1
|
Moon MW, Ra CH. Fermentation of Seaweed Saccharina japonica Using Lactobacillus brevis and its In Vitro Anti-Obesity Effects. Curr Microbiol 2025; 82:266. [PMID: 40299091 DOI: 10.1007/s00284-025-04247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
This study investigated the effects of fermenting brown seaweed Saccharina japonica with Lactobacillus brevis on bioactive products' antioxidant properties and potential anti-obesity effects. The S. japonica fermented by L. brevis (SFB) extract showed the highest ABTS scavenging activity at 3000 μg/mL (79.3%), followed by the L. brevis cells (LBC) extract (68.1%) and S. japonica hydrolysate (SJH) extract (59.5%). At the same concentration, the DPPH radical scavenging activities of the LBC and SFB extracts were 63.2% and 68.5%, respectively, significantly higher than that of the SJH extract (38.5%). After treating cells with a 400 μg/mL concentration for 8 days, Oil Red O staining revealed a dose-dependent decrease in cytoplasmic lipid droplets. The lowest lipid accumulation rates were 64.2%, 55.2%, and 51.4% for SJH, LBC, and SFB, respectively. RT-qPCR results indicate reduced mRNA levels of lipid metabolism-related gene expressions. Overall, the combination of S. japonica and L. brevis fermentation has a potential application as a dietary food process for improving obesity.
Collapse
Affiliation(s)
- Min Woo Moon
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea
| | - Chae Hun Ra
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea.
| |
Collapse
|
2
|
Frazzini S, Turin L, Vanosi G, Rossi L, Hejna M. Seaweed-derived mixed extracts exhibit immunomodulatory properties on porcine alveolar macrophages. Vet J 2025; 312:106358. [PMID: 40246016 DOI: 10.1016/j.tvjl.2025.106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Antimicrobial resistance is a growing global concern, prompting for antibiotic alternatives in animal production. Seaweed, abundant in bioactive compounds with anti-inflammatory properties, offers a natural substitute to synthetic compounds. Considering this, the objective of the present study was to evaluate the anti-inflammatory bioactivity of three seaweeds 1:1 combination of Ascophyllum nodosum, Palmaria palmata, and Ulva lactuca. Initially, polyphenol, flavonoid, and total phlorotannin content of the three seaweed species were assessed through colorimetric assays. Subsequently, the anti-inflammatory bioactivity was first evaluated through an inhibition protein precipitation assay and then confirmed in vitro through gene expression assays in LPS-stimulated porcine alveolar macrophages (PAMs). The evaluation of the bioactive molecules revealed a high content of TPC (1487.67 ± 40.39 and 1763.57 ± 69.01 mg TAE/100 mg of sample, respectively), as well as of TFC (95.68 ± 3.62 and 126.09 ± 7.34 mg CE/100 mg of sample) and TPhC (0.167 ± 0.02 and 0.23 ± 0.01 mg PGE/100 mg) for AN and UL, respectively. The assay for inhibiting protein precipitation disclosed that the extracts combining two algae species (ANUL, ANPP, PPUL) were more effective than the effect exhibited by each single extract. The assessment of anti-inflammatory bioactivity revealed a significant down-regulation of IL-1β and TNF-α in the algae combination extracts. In contrast, TGF-β showed an increasing trend. These findings, along with confirmation of the high content of bioactive molecules, highlight the algae's anti-inflammatory potential, making them suitable as natural alternatives to antibiotics for disease prevention in the livestock sector. Therefore, future research should explore the specific bioactive compounds and validate their efficacy in vivo to confirm their potential use in animal production.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Graziella Vanosi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, Università degli Studi di Milano, dell'Università 6, Lodi 26900, Italy.
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, Jastrzębiec 05-552, Poland
| |
Collapse
|
3
|
Tammina SK, Priyadarshi R, Khan A, Manzoor A, Rahman RSHA, Banat F. Recent developments in alginate-based nanocomposite coatings and films for biodegradable food packaging applications. Int J Biol Macromol 2025; 295:139480. [PMID: 39765301 DOI: 10.1016/j.ijbiomac.2025.139480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Packaging made of plastic harms the environment. Thus, polysaccharide edible films are becoming a popular food packaging solution. Alginate is a biopolymer derived from seaweed that has the potential to create food packaging materials that are environmentally friendly and biodegradable. This article explores the potential use of nanocomposite coatings and films made from alginate as an alternative to petroleum-based polymers in the food industry. Alginate is desirable for food packaging due to its low cost, high nutritional value, renewability, low oxygen permeability, biodegradability, and biocompatibility. This article delves into alginate's history and extraction processes and covers techniques for modifying its physical and chemical properties using blended polymers and additives. Alginate-based coatings and films have been found to improve the mechanical properties and sensory characteristics of various food items and prolong the shelf life of perishable items by regulating oxygen and moisture levels and as a barrier against microbial growth. Further investigation is necessary to maximize the performance of alginate-based polymers in various food industry applications. Future prospects call on advancements in their physicochemical and functional characteristics to increase the acceptability of alginate-based nanocomposite coatings and films for biodegradable food packaging applications.
Collapse
Affiliation(s)
- Sai Kumar Tammina
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Arshied Manzoor
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Raghad Shehadeh Hussain Abdel Rahman
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Ashraf A, Guo Y, Yang T, Ud Din AS, Ahmad K, Li W, Hou H. Microalgae-Derived Peptides: Exploring Bioactivities and Functional Food Innovations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1000-1013. [PMID: 39757903 DOI: 10.1021/acs.jafc.4c06800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
A variety of bioactive peptides with unique and diverse structures could be found in microalgae with various bioactivities including antioxidant, antihypertensive, and antibacterial bioactivities. Food products containing microalgae peptides hold significant health and nutrition potential. Peptide liberation through enzymatic and other processes enhanced protein extraction, and some animal studies were conducted to verify their health-promoting effects. Various studies have focused on developing practical methods for their production, purification, and identification of bioactive peptides. The emerging trends of in silico peptide therapies, computational approaches, artificial intelligence, and the prospects of microalgae peptide research are briefly highlighted. Moreover, this article focused on the potential of microalgae-derived peptides as functional food ingredients their role in promoting health, and their future applications in nutraceutical industries. It also discussed the challenges of bioavailability in functional foods.
Collapse
Affiliation(s)
- Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Yueting Guo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Tingting Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, no. 17, Chunhui Road, Laishan District, Yantai, Shandong Province 264003, P.R. China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, no. 168, Wenhai Middle Road, Qingdao, Shandong Province 266237, P.R. China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, P.R. China
| |
Collapse
|
5
|
González-Troncoso MP, Landeta-Salgado C, Munizaga J, Hornedo-Ortega R, García-Parrilla MDC, Lienqueo ME. Assessment of the Chemical Diversity and Functional Properties of Secondary Metabolites from the Marine Fungus Asteromyces cruciatus. J Fungi (Basel) 2024; 11:3. [PMID: 39852423 PMCID: PMC11766682 DOI: 10.3390/jof11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Natural compounds derived from microorganisms, especially those with antioxidant and anticancer properties, are gaining attention for their potential applications in biomedical, cosmetic, and food industries. Marine fungi, such as Asteromyces cruciatus, are particularly promising due to their ability to produce bioactive metabolites through the degradation of marine algal polysaccharides. This study investigates the metabolic diversity of A. cruciatus grown on different carbon sources: glucose, Durvillaea spp., and Macrocystis pyrifera. Crude extracts of fungal biomass were analyzed for total phenolic content (TPC), antioxidant capacity (TAC), toxicity, and phenolic compound identification using ultra-high-performance liquid chromatography coupled with high-resolution electrospray ionization mass spectrometry (UHPLC-MS/MS). The analysis revealed the presence of anthraquinone compounds, including emodin (0.36 ± 0.08 mg/g DW biomass) and citrereosein in glucose medium and citrereosein and endocrocin in M. pyrifera medium. No such compounds were detected in Durvillaea spp. medium. The glucose-grown extract exhibited the highest TPC (3.09 ± 0.04 mg GAE/g DW) and TAC (39.70 ± 1.0 µmol TEq/g biomass). Additionally, no detrimental effects were observed on a neuronal cell line. These findings highlight the influence of carbon sources on the production of bioactive metabolites and their functional properties, providing valuable insights into the biotechnological potential of A. cruciatus.
Collapse
Affiliation(s)
- María Paz González-Troncoso
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Javiera Munizaga
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González nº 2, 41012 Sevilla, Spain; (R.H.-O.); (M.d.C.G.-P.)
| | - María del Carmen García-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González nº 2, 41012 Sevilla, Spain; (R.H.-O.); (M.d.C.G.-P.)
