman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
35
|
Guthrie TD, Chavez RS. Normativity vs. uniqueness: effects of social relationship strength on neural representations of others. Soc Cogn Affect Neurosci 2024; 19:nsae045. [PMID: 38915187 PMCID: PMC11232616 DOI: 10.1093/scan/nsae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024] Open
Abstract
Understanding others involves inferring traits and intentions, a process complicated by our reliance on stereotypes and generalized information when we lack personal information. Yet, as relationships are formed, we shift toward nuanced and individualized perceptions of others. This study addresses how relationship strength influences the creation of unique or normative representations of others in key regions known to be involved in social cognition. Employing a round-robin interpersonal perception paradigm (N = 111, 20 groups of five to six people), we used functional magnetic resonance imaging to examine whether the strength of social relationships modulated the degree to which multivoxel patterns of activity that represented a specific other were similar to a normative average of all others in the study. Behaviorally, stronger social relationships were associated with more normative trait endorsements. Neural findings reveal that closer relationships lead to more unique representations in the medial prefrontal cortex and anterior insula, areas associated with mentalizing and person perception. Conversely, more generalized representations emerge in posterior regions like the posterior cingulate cortex, indicating a complex interplay between individuated and generalized processing of social information in the brain. These findings suggest that cortical regions typically associated with social cognition may compute different kinds of information when representing the distinctiveness of others.
Collapse
Affiliation(s)
- Taylor D Guthrie
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Robert S Chavez
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| |
Collapse
|
36
|
Finan PH, Hunt C, Keaser ML, Smith K, Lerman S, Bingham CO, Barrett F, Garland EL, Zeidan F, Seminowicz DA. Effects of Savoring Meditation on Positive Emotions and Pain-Related Brain Function: A Mechanistic Randomized Controlled Trial in People With Rheumatoid Arthritis. THE JOURNAL OF PAIN 2024; 25:104478. [PMID: 38244899 DOI: 10.1016/j.jpain.2024.01.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Positive emotions are a promising target for intervention in chronic pain, but mixed findings across trials to date suggest that existing interventions may not be optimized to efficiently engage the target. The aim of the current pilot mechanistic randomized controlled trial was to test the effects of a positive emotion-enhancing intervention called Savoring Meditation on pain-related neural and behavioral targets in patients with rheumatoid arthritis. Participants included 44 patients with a physician-confirmed diagnosis of rheumatoid arthritis (n = 29 included in functional magnetic resonance imaging (fMRI) analyses), who were randomized to either Savoring Meditation or a Slow Breathing control. Both meditation interventions were brief (four 20-minute sessions). Self-report measures were collected pre-and post-intervention. An fMRI task was conducted at post-intervention, during which participants practiced the meditation technique on which they had been trained while exposed to non-painful and painful thermal stimuli. Savoring significantly reduced experimental pain intensity ratings relative to rest (P < .001). Savoring also increased cerebral blood flow in the ventromedial prefrontal cortex and increased connectivity between the ventromedial prefrontal cortex and caudate during noxious thermal stimulation relative to Slow Breathing (z = 2.3 voxelwise, false discovery rate cluster corrected P = .05). Participants in the Savoring condition also reported significantly increased positive emotions (ps < .05) and reduced anhedonic symptoms (P < .01) from pre- to post-intervention. These findings suggest that Savoring recruits reward-enhancing corticostriatal circuits in the face of pain, and future work should extend these findings to evaluate if these mechanisms of Savoring are associated with improved clinical pain outcomes in diverse patient populations. PERSPECTIVE: Savoring Meditation is a novel positive emotion-enhancing intervention designed for patients with chronic pain. The present findings provide preliminary evidence that Savoring Meditation is acutely analgesic, and engages neural and subjective emotional targets that are relevant to pain self-management. Future work should evaluate the clinical translation of these findings.
