1
|
Morishita Y, Fuentes I, Gonzalez-Salinas S, Favate J, Mejaes J, Zushida K, Nishi A, Hevi C, Goldsmith N, Buyske S, Sillivan SE, Miller CA, Kandel ER, Uchida S, Shah P, Alarcon JM, Barker DJ, Shumyatsky GP. Dopamine release and dopamine-related gene expression in the amygdala are modulated by the gastrin-releasing peptide in opposite directions during stress-enhanced fear learning and extinction. Mol Psychiatry 2025; 30:2381-2394. [PMID: 39580604 PMCID: PMC12092189 DOI: 10.1038/s41380-024-02843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Fear extinction leads to a decrease of originally acquired fear responses after the threat is no longer present. Fear extinction is adaptive and critical for organism's survival, but deficits in extinction may lead to exaggerated fear in animals or post-traumatic stress disorder (PTSD) in humans. Dopamine has recently emerged as essential for fear extinction and PTSD, however the neural circuits serving this dopamine function are only beginning to be investigated, and the dopamine intracellular signaling pathways are unknown. We generated gastrin-releasing peptide gene knockout (Grp-/-) mice and found that they exhibit enhanced fear memory in a stress-enhanced fear learning (SEFL) paradigm, which combines stress exposure and fear extinction, two features critical for developing PTSD. Using in vivo fiber photometry to record dopamine signals, we found that the susceptibility of Grp-/- mice to SEFL is paralleled by an increase in basolateral amygdala (BLA) dopaminergic binding during fear conditioning and early extinction. Combined optogenetics and ex vivo electrophysiology showed an increase in presynaptic ventral tegmental area (VTA)-BLA connectivity in Grp-/- mice, demonstrating a role of dysregulated input from the VTA on BLA function in the absence of the GRP. When examining gene transcription using RNA-seq and qPCR, we discovered concerted down-regulation in dopamine-related genes in the BLA of Grp-/- mice following long-term SEFL memory recall that was not observed in naïve conditions. These experiments demonstrate that the GRP regulates dopamine function in stress-enhanced fear processing and identify the Grp as the first gene known to regulate dopaminergic control of fear extinction.
Collapse
Affiliation(s)
- Yoshikazu Morishita
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | | | - John Favate
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Jennifer Mejaes
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - Ko Zushida
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Akinori Nishi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Charles Hevi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | | | - Steve Buyske
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Stephanie E Sillivan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Eric R Kandel
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Shusaku Uchida
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
| | - Juan Marcos Alarcon
- Department of Pathology, Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - David J Barker
- Department of Psychology, Rutgers University, Piscataway, NJ, USA.
| | | |
Collapse
|
2
|
Mattoni M, Ka-Yi Chat I, Brown LA, Kautz M. Pretreatment anhedonia as a predictor of exposure-based anxiety treatment outcomes. J Psychiatr Res 2025; 186:305-312. [PMID: 40279794 PMCID: PMC12068967 DOI: 10.1016/j.jpsychires.2025.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/04/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Reward processes can reinforce extinction learning and aide cognitive processes involved with inhibitory learning. Anhedonia, characterized by deficits in reward incentivization, hedonic response, and learning, may therefore predict worse treatment outcomes. The current study examined associations between pretreatment self-reported anhedonia and several measures of anxiety symptom severity and treatment outcomes in a naturalistic exposure-based treatment setting. We used multilevel models to examine the relationship between pretreatment anhedonia with change in general treatment response and disorder-specific symptoms for obsessive compulsive disorder (OCD), post-traumatic stress disorder (PTSD), generalized anxiety disorder (GAD), social anxiety disorder (SAD), and panic disorder (PD). Consistent with hypotheses, pretreatment anhedonia severity was associated with higher pretreatment anxiety symptom severity across all measures. However, inconsistent with hypotheses, higher anhedonia scores were associated with greater symptom improvement across treatment for OCD, GAD, and PD, and had no significant relationships with diagnosis-general outcome measures, PTSD symptoms, or SAD symptoms. In sensitivity analyses including number of sessions, higher anhedonia was associated with more sessions across treatment and anhedonia no longer significantly predicted OCD or GAD treatment outcomes when controlling for treatment dose. Together, findings suggest that individuals with higher pretreatment anhedonia still respond to exposure therapy for anxiety disorders, but may require more sessions. More broadly, results highlight challenges in translating laboratory research to naturalistic clinical settings and the need for intensive longitudinal studies that can assess the role of reward processes in exposure therapy.
Collapse
Affiliation(s)
- Matthew Mattoni
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA.
| | - Iris Ka-Yi Chat
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA
| | - Lily A Brown
- University of Pennsylvania, Department of Psychiatry, 3535 Market St., Philadelphia, PA, USA
| | - Marin Kautz
- University of Pennsylvania, Department of Psychiatry, 3535 Market St., Philadelphia, PA, USA
| |
Collapse
|
3
|
Fitzgerald JM, Webb EK, Davis K, Bennett M, Benjamin T, Pegau B, Sangha S. PTSD symptoms moderate predictors of psychophysiological arousal during fear inhibition: Evidence from a fear, reward, and neutral discrimination task. J Affect Disord 2025; 385:119401. [PMID: 40368148 DOI: 10.1016/j.jad.2025.119401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
The ability to distinguish between threatening, rewarding, and neutral cues is adaptative and crucial for survival. However, individuals with posttraumatic stress disorder (PTSD) often show poor knowledge of cue contingencies and heightened fear responses even in the presence of cues that signify safety, potentially due to atypical perceptions of neutral cues. We investigated whether perceiving neutral cues as more rewarding or threatening influences conditioned inhibition of fear and whether PTSD symptoms moderate this relationship. Trauma-exposed adults (N = 84; 64 % female; 76 % non-Hispanic white) completed a Fear, Reward, and Neutral Discrimination (FRND) Task involving geometric shapes paired with outcomes (Fear: white noise; Reward: monetary gain; Neutral: no outcome) and conditioned inhibition trials (Fear+Neutral and Reward+Neutral: no outcome). Skin conductance responses (SCR) quantified psychophysiological arousal, and participants rated the valence of each cue. PTSD symptoms were evaluated with the PTSD Checklist for DSM-5. Linear regressions examined PTSD severity as a moderator of the relationship between Reward vs. Neutral or Fear vs. Neutral valence difference and SCR during inhibition. Among individuals with less severe PTSD symptoms, stronger fear inhibition effects were observed when neutral cues were rated more similarly to reward cues (β = 0.12, p = .022); however, this relationship was not significant at average or higher PTSD severity. Our results emphasize that perceptions of neutral cues contribute to fear inhibition and may underlie PTSD-related deficits in safety learning. Future investigations on PTSD and fear inhibition should consider incorporating measures of reward-related processing to examine the overlap between rewarding and inhibitory qualities of safety signals.
Collapse
Affiliation(s)
| | - E Kate Webb
- Department of Psychiatry & Behavioral Sciences, Duke School of Medicine, Durham, NC, United States of America
| | - Kaley Davis
- Department of Psychology, Marquette University, United States of America
| | - Meghan Bennett
- Department of Psychology, Marquette University, United States of America
| | - Tristan Benjamin
- Department of Psychology, Marquette University, United States of America
| | - Boiana Pegau
- Department of Psychology, Marquette University, United States of America
| | - Susan Sangha
- Department of Psychiatry, Indiana University School of Medicine; Stark Neuroscience Research Institute, United States of America
| |
Collapse
|
4
|
Zhang X, Flick K, Rizzo M, Pignatelli M, Tonegawa S. Dopamine induces fear extinction by activating the reward-responding amygdala neurons. Proc Natl Acad Sci U S A 2025; 122:e2501331122. [PMID: 40294263 PMCID: PMC12067255 DOI: 10.1073/pnas.2501331122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
The extinction of conditioned fear responses is crucial for adaptive behavior, and its impairment is a hallmark of anxiety disorders such as posttraumatic stress disorder. Fear extinction takes place when animals form a new memory that suppresses the original fear memory. In the case of context-dependent fear memory, the new memory is formed within the reward-responding posterior subset of basolateral amygdala (BLA) that is genetically marked by Ppp1r1b+ neurons. These memory engram cells suppress the activity of the original fear-responding Rspo2+ engram cells present in the anterior BLA, hence fear extinction. However, the neurological nature of the teaching signal that instructs the formation of fear extinction memory in the Ppp1r1b+ neurons is unknown. Here, we demonstrate that ventral tegmental area (VTA) dopaminergic signaling drives fear extinction in distinct BLA neuronal populations. We show that BLA fear and extinction neuronal populations receive topographically divergent inputs from VTA dopaminergic neurons via differentially expressed dopamine receptors. Fiber photometry recordings of dopaminergic activity in the BLA reveal that dopamine (DA) activity is time-locked to freezing cessation in BLA fear extinction neurons, but not BLA fear neurons. Furthermore, this dopaminergic activity in BLA fear extinction neurons correlates with extinction learning. Finally, using projection-specific optogenetic manipulation, we find that activation of the VTA DA projections to BLA reward and fear neurons accelerated or impaired fear extinction, respectively. Together, this work demonstrates that dopaminergic activity bidirectionally controls fear extinction by distinct patterns of activity at BLA fear and extinction neurons.
Collapse
Affiliation(s)
- Xiangyu Zhang
- The Picower Institute for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Katelyn Flick
- The Picower Institute for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Marianna Rizzo
- The Picower Institute for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Dipartimento di Medicina e Chirurgia, Laboratorio di Neuroanatomia, Universitá di Parma, Parma43125, Italy
| | - Michele Pignatelli
- The Picower Institute for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI at Massachusetts Institute of Technology, Cambridge, MA02139
| | - Susumu Tonegawa
- The Picower Institute for Learning and Memory, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI at Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
5
|
Willems AL, Van Oudenhove L, Vervliet B. Omissions of threat trigger subjective relief and prediction error-like signaling in the human reward and salience systems. eLife 2025; 12:RP91400. [PMID: 40008871 PMCID: PMC11875134 DOI: 10.7554/elife.91400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
The unexpected absence of danger constitutes a pleasurable event that is critical for the learning of safety. Accumulating evidence points to similarities between the processing of absent threat and the well-established reward prediction error (PE). However, clear-cut evidence for this analogy in humans is scarce. In line with recent animal data, we showed that the unexpected omission of (painful) electrical stimulation triggers activations within key regions of the reward and salience pathways and that these activations correlate with the pleasantness of the reported relief. Furthermore, by parametrically violating participants' probability and intensity related expectations of the upcoming stimulation, we showed for the first time in humans that omission-related activations in the VTA/SN were stronger following omissions of more probable and intense stimulations, like a positive reward PE signal. Together, our findings provide additional support for an overlap in the neural processing of absent danger and rewards in humans.