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Centre for Biotechnology and Bioengineering (CeBiB), University of Chile, Beauchef 851, Santiago 8370456, Chile; (M.P.G.-T.); (C.L.-S.); (J.M.)
| |
Collapse
|
6
|
El-Fakharany EM, Saleh AK, El-Maradny YA, El-Sayed MH, Alali I, Alsirhani AM, Alalawy AI, Alhawiti AS, Alatawi IS, Mazi W, El-Gendi H. Comprehensive insight into recent algal enzymes production and purification advances: Toward effective commercial applications: A review. Int J Biol Macromol 2024; 283:137783. [PMID: 39557238 DOI: 10.1016/j.ijbiomac.2024.137783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Algal enzymes are essential catalysts in numerous biological reactions and industrial processes owing to their adaptability and potency. The marketing of algal enzymes has recently risen due to various reasons, including the cost-efficient manner of their cultivation in photobioreactors, the eco-friendly production of high biomass contents, sources of novel enzymes that used in many sectors (biofuel and bioremediation applications), sustainability, and more renewability. Oxidoreductases and hydrolytic enzymes are among the important applied algal enzymes in industrial applications, with annually growing demand. These algal enzymes have opened up new avenues for significant health advantages in reducing and treating oxidative stress, cardiovascular illness, tumors, microbial infections, and viral outbreaks. Despite their promising uses, commercial applications of algal enzymes face many difficulties, such as stability, toxicity, and lower data availability on specific and adequate catalytic mechanisms. Therefore, this review focuses on the algal enzyme types, their uses and advantages over other microbial enzymes, downstream and upstream processing, their commercial and marketing, and their challenges. With the constant development of novel enzymes and their uses, enzyme technology provides exciting options for several industrial sectors.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
7
|
Premarathna AD, Ahmed TAE, Rjabovs V, Critchley AT, Hincke MT, Tuvikene R. Green seaweed-derived polysaccharides: Insights into various bioactivities for biomedical applications. Int J Biol Macromol 2024; 282:136858. [PMID: 39471919 DOI: 10.1016/j.ijbiomac.2024.136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
This research work explores the physicochemical characteristics and biological functions of polysaccharides extracted from four selected green seaweed species: Ulva lactuca (UL), Halimeda opuntia (HO), Caulerpa racemosa (CR), and Chaetomorpha antennina (CA). The extracts were investigated for cell-based bio-activities (i.e., cytotoxicity, cell proliferation and migration) using three cell lines (HDF, HaCaT, RAW264.7) reflecting cell models involved in wound healing, as well as anticoagulant activity. Ulvans from UL significantly increased HaCaT (at 0.06 μg/μL) and HDF (at 0.5 μg/μL) cell proliferation. In addition, extracts from CA showed the highest cell migration ability using HDF and HaCaT cells. UL (all fractions), HO-2A, CR-1B, CA-1A and CA-2B fractions improved phagocytosis. Furthermore, RAW264.7 cells treated with fraction CA-1A produced significantly more intracellular NO (pro-inflammatory) within 24 h compared to control (LPs). Green seaweed extracts CA-2A and UL-1A resulted in lower expression of the pro-inflammatory cytokine TNF-α in skin cells (HDF, HaCaT). Caulerpa cold-extracted polysaccharides possessed higher anticoagulant properties. The Ulva (1,4-linked α-l-rhamnose, β-d-glucuronic acid, l-iduronic acid) and CA extracts are promising sources of bioactive therapeutic agents. Our data provide useful insights into the possible biomedical benefits of selected polysaccharides mixtures (i.e., ulvan, sulfated or/and pyruvylated β-d-galactans, sulfated xyloarabinogalactan) for food, pharmaceutical, and biotechnological applications.
Collapse
Affiliation(s)
- Amal D Premarathna
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| | - Tamer A E Ahmed
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, K1H 8M5, Canada; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ontario, K1H 8M5, Canada
| | - Vitalijs Rjabovs
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Institute of Chemistry and Chemical Technology, Riga Technical University, Paula Valdena Iela 3/7, LV-1048 Riga, Latvia
| | - Alan T Critchley
- Verschuren Centre for Sustainability in Energy and Environment, Sydney, NS B1M 1A2, Canada
| | - Maxwell T Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, K1H 8M5, Canada; Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ontario, K1H 8M5, Canada
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia.
| |
Collapse
|
8
|
Mohapatra A, Trivedi S, Kolte AP, Tejpal CS, Elavarasan K, Vaswani S, Malik PK, Ravishankar CN, Bhatta R. Effect of Padina gymnospora biowaste inclusion on in vitro methane production, feed fermentation, and microbial diversity. Front Microbiol 2024; 15:1431131. [PMID: 39027100 PMCID: PMC11254855 DOI: 10.3389/fmicb.2024.1431131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
In vitro studies were undertaken aiming to study the methane (CH4) mitigation potential of biowaste (BW) of Padina gymnospora at the graded inclusion of 0% (C), 2% (A2), 5% (A5), and 10% (A10) of the diet composed of straw and concentrate in 40:60 ratio. The chemical composition analysis revealed that the BW contained higher crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and ether extract (EE) than the PF (fresh seaweed, P. gymnospora). The concentration of cinnamic acid, sinapic acid, kaempferol, fisetin p-coumaric acid, ellagic acid, and luteolin in BW was 1.5-6-folds less than the PF. Inclusion of BW decreased (P < 0.0001) CH4 production by 34%, 38%, and 45% in A2, A5, and A10 treatments, respectively. A decrease (P < 0.0001) of 7.5%-8% in dry matter (DM) and organic matter (OM) digestibility was also recorded with the BW supplementation. The BW inclusion also decreased the numbers of total (P = 0.007), Entodinomorphs (P = 0.011), and Holotrichs (P = 0.004) protozoa. Metagenome data revealed the dominance of Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, and Fibrobacter microbial phyla. At the phylum level, Euryarchaeota dominated the archaeal community, whereas Methanobrevibacter was most abundant at the genus level. It can be concluded that the inclusion of BW in straw and concentrate based diet by affecting rumen fermentation, protozoal numbers, and compositional shift in the archaeal community significantly decreased CH4 production. Utilization of biowaste of P. gymnospora as a CH4 mitigating agent will ensure its efficient utilization rather than dumping, which shall cause environmental pollution and health hazards.
Collapse
Affiliation(s)
- Archit Mohapatra
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Bengaluru, India
- School of Sciences, JAIN (Deemed-to-be-University), Bengaluru, India
| | - Shraddha Trivedi
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Atul P. Kolte
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Chaluvanahalli S. Tejpal
- Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Technology, Kochi, India
| | - Krishnamoorthy Elavarasan
- Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Technology, Kochi, India
| | - Shalini Vaswani
- Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, India
| | - Pradeep Kumar Malik
- Indian Council of Agricultural Research (ICAR)-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | | |
Collapse
|
9
|
Komisarska P, Pinyosinwat A, Saleem M, Szczuko M. Carrageenan as a Potential Factor of Inflammatory Bowel Diseases. Nutrients 2024; 16:1367. [PMID: 38732613 PMCID: PMC11085445 DOI: 10.3390/nu16091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Carrageenan is a widely used food additive and is seen as a potential candidate in the pharmaceutical industry. However, there are two faces to carrageenan that allows it to be used positively for therapeutic purposes. Carrageenan can be used to create edible films and for encapsulating drugs, and there is also interest in the use of carrageenan for food printing. Carrageenan is a naturally occurring polysaccharide gum. Depending on the type of carrageenan, it is used in regulating the composition of intestinal microflora, including the increase in the population of Bifidobacterium bacteria. On the other hand, the studies have demonstrated the harmfulness of carrageenan in animal and human models, indicating a direct link between diet and intestinal inflammatory states. Carrageenan changes the intestinal microflora, especially Akkermansia muciniphilia, degrades the mucous barrier and breaks down the mucous barrier, causing an inflammatory reaction. It directly affects epithelial cells by activating the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. The mechanism is based on activation of the TLR4 receptor, alterations in macrophage activity, production of proinflammatory cytokines and activation of innate immune pathways. Carrageenan increases the content of Bacteroidetes bacteria, also causing a reduction in the number of short chain fatty acid (SCFA)-producing bacteria. The result is damage to the integrity of the intestinal membrane and reduction of the mucin layer. The group most exposed to the harmful effects of carrageenan are people suffering from intestinal inflammation, including Crohn disease (CD) and ulcerative colitis (UC).