Collapse
Affiliation(s)
- Patrick H Finan
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA; Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carly Hunt
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA
| | - Michael L Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD
| | - Katie Smith
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sheera Lerman
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Clifton O Bingham
- Department of Medicine, Division of Rheumatology, Johns Hopkins University, Baltimore, MD
| | - Frederick Barrett
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development, College of Social Work, University of Utah, Salt Lake City, UT
| | - Fadel Zeidan
- Department of Anesthesiology, University of California-San Diego, San Diego, CA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD; Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
37
|
Dehaene-Lambertz G. Perceptual Awareness in Human Infants: What is the Evidence? J Cogn Neurosci 2024; 36:1599-1609. [PMID: 38527095 DOI: 10.1162/jocn_a_02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Perceptual awareness in infants during the first year of life is understudied, despite the philosophical, scientific, and clinical importance of understanding how and when consciousness emerges during human brain development. Although parents are undoubtedly convinced that their infant is conscious, the lack of adequate experimental paradigms to address this question in preverbal infants has been a hindrance to research on this topic. However, recent behavioral and brain imaging studies have shown that infants are engaged in complex learning from an early age and that their brains are more structured than traditionally thought. I will present a rapid overview of these results, which might provide indirect evidence of early perceptual awareness and then describe how a more systematic approach to this question could stand within the framework of global workspace theory, which identifies specific signatures of conscious perception in adults. Relying on these brain signatures as a benchmark for conscious perception, we can deduce that it exists in the second half of the first year, whereas the evidence before the age of 5 months is less solid, mainly because of the paucity of studies. The question of conscious perception before term remains open, with the possibility of short periods of conscious perception, which would facilitate early learning. Advances in brain imaging and growing interest in this subject should enable us to gain a better understanding of this important issue in the years to come.
Collapse
|
38
|
Duarte IC, Dionísio A, Oliveira J, Simões M, Correia R, Dias JA, Caldeira S, Redondo J, Castelo-Branco M. Neural underpinnings of ethical decisions in life and death dilemmas in naïve and expert firefighters. Sci Rep 2024; 14:13222. [PMID: 38851794 PMCID: PMC11162493 DOI: 10.1038/s41598-024-63469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
When a single choice impacts on life outcomes, faculties to make ethical judgments come into play. Here we studied decisions in a real-life setting involving life-and-death outcomes that affect others and the decision-maker as well. We chose a genuine situation where prior training and expertise play a role: firefighting in life-threatening situations. By studying the neural correlates of dilemmas involving life-saving decisions, using realistic firefighting situations, allowed us to go beyond previously used hypothetical dilemmas, while addressing the role of expertise and the use of coping strategies (n = 47). We asked the question whether the neural underpinnings of deontologically based decisions are affected by expertise. These realistic life-saving dilemmas activate the same core reward and affective processing network, in particular the ventromedial prefrontal cortex, nucleus accumbens and amygdala, irrespective of prior expertise, thereby supporting general domain theories of ethical decision-making. We found that brain activity in the hippocampus and insula parametrically increased as the risk increased. Connectivity analysis showed a larger directed influence of the insula on circuits related to action selection in non-experts, which were slower than experts in non rescuing decisions. Relative neural activity related to the decision to rescue or not, in the caudate nucleus, insula and anterior cingulate cortex was negatively associated with coping strategies, in experts (firefighters) suggesting practice-based learning. This shows an association between activity and expert-related usage of coping strategies. Expertise enables salience network activation as a function of behavioural coping dimensions, with a distinct connectivity profile when facing life-rescuing dilemmas.