Collapse
Affiliation(s)
- Anne L Willems
- Laboratory of Biological Psychology, Department of Brain & Cognition, KU LeuvenLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| | - Lukas Van Oudenhove
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research in GastroIntestinal Disorders (TARGID), Department of chronic diseases and metabolism, KU LeuvenLeuvenBelgium
| | - Bram Vervliet
- Laboratory of Biological Psychology, Department of Brain & Cognition, KU LeuvenLeuvenBelgium
- Leuven Brain Institute, KU LeuvenLeuvenBelgium
| |
Collapse
|
6
|
Laing PAF, Dunsmoor JE. Event Segmentation Promotes the Reorganization of Emotional Memory. J Cogn Neurosci 2025; 37:110-134. [PMID: 39231276 DOI: 10.1162/jocn_a_02244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Event boundaries help structure the content of episodic memories by segmenting continuous experiences into discrete events. Event boundaries may also serve to preserve meaningful information within an event, thereby actively separating important memories from interfering representations imposed by past and future events. Here, we tested the hypothesis that event boundaries organize emotional memory based on changing dynamics as events unfold. We developed a novel threat-reversal learning task whereby participants encoded trial-unique exemplars from two semantic categories across three phases: preconditioning, fear acquisition, and reversal. Shock contingencies were established for one category during acquisition (CS+) and then switched to the other during reversal (CS-). Importantly, reversal was either separated by a perceptible event boundary (Experiment 1) or occurred immediately after acquisition, with no perceptible context shift (Experiment 2). In a surprise recognition memory test the next day, memory performance tracked the learning contingencies from encoding in Experiment 1, such that participants selectively recognized more threat-associated CS+ exemplars from before (retroactive) and during acquisition, but this pattern reversed toward CS- exemplars encoded during reversal. By contrast, participants with continuous encoding-without a boundary between conditioning and reversal-exhibited undifferentiated memory for exemplars from both categories encoded before acquisition and after reversal. Further analyses highlight nuanced effects of event boundaries on reversing conditioned fear, updating mnemonic generalization, and emotional biasing of temporal source memory. These findings suggest that event boundaries provide anchor points to organize memory for distinctly meaningful information, thereby adaptively structuring memory based on the content of our experiences.
Collapse
|
7
|
Duvarci S. Dopaminergic circuits controlling threat and safety learning. Trends Neurosci 2024; 47:1014-1027. [PMID: 39472156 DOI: 10.1016/j.tins.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The ability to learn from experience that certain cues and situations are associated with threats or safety is crucial for survival and adaptive behavior. Understanding the neural substrates of threat and safety learning has high clinical significance because deficits in these forms of learning characterize anxiety disorders. Traditionally, dopamine neurons were thought to uniformly support reward learning by signaling reward prediction errors. However, the dopamine system is functionally more diverse than was initially appreciated and is also critical for processing threat and safety. In this review, I highlight recent studies demonstrating that dopamine neurons generate prediction errors for threat and safety, and describe how dopamine projections to the amygdala, medial prefrontal cortex (mPFC), and striatum regulate associative threat and safety learning.
Collapse
Affiliation(s)
- Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany.
| |
Collapse
|
8
|
Abstract
Memories are stored as ensembles of engram neurons and their successful recall involves the reactivation of these cellular networks. However, significant gaps remain in connecting these cell ensembles with the process of forgetting. Here, we utilized a mouse model of object memory and investigated the conditions in which a memory could be preserved, retrieved, or forgotten. Direct modulation of engram activity via optogenetic stimulation or inhibition either facilitated or prevented the recall of an object memory. In addition, through behavioral and pharmacological interventions, we successfully prevented or accelerated forgetting of an object memory. Finally, we showed that these results can be explained by a computational model in which engrams that are subjectively less relevant for adaptive behavior are more likely to be forgotten. Together, these findings suggest that forgetting may be an adaptive form of engram plasticity which allows engrams to switch from an accessible state to an inaccessible state.
Collapse
Affiliation(s)
- James D O'Leary
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Rasmus Bruckner
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Department of Education and Psychology, Freie Universität BerlinBerlinGermany
- Max Planck Research Group NeuroCode, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Livia Autore
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of MelbourneMelbourneAustralia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR)TorontoCanada
| |
Collapse
|
9
|
Cazalé-Debat L, Scheunemann L, Day M, Fernandez-D V Alquicira T, Dimtsi A, Zhang Y, Blackburn LA, Ballardini C, Greenin-Whitehead K, Reynolds E, Lin AC, Owald D, Rezaval C. Mating proximity blinds threat perception. Nature 2024; 634:635-643. [PMID: 39198656 PMCID: PMC11485238 DOI: 10.1038/s41586-024-07890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Romantic engagement can bias sensory perception. This 'love blindness' reflects a common behavioural principle across organisms: favouring pursuit of a coveted reward over potential risks1. In the case of animal courtship, such sensory biases may support reproductive success but can also expose individuals to danger, such as predation2,3. However, how neural networks balance the trade-off between risk and reward is unknown. Here we discover a dopamine-governed filter mechanism in male Drosophila that reduces threat perception as courtship progresses. We show that during early courtship stages, threat-activated visual neurons inhibit central courtship nodes via specific serotonergic neurons. This serotonergic inhibition prompts flies to abort courtship when they see imminent danger. However, as flies advance in the courtship process, the dopaminergic filter system reduces visual threat responses, shifting the balance from survival to mating. By recording neural activity from males as they approach mating, we demonstrate that progress in courtship is registered as dopaminergic activity levels ramping up. This dopamine signalling inhibits the visual threat detection pathway via Dop2R receptors, allowing male flies to focus on courtship when they are close to copulation. Thus, dopamine signalling biases sensory perception based on perceived goal proximity, to prioritize between competing behaviours.
Collapse
Affiliation(s)
- Laurie Cazalé-Debat
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Lisa Scheunemann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Megan Day
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Tania Fernandez-D V Alquicira
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dimtsi
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Youchong Zhang
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Lauren A Blackburn
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Charles Ballardini
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Katie Greenin-Whitehead
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Eric Reynolds
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - David Owald
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham, UK.
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Rosenberg BM, Moreira JFG, Leal ASM, Saragosa-Harris NM, Gaines E, Meredith WJ, Waizman Y, Ninova E, Silvers JA. Functional connectivity between the nucleus accumbens and amygdala underlies avoidance learning during adolescence: Implications for developmental psychopathology. Dev Psychopathol 2024:1-13. [PMID: 39324228 PMCID: PMC11936845 DOI: 10.1017/s095457942400141x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
BACKGROUND Reward and threat processes work together to support adaptive learning during development. Adolescence is associated with increasing approach behavior (e.g., novelty-seeking, risk-taking) but often also coincides with emerging internalizing symptoms, which are characterized by heightened avoidance behavior. Peaking engagement of the nucleus accumbens (NAcc) during adolescence, often studied in reward paradigms, may also relate to threat mechanisms of adolescent psychopathology. METHODS 47 typically developing adolescents (9.9-22.9 years) completed an aversive learning task during functional magnetic resonance imaging, wherein visual cues were paired with an aversive sound or no sound. Task blocks involved an escapable aversively reinforced stimulus (CS+r), the same stimulus without reinforcement (CS+nr), or a stimulus that was never reinforced (CS-). Parent-reported internalizing symptoms were measured using Revised Child Anxiety and Depression Scales. RESULTS Functional connectivity between the NAcc and amygdala differentiated the stimuli, such that connectivity increased for the CS+r (p = .023) but not for the CS+nr and CS-. Adolescents with greater internalizing symptoms demonstrated greater positive functional connectivity for the CS- (p = .041). CONCLUSIONS Adolescents show heightened NAcc-amygdala functional connectivity during escape from threat. Higher anxiety and depression symptoms are associated with elevated NAcc-amygdala connectivity during safety, which may reflect poor safety versus threat discrimination.
Collapse
Affiliation(s)
- Benjamin M. Rosenberg
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - João F. Guassi Moreira
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Adriana S. Méndez Leal
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | - Elizabeth Gaines
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wesley J. Meredith
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yael Waizman
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Emilia Ninova
- College of Social Work, Florida State University, Tallahassee, FL, USA
| | - Jennifer A. Silvers
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
11
|
Gattuso JJ, Wilson C, Hannan AJ, Renoir T. Psilocybin as a lead candidate molecule in preclinical therapeutic studies of psychiatric disorders: A systematic review. J Neurochem 2024; 168:1687-1720. [PMID: 38019032 DOI: 10.1111/jnc.16017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Psilocybin is the main psychoactive compound found in hallucinogenic/magic mushrooms and can bind to both serotonergic and tropomyosin receptor kinase b (TrkB) receptors. Psilocybin has begun to show efficacy for a range of neuropsychiatric conditions, including treatment-resistant depression and anxiety disorders; however, neurobiological mechanisms are still being elucidated. Clinical research has found that psilocybin can alter functional connectivity patterns in human brains, which is often associated with therapeutic outcomes. However, preclinical research affords the opportunity to assess the potential cellular mechanisms by which psilocybin may exert its therapeutic effects. Preclinical rodent models can also facilitate a more tightly controlled experimental context and minimise placebo effects. Furthermore, where there is a rationale, preclinical researchers can investigate psilocybin administration in neuropsychiatric conditions that have not yet been researched clinically. As a result, we have systematically reviewed the knowledge base, identifying 82 preclinical studies which were screened based on specific criteria. This resulted in the exclusion of 44 articles, with 34 articles being included in the main review and another 2 articles included as Supporting Information materials. We found that psilocybin shows promise as a lead candidate molecule for treating a variety of neuropsychiatric conditions, albeit showing the most efficacy for depression. We discuss the experimental findings, and identify possible mechanisms whereby psilocybin could invoke therapeutic changes. Furthermore, we critically evaluate the between-study heterogeneity and possible future research avenues. Our review suggests that preclinical rodent models can provide valid and translatable tools for researching novel psilocybin-induced molecular and cellular mechanisms, and therapeutic outcomes.