Collapse
Affiliation(s)
| | | | | | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (M.S.)
| |
Collapse
|
10
|
Mok K, Honwichit O, Funnuam T, Charoensiddhi S, Nitisinprasert S, Nielsen DS, Nakphaichit M. Synergistic activity of Limosilactobacillus reuteri KUB-AC5 and water-based plants against Salmonella challenge in a human in vitro gut model. Sci Rep 2024; 14:4730. [PMID: 38413615 PMCID: PMC10899581 DOI: 10.1038/s41598-024-53912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mouse models. The probiotic activity of L. reuteri KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants (Ulva rigida, Caulerpa lentillifera, Wolffia globosa, and Gracillaria fisheri) were screened for their ability to support the growth of L. reuteri KUB-AC5. Under monoculture testing, U. rigida exhibited the highest capacity to support the growth of L. reuteri KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid (p ≤ 0.05). In co-culture experiments, the synbiotic combination of U. rigida and L. reuteri KUB-AC5 demonstrated the potential to eliminate Salmonella Typhimurium DMST 48437 when inoculated at 104 CFU/mL within 9 h. The synbiotic activities of U. rigida and L. reuteri KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of L. reuteri KUB-AC5 and U. rigida showed significantly higher levels of L. reuteri KUB-AC5 (5.1 log copies/mL) and a reduction of S. Typhimurium by 0.8 log (CFU/ml) after 24 h (p ≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone (p ≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli, Faecalibacterium, and Blautia. Our findings demonstrated that L. reuteri KUB-AC5, in combination with U. rigida, exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward Salmonella, and the ability to modulate the gut microbiome.
Collapse
Affiliation(s)
- Kevin Mok
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Orranich Honwichit
- Department of Food Science and Technology, Faculty of Agro‑Industry, Kasetsart University, Bangkok, Thailand
| | - Thanyakan Funnuam
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro‑Industry, Kasetsart University, Bangkok, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | | | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand.
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
11
|
Mapholi Z, Goosen NJ. Optimization of fucoidan recovery by ultrasound-assisted enzymatic extraction from South African kelp, Ecklonia maxima. ULTRASONICS SONOCHEMISTRY 2023; 101:106710. [PMID: 38043460 PMCID: PMC10701454 DOI: 10.1016/j.ultsonch.2023.106710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Fucoidan, a sulphated polysaccharide, is found exclusively in brown seaweeds and has been reported to possess a wide range of biological functionalities. Fucoidans are found within the cell wall of brown seaweeds, which is composed of recalcitrant cellulose and hemicellulose. This hampers the recovery of fucoidans. In addition, fucoidans are found within a network of viscous hydrocolloids, alginates, further complicating their recovery. Traditionally, the hot water extraction method is used to recover fucoidans from brown seaweed, however, this is characterized by low yields and long extraction time. To combat these issues, several novel extraction technologies have been introduced, these include ultrasound-assisted extraction and enzyme-assisted extraction. Thus, the main aim of this study was to investigate and optimize fucoidan recovery from Ecklonia maxima based on ultrasound-assisted enzymatic extraction. The impact of temperature (40-65 °C), ultrasound intensity (0-118 W·cm-2), enzyme dosage (0-0.05 ml·g-1) and pH (4.5-6) on total dissolved, total carbohydrates and inorganic sulphates yields was studied. The application of ultrasound-assisted enzymatic extraction mainly improved the extraction of total carbohydrates. Ultrasound significantly improves the kinetics and extraction of fucoidan, but there was no merit when it was applied with enzymes. Results reveal that at optimized conditions, the fucoidan extracted 79.13 mg⋅g-1 (7.9 % w/w) of algal dry weight. The present study provides insight into the extraction potentials of enzyme-assisted extraction, ultrasound-assisted extraction, and ultrasound-assisted enzymatic extraction.
Collapse
Affiliation(s)
- Zwonaka Mapholi
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa.
| | - Neill Jurgens Goosen
- Department of Chemical Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| |
Collapse
|
12
|
Krishna Perumal P, Huang CY, Chen CW, Anisha GS, Singhania RR, Dong CD, Patel AK. Advances in oligosaccharides production from brown seaweeds: extraction, characterization, antimetabolic syndrome, and other potential applications. Bioengineered 2023; 14:2252659. [PMID: 37726874 PMCID: PMC10512857 DOI: 10.1080/21655979.2023.2252659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 09/21/2023] Open
Abstract
Brown seaweeds are a promising source of bioactive substances, particularly oligosaccharides. This group has recently gained considerable attention due to its diverse cell wall composition, structure, and wide-spectrum bioactivities. This review article provides a comprehensive update on advances in oligosaccharides (OSs) production from brown seaweeds and their potential health applications. It focuses on advances in feedstock pretreatment, extraction, characterization, and purification prior to OS use for potential health applications. Brown seaweed oligosaccharides (BSOSs) are extracted using various methods. Among these, enzymatic hydrolysis is the most preferred, with high specificity, mild reaction conditions, and low energy consumption. However, the enzyme selection and hydrolysis conditions need to be optimized for desirable yield and oligosaccharides composition. Characterization of oligosaccharides is essential to determine their structure and properties related to bioactivities and to predict their most suitable application. This is well covered in this review. Analytical techniques such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and nuclear magnetic resonance (NMR) spectroscopy are commonly applied to analyze oligosaccharides. BSOSs exhibit a range of biological properties, mainly antimicrobial, anti-inflammatory, and prebiotic properties among others. Importantly, BSOSs have been linked to possible health advantages, including metabolic syndrome management. Metabolic syndrome is a cluster of conditions, such as obesity, hypertension, and dyslipidemia, which increase the risk of cardiovascular disease and type 2 diabetes. Furthermore, oligosaccharides have potential applications in the food and pharmaceutical industries. Future research should focus on improving industrial-scale oligosaccharide extraction and purification, as well as researching their potential utility in the treatment of various health disorders.[Figure: see text].
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Sustainable Environment Research Center, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| | - Cheng-Di Dong
- Sustainable Environment Research Center, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Ribeiro R, Costa L, Pinto E, Sousa E, Fernandes C. Therapeutic Potential of Marine-Derived Cyclic Peptides as Antiparasitic Agents. Mar Drugs 2023; 21:609. [PMID: 38132930 PMCID: PMC10745025 DOI: 10.3390/md21120609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Parasitic diseases still compromise human health. Some of the currently available therapeutic drugs have limitations considering their adverse effects, questionable efficacy, and long treatment, which have encouraged drug resistance. There is an urgent need to find new, safe, effective, and affordable antiparasitic drugs. Marine-derived cyclic peptides have been increasingly screened as candidates for developing new drugs. Therefore, in this review, a systematic analysis of the scientific literature was performed and 25 marine-derived cyclic peptides with antiparasitic activity (1-25) were found. Antimalarial activity is the most reported (51%), followed by antileishmanial (27%) and antitrypanosomal (20%) activities. Some compounds showed promising antiparasitic activity at the nM scale, being active against various parasites. The mechanisms of action and targets for some of the compounds have been investigated, revealing different strategies against parasites.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| | - Lia Costa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
| | - Eugénia Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.R.); (L.C.); (E.S.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal;
| |
Collapse
|
14
|
Kim NY, Kim JM, Son JY, Ra CH. Synbiotic Fermentation of Undaria pinnatifida and Lactobacillus brevis to Produce Prebiotics and Probiotics. Appl Biochem Biotechnol 2023; 195:6321-6333. [PMID: 36862333 DOI: 10.1007/s12010-023-04415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
It has been optimized thermal acid hydrolytic pretreatment and enzymatic saccharification (Es) in flask culture of Undaria pinnatifida seaweed, which is a prebiotic. The optimal hydrolytic conditions were a slurry content of 8% (w/v), 180 mM H2SO4, and 121°C for 30 min. Es using Celluclast 1.5 L at 8 U/mL produced 2.7 g/L glucose with an efficiency of 96.2%. The concentration of fucose (a prebiotic) was 0.48 g/L after pretreatment and saccharification. The fucose concentration decreased slightly during fermentation. Monosodium glutamate (MSG) (3%, w/v) and pyridoxal 5'-phosphate (PLP) (30 μM) were added to enhance gamma-aminobutyric acid (GABA) production. To further improve the consumption of mixed monosaccharides, adaptation of Lactobacillus brevis KCL010 to high concentrations of mannitol improved the synbiotic fermentation efficiency of U. pinnatifida hydrolysates.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea
| | - Ji Min Kim
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea
| | - Jong-Youn Son
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea
| | - Chae Hun Ra
- Department of Food Science and Biotechnology, College of Engineering, Global K-Food Research Center, Hankyong National University, Anseong-Si, 17579, Republic of Korea.
| |
Collapse
|
15
|
Costa L, Sousa E, Fernandes C. Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals (Basel) 2023; 16:996. [PMID: 37513908 PMCID: PMC10386233 DOI: 10.3390/ph16070996] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic peptides are molecules that are already used as drugs in therapies approved for various pharmacological activities, for example, as antibiotics, antifungals, anticancer, and immunosuppressants. Interest in these molecules has been growing due to the improved pharmacokinetic and pharmacodynamic properties of the cyclic structure over linear peptides and by the evolution of chemical synthesis, computational, and in vitro methods. To date, 53 cyclic peptides have been approved by different regulatory authorities, and many others are in clinical trials for a wide diversity of conditions. In this review, the potential of cyclic peptides is presented, and general aspects of their synthesis and development are discussed. Furthermore, an overview of already approved cyclic peptides is also given, and the cyclic peptides in clinical trials are summarized.