Collapse
Affiliation(s)
- Isabel C Duarte
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Joana Oliveira
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - Marco Simões
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Science and Technology, Center for Informatics and Systems of University of Coimbra (CISUC), University of Coimbra, Coimbra, Portugal
| | - Rita Correia
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
- Faculty of Science and Technology, Center for Informatics and Systems of University of Coimbra (CISUC), University of Coimbra, Coimbra, Portugal
| | - Joana A Dias
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Salomé Caldeira
- Centre for Prevention and Treatment of Psychological Trauma (CPTTP), Department of Psychiatry, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - João Redondo
- Centre for Prevention and Treatment of Psychological Trauma (CPTTP), Department of Psychiatry, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
39
|
Walker CS, Li L, Baracchini G, Tremblay-Mercier J, Spreng RN, Geddes MR. Neurobehavioral Mechanisms Influencing the Association Between Generativity, the Desire to Promote Well-Being of Younger Generations, and Purpose in Life in Older Adults at Risk for Alzheimer's Disease. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae060. [PMID: 38623965 PMCID: PMC11138215 DOI: 10.1093/geronb/gbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES Generativity, the desire and action to improve the well-being of younger generations, is associated with purpose in life among older adults. However, the neurobehavioral factors supporting the relationship between generativity and purpose in life remain unknown. This study aims to identify the functional neuroanatomy of generativity and mechanisms linking generativity with purpose in life in at-risk older adults. METHODS Fifty-eight older adults (mean age = 70.8, SD = 5.03, 45 females) with a family history of Alzheimer's disease (AD) were recruited from the PREVENT-AD cohort. Participants underwent brain imaging and completed questionnaires assessing generativity, social support, and purpose in life. Mediation models examined whether social support mediated the association between generativity and purpose in life. Seed-to-voxel analyses investigated the association between generativity and resting-state functional connectivity (rsFC) to the ventromedial prefrontal cortex (vmPFC) and ventral striatum (VS), and whether this rsFC moderated the relationship between generativity and purpose in life. RESULTS Affectionate social support mediated the association between generative desire and purpose in life. Generative desire was associated with rsFC between VS and precuneus, and, vmPFC and right dorsolateral prefrontal cortex (rdlPFC). The vmPFC-rdlPFC rsFC moderated the association between generative desire and purpose in life. DISCUSSION These findings provide insight into how the brain supports complex social behavior and, separately, purpose in life in at-risk aging. Affectionate social support may be a putative target process to enhance purpose in life in older adults. This knowledge contributes to future developments of personalized interventions that promote healthy aging.
Collapse
Affiliation(s)
- Caitlin S Walker
- Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Linda Li
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Giulia Baracchini
- Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Jennifer Tremblay-Mercier
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - R Nathan Spreng
- Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Maiya R Geddes
- Faculty of Medicine, Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Mikail N, Sager DF, Gebert P, Haider A, Todorov A, Bengs S, Sablonier N, Glarner I, Vinzens A, Sang Bastian N, Epprecht G, Sütsch C, Delcò A, Fiechter M, Portmann A, Treyer V, Wegener S, Gräni C, Pazhenkottil A, Gebhard CE, Regitz-Zagrosek V, Tanner FC, Kaufmann PA, Buechel RR, Rossi A, Gebhard C. Imaging of the brain-heart axis: prognostic value in a European setting. Eur Heart J 2024; 45:1613-1630. [PMID: 38596850 PMCID: PMC11089334 DOI: 10.1093/eurheartj/ehae162] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND AND AIMS Increasing data suggest that stress-related neural activity (SNA) is associated with subsequent major adverse cardiovascular events (MACE) and may represent a therapeutic target. Current evidence is exclusively based on populations from the U.S. and Asia where limited information about cardiovascular disease risk was available. This study sought to investigate whether SNA imaging has clinical value in a well-characterized cohort of cardiovascular patients in Europe. METHODS In this single-centre study, a total of 963 patients (mean age 58.4 ± 16.1 years, 40.7% female) with known cardiovascular status, ranging from 'at-risk' to manifest disease, and without active cancer underwent 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography between 1 January 2005 and 31 August 2019. Stress-related neural activity was assessed with validated methods and relations between SNA and MACE (non-fatal stroke, non-fatal myocardial infarction, coronary revascularization, and cardiovascular death) or all-cause mortality by time-to-event analysis. RESULTS Over a maximum follow-up of 17 years, 118 individuals (12.3%) experienced MACE, and 270 (28.0%) died. In univariate analyses, SNA significantly correlated with an increased risk of MACE (sub-distribution hazard ratio 1.52, 95% CI 1.05-2.19; P = .026) or death (hazard ratio 2.49, 95% CI 1.96-3.17; P < .001). In multivariable analyses, the association between SNA imaging and MACE was lost when details of the cardiovascular status were added to the models. Conversely, the relationship between SNA imaging and all-cause mortality persisted after multivariable adjustments. CONCLUSIONS In a European patient cohort where cardiovascular status is known, SNA imaging is a robust and independent predictor of all-cause mortality, but its prognostic value for MACE is less evident. Further studies should define specific patient populations that might profit from SNA imaging.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Dominik F Sager
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Pimrapat Gebert
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Atanas Todorov
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Noemi Sablonier
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Isabelle Glarner
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Adriana Vinzens
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Nastaran Sang Bastian
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Gioia Epprecht