Collapse
Affiliation(s)
- James J Gattuso
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Carey Wilson
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Rosenberg BM, Barnes-Horowitz NM, Zbozinek TD, Craske MG. Reward processes in extinction learning and applications to exposure therapy. J Anxiety Disord 2024; 106:102911. [PMID: 39128178 PMCID: PMC11384290 DOI: 10.1016/j.janxdis.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Anxiety disorders are common and highly distressing mental health conditions. Exposure therapy is a gold-standard treatment for anxiety disorders. Mechanisms of Pavlovian fear learning, and particularly fear extinction, are central to exposure therapy. A growing body of evidence suggests an important role of reward processes during Pavlovian fear extinction. Nonetheless, predominant models of exposure therapy do not currently incorporate reward processes. Herein, we present a theoretical model of reward processes in relation to Pavlovian mechanisms of exposure therapy, including a focus on dopaminergic prediction error signaling, coinciding positive emotional experiences (i.e., relief), and unexpected positive outcomes. We then highlight avenues for further research and discuss potential strategies to leverage reward processes to maximize exposure therapy response, such as pre-exposure interventions to increase reward sensitivity or post-exposure rehearsal (e.g., savoring, imaginal recounting strategies) to enhance retrieval and retention of learned associations.
Collapse
Affiliation(s)
- Benjamin M Rosenberg
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Nora M Barnes-Horowitz
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Tomislav D Zbozinek
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
13
|
Kalisch R, Russo SJ, Müller MB. Neurobiology and systems biology of stress resilience. Physiol Rev 2024; 104:1205-1263. [PMID: 38483288 PMCID: PMC11381009 DOI: 10.1152/physrev.00042.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.
Collapse
Affiliation(s)
- Raffael Kalisch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
14
|
Murray SB, Strober M, Le Grange D, Schauer R, Craske MG, Zbozinek TD. A multi-modal assessment of fear conditioning in adolescent anorexia nervosa. Int J Eat Disord 2024; 57:1499-1509. [PMID: 38415877 DOI: 10.1002/eat.24180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE Anorexia nervosa (AN) is a pernicious psychiatric disorder which is principally characterized by a fear of weight gain. Notwithstanding the centrality of fear in the psychopathology of AN, controlled assessments of negative valence systems are lacking. Herein we assess fear conditioning in adolescent females with AN. METHOD Adolescent girls (Mage = 14.6 years, ±1.57) with DSM-5 diagnoses of AN (N = 25) and age-matched control girls (Mage = 14.8 years, ±1.46) with no DSM-5 diagnoses (N = 25) completed structured clinical interviews and participated in a classical three-phase Pavlovian fear conditioning paradigm. Participants with comorbid anxiety disorders were excluded. Skin conductance response (SCR) was measured, alongside self-reported fear, valence, and fear expectancy ratings. RESULTS Both groups demonstrated significant differential acquisition across all four measures. Regarding group comparisons, no differences emerged for self-reported fear, valence, and fear expectancy ratings during acquisition, although for SCR, those with AN demonstrated reduced physiological arousal relative to controls. Both groups demonstrated significant differential extinction for unconditioned stimuli (US) expectancy, self-report fear, and self-report valence. No statistically significant group differences were evident during extinction to the conditioned stimuli (CS)+, on any outcome measure. However, controls reported more positive valence to the CS- than those with AN. CONCLUSIONS Contrary to our hypotheses, our preliminary assessment did not find support for elevated fear responding among adolescent girls with AN with regards to fear acquisition or extinction. These data suggest that AN in adolescent girls may not be associated with a heightened propensity to acquire fear, but conversely, may suggest that exposure treatments for AN may be helpful, since extinction learning is intact in AN. PUBLIC SIGNIFICANCE AN is characterized by fear-related symptoms, including food and weight-related fear, and behavioral avoidance, yet controlled studies assessing fear learning are limited. Our preliminary assessment of adolescent AN indicates no abnormalities in fear learning among adolescents with AN. These findings may inform existing mechanistic models of AN psychopathology, and the development of exposure-based treatments for AN.
Collapse
Affiliation(s)
- Stuart B Murray
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, California, USA
| | - Michael Strober
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Daniel Le Grange
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, California, USA
- Department of Psychiatry and Behavioral Neuroscience (Emeritus), The University of Chicago, Chicago, Illinois, USA
| | - Rebecca Schauer
- Department of Psychiatry & Behavioral Sciences, University of Southern California, Los Angeles, California, USA
| | - Michelle G Craske
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, USA
| | - Tomislav D Zbozinek
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
15
|
Chaves T, Török B, Fazekas CL, Correia P, Sipos E, Várkonyi D, Tóth ZE, Dóra F, Dobolyi Á, Zelena D. The Dopaminergic Cells in the Median Raphe Region Regulate Social Behavior in Male Mice. Int J Mol Sci 2024; 25:4315. [PMID: 38673899 PMCID: PMC11050709 DOI: 10.3390/ijms25084315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.
Collapse
Affiliation(s)
- Tiago Chaves
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Pedro Correia
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
- János Szentágothai School of Neurosciences, Semmelweis University, H1085 Budapest, Hungary
| | - Eszter Sipos
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Dorottya Várkonyi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| | - Zsuzsanna E. Tóth
- Laboratory of Neuroendocrinology and in Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Fanni Dóra
- Human Brain Tissue Bank, Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary;
| | - Árpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, H1117 Budapest, Hungary;
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (T.C.); (B.T.); (C.L.F.); (P.C.); (D.V.)
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, H1083 Budapest, Hungary;
| |
Collapse
|
16
|
Cisler JM, Dunsmoor JE, Privratsky AA, James GA. Decoding neural reactivation of threat during fear learning, extinction, and recall in a randomized clinical trial of L-DOPA among women with PTSD. Psychol Med 2024; 54:1091-1101. [PMID: 37807886 DOI: 10.1017/s0033291723002891] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Laboratory paradigms are widely used to study fear learning in posttraumatic stress disorder (PTSD). Recent basic science models demonstrate that, during fear learning, patterns of activity in large neuronal ensembles for the conditioned stimuli (CS) begin to reinstate neural activity patterns for the unconditioned stimuli (US), suggesting a direct way of quantifying fear memory strength for the CS. Here, we translate this concept to human neuroimaging and test the impact of post-learning dopaminergic neurotransmission on fear memory strength during fear acquisition, extinction, and recall among women with PTSD in a re-analysis of previously reported data. METHODS Participants (N = 79) completed a context-dependent fear acquisition and extinction task on day 1 and extinction recall tests 24 h later. We decoded activity patterns in large-scale functional networks for the US, then applied this decoder to activity patterns toward the CS on day 1 and day 2. RESULTS US decoder output for the CS+ increased during acquisition and decreased during extinction in networks traditionally implicated in human fear learning. The strength of US neural reactivation also predicted individuals skin conductance responses. Participants randomized to receive L-DOPA (n = 43) following extinction on day 1 demonstrated less US neural reactivation on day 2 relative to the placebo group (n = 28). CONCLUSION These results support neural reactivation as a measure of memory strength between competing memories of threat and safety and further demonstrate the role of dopaminergic neurotransmission in the consolidation of fear extinction memories.
Collapse
Affiliation(s)
- Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute for Early Life Adversity Research, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Institute for Early Life Adversity Research, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | | | - G Andrew James
- Brain Imaging Research Center, Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
17
|
Batsikadze G, Pakusch J, Klein M, Ernst TM, Thieme A, Nicksirat SA, Steiner KM, Nio E, Genc E, Maderwald S, Deuschl C, Merz CJ, Quick HH, Mark MD, Timmann D. Mild Deficits in Fear Learning: Evidence from Humans and Mice with Cerebellar Cortical Degeneration. eNeuro 2024; 11:ENEURO.0365-23.2023. [PMID: 38176906 PMCID: PMC10897646 DOI: 10.1523/eneuro.0365-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Functional brain imaging studies in humans suggest involvement of the cerebellum in fear conditioning but do not allow conclusions about the functional significance. The main aim of the present study was to examine whether patients with cerebellar degeneration show impaired fear conditioning and whether this is accompanied by alterations in cerebellar cortical activations. To this end, a 2 d differential fear conditioning study was conducted in 20 cerebellar patients and 21 control subjects using a 7 tesla (7 T) MRI system. Fear acquisition and extinction training were performed on day 1, followed by recall on day 2. Cerebellar patients learned to differentiate between the CS+ and CS-. Acquisition and consolidation of learned fear, however, was slowed. Additionally, extinction learning appeared to be delayed. The fMRI signal was reduced in relation to the prediction of the aversive stimulus and altered in relation to its unexpected omission. Similarly, mice with cerebellar cortical degeneration (spinocerebellar ataxia type 6, SCA6) were able to learn the fear association, but retrieval of fear memory was reduced. In sum, cerebellar cortical degeneration led to mild abnormalities in the acquisition of learned fear responses in both humans and mice, particularly manifesting postacquisition training. Future research is warranted to investigate the basis of altered fMRI signals related to fear learning.