Collapse
Affiliation(s)
- Lia Costa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| |
Collapse
|
16
|
Le Strat Y, Mandin M, Ruiz N, Robiou du Pont T, Ragueneau E, Barnett A, Déléris P, Dumay J. Quantification of Xylanolytic and Cellulolytic Activities of Fungal Strains Isolated from Palmaria palmata to Enhance R-Phycoerythrin Extraction of Palmaria palmata: From Seaweed to Seaweed. Mar Drugs 2023; 21:393. [PMID: 37504924 PMCID: PMC10381405 DOI: 10.3390/md21070393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
R-phycoerythrin (R-PE) can be enzymatically extracted from red seaweeds such as Palmaria palmata. This pigment has numerous applications and is notably known as an antioxidant, antitumoral or anti-inflammatory agent. Enzymes secreted by P. palmata associated fungal strains were assumed to be efficient and adapted for R-PE extraction from this macroalga. The aim of the present study was to quantify both xylanolytic and cellulolytic activities of enzymatic extracts obtained from six Palmaria palmata derived fungal strains. Degradation of P. palmata biomass by fungal enzymatic extracts was also investigated, focused on soluble protein and R-PE extraction. Enzymatic extracts were obtained by solid state fermentation. Macroalgal degradation abilities were evaluated by measuring reducing sugar release using DNS assays. Soluble proteins and R-PE recovery yields were evaluated through bicinchoninic acid and spectrophotometric assays, respectively. Various enzymatic activities were obtained according to fungal isolates up to 978 U/mL for xylanase and 50 U/mL for cellulase. Enzymatic extract allowed high degrading abilities, with four of the six fungal strains assessed exhibiting at least equal results as the commercial enzymes for the reducing sugar release. Similarly, all six strains allowed the same soluble protein extraction yield and four of them led to an improvement of R-PE extraction. R-PE extraction from P. palamata using marine fungal enzymes appeared particularly promising. To the best of our knowledge, this study is the first on the use of enzymes of P. palmata associated fungi in the degradation of its own biomass for biomolecules recovery.
Collapse
Affiliation(s)
- Yoran Le Strat
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; (Y.L.S.); (N.R.); (P.D.)
| | - Margaux Mandin
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; (Y.L.S.); (N.R.); (P.D.)
| | - Nicolas Ruiz
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; (Y.L.S.); (N.R.); (P.D.)
| | - Thibaut Robiou du Pont
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; (Y.L.S.); (N.R.); (P.D.)
| | - Emilie Ragueneau
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; (Y.L.S.); (N.R.); (P.D.)
| | - Alexandre Barnett
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; (Y.L.S.); (N.R.); (P.D.)
| | - Paul Déléris
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; (Y.L.S.); (N.R.); (P.D.)
| | - Justine Dumay
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; (Y.L.S.); (N.R.); (P.D.)
| |
Collapse
|
17
|
Manzoor M, Mir RA, Farooq A, Hami A, Pakhtoon MM, Sofi SA, Malik FA, Hussain K, Bhat MA, Sofi NR, Pandey A, Khan MK, Hamurcu M, Zargar SM. Shifting archetype to nature's hidden gems: from sources, purification to uncover the nutritional potential of bioactive peptides. 3 Biotech 2023; 13:252. [PMID: 37388856 PMCID: PMC10299963 DOI: 10.1007/s13205-023-03667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.
Collapse
Affiliation(s)
- Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Central University of Kashmir, Tulmulla, Kashmir(J&K) 191131 India
| | - Asmat Farooq
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu (J&K) 180009 India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, 462045 India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science and Technology Awantipora, Awantipora, Kashmir(J&K) 192122 India
| | - Firdose Ahmad Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - khursheed Hussain
- MAR&ES, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Gurez, Shalimar, Kashmir(J&K) 190025 India
| | - M. Ashraf Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Najeebul Rehmen Sofi
- MRCFC, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Shalimar, J&K India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| |
Collapse
|
18
|
Campanelli-Morais Y, Silva CHF, Dantas MRDN, Sabry DA, Sassaki GL, Moreira SMG, Rocha HAO. A Blend Consisting of Agaran from Seaweed Gracilaria birdiae and Chromium Picolinate Is a Better Antioxidant Agent than These Two Compounds Alone. Mar Drugs 2023; 21:388. [PMID: 37504919 PMCID: PMC10381178 DOI: 10.3390/md21070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
A blend refers to the combination of two or more components to achieve properties that are superior to those found in the individual products used for their production. Gracilaria birdiae agaran (SPGb) and chromium picolinate (ChrPic) are both antioxidant agents. However, there is no documentation of blends that incorporate agarans and ChrPic. Hence, the objective of this study was to generate blends containing SPGb and ChrPic that exhibit enhanced antioxidant activity compared to SPGb or ChrPic alone. ChrPic was commercially acquired, while SPGb was extracted from the seaweed. Five blends (B1; B2; B3; B4; B5) were produced, and tests indicated B5 as the best antioxidant blend. B5 was not cytotoxic or genotoxic. H2O2 (0.6 mM) induced toxicity in fibroblasts (3T3), and this effect was abolished by B5 (0.05 mg·mL-1); neither ChrPic nor SPGb showed this effect. The cells also showed no signs of toxicity when exposed to H2O2 after being incubated with B5 and ChrPic for 24 h. In another experiment, cells were incubated with H2O2 and later exposed to SPGb, ChrPic, or B5. Again, SPGb was not effective, while cells exposed to ChrPic and B5 reduced MTT by 100%. The data demonstrated that B5 has activity superior to SPGb and ChrPic and points to B5 as a product to be used in future in vivo tests to confirm its antioxidant action. It may also be indicated as a possible nutraceutical agent.