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Claudia Sütsch
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Alessia Delcò
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Michael Fiechter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Swiss Paraplegic Center, Nottwil, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 20, 3010, Bern, Switzerland
| | - Aju Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Caroline E Gebhard
- Intensive Care Unit, Department of Acute Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Vera Regitz-Zagrosek
- University of Zurich, Zurich, Switzerland
- Institute of Gender in Medicine (GiM), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix C Tanner
- Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 20, 3010, Bern, Switzerland
| |
Collapse
|
41
|
Fermin ASR, Sasaoka T, Maekawa T, Ono K, Chan HL, Yamawaki S. Insula-cortico-subcortical networks predict interoceptive awareness and stress resilience. Asian J Psychiatr 2024; 95:103991. [PMID: 38484483 DOI: 10.1016/j.ajp.2024.103991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Interoception, the neural sensing of visceral signals, and interoceptive awareness (IA), the conscious perception of interoception, are crucial for life survival functions and mental health. Resilience, the capacity to overcome adversity, has been associated with reduced interoceptive disturbances. Here, we sought evidence for our Insula Modular Active Control (IMAC) model that suggest that the insula, a brain region specialized in the processing of interoceptive information, realizes IA and contributes to resilience and mental health via cortico-subcortical connections. METHODS 64 healthy participants (32 females; ages 18-34 years) answered questionnaires that assess IA and resilience. Mental health was evaluated with the Beck Depression Inventory II that assesses depressive mood. Participants also underwent a 15 minute resting-state functional resonance imaging session. Pearson correlations and mediation analyses were used to investigate the relationship between IA and resilience and their contributions to depressive mood. We then performed insula seed-based functional connectivity analyzes to identify insula networks involved in IA, resilience and depressive mood. RESULTS We first demonstrated that resilience mediates the relationship between IA and depressive mood. Second, shared and distinct intra-insula, insula-cortical and insula-subcortical networks were associated with IA, resilience and also predicted the degree of experienced depressive mood. Third, while resilience was associated with stronger insula-precuneus, insula-cerebellum and insula-prefrontal networks, IA was linked with stronger intra-insula, insula-striatum and insula-motor networks. CONCLUSIONS Our findings help understand the roles of insula-cortico-subcortical networks in IA and resilience. These results also highlight the potential use of insula networks as biomarkers for depression prediction.
Collapse
Affiliation(s)
- Alan S R Fermin
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan.
| | - Takafumi Sasaoka
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Toru Maekawa
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ono
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Hui-Ling Chan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
42
|
Kim HJ, Lux BK, Lee E, Finn ES, Woo CW. Brain decoding of spontaneous thought: Predictive modeling of self-relevance and valence using personal narratives. Proc Natl Acad Sci U S A 2024; 121:e2401959121. [PMID: 38547065 PMCID: PMC10998624 DOI: 10.1073/pnas.2401959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024] Open
Abstract
The contents and dynamics of spontaneous thought are important factors for personality traits and mental health. However, assessing spontaneous thoughts is challenging due to their unconstrained nature, and directing participants' attention to report their thoughts may fundamentally alter them. Here, we aimed to decode two key content dimensions of spontaneous thought-self-relevance and valence-directly from brain activity. To train functional MRI-based predictive models, we used individually generated personal stories as stimuli in a story-reading task to mimic narrative-like spontaneous thoughts (n = 49). We then tested these models on multiple test datasets (total n = 199). The default mode, ventral attention, and frontoparietal networks played key roles in the predictions, with the anterior insula and midcingulate cortex contributing to self-relevance prediction and the left temporoparietal junction and dorsomedial prefrontal cortex contributing to valence prediction. Overall, this study presents brain models of internal thoughts and emotions, highlighting the potential for the brain decoding of spontaneous thought.
Collapse
Affiliation(s)
- Hong Ji Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
| | - Byeol Kim Lux
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Psychological and Brain Sciences, Dartmouth College, NH03755
| | - Eunjin Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
| | - Emily S. Finn
- Department of Psychological and Brain Sciences, Dartmouth College, NH03755
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon16419, South Korea
| |
Collapse
|
43
|
Kehrer P, Brigman JL, Cavanagh JF. Depth recordings of the mouse homologue of the Reward Positivity. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:292-301. [PMID: 37853299 DOI: 10.3758/s13415-023-01134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
We recently advanced a rodent homologue for the reward-specific, event-related potential component observed in humans known as the Reward Positivity. We sought to determine the cortical source of this signal in mice to further test the nature of this homology. While similar reward-related cortical signals have been identified in rats, these recordings were all performed in cingulate gyrus. Given the value-dependent nature of this event, we hypothesized that more ventral prelimbic and infralimbic areas also contribute important variance to this signal. Depth probes assessed local field activity in 29 mice (15 males) while they completed multiple sessions of a probabilistic reinforcement learning task. Using a priori regions of interest, we demonstrated that the depth of recording in the cortical midline significantly correlated with the size of reward-evoked delta band spectral activity as well as the single trial correlation between delta power and reward prediction error. These findings provide important verification of the validity of this translational biomarker of reward responsiveness, learning, and valuation.