Collapse
Affiliation(s)
- Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johanna Pakusch
- Behavioral Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Michael Klein
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thomas Michael Ernst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Seyed Ali Nicksirat
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Katharina Marie Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany
| | - Enzo Nio
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Erhan Genc
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), 44139 Dortmund, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology and C-TNBS, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian Josef Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
- High-Field and Hybrid MR Imaging, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Melanie D Mark
- Behavioral Neuroscience, Ruhr University Bochum, 44801 Bochum, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
18
|
Zeng R, Chen J, Peng Y, Xu W, Tao Y, Li M, Zhang R, Meng J, Li Z, Zeng L, Huang J. Microglia are necessary for probiotics supplementation to improve impaired fear extinction caused by pregnancy stress in adult offspring of rats. Neurobiol Stress 2024; 28:100591. [PMID: 38075026 PMCID: PMC10709091 DOI: 10.1016/j.ynstr.2023.100591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 11/12/2023] [Indexed: 10/19/2024] Open
Abstract
The prevention and treatment of fear-related disorders in offspring affected by pregnancy stress remains challenging at clinic. Here, we examined the effects of gut microbiota of stressed pregnant rats on the fear extinction of their offsprings, and the potential mechanisms. We found that gut microbiota transplantation from rats with pregnancy stress to normal pregnant rats impaired fear extinction, induced microglial activation and synaptic phagocytosis, increased synapse loss in offsprings. Probiotics supplement during pregnancy stress partly normalized pregnancy stress-induced gut microbiota dysbiosis of pregnant rats, and promoted fear memory extinction, inhibited fear memory reappearance, and limited microglial activation and synaptic phagocytosis in offsprings. These data revealed that gut microbiota of stressed pregnant mother improved the development of fear-related disorders of offspring, which may be associated with microglial synaptic pruning.
Collapse
Affiliation(s)
- Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yihan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ruqi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jingzhuo Meng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Leping Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| |
Collapse
|
19
|
Salinas-Hernández XI, Zafiri D, Sigurdsson T, Duvarci S. Functional architecture of dopamine neurons driving fear extinction learning. Neuron 2023; 111:3854-3870.e5. [PMID: 37741275 DOI: 10.1016/j.neuron.2023.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The ability to extinguish fear responses to stimuli that no longer predict danger is critical for adaptive behavior and increases the likelihood of survival. During fear extinction, dopamine (DA) neurons signal the absence of the expected aversive outcome, and this extinction prediction error (EPE) signal is crucial for initiating and driving extinction learning. However, the neural circuits underlying the EPE signal have remained elusive. Here, we investigate the input-output circuitry of EPE-encoding DA neurons in male mice. By employing projection-specific fiber photometry and optogenetics, we demonstrate that these neurons project to a restricted subregion of the nucleus accumbens. Comprehensive anatomical analyses, as well as projection-specific chemogenetic manipulations combined with recordings of DA biosensors, further uncover the dorsal raphe as one key input structure critical for generating the EPE signal. Together, our results reveal for the first time the functional architecture of EPE-encoding DA neurons crucial for driving fear extinction learning.
Collapse
Affiliation(s)
- Ximena I Salinas-Hernández
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Daphne Zafiri
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
20
|
Sierra RO, Pedraza LK, Barcsai L, Pejin A, Li Q, Kozák G, Takeuchi Y, Nagy AJ, Lőrincz ML, Devinsky O, Buzsáki G, Berényi A. Closed-loop brain stimulation augments fear extinction in male rats. Nat Commun 2023; 14:3972. [PMID: 37407557 DOI: 10.1038/s41467-023-39546-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Dysregulated fear reactions can result from maladaptive processing of trauma-related memories. In post-traumatic stress disorder (PTSD) and other psychiatric disorders, dysfunctional extinction learning prevents discretization of trauma-related memory engrams and generalizes fear responses. Although PTSD may be viewed as a memory-based disorder, no approved treatments target pathological fear memory processing. Hippocampal sharp wave-ripples (SWRs) and concurrent neocortical oscillations are scaffolds to consolidate contextual memory, but their role during fear processing remains poorly understood. Here, we show that closed-loop, SWR triggered neuromodulation of the medial forebrain bundle (MFB) can enhance fear extinction consolidation in male rats. The modified fear memories became resistant to induced recall (i.e., 'renewal' and 'reinstatement') and did not reemerge spontaneously. These effects were mediated by D2 receptor signaling-induced synaptic remodeling in the basolateral amygdala. Our results demonstrate that SWR-triggered closed-loop stimulation of the MFB reward system enhances extinction of fearful memories and reducing fear expression across different contexts and preventing excessive and persistent fear responses. These findings highlight the potential of neuromodulation to augment extinction learning and provide a new avenue to develop treatments for anxiety disorders.
Collapse
Affiliation(s)
- Rodrigo Ordoñez Sierra
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Lizeth Katherine Pedraza
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Lívia Barcsai
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Andrea Pejin
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Qun Li
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Gábor Kozák
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
| | - Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- Department of Biopharmaceutical Sciences and Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Anett J Nagy
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary
- Neunos Inc, Boston, MA, 02108, USA
| | - Magor L Lőrincz
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged, 6726, Hungary
- Neuroscience Division, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY, 10016, USA
- Center for Neural Science, New York University, New York, NY, 10016, USA
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary.
- HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary.
- Neunos Inc, Boston, MA, 02108, USA.
- Neuroscience Institute, New York University, New York, NY, 10016, USA.
| |
Collapse
|
21
|
Nguyen R, Koukoutselos K, Forro T, Ciocchi S. Fear extinction relies on ventral hippocampal safety codes shaped by the amygdala. SCIENCE ADVANCES 2023; 9:eadg4881. [PMID: 37256958 PMCID: PMC10413664 DOI: 10.1126/sciadv.adg4881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Extinction memory retrieval is influenced by spatial contextual information that determines responding to conditioned stimuli (CS). However, it is poorly understood whether contextual representations are imbued with emotional values to support memory selection. Here, we performed activity-dependent engram tagging and in vivo single-unit electrophysiological recordings from the ventral hippocampus (vH) while optogenetically manipulating basolateral amygdala (BLA) inputs during the formation of cued fear extinction memory. During fear extinction when CS acquire safety properties, we found that CS-related activity in the vH reactivated during sleep consolidation and was strengthened upon memory retrieval. Moreover, fear extinction memory was facilitated when the extinction context exhibited precise coding of its affective zones. Last, these activity patterns along with the retrieval of the fear extinction memory were dependent on glutamatergic transmission from the BLA during extinction learning. Thus, fear extinction memory relies on the formation of contextual and stimulus safety representations in the vH instructed by the BLA.
Collapse
Affiliation(s)
| | | | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
22
|
Doubliez A, Nio E, Senovilla-Sanz F, Spatharioti V, Apps R, Timmann D, Lawrenson CL. The cerebellum and fear extinction: evidence from rodent and human studies. Front Syst Neurosci 2023; 17:1166166. [PMID: 37152612 PMCID: PMC10160380 DOI: 10.3389/fnsys.2023.1166166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
The role of the cerebellum in emotional control has gained increasing interest, with studies showing it is involved in fear learning and memory in both humans and rodents. This review will focus on the contributions of the cerebellum to the extinction of learned fear responses. Extinction of fearful memories is critical for adaptive behaviour, and is clinically relevant to anxiety disorders such as post-traumatic stress disorder, in which deficits in extinction processes are thought to occur. We present evidence that supports cerebellar involvement in fear extinction, from rodent studies that investigate molecular mechanisms and functional connectivity with other brain regions of the known fear extinction network, to fMRI studies in humans. This evidence is considered in relation to the theoretical framework that the cerebellum is involved in the formation and updating of internal models of the inner and outer world by detecting errors between predicted and actual outcomes. In the case of fear conditioning, these internal models are thought to predict the occurrence of an aversive unconditioned stimulus (US), and when the aversive US is unexpectedly omitted during extinction learning the cerebellum uses prediction errors to update the internal model. Differences between human and rodent studies are highlighted to help inform future work.
Collapse
Affiliation(s)
- Alice Doubliez
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Enzo Nio
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Fernando Senovilla-Sanz
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Vasiliki Spatharioti
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Dagmar Timmann
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Charlotte L. Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
23
|
Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int J Mol Sci 2023; 24:ijms24065926. [PMID: 36983000 PMCID: PMC10053024 DOI: 10.3390/ijms24065926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, 98122 Messina, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
24
|
Liu MN, Tian XY, Fang T, Wu N, Li H, Li J. Insights into the Involvement and Therapeutic Target Potential of the Dopamine System in the Posttraumatic Stress Disorder. Mol Neurobiol 2023; 60:3708-3723. [PMID: 36933147 DOI: 10.1007/s12035-023-03312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a neuropsychiatric disease closely related to life-threatening events and psychological stress. Re-experiencing, hyperarousal, avoidance, and numbness are the hallmark symptoms of PTSD, but their underlying neurological processes have not been clearly elucidated. Therefore, the identification and development of drugs for PTSD that targets brain neuronal activities have stalled. Considering that the persistent fear memory induced by traumatic stimulation causes high alertness, high arousal, and cognitive impairment of PTSD symptoms. While the midbrain dopamine system can affect physiological processes such as aversive fear memory learning, consolidation, persistence, and extinction, by altering the functions of the dopaminergic neurons, our viewpoint is that the dopamine system plays a considerable role in the PTSD occurrence and acts as a potential therapeutic target of the disorder. This paper reviews recent findings on the structural and functional connections between ventral tegmental area neurons and the core synaptic circuits involved in PTSD, gene polymorphisms related to the dopamine system that confer susceptibility to clinical PTSD. Moreover, the progress of research on medications that target the dopamine system as PTSD therapies is also discussed. Our goal is to offer some hints for early detection and assist in identifying novel, efficient approaches for treating PTSD.
Collapse
Affiliation(s)
- Meng-Nan Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Xiao-Yu Tian
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.,Medical School of Chinese PLA, Beijing, 100853, China
| | - Ting Fang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Ning Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Hong Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| | - Jin Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
25
|
Li SJ, Zhang LX, Zou GJ, Ma MH, Zhou SF, Lu XY, Li F, Li CQ. Infralimbic YTHDF1 is necessary for the beneficial effects of acute mild exercise on auditory fear extinction retention. Cereb Cortex 2023; 33:1814-1825. [PMID: 35511705 DOI: 10.1093/cercor/bhac174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Exposure therapy is the most effective approach of behavioral therapy for anxiety and post-traumatic stress disorder (PTSD). But fear is easy to reappear even after successful extinction. So, identifying novel strategies for augmenting exposure therapy is rather important. It was reported that exercise had beneficial effects on cognitive and memory deficits. However, whether exercise could affect fear memory, especially for fear extinction remained elusive. Here, our results showed that exposure to acute mild exercise 1 or 2 h before extinction training can augment recent fear extinction retention and 2 h for the remote fear extinction retention. These beneficial effects could be attributed to increased YTHDF1 expression in medial prefrontal cortex (mPFC). Furthermore, by using an AAV-shRNA-based approach to silence YTHDF1 expression via stereotactic injection in prelimbic cortex (PL) or infralimbic cortex (IL), respectively, we demonstrated that silence YTHDF1 in IL, but not in PL, blunted augmentation of exposure therapy induced by acute mild exercise and accompanied with decreased NR2B and GluR1 expression. Moreover, YTHDF1 modulated dendritic spines remodeling of pyramidal neuron in IL. Collectively, our findings suggested that acute mild exercise acted as an effective strategy in augmenting exposure therapy with possible implications for understanding new treatment underlying PTSD.