Collapse
Affiliation(s)
- Yara Campanelli-Morais
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Cynthia Haynara Ferreira Silva
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Marina Rocha do Nascimento Dantas
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Diego Araujo Sabry
- Dapartamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Susana Margarida Gomes Moreira
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Programa de Pós-Graduação em Bioquimica e Biologia Molecular, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
- Dapartamento de Bioquímica, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| |
Collapse
|
19
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
20
|
Liyanage NM, Nagahawatta DP, Jayawardena TU, Jeon YJ. The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease. Life (Basel) 2023; 13:life13041026. [PMID: 37109555 PMCID: PMC10143107 DOI: 10.3390/life13041026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a prominent global public health issue. Anti-inflammatory medications, immunosuppressants, and biological therapies are currently used as treatments. However, they are often unsuccessful and have negative consequences on human health. Thus, there is a tremendous demand for using natural substances, such as seaweed polysaccharides, to treat IBD's main pathologic treatment targets. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae, and fucoidan in brown algae. These are effective candidates for drug development and functional nutrition products. Algal polysaccharides treat IBD through therapeutic targets, including inflammatory cytokines, adhesion molecules, intestinal epithelial cells, and intestinal microflora. This study aimed to systematically review the potential therapeutic effects of algal polysaccharides on IBD while providing the theoretical basis for a nutritional preventive mechanism for IBD and the restoration of intestinal health. The results suggest that algal polysaccharides have significant potential in complementary IBD therapy and further research is needed for fully understanding their mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
21
|
Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018-2022). Molecules 2023; 28:615. [PMID: 36677673 PMCID: PMC9867211 DOI: 10.3390/molecules28020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cyclopeptides are considered as one of the most important classes of compounds derived from marine sources, due to their structural diversity and a myriad of their biological and pharmacological activities. Since marine-derived cyclopeptides consist of different amino acids, many of which are non-proteinogenic, they possess various stereogenic centers. In this respect, the structure elucidation of new molecular scaffolds obtained from natural sources, including marine-derived cyclopeptides, can become a very challenging task. The determination of the absolute configurations of the amino acid residues is accomplished, in most cases, by performing acidic hydrolysis, followed by analyses by liquid chromatography (LC). In a continuation with the authors' previous publication, and to analyze the current trends, the present review covers recently published works (from January 2018 to November 2022) regarding new cyclopeptides from marine organisms, with a special focus on their biological/pharmacological activities and the absolute stereochemical assignment of the amino acid residues. Ninety-one unreported marine-derived cyclopeptides were identified during this period, most of which displayed anticancer or antimicrobial activities. Marfey's method, which involves LC, was found to be the most frequently used for this purpose.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
23
|
Teixeira-Guedes C, Gomes-Dias JS, Cunha SA, Pintado ME, Pereira R, Teixeira JA, Rocha CM. Enzymatic approach for the extraction of bioactive fractions from red, green and brown seaweeds. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Lopez-Santamarina A, Sinisterra-Loaiza L, Mondragón-Portocarrero A, Ortiz-Viedma J, Cardelle-Cobas A, Abuín CMF, Cepeda A. Potential prebiotic effect of two Atlantic whole brown seaweeds, Saccharina japonica and Undaria pinnatifida, using in vitro simulation of distal colonic fermentation. Front Nutr 2023; 10:1170392. [PMID: 37125043 PMCID: PMC10140305 DOI: 10.3389/fnut.2023.1170392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Two brown seaweeds (Saccharina japonica and Undaria pinnatifida) were characterized in terms of their nutritional and mineral composition, as well as their potential to modify the human gut microbiota. Nutritional analysis of these seaweeds showed that they comply with the criteria set out in European legislation to be labeled "low fat," "low sugar," and "high fiber." Mineral content analysis showed that 100 g of seaweed provided more than 100% of the daily Ca requirements, as well as 33-42% of Fe, 10-17% of Cu, and 14-17% of Zn requirements. An in vitro human digest simulator system was used to analyze the effect of each seaweed on the human colonic microbiota. The gut microbiota was characterized by 16S rRNA amplicon sequencing and short-chain fatty-acid analysis. Seaweed digestion and fermentation showed beneficial effects, such as a decrease in the phylum Firmicutes and an increase in the phyla Bacteroidetes and Actinobacteria. At the species level, seaweed fermentation increased the proportion of beneficial bacteria such as Parabacteroides distasonis and Bifidobacterium. Regarding of metabolic pathways, no significant differences were found between the two seaweeds, but there were significant differences concerning to the baseline. An increase in short-chain fatty-acid content was observed for both seaweeds with respect to the negative control, especially for acetic acid. Given of the obtained results, S. japonica and U. pinnatifida intake are promising and could open new opportunities for research and application in the fields of nutrition and human health.
Collapse
Affiliation(s)
- Aroa Lopez-Santamarina
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
- *Correspondence: Aroa Lopez-Santamarina,
| | - Laura Sinisterra-Loaiza
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Alicia Mondragón-Portocarrero
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jaime Ortiz-Viedma
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Carlos Manuel Franco Abuín
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Facultad de veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
25
|
Novel Peptide Sequences with ACE-Inhibitory and Antioxidant Activities Derived from the Heads and Bones of Hybrid Groupers ( Epinephelus lanceolatus × Epinephelus fuscoguttatus). Foods 2022; 11:foods11243991. [PMID: 36553733 PMCID: PMC9777584 DOI: 10.3390/foods11243991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
The heads and bones of hybrid groupers are potential precursors for angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides. The aim of this study was to isolate the dual-action peptides from the Alcalase-treated head and bone hydrolysate of hybrid groupers followed by identification of the novel peptides. The stability of these peptides against stimulated in vitro gastrointestinal digestion (SGID) was also determined. Fraction HB-IV (less than 1 kDa) obtained from ultrafiltration showed the strongest ACE-inhibition ability (IC50: 0.28 mg/mL), which was comparable to the potency of the commercial supplement, PeptACE (IC50: 0.22 mg/mL). This fraction also demonstrated the highest hydroxyl radical scavenging and metal-chelating activities. However, further fractionation of HB-IV by a series of chromatography resulted in peptide fractions of reduced ACE-inhibitory and antioxidant activities. The hydroxyl radical scavenging and reduction potential of HB-IV were enhanced, whereas ACE-inhibitory and metal-chelating activities were reduced following SGID. A total of 145 peptide sequences were identified from HB-IV, of which 137 peptides were novel to the BIOPEP database. The results suggested that the bioactive peptides isolated from the heads and bones of hybrid groupers could be used as functional foods/ingredients with potential ACE-inhibitory and antioxidant effects.
Collapse
|
26
|
Mounika A, Ilangovan B, Mandal S, Shraddha Yashwant W, Priya Gali S, Shanmugam A. Prospects of ultrasonically extracted food bioactives in the field of non-invasive biomedical applications - A review. ULTRASONICS SONOCHEMISTRY 2022; 89:106121. [PMID: 35987106 PMCID: PMC9403563 DOI: 10.1016/j.ultsonch.2022.106121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 05/15/2023]
Abstract
Foods incorporated with bioactive compounds, called nutraceuticals, can fight or prevent or alleviate diseases. The contribution of nutraceuticals or phytochemicals to non-invasive biomedical applications is increasing. Although there are many traditional methods for extracting bioactive compounds or secondary metabolites, these processes come with many disadvantages like lower yield, longer process time, high energy consumption, more usage of solvent, yielding low active principles with low efficacy against diseases, poor quality, poor mass transfer, higher extraction temperature, etc. However, nullifying all these disadvantages of a non-thermal technology, ultrasound has played a significant role in delivering them with higher yield and improved bio-efficacy. The physical and chemical effects of acoustic cavitation are the crux of the output. This review paper primarily discusses the ultrasound-assisted extraction (USAE) of bioactives in providing non-invasive prevention and cure to diseases and bodily dysfunctions in human and animal models. The outputs of non-invasive bioactive components in terms of yield and the clinical efficacy in either in vitro or in vitro conditions are discussed in detail. The non-invasive biomedical applications of USAE bioactives providing anticancer, antioxidant, cardiovascular health, antidiabetic, and antimicrobial benefits are analyzed in-depth and appraised. This review additionally highlights the improved performance of USAE compounds against conventionally extracted compounds. In addition, an exhaustive analysis is performed on the role and application of the food bioactives in vivo and in vitro systems, mainly for promoting these efficient USAE bioactives in non-invasive biomedical applications. Also, the review explores the recovery of bioactives from the less explored food sources like cactus pear fruit, ash gourd, sweet granadilla, basil, kokum, baobab, and the food processing industrial wastes like peel, pomace, propolis, wine residues, bran, etc., which is rare in literature.
Collapse
Affiliation(s)
- Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Bhaargavi Ilangovan
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Sushmita Mandal
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Waghaye Shraddha Yashwant
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Swetha Priya Gali
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India; Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, India.
| |
Collapse
|
27
|
Jagtap AS, Parab AS, Manohar CS, Kadam NS. Prebiotic potential of enzymatically produced ulvan oligosaccharides using ulvan lyase of Bacillus subtilis, NIOA181, a macroalgae-associated bacteria. J Appl Microbiol 2022; 133:3176-3190. [PMID: 35957555 DOI: 10.1111/jam.15775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
AIMS To characterize the polysaccharide hydrolyzing potential of macroalgae-associated bacteria (MABs) for enzymatic production of oligosaccharides and determining their prebiotic potential. METHODS AND RESULTS Approximately 400 MABs were qualitatively characterised for polysaccharide hydrolyzing activity. Only about 5 to 15% of the isolates were found to have the potential for producing porphyranase, alginate lyase and ulvan lyase enzymes which were quantified in specific substrate broths. One potential MAB, Bacillus subtilis, NIOA181, isolated from green macroalgae, showed the highest ulvan lyase activity. This enzyme was partially purified and used to hydrolyse ulvan into ulvan oligosaccharides. Structural characterization of ulvan oligosaccharides showed that they are predominantly composed of di-, tri-, and tetrasaccharide units. Results showed that the enzymatically produced ulvan oligosaccharides exhibited prebiotic activity by promoting the growth of probiotic bacteria and suppressing the enteric pathogens, which were higher than the ulvan polysaccharide and equivalent to commercial fructooligosaccharides. CONCLUSIONS A potential MAB, NIOA181, producing ulvan lyase was isolated and used for the production of ulvan oligosaccharides with prebiotic activity. SIGNIFICANCE AND IMPACT OF STUDY Rarely studied ulvan oligosaccharides with prebiotic activity can be widely used as an active pharmaceutical ingredient in nutraceutical and other healthcare applications.
