1
|
Yu X, Huo J, Wang K, Duan Y, Ma X, Ma J, Wang L, Wang P, Xiao Z. Different interaction behaviors of rice glutelin with amylose and amylopectin within starch under the extrusion environment. Food Chem 2025; 480:143974. [PMID: 40147278 DOI: 10.1016/j.foodchem.2025.143974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Effects of rice glutelin (RG) on structural properties of amylose (AM) and amylopectin (AP) within rice starch and their interaction mechanism were revealed. At the same RG addition, AP had a greater binding capacity than AM. Adding RG increased the thermal stability and short-range orders of extruded amylose (EAM) and extruded amylopectin (EAP), as well as changed their surface morphologies. Extrusion destroyed the crystalline structure of AM and AP, while the relative crystalline of EAM and EAP increased with the increasing of RG. When RG content was 6 % and 8 %, RG mainly interacted with AM and AP via hydrogen bonds. The main driving force between RG and AP changed into hydrophobic interaction when RG content was 10 % and 12 %. These results contributed to a deep understanding of structural evolution of AM and AP within rice starch caused by the interaction with RG under the extrusion environment.
Collapse
Affiliation(s)
- Xiaoshuai Yu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
| | - Jinjie Huo
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Kexin Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yumin Duan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
| | - Xiaoting Ma
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
| | - Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Lishuang Wang
- College of Liaoning Agricultural Vocational and Technical, Yingkou 115009, PR China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China.
| | - Zhigang Xiao
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
2
|
Suo X, Moreno-Araiza O, Dall'Asta M, Giuberti G, Marchesani A, Vittadini E. Red lentil pasta quality and in vitro digestibility modulation by means of processing conditions. Int J Food Sci Nutr 2025; 76:265-276. [PMID: 39945275 DOI: 10.1080/09637486.2025.2464665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 04/30/2025]
Abstract
Pulse pasta has, in recent years, gained the interest of consumers and food manufacturers and a deeper understanding of the the effects of flour types and pasta processing on its physical and nutritional characteristics has become a priority. This work investigates the effects of red lentil flour type (raw or pre-cooked), pasta extrusion pressure (i.e. 80 and 125 bars), and drying temperature (i.e.,50 and 80 °C) on pasta quality and in vitro nutritional digestibility. A significant reduction in cooking loss was found in pasta extruded at high pressure and dried at high temperature (80 °C), while all pasta had acceptable cooking quality in terms of length, thickness and weight gains. More slowly digestible starch was found in pasta dried at high temperatures, while less rapidly digestible and more resistant starch was present in pasta extruded at high pressure. In vitro starch digestibility can be effectively reduced by applying proper processing conditions (i.e. high extrusion pressure) which could be vital for designing a 100% legume pasta with modulated glycemic response.
Collapse
Affiliation(s)
- Xinying Suo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | - Oscar Moreno-Araiza
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | - Margherita Dall'Asta
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| |
Collapse
|
3
|
Zeng F, Zhang M, Law CL, Lin J. Harnessing artificial intelligence for advancements in Rice / wheat functional food Research and Development. Food Res Int 2025; 209:116306. [PMID: 40253151 DOI: 10.1016/j.foodres.2025.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/21/2025]
Abstract
In recent years, the research and development (R&D) of rice and wheat functional foods has attracted a widespread attention from food researchers, driven by the increasing global food consumption and growing consumer demand for healthier and safer food. Artificial intelligence (AI) has the potential to enhance efficiency, quality, and safety through the AI's problem-solving and decision-support capabilities. This review provides a comprehensive overview of AI-related technologies applied in food industry, including machine learning, large language models, computer vision, and intelligent sensor. It then explores AI applications in rice / wheat functional food R&D over the past five years (2020-2024), covering key topics such as crops cultivation and screening, food processing, food quality and safety, challenges and future prospects. The introduction of AI technology has led the field towards higher efficiency, non-destructive analysis, better robustness and greater stability. In practical applications, combining AI technology with various spectroscopic and sensing technologies has shown great promise in addressing critical problems such as low crop yields, insufficient functional nutrition in grains, over-processing, and ecological contamination caused by traditional detection methods. Nevertheless, the implementation of AI in this field still faces several challenges, including narrow application scope, limited data availability, high application cost, and trust-related concerns. Looking ahead, as the application scenarios and functionalities of AI continue to broaden, AI is poised to emerge as a disruptive technology that would fundamentally transform the landscape of rice / wheat functional food R&D.
Collapse
Affiliation(s)
- Fangye Zeng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology,Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology,Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, Malaysia Campus, University of Nottingham, Semenyih 43500, Selangor, Malaysia
| | - Jiacong Lin
- Jiangsu New Herun Shijia Food Company Limited, 212000 Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Bölücü N, Pennells J, Yang H, Rybinski M, Wan S. An Evaluation of Large Language Models for Supplementing a Food Extrusion Dataset. Foods 2025; 14:1355. [PMID: 40282757 PMCID: PMC12026441 DOI: 10.3390/foods14081355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Food extrusion is a widely used processing technique that transforms raw ingredients into structured food products-foods with well-defined textures, shapes, and functionalities-through mechanical shear and thermal energy. Despite its broad industrial application, the absence of a standardised, structured dataset capturing extrusion research parameters has hindered research synthesis, product development, and process optimisation. To address this gap, we introduce a manually curated food extrusion literature dataset capturing publication details, product types, process parameters, formulation data, experimental variables, characterisation metrics, and study-level insights. However, while manually curated datasets are typically of high quality, their scope is limited by time and resource constraints. We propose a method to supplement the dataset using large language models (LLMs) and evaluate the accuracy of LLMs in extracting structured food extrusion data from the scientific literature. Our findings demonstrate that LLMs can effectively extract structured information. However, some challenges, such as hallucination and missing contextual details, remain, suggesting that human effort can be spent on validating the resulting data. This still represents significant time savings as validation is a less time-consuming task than data extraction. We argue that LLMs thus represent a viable tool in providing supplementary datasets, and we propose a method to leverage existing human efforts in dataset creation to improve data quality.