Collapse
Affiliation(s)
- Song-Ji Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Min-Hui Ma
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Shi-Fen Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410013, China
| |
Collapse
|
26
|
Exploration driven by a medial preoptic circuit facilitates fear extinction in mice. Commun Biol 2023; 6:106. [PMID: 36707677 PMCID: PMC9883483 DOI: 10.1038/s42003-023-04442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023] Open
Abstract
Repetitive exposure to fear-associated targets is a typical treatment for patients with panic or post-traumatic stress disorder (PTSD). The success of exposure therapy depends on the active exploration of a fear-eliciting target despite an innate drive to avoid it. Here, we found that a circuit running from CaMKIIα-positive neurons of the medial preoptic area to the ventral periaqueductal gray (MPA-vPAG) facilitates the exploration of a fear-conditioned zone and subsequent fear extinction in mice. Activation or inhibition of this circuit did not induce preference/avoidance of a specific zone. Repeated entries into the fear-conditioned zone, induced by the motivation to chase a head-mounted object due to MPA-vPAG circuit photostimulation, facilitated fear extinction. Our results show how the brain forms extinction memory against avoidance of a fearful target and suggest a circuit-based mechanism of exposure therapy.
Collapse
|
27
|
Webler RD, Oathes DJ, van Rooij SJH, Gewirtz JC, Nahas Z, Lissek SM, Widge AS. Causally mapping human threat extinction relevant circuits with depolarizing brain stimulation methods. Neurosci Biobehav Rev 2023; 144:105005. [PMID: 36549377 PMCID: PMC10210253 DOI: 10.1016/j.neubiorev.2022.105005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Laboratory threat extinction paradigms and exposure-based therapy both involve repeated, safe confrontation with stimuli previously experienced as threatening. This fundamental procedural overlap supports laboratory threat extinction as a compelling analogue of exposure-based therapy. Threat extinction impairments have been detected in clinical anxiety and may contribute to exposure-based therapy non-response and relapse. However, efforts to improve exposure outcomes using techniques that boost extinction - primarily rodent extinction - have largely failed to date, potentially due to fundamental differences between rodent and human neurobiology. In this review, we articulate a comprehensive pre-clinical human research agenda designed to overcome these failures. We describe how connectivity guided depolarizing brain stimulation methods (i.e., TMS and DBS) can be applied concurrently with threat extinction and dual threat reconsolidation-extinction paradigms to causally map human extinction relevant circuits and inform the optimal integration of these methods with exposure-based therapy. We highlight candidate targets including the amygdala, hippocampus, ventromedial prefrontal cortex, dorsal anterior cingulate cortex, and mesolimbic structures, and propose hypotheses about how stimulation delivered at specific learning phases could strengthen threat extinction.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Desmond J Oathes
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Arizona State University, AZ, USA
| | - Ziad Nahas
- Department of Psychology, Arizona State University, AZ, USA
| | - Shmuel M Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Alik S Widge
- Department of Psychiatry and Medical Discovery Team on Addictions, University of Minnesota Medical School, MN, USA
| |
Collapse
|
28
|
Moughrabi N, Botsford C, Gruichich TS, Azar A, Heilicher M, Hiser J, Crombie KM, Dunsmoor JE, Stowe Z, Cisler JM. Large-scale neural network computations and multivariate representations during approach-avoidance conflict decision-making. Neuroimage 2022; 264:119709. [PMID: 36283543 PMCID: PMC9835092 DOI: 10.1016/j.neuroimage.2022.119709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Many real-world situations require navigating decisions for both reward and threat. While there has been significant progress in understanding mechanisms of decision-making and mediating neurocircuitry separately for reward and threat, there is limited understanding of situations where reward and threat contingencies compete to create approach-avoidance conflict (AAC). Here, we leverage computational learning models, independent component analysis (ICA), and multivariate pattern analysis (MVPA) approaches to understand decision-making during a novel task that embeds concurrent reward and threat learning and manipulates congruency between reward and threat probabilities. Computational modeling supported a modified reinforcement learning model where participants integrated reward and threat value into a combined total value according to an individually varying policy parameter, which was highly predictive of decisions to approach reward vs avoid threat during trials where the highest reward option was also the highest threat option (i.e., approach-avoidance conflict). ICA analyses demonstrated unique roles for salience, frontoparietal, medial prefrontal, and inferior frontal networks in differential encoding of reward vs threat prediction error and value signals. The left frontoparietal network uniquely encoded degree of conflict between reward and threat value at the time of choice. MVPA demonstrated that delivery of reward and threat could accurately be decoded within salience and inferior frontal networks, respectively, and that decisions to approach reward vs avoid threat were predicted by the relative degree to which these reward vs threat representations were active at the time of choice. This latter result suggests that navigating AAC decisions involves generating mental representations for possible decision outcomes, and relative activation of these representations may bias subsequent decision-making towards approaching reward or avoiding threat accordingly.
Collapse
Affiliation(s)
- Nicole Moughrabi
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin
| | - Chloe Botsford
- Department of Psychiatry, University of Wisconsin-Madison
| | | | - Ameera Azar
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin
| | | | - Jaryd Hiser
- Department of Psychiatry, University of Wisconsin-Madison
| | - Kevin M Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Institute for Early Life Adversity Research, University of Texas at Austin
| | - Zach Stowe
- Department of Psychiatry, University of Wisconsin-Madison
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Institute for Early Life Adversity Research, University of Texas at Austin.
| |
Collapse
|
29
|
Craske MG, Sandman CF, Stein MB. How can neurobiology of fear extinction inform treatment? Neurosci Biobehav Rev 2022; 143:104923. [DOI: 10.1016/j.neubiorev.2022.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
30
|
Laing PAF, Felmingham KL, Davey CG, Harrison BJ. The neurobiology of Pavlovian safety learning: Towards an acquisition-expression framework. Neurosci Biobehav Rev 2022; 142:104882. [PMID: 36150453 DOI: 10.1016/j.neubiorev.2022.104882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Safety learning creates associations between conditional stimuli and the absence of threat. Studies of human fear conditioning have accumulated evidence for the neural signatures of safety over various paradigms, aligning on several common brain systems. While these systems are often interpreted as underlying safety learning in a generic sense, they may instead reflect the expression of learned safety, pertaining to processes of fear inhibition, positive affect, and memory. Animal models strongly suggest these can be separable from neural circuits implicated in the conditioning process itself (or safety acquisition). While acquisition-expression distinctions are ubiquitous in behavioural science, this lens has not been applied to safety learning, which remains a novel area in the field. In this mini-review, we overview findings from prevalent safety paradigms in humans, and synthesise these with insights from animal models to propose that the neurobiology of safety learning be conceptualised along an acquisition-expression model, with the aim of stimulating richer brain-based characterisations of this important process.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Christopher G Davey
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Australia.
| |
Collapse
|
31
|
Obliviate! Reviewing Neural Fundamentals of Intentional Forgetting from a Meta-Analytic Perspective. Biomedicines 2022; 10:biomedicines10071555. [PMID: 35884860 PMCID: PMC9313188 DOI: 10.3390/biomedicines10071555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Intentional forgetting (IF) is an important adaptive mechanism necessary for correct memory functioning, optimal psychological wellbeing, and appropriate daily performance. Due to its complexity, the neuropsychological processes that give birth to successful intentional forgetting are not yet clearly known. In this study, we used two different meta-analytic algorithms, Activation Likelihood Estimation (ALE) & Latent Dirichlet Allocation (LDA) to quantitatively assess the neural correlates of IF and to evaluate the degree of compatibility between the proposed neurobiological models and the existing brain imaging data. We found that IF involves the interaction of two networks, the main “core regions” consisting of a primarily right-lateralized frontal-parietal circuit that is activated irrespective of the paradigm used and sample characteristics and a second less constrained “supportive network” that involves frontal-hippocampal interactions when IF takes place. Additionally, our results support the validity of the inhibitory or thought suppression hypothesis. The presence of a neural signature of IF that is stable regardless of experimental paradigms is a promising finding that may open new venues for the development of effective clinical interventions.
Collapse
|
32
|
Batsikadze G, Diekmann N, Ernst TM, Klein M, Maderwald S, Deuschl C, Merz CJ, Cheng S, Quick HH, Timmann D. The cerebellum contributes to context-effects during fear extinction learning: a 7T fMRI study. Neuroimage 2022; 253:119080. [PMID: 35276369 DOI: 10.1016/j.neuroimage.2022.119080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The cerebellum is involved in the acquisition and consolidation of learned fear responses. Knowledge about its contribution to extinction learning, however, is sparse. Extinction processes likely involve erasure of memories, but there is ample evidence that at least part of the original memory remains. We asked the question whether memory persists within the cerebellum following extinction training. The renewal effect, that is the reoccurrence of the extinguished fear memory during recall in a context different from the extinction context, constitutes one of the phenomena indicating that memory of extinguished learned fear responses is not fully erased during extinction training. We performed a differential AB-A/B fear conditioning paradigm in a 7-Tesla (7T) MRI system in 31 young and healthy men. On day 1, fear acquisition training was performed in context A and extinction training in context B. On day 2, recall was tested in contexts A and B. As expected, participants learned to predict that the CS+ was followed by an aversive electric shock during fear acquisition training. Skin conductance responses (SCRs) were significantly higher to the CS+ compared to the CS- at the end of acquisition. Differences in SCRs vanished in extinction and reoccurred in the acquisition context during recall indicating renewal. Fitting SCR data, a deep neural network model was trained to predict the correct shock value for a given stimulus and context. Event-related fMRI analysis with model-derived prediction values as parametric modulations showed significant effects on activation of the posterolateral cerebellum (lobules VI and Crus I) during recall. Since the prediction values differ based on stimulus (CS+ and CS-) and context during recall, data provide support that the cerebellum is involved in context-related recall of learned fear associations. Likewise, mean β values were highest in lobules VI and Crus I bilaterally related to the CS+ in the acquisition context during early recall. A similar pattern was seen in the vermis, but only on a trend level. Thus, part of the original memory likely remains within the cerebellum following extinction training. We found cerebellar activations related to the CS+ and CS- during fear acquisition training which likely reflect associative and non-associative aspects of the task. Cerebellar activations, however, were not significantly different for CS+ and CS-. Since the CS- was never followed by an electric shock, the cerebellum may contribute to associative learning related to the CS, for example as a safety cue.