Collapse
Affiliation(s)
- Penelope Kehrer
- Psychology Department, University of New Mexico, Logan Hall, MSC03 2220, 87131, Albuquerque, NM, Mexico
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, Mexico
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, Mexico
| | - James F Cavanagh
- Psychology Department, University of New Mexico, Logan Hall, MSC03 2220, 87131, Albuquerque, NM, Mexico.
| |
Collapse
|
44
|
Vaccaro AG, Wu H, Iyer R, Shakthivel S, Christie NC, Damasio A, Kaplan J. Neural patterns associated with mixed valence feelings differ in consistency and predictability throughout the brain. Cereb Cortex 2024; 34:bhae122. [PMID: 38566509 DOI: 10.1093/cercor/bhae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mixed feelings, the simultaneous presence of feelings with positive and negative valence, remain an understudied topic. They pose a specific set of challenges due to individual variation, and their investigation requires analtyic approaches focusing on individually self-reported states. We used functional magnetic resonance imaging (fMRI) to scan 27 subjects watching an animated short film chosen to induce bittersweet mixed feelings. The same subjects labeled when they had experienced positive, negative, and mixed feelings. Using hidden-Markov models, we found that various brain regions could predict the onsets of new feeling states as determined by self-report. The ability of the models to identify these transitions suggests that these states may exhibit unique and consistent neural signatures. We next used the subjects' self-reports to evaluate the spatiotemporal consistency of neural patterns for positive, negative, and mixed states. The insula had unique and consistent neural signatures for univalent states, but not for mixed valence states. The anterior cingulate and ventral medial prefrontal cortex had consistent neural signatures for both univalent and mixed states. This study is the first to demonstrate that subjectively reported changes in feelings induced by naturalistic stimuli can be predicted from fMRI and the first to show direct evidence for a neurally consistent representation of mixed feelings.
Collapse
Affiliation(s)
- Anthony G Vaccaro
- Department of Psychology, Brain and Creativity Institute, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089, United States
| | - Helen Wu
- Department of Psychology, Brain and Creativity Institute, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089, United States
| | - Rishab Iyer
- Department of Psychology, Brain and Creativity Institute, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089, United States
| | - Shruti Shakthivel
- Department of Psychology, Brain and Creativity Institute, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089, United States
| | - Nina C Christie
- Department of Psychology, Brain and Creativity Institute, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089, United States
| | - Antonio Damasio
- Department of Psychology, Brain and Creativity Institute, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089, United States
| | - Jonas Kaplan
- Department of Psychology, Brain and Creativity Institute, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089, United States
| |
Collapse
|
45
|
Lettieri G, Handjaras G, Cappello EM, Setti F, Bottari D, Bruno V, Diano M, Leo A, Tinti C, Garbarini F, Pietrini P, Ricciardi E, Cecchetti L. Dissecting abstract, modality-specific and experience-dependent coding of affect in the human brain. SCIENCE ADVANCES 2024; 10:eadk6840. [PMID: 38457501 PMCID: PMC10923499 DOI: 10.1126/sciadv.adk6840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Emotion and perception are tightly intertwined, as affective experiences often arise from the appraisal of sensory information. Nonetheless, whether the brain encodes emotional instances using a sensory-specific code or in a more abstract manner is unclear. Here, we answer this question by measuring the association between emotion ratings collected during a unisensory or multisensory presentation of a full-length movie and brain activity recorded in typically developed, congenitally blind and congenitally deaf participants. Emotional instances are encoded in a vast network encompassing sensory, prefrontal, and temporal cortices. Within this network, the ventromedial prefrontal cortex stores a categorical representation of emotion independent of modality and previous sensory experience, and the posterior superior temporal cortex maps the valence dimension using an abstract code. Sensory experience more than modality affects how the brain organizes emotional information outside supramodal regions, suggesting the existence of a scaffold for the representation of emotional states where sensory inputs during development shape its functioning.