Collapse
Affiliation(s)
- Ashok S Jagtap
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Ashutosh S Parab
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India.,School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, India
| | - Cathrine S Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, India
| | - Nitin S Kadam
- Central Instrumentation Facility, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
28
|
Iqbal MW, Riaz T, Mahmood S, Bilal M, Manzoor MF, Qamar SA, Qi X. Fucoidan-based nanomaterial and its multifunctional role for pharmaceutical and biomedical applications. Crit Rev Food Sci Nutr 2022; 64:354-380. [PMID: 35930305 DOI: 10.1080/10408398.2022.2106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fucoidans are promising sulfated polysaccharides isolated from marine sources that have piqued the interest of scientists in recent years due to their widespread use as a bioactive substance. Bioactive coatings and films, unsurprisingly, have seized these substances to create novel, culinary, therapeutic, and diagnostic bioactive nanomaterials. The applications of fucoidan and its composite nanomaterials have a wide variety of food as well as pharmacological properties, including anti-oxidative, anti-inflammatory, anti-cancer, anti-thrombic, anti-coagulant, immunoregulatory, and anti-viral properties. Blends of fucoidan with other biopolymers such as chitosan, alginate, curdlan, starch, etc., have shown promising coating and film-forming capabilities. A blending of biopolymers is a recommended approach to improve their anticipated properties. This review focuses on the fundamental knowledge and current development of fucoidan, fucoidan-based composite material for bioactive coatings and films, and their biological properties. In this article, fucoidan-based edible bioactive coatings and films expressed excellent mechanical strength that can prolong the shelf-life of food products and maintain their biodegradability. Additionally, these coatings and films showed numerous applications in the biomedical field and contribute to the economy. We hope this review can deliver the theoretical basis for the development of fucoidan-based bioactive material and films.
Collapse
Affiliation(s)
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shahid Mahmood
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
29
|
Balčiūnaitienė A, Štreimikytė P, Puzerytė V, Viškelis J, Štreimikytė-Mockeliūnė Ž, Maželienė Ž, Sakalauskienė V, Viškelis P. Antimicrobial Activities against Opportunistic Pathogenic Bacteria Using Green Synthesized Silver Nanoparticles in Plant and Lichen Enzyme-Assisted Extracts. PLANTS 2022; 11:plants11141833. [PMID: 35890467 PMCID: PMC9322591 DOI: 10.3390/plants11141833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Enzyme-assisted extraction is a valuable tool for mild and environmentally-friendly extraction conditions to release bioactive compounds and sugars, essential for silver nanoparticle (AgNP) green synthesis as capping and reducing agents. In this research, plant and fungal kingdoms were selected to obtain the enzyme-assisted extracts, using green synthesized AgNPs. For the synthesis, pseudo-cereal Fagopyrum esculentum (F. esculentum) and lichen Certaria islandica (C. islandica) extracts were used as environmentally-friendly agents under heating in an aqueous solution. Raw and enzyme-assisted extracts of AgNPs were characterized by physicochemical, phytochemical, and morphological characteristics through scanning and transmission electron microscopy (SEM and TEM), as well as Fourier transform infrared spectroscopy (FTIR). The synthesized nanoparticles were spherical in shape and well dispersed, with average sizes ranging from 10 to 50 nm. This study determined the total phenolic content (TPC) and in vitro antioxidant activity in both materials by applying standard methods. The results showed that TPC, ABTS•+, FRAP, and DPPH• radical scavenging activities varied greatly in samples. The AgNPs derived from enzymatic hydrolyzed aqueous extracts C. islandica and F. esculentum exhibited higher antibacterial activity against the tested bacterial pathogens than their respective crude extracts. Results indicate that the extracts’ biomolecules covering the AgNPs may enhance the biological activity of silver nanoparticles and enzyme assistance as a sustainable additive to technological processes to achieve higher yields and necessary media components.
Collapse
Affiliation(s)
- Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
- Correspondence: ; Tel.: +370-60289485
| | - Paulina Štreimikytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
| | - Viktorija Puzerytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
| | - Jonas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
| | - Žaneta Štreimikytė-Mockeliūnė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eivenių g. 2, 50161 Kaunas, Lithuania; (Ž.Š.-M.); (Ž.M.)
| | - Žaneta Maželienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eivenių g. 2, 50161 Kaunas, Lithuania; (Ž.Š.-M.); (Ž.M.)
| | | | - Pranas Viškelis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania; (P.Š.); (V.P.); (J.V.); (P.V.)
| |
Collapse
|
30
|
Tang S, Ma Y, Dong X, Zhou H, He Y, Ren D, Wang Q, Yang H, Liu S, Wu L. Enzyme-assisted extraction of fucoidan from Kjellmaniella crassifolia based on kinetic study of enzymatic hydrolysis of algal cellulose. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Hoang T, Kim MJ, Park JW, Jeong SY, Lee J, Shin A. Nutrition-wide association study of microbiome diversity and composition in colorectal cancer patients. BMC Cancer 2022; 22:656. [PMID: 35701733 PMCID: PMC9199192 DOI: 10.1186/s12885-022-09735-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of diet on the interaction between microbes and host health have been widely studied. However, its effects on the gut microbiota of patients with colorectal cancer (CRC) have not been elucidated. This study aimed to investigate the association between diet and the overall diversity and different taxa levels of the gut microbiota in CRC patients via the nutrition-wide association approach. METHODS This hospital-based study utilized data of 115 CRC patients who underwent CRC surgery in Department of Surgery, Seoul National University Hospital. Spearman correlation analyses were conducted for 216 dietary features and three alpha-diversity indices, Firmicutes/Bacteroidetes ratio, and relative abundance of 439 gut microbial taxonomy. To identify main enterotypes of the gut microbiota, we performed the principal coordinate analysis based on the β-diversity index. Finally, we performed linear regression to examine the association between dietary intake and main microbiome features, and linear discriminant analysis effect size (LEfSe) to identify bacterial taxa phylogenetically enriched in the low and high diet consumption groups. RESULTS Several bacteria were enriched in patients with higher consumption of mature pumpkin/pumpkin juice (ρ, 0.31 to 0.41) but lower intake of eggs (ρ, -0.32 to -0.26). We observed negative correlations between Bacteroides fragilis abundance and intake of pork (belly), beef soup with vegetables, animal fat, and fatty acids (ρ, -0.34 to -0.27); an inverse correlation was also observed between Clostridium symbiosum abundance and intake of some fatty acids, amines, and amino acids (ρ, -0.30 to -0.24). Furthermore, high intake of seaweed was associated with a 6% (95% CI, 2% to 11%) and 7% (95% CI, 2% to 11%) lower abundance of Rikenellaceae and Alistipes, respectively, whereas overall beverage consumption was associated with an 10% (95% CI, 2% to 18%) higher abundance of Bacteroidetes, Bacteroidia, and Bacteroidales, compared to that in the low intake group. LEfSe analysis identified phylogenetically enriched taxa associated with the intake of sugars and sweets, legumes, mushrooms, eggs, oils and fats, plant fat, carbohydrates, and monounsaturated fatty acids. CONCLUSIONS Our data elucidates the diet-microbe interactions in CRC patients. Additional research is needed to understand the significance of these results in CRC prognosis.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jeeyoo Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
32
|
Recent Advances in the Valorization of Algae Polysaccharides for Food and Nutraceutical Applications: a Review on the Role of Green Processing Technologies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14095181] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alginate is an attractive marine resource-based biopolymer, which has been widely used in pharmaceutical, food and textile industries. This paper reviewed the latest development of the conventional and alternative processes for alginate extraction from brown seaweed. To improve extraction yield and product quality, various studies have been carried out to optimize the operation condition. Based on literature survey, the most commonly used protocol is soaking milled seaweed in 2% (w/v) formaldehyde, overnight, solid loading ratio of 1:10–20 (dry weight biomass to solution), then collecting the solid for acid pre-treatment with HCl 0.2–2% (w/v), 40–60 °C, 1:10–30 ratio for 2–4 h. Next, the solid residue from the acid pre-treatment is extracted using Na2CO3 at 2–4% (w/v), 40–60 °C, 2–3 h, 1:10–30 ratio. Then the liquid portion is precipitated by ethanol (95%+) with a ratio of 1:1 (v/v). Finally, the solid output is dried in oven at 50–60 °C. Novel extraction methods using ultrasound, microwave, enzymes and extrusion improved the extraction yield and alginate properties, but the financial benefits have not been fully justified yet. To improve the sustainable production of alginate, it is required to promote seaweed cultivation, reduce water footprint, decrease organic solvent usage and co-produce alginate with other value-added products.