Collapse
Affiliation(s)
- Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany.
| | - Nicolas Diekmann
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Thomas Michael Ernst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Michael Klein
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, Essen, Germany
| | - Christian Josef Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Ruhr University Bochum, Bochum, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany; High-Field and Hybrid MR Imaging, Essen University Hospital, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, Essen 45147, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
33
|
Crombie KM, Privratsky AA, Schomaker CM, Heilicher M, Ross MC, Sartin-Tarm A, Sellnow K, Binder EB, Andrew James G, Cisler JM. The influence of FAAH genetic variation on physiological, cognitive, and neural signatures of fear acquisition and extinction learning in women with PTSD. Neuroimage Clin 2022; 33:102922. [PMID: 34952353 PMCID: PMC8715233 DOI: 10.1016/j.nicl.2021.102922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022]
Abstract
PTSD is often treated with psychotherapies based on principles of fear acquisition and extinction. Increased AEA has resulted in enhanced extinction learning and recall among healthy adults. These effects have not yet been comprehensively examined in a PTSD population. Results suggest that genetic variation within the FAAH gene affects how fear learning is tuned in women with PTSD.
Background Posttraumatic Stress Disorder (PTSD) is commonly treated with exposure-based cognitive therapies that are based on the principles of fear acquisition and extinction learning. Elevations in one of the major endocannabinoids (anandamide) either via inhibition of the primary degrading enzyme (fatty acid amide hydrolase; FAAH) or via a genetic variation in the FAAH gene (C385A; rs324420) has resulted in accelerated extinction learning and enhanced extinction recall among healthy adults. These results suggest that targeting FAAH may be a promising therapeutic approach for PTSD. However, these effects have not yet been comprehensively examined in a PTSD population. Methods The current study examined whether genetic variation in the FAAH gene (CC [n = 49] vs AA/AC [n = 36] allele carriers) influences physiological (skin conductance), cognitive (threat expectancy), and neural (network and voxel-wise activation) indices of fear acquisition and extinction learning among a sample of adult women with PTSD (N = 85). Results The physiological, cognitive, and neural signatures of fear acquisition and extinction learning varied as a function of whether or not individuals possess the FAAH C385A polymorphism. For instance, we report divergent responding between CC and AA/AC allele carriers to CS + vs CS- in limbic and striatum networks and overall greater activation throughout the task among AA/AC allele carriers in several regions [e.g., inferior frontal, middle frontal, parietal] that are highly consistent with a frontoparietal network involved in higher-order executive functions. Conclusions These results suggest that genetic variation within the FAAH gene influences physiological, cognitive, and neural signatures of fear learning in women with PTSD. In order to advance our understanding of the efficacy of FAAH inhibition as a treatment for PTSD, future clinical trials in this area should assess genetic variation in the FAAH gene in order to fully depict and differentiate the acute effects of a drug manipulation (FAAH inhibition) from more chronic (genetic) influences on fear extinction processes.
Collapse
Affiliation(s)
- Kevin M Crombie
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Health Discovery Building, 1601 Trinity St., Building B, Austin, TX 78712, USA.
| | - Anthony A Privratsky
- University of Arkansas for Medical Sciences, Brain Imaging Research Center, 4301 W. Markham Street #554, Little Rock, AR 72205, USA
| | - Chloe M Schomaker
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Health Discovery Building, 1601 Trinity St., Building B, Austin, TX 78712, USA
| | - Mickela Heilicher
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719-1176608-262-6375, USA
| | - Marisa C Ross
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719-1176608-262-6375, USA
| | - Anneliis Sartin-Tarm
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719-1176608-262-6375, USA
| | - Kyrie Sellnow
- University of Wisconsin - Madison, Department of Psychiatry, 6001 Research Park Boulevard, Madison, WI 53719-1176608-262-6375, USA
| | - Elisabeth B Binder
- Max Planck Institute of Psychiatry, Department of Translational Psychiatry, Kraepelinstr. 2-10, 80804, Munchen, Germany; Emory University, Department of Psychiatry and Behavioral Sciences, 12 Executive Park Dr NE #200, Atlanta, GA 30329, USA
| | - G Andrew James
- University of Arkansas for Medical Sciences, Brain Imaging Research Center, 4301 W. Markham Street #554, Little Rock, AR 72205, USA
| | - Josh M Cisler
- The University of Texas at Austin, Department of Psychiatry and Behavioral Sciences, Health Discovery Building, 1601 Trinity St., Building B, Austin, TX 78712, USA
| |
Collapse
|
34
|
Craske M, Treanor M, Zbozinek T, Vervliet B. Optimizing exposure therapy with an inhibitory retrieval approach and the OptEx Nexus. Behav Res Ther 2022; 152:104069. [DOI: 10.1016/j.brat.2022.104069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/12/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
35
|
Glavonic E, Mitic M, Adzic M. Hallucinogenic drugs and their potential for treating fear-related disorders: Through the lens of fear extinction. J Neurosci Res 2022; 100:947-969. [PMID: 35165930 DOI: 10.1002/jnr.25017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Fear-related disorders, mainly phobias and post-traumatic stress disorder, are highly prevalent, debilitating disorders that pose a significant public health problem. They are characterized by aberrant processing of aversive experiences and dysregulated fear extinction, leading to excessive expression of fear and diminished quality of life. The gold standard for treating fear-related disorders is extinction-based exposure therapy (ET), shown to be ineffective for up to 35% of subjects. Moreover, ET combined with traditional pharmacological treatments for fear-related disorders, such as selective serotonin reuptake inhibitors, offers no further advantage to patients. This prompted the search for ways to improve ET outcomes, with current research focused on pharmacological agents that can augment ET by strengthening fear extinction learning. Hallucinogenic drugs promote reprocessing of fear-imbued memories and induce positive mood and openness, relieving anxiety and enabling the necessary emotional engagement during psychotherapeutic interventions. Mechanistically, hallucinogens induce dynamic structural and functional neuroplastic changes across the fear extinction circuitry and temper amygdala's hyperreactivity to threat-related stimuli, effectively mitigating one of the hallmarks of fear-related disorders. This paper provides the first comprehensive review of hallucinogens' potential to alleviate symptoms of fear-related disorders by focusing on their effects on fear extinction and the underlying molecular mechanisms. We overview both preclinical and clinical studies and emphasize the advantages of hallucinogenic drugs over current first-line treatments. We highlight 3,4-methylenedioxymethamphetamine and ketamine as the most effective therapeutics for fear-related disorders and discuss the potential molecular mechanisms responsible for their potency with implications for improving hallucinogen-assisted psychotherapy.
Collapse
Affiliation(s)
- Emilija Glavonic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
36
|
Qing X, Xu YL, Liu H, Liu XS. The influence of anesthesia and surgery on fear extinction. Neurosci Lett 2022; 766:136347. [PMID: 34808271 DOI: 10.1016/j.neulet.2021.136347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Accumulating evidence has demonstrated significant clinical post-traumatic stress disorder (PTSD) symptoms after anesthesia or surgery. Fear extinction dysfunction is a notable feature of PTSD. Although anesthetics and surgery profoundly affect memory processes, their designated effects on fear extinction have not been dissertated. Previous studies have suggested that innate immune system activation disrupts fear extinction, and surgery has been shown to increase the inflammatory response. Thus, in the current study, we examined the effects of propofol, sevoflurane, dexmedetomidine and surgery on fear extinction in adolescent mice, and further tested whether dexmedetomidine could reverse the injury effect of surgery on fear extinction through its anti-inflammatory effects. Our results showed that propofol (200 mg/kg) impaired the acquisition and recall of cued fear extinction, and surgery disrupted cued fear extinction acquisition/recall and consolidation. In contrast to cued fear extinction, contextual fear extinction was not affected by propofol or surgery. Moreover, dexmedetomidine prevented surgery-induced impairment of cued extinction acquisition and recall but not consolidation. Finally, TNF-α and IL-6 levels in the ventromedial prefrontal cortex were not necessary for the dexmedetomidine treatment effect of surgery-induced fear extinction dysfunction. The study results showed that propofol and surgery selective impaired the cued fear extinction stage in adolescent mice, and dexmedetomidine may unleash a protective effect in preventing postoperative PTSD.
Collapse
Affiliation(s)
- Xin Qing
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Yuan-Ling Xu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China
| | - Hu Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| | - Xue-Sheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, China.
| |
Collapse
|
37
|
Cerebellum and Emotion Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:53-73. [DOI: 10.1007/978-3-030-99550-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Rosenberg BM, Taschereau-Dumouchel V, Lau H, Young KS, Nusslock R, Zinbarg RE, Craske MG. A Multivoxel Pattern Analysis of Anhedonia During Fear Extinction: Implications for Safety Learning. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 8:417-425. [PMID: 34954395 DOI: 10.1016/j.bpsc.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pavlovian learning processes are central to the etiology and treatment of anxiety disorders. Anhedonia and related perturbations in reward processes have been implicated in Pavlovian learning. Associations between anhedonia symptoms and neural indices of Pavlovian learning can inform transdiagnostic associations among depressive and anxiety disorders. METHODS Participants ages 18 to 19 years (67% female) completed a fear extinction (n = 254) and recall (n = 249) paradigm during functional magnetic resonance imaging. Symptom dimensions of general distress (common to anxiety and depression), fears (more specific to anxiety), and anhedonia-apprehension (more specific to depression) were evaluated. We trained whole-brain multivoxel pattern decoders for anhedonia-apprehension during extinction and extinction recall and tested the decoders' ability to predict anhedonia-apprehension in an external validation sample. Specificity analyses examined effects covarying for general distress and fears. Decoding was repeated within canonical brain networks to highlight candidate neurocircuitry underlying whole-brain effects. RESULTS Whole-brain decoder training succeeded during both tasks. Prediction of anhedonia-apprehension in the external validation sample was successful for extinction (R2 = 0.047; r = 0.276, p = .002) but not extinction recall (R2 < 0.001, r = -0.063, p = .492). The extinction decoder remained significantly associated with anhedonia-apprehension covarying for fears and general distress (t121 = 3.209, p = .002). Exploratory results highlighted activity in the cognitive control, default mode, limbic, salience, and visual networks related to these effects. CONCLUSIONS Results suggest that patterns of brain activity during extinction, particularly in the cognitive control, default mode, limbic, salience, and visual networks, can be predictive of anhedonia symptoms. Future research should examine associations between anhedonia and extinction, including studies of exposure therapy or positive affect treatments among anhedonic individuals.