Collapse
Affiliation(s)
- Giada Lettieri
- Crossmodal Perception and Plasticity Laboratory, Institute of Research in Psychology & Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Giacomo Handjaras
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Elisa M. Cappello
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Francesca Setti
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Davide Bottari
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Sensory Experience Dependent Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Matteo Diano
- Department of Psychology, University of Turin, Turin, Italy
| | - Andrea Leo
- Department of of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carla Tinti
- Department of Psychology, University of Turin, Turin, Italy
| | | | - Pietro Pietrini
- Forensic Neuroscience and Psychiatry Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Emiliano Ricciardi
- Sensorimotor Experiences and Mental Representations Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
- Sensory Experience Dependent Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Luca Cecchetti
- Social and Affective Neuroscience Group, MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| |
Collapse
|
46
|
Nanni-Zepeda M, DeGutis J, Wu C, Rothlein D, Fan Y, Grimm S, Walter M, Esterman M, Zuberer A. Neural signatures of shared subjective affective engagement and disengagement during movie viewing. Hum Brain Mapp 2024; 45:e26622. [PMID: 38488450 DOI: 10.1002/hbm.26622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
When watching a negative emotional movie, we differ from person to person in the ease with which we engage and the difficulty with which we disengage throughout a temporally evolving narrative. We investigated neural responses of emotional processing, by considering inter-individual synchronization in subjective emotional engagement and disengagement. The neural underpinnings of these shared responses are ideally studied in naturalistic scenarios like movie viewing, wherein individuals emotionally engage and disengage at their own time and pace throughout the course of a narrative. Despite the rich data that naturalistic designs can bring to the study, there is a challenge in determining time-resolved behavioral markers of subjective engagement and disengagement and their underlying neural responses. We used a within-subject cross-over design instructing 22 subjects to watch clips of either neutral or sad content while undergoing functional magnetic resonance imaging (fMRI). Participants watched the same movies a second time while continuously annotating the perceived emotional intensity, thus enabling the mapping of brain activity and emotional experience. Our analyses revealed that between-participant similarity in waxing (engagement) and waning (disengagement) of emotional intensity was directly related to the between-participant similarity in spatiotemporal patterns of brain activation during the movie(s). Similar patterns of engagement reflected common activation in the bilateral ventromedial prefrontal cortex, regions often involved in self-referenced evaluation and generation of negative emotions. Similar patterns of disengagement reflected common activation in central executive and default mode network regions often involved in top-down emotion regulation. Together this work helps to better understand cognitive and neural mechanisms underpinning engagement and disengagement from emotionally evocative narratives.
Collapse
Affiliation(s)
- Melanni Nanni-Zepeda
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Charley Wu
- Human and Machine Cognition Lab, University of Tübingen, Tübingen, Germany
| | - David Rothlein
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yan Fan
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Simone Grimm
- Berlin Institute of Health, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Department of Psychology, MSB Medical School Berlin, Berlin, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael Esterman
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Agnieszka Zuberer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Lyu 吕奕洲 Y, Su 苏紫杉 Z, Neumann D, Meidenbauer KL, Leong 梁元彰 YC. Hostile Attribution Bias Shapes Neural Synchrony in the Left Ventromedial Prefrontal Cortex during Ambiguous Social Narratives. J Neurosci 2024; 44:e1252232024. [PMID: 38316561 PMCID: PMC10904091 DOI: 10.1523/jneurosci.1252-23.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/20/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
Hostile attribution bias refers to the tendency to interpret social situations as intentionally hostile. While previous research has focused on its developmental origins and behavioral consequences, the underlying neural mechanisms remain underexplored. Here, we employed functional near-infrared spectroscopy (fNIRS) to investigate the neural correlates of hostile attribution bias. While undergoing fNIRS, male and female participants listened to and provided attribution ratings for 21 hypothetical scenarios where a character's actions resulted in a negative outcome for the listener. Ratings of hostile intentions were averaged to measure hostile attribution bias. Using intersubject representational similarity analysis, we found that participants with similar levels of hostile attribution bias exhibited higher levels of neural synchrony during narrative listening, suggesting shared interpretations of the scenarios. This effect was localized to the left ventromedial prefrontal cortex (VMPFC) and was particularly prominent in scenarios where the character's intentions were highly ambiguous. We then grouped participants into high and low bias groups based on a median split of their hostile attribution bias scores. A similarity-based classifier trained on the neural data classified participants as having high or low bias with 75% accuracy, indicating that the neural time courses during narrative listening was systematically different between the two groups. Furthermore, hostile attribution bias correlated negatively with attributional complexity, a measure of one's tendency to consider multifaceted causes when explaining behavior. Our study sheds light on the neural mechanisms underlying hostile attribution bias and highlights the potential of using fNIRS to develop nonintrusive and cost-effective neural markers of this sociocognitive bias.