Collapse
|
34
|
Phuong H, Massé A, Dumay J, Vandanjon L, Mith H, Legrand J, Arhaliass A. Enhanced Liberation of Soluble Sugar, Protein, and R-Phycoerythrin Under Enzyme-Assisted Extraction on Dried and Fresh Gracilaria gracilis Biomass. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.718857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aims to investigate the bio-refinery process through an enzyme-assisted extraction (EAE) on freeze-dried and fresh macroalgae Gracilaria gracilis for the release of water-soluble components (R-phycoerythrin, proteins, and sugar). Three enzymes, cellulase, protease, and enzyme cocktail (mixture of cellulase and protease), were applied in the study. Results showed that freeze-dried biomass yielded the highest target components in the presence of enzyme cocktail while a single enzyme was better with fresh biomass, either protease for the release of R-PE and protein or cellulase for sugar. The extraction of protein and sugar was improved by 43% and 57%, respectively, from fresh biomass compared to dried biomass. The difference of biomass status was shown to affect the required enzyme and recovery yield during the extraction process. Employing an enzyme cocktail on freeze-dried biomass boosted the extraction yield, which was probably due to the complementary effect between enzymes. On the other hand, single enzyme worked better on fresh biomass, giving economic benefits (enzyme limitation and drying stage) for further implementation of the bio-refinery process. Thus, biomass treatment (fresh or freeze-dried) and enzyme-type determined the efficiency of enzyme-assisted extraction according to the target components.
Collapse
|
35
|
Macroalgal Proteins: A Review. Foods 2022; 11:foods11040571. [PMID: 35206049 PMCID: PMC8871301 DOI: 10.3390/foods11040571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Population growth is the driving change in the search for new, alternative sources of protein. Macroalgae (otherwise known as seaweeds) do not compete with other food sources for space and resources as they can be sustainably cultivated without the need for arable land. Macroalgae are significantly rich in protein and amino acid content compared to other plant-derived proteins. Herein, physical and chemical protein extraction methods as well as novel techniques including enzyme hydrolysis, microwave-assisted extraction and ultrasound sonication are discussed as strategies for protein extraction with this resource. The generation of high-value, economically important ingredients such as bioactive peptides is explored as well as the application of macroalgal proteins in human foods and animal feed. These bioactive peptides that have been shown to inhibit enzymes such as renin, angiotensin-I-converting enzyme (ACE-1), cyclooxygenases (COX), α-amylase and α-glucosidase associated with hypertensive, diabetic, and inflammation-related activities are explored. This paper discusses the significant uses of seaweeds, which range from utilising their anthelmintic and anti-methane properties in feed additives, to food techno-functional ingredients in the formulation of human foods such as ice creams, to utilising their health beneficial ingredients to reduce high blood pressure and prevent inflammation. This information was collated following a review of 206 publications on the use of seaweeds as foods and feeds and processing methods to extract seaweed proteins.
Collapse
|
36
|
Lomartire S, Gonçalves AMM. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar Drugs 2022; 20:141. [PMID: 35200670 PMCID: PMC8875101 DOI: 10.3390/md20020141] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as whole food since ancient times and used to treat several diseases, even though the mechanisms of action were unknown. During the last decades, research has demonstrated that those unique compounds express beneficial properties for human health. Each compound has peculiar properties (e.g., antioxidant, antimicrobial, antiviral activities, etc.) that can be exploited to enhance human health. Seaweed's extracted polysaccharides are already involved in the pharmaceutical industry, with the aim of replacing synthetic compounds with components of natural origin. This review aims at a better understanding of the recent uses of algae in drug development, with the scope of replacing synthetic compounds and the multiple biotechnological applications that make up seaweed's potential in industrial companies. Further research is needed to better understand the mechanisms of action of seaweed's compounds and to embrace the use of seaweeds in pharmaceutical companies and other applications, with the final scope being to produce sustainable and healthier products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
37
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Samarathunga J, Wijesekara I, Jayasinghe M. Seaweed proteins as a novel protein alternative: Types, extractions, and functional food applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jayani Samarathunga
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Madhura Jayasinghe
- Department of Food Science & Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
39
|
Seaweed-Derived Proteins and Peptides: Promising Marine Bioactives. Antioxidants (Basel) 2022; 11:antiox11010176. [PMID: 35052680 PMCID: PMC8773382 DOI: 10.3390/antiox11010176] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Seaweeds are a typical food of East-Asian cuisine, to which are alleged several beneficial health effects have been attributed. Their availability and their nutritional and chemical composition have favored the increase in its consumption worldwide, as well as a focus of research due to their bioactive properties. In this regard, seaweed proteins are nutritionally valuable and comprise several specific enzymes, glycoproteins, cell wall-attached proteins, red algae phycobiliproteins, lectins, peptides, or mycosporine-like amino acids. This great extent of molecules has been reported to exert significant antioxidant, antimicrobial, anti-inflammatory, antihypertensive, antidiabetic, or antitumoral properties. Hence, knowledge on algae proteins and derived compounds have gained special interest for the potential nutraceutical, cosmetic or pharmaceutical industries based on these bioactivities. Although several molecular mechanisms of action on how these proteins and peptides exert biological activities have been described, many gaps in knowledge still need to be filled. Updating the current knowledge related to seaweed proteins and peptides is of interest to further asses their potential health benefits. This review addresses the characteristics of seaweed protein and protein-derived molecules, their natural occurrence, their studied bioactive properties, and their described potential mechanisms of action.
Collapse
|
40
|
Rhein-Knudsen N, Guan C, Mathiesen G, Horn SJ. Expression and production of thermophilic alginate lyases in Bacillus and direct application of culture supernatant for seaweed saccharification. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Costa M, Cardoso C, Afonso C, Bandarra NM, Prates JAM. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. J Anim Physiol Anim Nutr (Berl) 2021; 105:1075-1102. [PMID: 33660883 DOI: 10.1111/jpn.13509] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
The effects of dietary macroalgae, or seaweeds, on growth performance and meat quality of livestock animal species are here reviewed. Macroalgae are classified into Phaeophyceae (brown algae), Rhodophyceae (red algae) and Chlorophyceae (green algae). The most common macroalga genera used as livestock feedstuffs are: Ascophyllum, Laminaria and Undaria for brown algae; Ulva, Codium and Cladophora for green algae; and Pyropia, Chondrus and Palmaria for red algae. Macroalgae are rich in many nutrients, including bioactive compounds, such as soluble polysaccharides, with some species being good sources of n-3 and n-6 polyunsaturated fatty acids. To date, the incorporation of macroalgae in livestock animal diets was shown to improve growth and meat quality, depending on the alga species, dietary level and animal growth stage. Generally, Ascophyllum nodosum can increase average daily gain (ADG) in ruminant and pig mostly due to its prebiotic activity in animal's gut. A. nodosum also enhances marbling score, colour uniformity and redness, and can decrease saturated fatty acids in ruminant meats. Laminaria sp., mainly Laminaria digitata, increases ADG and feed efficiency, and improves the antioxidant potential of pork. Ulva sp., and its mixture with Codium sp., was shown to improve poultry growth at up to 10% feed. Therefore, seaweeds are promising sustainable alternatives to corn and soybean as feed ingredients, thus attenuating the current competition among food-feed-biofuel industries. In addition, macroalgae can hinder eutrophication and participate in bioremediation. However, some challenges need to be overcome, such as the development of large-scale and cost-effective algae production methods and the improvement of algae digestibility by monogastric animals. The dietary inclusion of Carbohydrate-Active enZymes (CAZymes) could allow for the degradation of recalcitrant macroalga cell walls, with an increase of nutrients bioavailability. Overall, the use of macroalgae as feedstuffs is a promising strategy for the development of a more sustainable livestock production.
Collapse
Affiliation(s)
- Mónica Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Carlos Cardoso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Cláudia Afonso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Narcisa M Bandarra
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
42
|
|
43
|
Effect of wall materials on the spray drying encapsulation of brown seaweed bioactive compounds obtained by subcritical water extraction. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
An Overview on Effects of Processing on the Nutritional Content and Bioactive Compounds in Seaweeds. Foods 2021; 10:foods10092168. [PMID: 34574278 PMCID: PMC8471530 DOI: 10.3390/foods10092168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023] Open
Abstract
The effect of the different processing technologies and the extraction techniques on the bioactive compounds and nutritional value of seaweeds is reviewed in this study. This work presents and discusses the main seaweeds treatments such as drying, heating, and culinary treatments, and how they affect their nutritional value, the bioactive compounds, and antioxidant capacity. Some examples of traditional and green extraction technologies for extracting seaweeds bioactive components are also presented. The last trends and research on the development of seaweed-based food products is also covered in this review. The use of environmentally friendly extraction procedures, as well as the development of new healthy seaweed-based foods, is expected to grow in the near future.