Collapse
Affiliation(s)
- Benjamin M Rosenberg
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, Los Angeles, California.
| | - Vincent Taschereau-Dumouchel
- Department of Psychiatry and Addictology, University of Montréal, Montreal, Quebec, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada
| | - Hakwan Lau
- RIKEN Center for Brain Science, Saitama, Japan
| | - Katherine S Young
- Social, Genetic and Development Psychiatry Centre, Institute of Psychology, Psychiatry and Neuroscience, King's College London, London, United Kingdom; National Institute for Health Research Maudsley Biomedical Research Centre, King's College London, London, United Kingdom
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, Illinois; Institute for Policy Research, Northwestern University, Evanston, Illinois
| | - Richard E Zinbarg
- Department of Psychology, Northwestern University, Evanston, Illinois; Family Institute at Northwestern University, Northwestern University, Evanston, Illinois
| | - Michelle G Craske
- Department of Psychology, College of Life Sciences, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
39
|
Esser R, Korn CW, Ganzer F, Haaker J. L-DOPA modulates activity in the vmPFC, nucleus accumbens, and VTA during threat extinction learning in humans. eLife 2021; 10:65280. [PMID: 34473055 PMCID: PMC8443250 DOI: 10.7554/elife.65280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Learning to be safe is central for adaptive behaviour when threats are no longer present. Detecting the absence of an expected threat is key for threat extinction learning and an essential process for the behavioural treatment of anxiety-related disorders. One possible mechanism underlying extinction learning is a dopaminergic mismatch signal that encodes the absence of an expected threat. Here we show that such a dopamine-related pathway underlies extinction learning in humans. Dopaminergic enhancement via administration of L-DOPA (vs. Placebo) was associated with reduced retention of differential psychophysiological threat responses at later test, which was mediated by activity in the ventromedial prefrontal cortex that was specific to extinction learning. L-DOPA administration enhanced signals at the time-point of an expected, but omitted threat in extinction learning within the nucleus accumbens, which were functionally coupled with the ventral tegmental area and the amygdala. Computational modelling of threat expectancies further revealed prediction error encoding in nucleus accumbens that was reduced when L-DOPA was administered. Our results thereby provide evidence that extinction learning is influenced by L-DOPA and provide a mechanistic perspective to augment extinction learning by dopaminergic enhancement in humans.
Collapse
Affiliation(s)
- Roland Esser
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph W Korn
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Social Neuroscience, Department of General Psychiatry, Heidelberg, Germany
| | - Florian Ganzer
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Addiction Research in Childhood and Adolescence, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
40
|
Wang J, Chen B, Sha M, Gu Y, Wu H, Forcato C, Qin S. Positive and Neutral Updating Reconsolidate Aversive Episodic Memories via Different Routes. Neurobiol Learn Mem 2021; 184:107500. [PMID: 34389448 DOI: 10.1016/j.nlm.2021.107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
Aversive memories are long-lasting and prone to burden our emotional wellbeing and mental health. Yet, how to remedy the maladaptive effects of aversive memories remains elusive. Using memory reactivation and emotional updating manipulations, we investigated how positive and neutral emotion may update aversive memories for reconsolidation in humans. We found that positive updating after reactivation was equivalent to neutral updating in impairing true memories of a previous aversive event after a 12-hour wakeful delay, but induced more false memory. Moreover, additional 12-hour delay with overnight sleep did not further enlarge true memory differences, but attenuated the effect of reactivation and updating on false memory. Interestingly, the neutral rather than the positive updating reduced the emotional arousal of the aversive memory 24 hours later. Our findings could serve as references for real-world therapeutic applications regarding how positive and neutral updating may reshape aversive memories, especially when taking wake- and sleep-filled reconsolidation into account.
Collapse
Affiliation(s)
- Jingyi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Boxuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Manqi Sha
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China
| | - Yiran Gu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, School of Life Science, NYU-ECNU Institute of Brain and Cognitive Science, East China Normal University, Shanghai, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Depto. De Ciencias de la Vida, Instituto Tecnológico de Buenos Aires (ITBA), Av. Madero 399, (1106) Capital Federal, Buenos Aires, Argentina
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
41
|
Webler RD, Berg H, Fhong K, Tuominen L, Holt DJ, Morey RA, Lange I, Burton PC, Fullana MA, Radua J, Lissek S. The neurobiology of human fear generalization: meta-analysis and working neural model. Neurosci Biobehav Rev 2021; 128:421-436. [PMID: 34242718 DOI: 10.1016/j.neubiorev.2021.06.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/04/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Fear generalization to stimuli resembling a conditioned danger-cue (CS+) is a fundamental dynamic of classical fear-conditioning. Despite the ubiquity of fear generalization in human experience and its known pathogenic contribution to clinical anxiety, neural investigations of human generalization have only recently begun. The present work provides the first meta-analysis of this growing literature to delineate brain substrates of conditioned fear-generalization and formulate a working neural model. Included studies (K = 6, N = 176) reported whole-brain fMRI results and applied generalization-gradient methodology to identify brain activations that gradually strengthen (positive generalization) or weaken (negative generalization) as presented stimuli increase in CS+ resemblance. Positive generalization was instantiated in cingulo-opercular, frontoparietal, striatal-thalamic, and midbrain regions (locus coeruleus, periaqueductal grey, ventral tegmental area), while negative generalization was implemented in default-mode network nodes (ventromedial prefrontal cortex, hippocampus, middle temporal gyrus, angular gyrus) and amygdala. Findings are integrated within an updated neural account of generalization centering on the hippocampus, its modulation by locus coeruleus and basolateral amygdala, and the excitation of threat- or safety-related loci by the hippocampus.
Collapse
Affiliation(s)
- Ryan D Webler
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Hannah Berg
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Kimberly Fhong
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Lauri Tuominen
- The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Ontario, K1Z 7K4, Canada
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Rajendra A Morey
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, Duke University Medical Center, Durham, NC, 27710, USA; VA Mid-Atlantic Mental Illness Research Education and Clinical Center, 508 Fulton Street, Durham VAMC, Durham, VA Medical Center, Durham, NC, 27705, USA; Duke-UNC Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Durham, NC, USA
| | - Iris Lange
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, Duboisdomein 30, 6229 GT, Maastricht, the Netherlands
| | - Philip C Burton
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA
| | - Miquel Angel Fullana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, Campus Casanova, Casanova, 143, 08036, Barcelona, Spain; Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Casanovas 143, 08036, Barcelona, Spain
| | - Joaquim Radua
- Adult Psychiatry and Psychology Department, Institute of Neurosciences, Hospital Clínic, Casanovas 143, 08036, Barcelona, Spain; Early Psychosis: Interventions and Clinical-detection (EPIC) Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Shmuel Lissek
- Department of Psychology, University of Minnesota, 75 E River Rd, Minneapolis, MN, 55455, USA.
| |
Collapse
|
42
|
Jacob PF, Vargas-Gutierrez P, Okray Z, Vietti-Michelina S, Felsenberg J, Waddell S. Prior experience conditionally inhibits the expression of new learning in Drosophila. Curr Biol 2021; 31:3490-3503.e3. [PMID: 34146482 PMCID: PMC8409488 DOI: 10.1016/j.cub.2021.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Prior experience of a stimulus can inhibit subsequent acquisition or expression of a learned association of that stimulus. However, the neuronal manifestations of this learning effect, named latent inhibition (LI), are poorly understood. Here, we show that prior odor exposure can produce context-dependent LI of later appetitive olfactory memory performance in Drosophila. Odor pre-exposure forms a short-lived aversive memory whose lone expression lacks context-dependence. Acquisition of odor pre-exposure memory requires aversively reinforcing dopaminergic neurons that innervate two mushroom body compartments—one group of which exhibits increasing activity with successive odor experience. Odor-specific responses of the corresponding mushroom body output neurons are suppressed, and their output is necessary for expression of both pre-exposure memory and LI of appetitive memory. Therefore, odor pre-exposure attaches negative valence to the odor itself, and LI of appetitive memory results from a temporary and context-dependent retrieval deficit imposed by competition with the parallel short-lived aversive memory. Odor pre-exposure alters the expression of a learned association of that odor Pre-exposure memory only affects subsequent retrieval if context is consistent Pre-exposure memory can complement or compete with a learned association Odor pre-exposure forms a labile mushroom body-dependent aversive memory
Collapse
Affiliation(s)
- Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | | | - Zeynep Okray
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | | | - Johannes Felsenberg
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
43
|
Laing PAF, Harrison BJ. Safety learning and the Pavlovian conditioned inhibition of fear in humans: Current state and future directions. Neurosci Biobehav Rev 2021; 127:659-674. [PMID: 34023357 DOI: 10.1016/j.neubiorev.2021.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Safety learning occurs when an otherwise neutral stimulus comes to signal the absence of threat, allowing organisms to use safety information to inhibit fear and anxiety in nonthreatening environments. Although it continues to emerge as a topic of relevance in biological and clinical psychology, safety learning remains inconsistently defined and under-researched. Here, we analyse the Pavlovian conditioned inhibition paradigm and its application to the study of safety learning in humans. We discuss existing studies; address outstanding theoretical considerations; and identify prospects for its further application. Though Pavlovian conditioned inhibition presents a theoretically sound model of safety learning, it has been investigated infrequently, with decade-long interims between some studies, and notable methodological variability. Consequently, we argue that the full potential of conditioned inhibition as a model for human safety learning remains untapped, and propose that it could be revisited as a framework for addressing timely questions in the behavioural and clinical sciences.