Collapse
Affiliation(s)
- Yizhou Lyu 吕奕洲
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
| | - Zishan Su 苏紫杉
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
| | - Dawn Neumann
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis 46202, Indiana
| | | | - Yuan Chang Leong 梁元彰
- Department of Psychology, University of Chicago, Chicago 60637, Illinois
- Neuroscience Institute, The University of Chicago, Chicago 60637, Illinois
| |
Collapse
|
48
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
49
|
Yan X. The role of cortical midline structure in diagnoses and neuromodulation for major depressive disorder. PSYCHORADIOLOGY 2024; 4:kkae001. [PMID: 38666138 PMCID: PMC10917364 DOI: 10.1093/psyrad/kkae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Xinyuan Yan
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Watve A, Haugg A, Frei N, Koush Y, Willinger D, Bruehl AB, Stämpfli P, Scharnowski F, Sladky R. Facing emotions: real-time fMRI-based neurofeedback using dynamic emotional faces to modulate amygdala activity. Front Neurosci 2024; 17:1286665. [PMID: 38274498 PMCID: PMC10808718 DOI: 10.3389/fnins.2023.1286665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Maladaptive functioning of the amygdala has been associated with impaired emotion regulation in affective disorders. Recent advances in real-time fMRI neurofeedback have successfully demonstrated the modulation of amygdala activity in healthy and psychiatric populations. In contrast to an abstract feedback representation applied in standard neurofeedback designs, we proposed a novel neurofeedback paradigm using naturalistic stimuli like human emotional faces as the feedback display where change in the facial expression intensity (from neutral to happy or from fearful to neutral) was coupled with the participant's ongoing bilateral amygdala activity. Methods The feasibility of this experimental approach was tested on 64 healthy participants who completed a single training session with four neurofeedback runs. Participants were assigned to one of the four experimental groups (n = 16 per group), i.e., happy-up, happy-down, fear-up, fear-down. Depending on the group assignment, they were either instructed to "try to make the face happier" by upregulating (happy-up) or downregulating (happy-down) the amygdala or to "try to make the face less fearful" by upregulating (fear-up) or downregulating (fear-down) the amygdala feedback signal. Results Linear mixed effect analyses revealed significant amygdala activity changes in the fear condition, specifically in the fear-down group with significant amygdala downregulation in the last two neurofeedback runs as compared to the first run. The happy-up and happy-down groups did not show significant amygdala activity changes over four runs. We did not observe significant improvement in the questionnaire scores and subsequent behavior. Furthermore, task-dependent effective connectivity changes between the amygdala, fusiform face area (FFA), and the medial orbitofrontal cortex (mOFC) were examined using dynamic causal modeling. The effective connectivity between FFA and the amygdala was significantly increased in the happy-up group (facilitatory effect) and decreased in the fear-down group. Notably, the amygdala was downregulated through an inhibitory mechanism mediated by mOFC during the first training run. Discussion In this feasibility study, we intended to address key neurofeedback processes like naturalistic facial stimuli, participant engagement in the task, bidirectional regulation, task congruence, and their influence on learning success. It demonstrated that such a versatile emotional face feedback paradigm can be tailored to target biased emotion processing in affective disorders.
Collapse
Affiliation(s)
- Apurva Watve
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Nada Frei
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Yury Koush
- Magnetic Resonance Research Center (MRRC), Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - David Willinger
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Division of Psychodynamics, Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Lower Austria, Austria
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Annette Beatrix Bruehl
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Center for Affective, Stress and Sleep Disorders, Psychiatric University Hospital Basel, Basel, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, Faculty of Medicine, University of Zürich, Zürich, Switzerland
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ronald Sladky
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|