Collapse
|
45
|
Vázquez-Rodríguez B, Santos-Zea L, Heredia-Olea E, Acevedo-Pacheco L, Santacruz A, Gutiérrez-Uribe JA, Cruz-Suárez LE. Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressa on human gut microbiota composition using an in vitro colonic model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
46
|
Echave J, Fraga-Corral M, Garcia-Perez P, Popović-Djordjević J, H. Avdović E, Radulović M, Xiao J, A. Prieto M, Simal-Gandara J. Seaweed Protein Hydrolysates and Bioactive Peptides: Extraction, Purification, and Applications. Mar Drugs 2021; 19:500. [PMID: 34564162 PMCID: PMC8471739 DOI: 10.3390/md19090500] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweeds are industrially exploited for obtaining pigments, polysaccharides, or phenolic compounds with application in diverse fields. Nevertheless, their rich composition in fiber, minerals, and proteins, has pointed them as a useful source of these components. Seaweed proteins are nutritionally valuable and include several specific enzymes, glycoproteins, cell wall-attached proteins, phycobiliproteins, lectins, or peptides. Extraction of seaweed proteins requires the application of disruptive methods due to the heterogeneous cell wall composition of each macroalgae group. Hence, non-protein molecules like phenolics or polysaccharides may also be co-extracted, affecting the extraction yield. Therefore, depending on the macroalgae and target protein characteristics, the sample pretreatment, extraction and purification techniques must be carefully chosen. Traditional methods like solid-liquid or enzyme-assisted extraction (SLE or EAE) have proven successful. However, alternative techniques as ultrasound- or microwave-assisted extraction (UAE or MAE) can be more efficient. To obtain protein hydrolysates, these proteins are subjected to hydrolyzation reactions, whether with proteases or physical or chemical treatments that disrupt the proteins native folding. These hydrolysates and derived peptides are accounted for bioactive properties, like antioxidant, anti-inflammatory, antimicrobial, or antihypertensive activities, which can be applied to different sectors. In this work, current methods and challenges for protein extraction and purification from seaweeds are addressed, focusing on their potential industrial applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Javier Echave
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Pascual Garcia-Perez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| | - Jelena Popović-Djordjević
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia;
| | - Edina H. Avdović
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Milanka Radulović
- Department of Bio-Medical Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia;
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E-32004 Ourense, Spain; (J.E.); (M.F.-C.); (P.G.-P.); (J.X.)
| |
Collapse
|
47
|
Hlalukana N, Magengelele M, Malgas S, Pletschke BI. Enzymatic Conversion of Mannan-Rich Plant Waste Biomass into Prebiotic Mannooligosaccharides. Foods 2021; 10:2010. [PMID: 34574120 PMCID: PMC8468410 DOI: 10.3390/foods10092010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/16/2023] Open
Abstract
A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered "wastes", which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). MOS can be produced from the degradation of mannan. Mannan has a main backbone consisting of β-1,4-linked mannose residues (which may be interspersed by glucose residues) with galactose substituents. Endo-β-1,4-mannanases cleave the mannan backbone at cleavage sites determined by the substitution pattern and thus give rise to different MOS products. These MOS products serve as prebiotics to stimulate various types of intestinal bacteria and cause them to produce fermentation products in different parts of the gastrointestinal tract which benefit the host. This article reviews recent advances in understanding the exploitation of plant residual biomass via the enzymatic production and characterization of MOS, and the influence of MOS on beneficial gut microbiota and their biological effects (i.e., immune modulation and lipidemic effects) as observed on human and animal health.
Collapse
Affiliation(s)
| | | | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (N.H.); (M.M.); (B.I.P.)
| | | |
Collapse
|
48
|
Production of Ulvan Oligosaccharides with Antioxidant and Angiotensin-Converting Enzyme-Inhibitory Activities by Microbial Enzymatic Hydrolysis. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seaweed oligosaccharides have attracted attention in food, agricultural, and medical applications recently. Compared to red and brown seaweeds, fewer studies have focused on the biological activity of green seaweed’s oligosaccharides. This study aimed to produce bioactive ulvan oligosaccharides via enzymatic hydrolysis from green seaweed Ulva lactuca. Ulvan, a water-soluble polysaccharide, was obtained by hot water extraction. Two isolated marine bacteria, Pseudomonas vesicularis MA103 and Aeromonas salmonicida MAEF108, were used to produce multiple hydrolases, such as ulvanolytic enzymes, amylase, cellulase, and xylanase, to degrade the ulvan extract. An ultrafiltration system was used to separate the enzymatic hydrolysate to acquire the ulvan oligosaccharides (UOS). The characteristics of the ulvan extract and the UOS were determined by yield, reducing sugar, uronic acid, sulfate group, and total phenols. The FT-IR spectrum indicated that the ulvan extract and the UOS presented the bands associated with O-H, C=O, C-O, and S=O stretching. Angiotensin I converting enzyme (ACE) inhibition and antioxidant activities in vitro were evaluated in the ulvan extract and the UOS. These results provide a practical approach to producing bioactive UOS by microbial enzymatic hydrolysis that can benefit the development of seaweed-based products at the industrial scale.
Collapse
|
49
|
Landeta-Salgado C, Cicatiello P, Stanzione I, Medina D, Berlanga Mora I, Gomez C, Lienqueo ME. The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiol Res 2021; 251:126835. [PMID: 34399103 DOI: 10.1016/j.micres.2021.126835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
The marine fungi Paradendryphiela salina and Talaromyces pinophilus degrade and assimilate complex substrates from plants and seaweed. Additionally, these fungi secrete surface-active proteins, identified as cerato-platanins and hydrophobins. These hydrophobic proteins have the ability to self-assemble forming amyloid-like aggregates and play an essential role in the growth and development of the filamentous fungi. It is the first time that one cerato-platanin (CP) is identified and isolated from P. salina (PsCP) and two Class I hydrophobins (HFBs) from T. pinophilus (TpHYD1 and TpHYD2). Furthermore, it is possible to extract cerato-platanins and hydrophobins using marine fungi that can feed on seaweed biomass, and through a submerged liquid fermentation process. The propensity to aggregate of these proteins has been analyzed using different techniques such as Thioflavin T fluorescence assay, Fourier-transform Infrared Spectroscopy, and Atomic Force Microscopy. Here, we show that the formation of aggregates of PsCP and TpHYD, was influenced by the carbon source from seaweed. This study highlighted the potential of these self-assembling proteins generated from a fermentation process with marine fungi and with promising properties such as conformational plasticity with extensive applications in biotechnology, pharmacy, nanotechnology, and biomedicine.
Collapse
Affiliation(s)
- Catalina Landeta-Salgado
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Paola Cicatiello
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - Ilaria Stanzione
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, I-80126 Naples, Italy
| | - David Medina
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile
| | - Isadora Berlanga Mora
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile
| | - Carlos Gomez
- Chemistry Department, University of Valle-Yumbo, Valle del Cauca, 760501, Colombia
| | - María Elena Lienqueo
- Department of Chemical Engineering, Biotechnology, and Materials, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago, Beauchef 851, 8370456, Chile; Center for Biotechnology and Bioengineering (CeBiB), Santiago, Beauchef 851, 8370456, Chile.
| |
Collapse
|
50
|
Alboofetileh M, Hamzeh A, Abdollahi M. Seaweed Proteins as a Source of Bioactive Peptides. Curr Pharm Des 2021; 27:1342-1352. [PMID: 33557731 DOI: 10.2174/1381612827666210208153249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Seaweeds have received great attention as a vegetarian and sustainable marine source of protein, which does not need irrigation, arable land, and fertilization. Besides, seaweeds are considered as an untapped resource for discovering bioactive compounds with health benefits where bioactive peptides have shown outstanding potential. This review provides a detailed overview of available scientific knowledge on production methods, bioactivity and application of peptides from seaweed proteins. The emphasis is on the effects from seaweed varieties and peptide production conditions on the bioactivity of the peptides and their potential health benefits. Bioactive properties of seaweed peptides, including antioxidant, antihypertensive, antidiabetic, anti-inflammatory, anticancer activities and other potential health benefits, have been discussed. It also covers current challenges and required future research and innovations for the successful application of seaweeds proteins as a sustainable source of bioactive peptides. Effects from seasonal variation of seaweed composition on the bioactivity of their peptides, difficulties in the extraction of proteins from seaweed complex structure, scalability and reproducibility of the developed methods for the production of bioactive peptides, the safety of the peptides are examples of highlighted challenges. Further studies on the bioavailability of the seaweed bioactive peptides and validation of the results in animal models and human trials are needed before their application as functional foods or pharmaceutical ingredients.
Collapse
Affiliation(s)
- Mehdi Alboofetileh
- Iran Fish Processing Technology Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bandar Anzali, Iran
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| |
Collapse
|