Collapse
Affiliation(s)
- Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
44
|
Ullrich D, Mac Gillavry DW. Mini-review: A possible role for galanin in post-traumatic stress disorder. Neurosci Lett 2021; 756:135980. [PMID: 34023414 DOI: 10.1016/j.neulet.2021.135980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Several neuroendocrine systems have been implicated in post-traumatic stress disorder, including the mesocortical and mesolimbic dopamine, the norepinephrine, the β-endorphin, the serotonin, and the oxytocin systems. The interaction between these different systems remains, however, largely unknown and a generally accepted unifying theory is thus far lacking. In this review, we suggest that galanergic suppression of dopaminergic neurons in the ventral tegmental may constitute the missing link in a post-traumatic feedback loop. In addition, we address the literature on the negative cross-antagonism in this brain region between the galanin 1 and μ-opioid receptors, which suggests that behavioural patterns which stimulate β-endorphin, a natural μ-opioid receptors ligand, secretion may provide novel avenues for the treatment and prevention of PTSD, as well as for recruitment, training, and leadership processes in high-stress/high-risk professions such as the military, first responders and the police.
Collapse
Affiliation(s)
- David Ullrich
- Department of Military Leadership, University of Defence, Brno, Czech Republic
| | | |
Collapse
|
45
|
de Vita VM, Zapparoli HR, Reimer AE, Brandão ML, de Oliveira AR. Dopamine D2 receptors in the expression and extinction of contextual and cued conditioned fear in rats. Exp Brain Res 2021; 239:1963-1974. [PMID: 33885919 DOI: 10.1007/s00221-021-06116-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/16/2021] [Indexed: 11/25/2022]
Abstract
Dopamine seems to mediate fear conditioning through its action on D2 receptors in the mesolimbic pathway. Systemic and local injections of dopaminergic agents showed that D2 receptors are preferentially involved in the expression, rather than in the acquisition, of conditioned fear. To further examine this issue, we evaluated the effects of systemic administration of the dopamine D2-like receptor antagonists sulpiride and haloperidol on the expression and extinction of contextual and cued conditioned fear in rats. Rats were trained to a context-CS or a light-CS using footshocks as unconditioned stimuli. After 24 h, rats received injections of sulpiride or haloperidol and were exposed to the context-CS or light-CS for evaluation of freezing expression (test session). After another 24 h, rats were re-exposed to the context-CS or light-CS, to evaluate the extinction recall (retest session). Motor performance was assessed with the open-field and catalepsy tests. Sulpiride, but not haloperidol, significantly reduced the expression of contextual and cued conditioned fear without affecting extinction recall. In contrast, haloperidol, but not sulpiride, had cataleptic and motor-impairing effects. The results reinforce the importance of D2 receptors in fear conditioning and suggest that dopaminergic mechanisms mediated by D2 receptors are mainly involved in the expression rather than in the extinction of conditioned freezing.
Collapse
Affiliation(s)
- Vivian M de Vita
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Heloisa R Zapparoli
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Adriano E Reimer
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Marcus L Brandão
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil
| | - Amanda R de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.
- Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
46
|
Bouton ME, Maren S, McNally GP. BEHAVIORAL AND NEUROBIOLOGICAL MECHANISMS OF PAVLOVIAN AND INSTRUMENTAL EXTINCTION LEARNING. Physiol Rev 2021; 101:611-681. [PMID: 32970967 PMCID: PMC8428921 DOI: 10.1152/physrev.00016.2020] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This article reviews the behavioral neuroscience of extinction, the phenomenon in which a behavior that has been acquired through Pavlovian or instrumental (operant) learning decreases in strength when the outcome that reinforced it is removed. Behavioral research indicates that neither Pavlovian nor operant extinction depends substantially on erasure of the original learning but instead depends on new inhibitory learning that is primarily expressed in the context in which it is learned, as exemplified by the renewal effect. Although the nature of the inhibition may differ in Pavlovian and operant extinction, in either case the decline in responding may depend on both generalization decrement and the correction of prediction error. At the neural level, Pavlovian extinction requires a tripartite neural circuit involving the amygdala, prefrontal cortex, and hippocampus. Synaptic plasticity in the amygdala is essential for extinction learning, and prefrontal cortical inhibition of amygdala neurons encoding fear memories is involved in extinction retrieval. Hippocampal-prefrontal circuits mediate fear relapse phenomena, including renewal. Instrumental extinction involves distinct ensembles in corticostriatal, striatopallidal, and striatohypothalamic circuits as well as their thalamic returns for inhibitory (extinction) and excitatory (renewal and other relapse phenomena) control over operant responding. The field has made significant progress in recent decades, although a fully integrated biobehavioral understanding still awaits.
Collapse
Affiliation(s)
- Mark E Bouton
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
47
|
Ney LJ, Akhurst J, Bruno R, Laing PAF, Matthews A, Felmingham KL. Dopamine, endocannabinoids and their interaction in fear extinction and negative affect in PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110118. [PMID: 32991952 DOI: 10.1016/j.pnpbp.2020.110118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
There currently exist few frameworks for common neurobiology between reexperiencing and negative cognitions and mood symptoms of PTSD. Adopting a dopaminergic framework for PTSD unites many aspects of unique symptom clusters, and this approach also links PTSD symptomology to common comorbidities with a common neurobiological deficiency. Here we review the dopamine literature and incorporate it with a growing field of research that describes both the contribution of endocannabinoids to fear extinction and PTSD, as well as the interactions between dopaminergic and endocannabinoid systems underlying this disorder. Based on current evidence, we outline an early, preliminary model that links re-experiencing and negative cognitions and mood in PTSD by invoking the interaction between endocannabinoid and dopaminergic signalling in the brain. These interactions between PTSD, dopamine and endocannabinoids may have implications for future therapies for treatment-resistant and comorbid PTSD patients.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | - Jane Akhurst
- School of Psychology, University of Tasmania, Australia
| | | | - Patrick A F Laing
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Australia
| | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
48
|
Salinas-Hernández XI, Duvarci S. Dopamine in Fear Extinction. Front Synaptic Neurosci 2021; 13:635879. [PMID: 33732133 PMCID: PMC7956961 DOI: 10.3389/fnsyn.2021.635879] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 11/30/2022] Open
Abstract
The ability to extinguish fear memories when threats are no longer present is critical for adaptive behavior. Fear extinction represents a new learning process that eventually leads to the formation of extinction memories. Understanding the neural basis of fear extinction has considerable clinical significance as deficits in extinction learning are the hallmark of human anxiety disorders. In recent years, the dopamine (DA) system has emerged as one of the key regulators of fear extinction. In this review article, we highlight recent advances that have demonstrated the crucial role DA plays in mediating different phases of fear extinction. Emerging concepts and outstanding questions for future research are also discussed.
Collapse
Affiliation(s)
| | - Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University, Frankfurt, Germany
| |
Collapse
|
49
|
A ventral striatal prediction error signal in human fear extinction learning. Neuroimage 2021; 229:117709. [PMID: 33460800 DOI: 10.1016/j.neuroimage.2020.117709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
Animal studies have shown that the prediction error (PE) signal that drives fear extinction learning is encoded by phasic activity of midbrain dopamine (DA) neurons. Thus, the extinction PE resembles the appetitive PE that drives reward learning. In humans, fear extinction learning is less well understood. Using computational neuroimaging, a previous study from our group reported hemodynamic activity in the left ventral putamen, a subregion of the ventral striatum (VS), to correlate with a PE function derived from a formal associative learning model. The activity was modulated by genetic variation in a DA-related gene. To conceptually replicate and extend this finding, we here asked whether an extinction PE (EPE) signal in the left ventral putamen can also be observed when genotype information is not taken into account. Using an optimized experimental design for model estimation, we again observed EPE-related activity in the same striatal region, indicating that activation of this region is a feature of human extinction learning. We further observed significant EPE signals across wider parts of the VS as well as in frontal cortical areas. These results may suggest that the prediction errors during extinction learning are available to larger parts of the brain, as has also been observed in human neuroimaging studies of reward PE signaling. Conclusive evidence that the human EPE signal is of DAergic nature is still outstanding.
Collapse
|
50
|
Zhou P, Deng M, Wu J, Lan Q, Yang H, Zhang C. Ventral Tegmental Area Dysfunction and Disruption of Dopaminergic Homeostasis: Implications for Post-traumatic Stress Disorder. Mol Neurobiol 2021; 58:2423-2434. [PMID: 33428093 DOI: 10.1007/s12035-020-02278-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition characterized by intrusive recollections of the traumatic event, avoidance behaviors, hyper-arousal to event-related cues, cognitive disruption, and mood dysregulation. Accumulating preclinical and clinical evidence implicates dysfunction of the ventral tegmental area (VTA) dopaminergic system in PTSD pathogenesis. This article reviews recent advances in our knowledge of the relationship between dopaminergic dyshomeostasis and PTSD, including the contributions of specific dopaminergic gene variants to disease susceptibility, alterations in VTA dopamine neuron activity, dysregulation of dopaminergic transmission, and potential pharmacological and psychological interventions for PTSD targeting the dopaminergic system. An in-depth understanding of PTSD etiology is crucial for the development of innovative risk assessment, diagnostic, and treatment strategies following traumatic events.
Collapse
Affiliation(s)
- Peiling Zhou
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China
| | - Meiping Deng
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China
| | - Jiashan Wu
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China
| | - Qinghui Lan
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China
| | - Huifang Yang
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China.
| | - Changzheng Zhang
- School of Educational Sciences & Guangdong Provincial Key Laboratory of Development and Education for Special Needs Children, Lingnan Normal University, 29 Cunjing Road, Chikan District, Zhanjiang, 524048, China. .,School of Psychology, Nanjing Normal University, 122 Ninghai Road, Gulou District, Nanjing, 210097, China.
| |
Collapse
|