Collapse
Affiliation(s)
- Necva Bölücü
- CSIRO Data61, Sydney, NSW 2122, Australia; (N.B.); (H.Y.); (M.R.)
| | - Jordan Pennells
- CSIRO Agriculture and Food, Food Innovation Centre, Werribee, VIC 3030, Australia;
| | - Huichen Yang
- CSIRO Data61, Sydney, NSW 2122, Australia; (N.B.); (H.Y.); (M.R.)
| | - Maciej Rybinski
- CSIRO Data61, Sydney, NSW 2122, Australia; (N.B.); (H.Y.); (M.R.)
| | - Stephen Wan
- CSIRO Data61, Sydney, NSW 2122, Australia; (N.B.); (H.Y.); (M.R.)
| |
Collapse
|
5
|
Yan X, Tian L, Xiao H, Luo S, Chen T, Ruan R, Liu Y, Wu J, Liu C. Heat-stable single-helical structures formed during the extrusion process play a key role in the cooking and texture qualities of rice noodles. Int J Biol Macromol 2025; 301:140066. [PMID: 39832581 DOI: 10.1016/j.ijbiomac.2025.140066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Extrusion is a critical process in rice noodle production. However, the underlying mechanism by which it influences noodle quality remains inadequately understood. In this study, rice noodles were processed at extrusion temperatures ranging from 100 °C to 140 °C and characterized in terms of molecular structure, short- and long-range order, microstructure, cooking loss, and texture properties. The results indicated that extrusion at 120 °C promoted the formation of heat-stable amylose single-helical structures, including VII-type crystals. These stable amylose structures reduced their interference with the rearrangement of amylopectin, facilitating the formation of amylopectin double-helical structures and A-type crystals during the subsequent retrogradation process. The highly ordered helical structures and crystals were further organized into larger, denser domains, characterized by a gyration radius of 21.45 nm, a fractal dimension of 2.54, and a correlation length of 6.64 nm. These dense domains were uniformly distributed throughout the gel matrix of rice noodles, acting as cross-links within the gel network and thereby enhancing its mechanical strength. The enhancement in the gel's mechanical strength ultimately contributed to improved eating quality of rice noodles extruded at 120 °C compared to those extruded at 100 °C. This improvement was evidenced by a 53.4 % reduction in cooking loss, a 52.5 % decrease in adhesiveness, and significant increases in hardness (51.4 %), springiness (21.3 %), and chewiness (52.3 %). This study underscores the critical role of heat-stable amylose single-helical structures, particularly VII-type crystals, formed during the extrusion process in determining the cooking and texture qualities of rice noodles.
Collapse
Affiliation(s)
- Xiaoyan Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Li Tian
- Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Hong Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China
| | - Rongsheng Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering and Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China.
| |
Collapse
|
6
|
Asif M, Maan AA, Nazir A, Khan MIM, Khan MKI. Effect of chickpea on the physicochemical, nutritional, antioxidant, and organoleptic characterization of corn extrudates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2059-2067. [PMID: 39503058 DOI: 10.1002/jsfa.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 01/14/2025]
Abstract
BACKGROUND Ready-to-eat snacks are very popular. However, they have a high glycemic index and lack proteins & micronutrients. This study prepared protein-enriched corn extrudates by adding chickpea grit supplements at varying concentrations (0-100 g kg-1). RESULTS The protein contents of 100 g kg-1 supplemented extrudates increased by 66.66% and dietary fiber contents increased by 48.02% in comparison with the control. Bulk density increased by 1.46 times. However, the expansion ratio, porosity, and water absorption index decreased significantly (P < 0.05). The health-promoting characteristics of the extrudates increased in comparison with the control sample, i.e., total phenolic content increasing by 17.84%, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) contents by 11.38%, and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) content by 9.59%. Likewise, the potassium contents increased by 24.63% with the inclusion of 10% chickpea in corn extrudates. Sensory evaluation revealed that corn extrudates with up to 60 g kg-1 added chickpea achieved the highest acceptability among panelists. CONCLUSION The addition of chickpea produced corn extrudates with higher protein and mineral content, which could mitigate malnutrition. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Asif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhammad Imran Mehmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, People's Republic of China
| | - Muhammad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
7
|
Azuka C, Onwuchekwa A, Nwosu A, Holmes M, Boesch C, Okafor G. The Effects of Malting and Extrusion on the Functional and Physical Properties of Extrudates from Malted Brown Rice and Pigeon Pea Flour Blends. Foods 2025; 14:422. [PMID: 39942015 PMCID: PMC11816902 DOI: 10.3390/foods14030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Malted grains subjected to extrusion technology could have better quality indices than non-malted grains. The effects of malting and extrusion on the functional and physical qualities of foods extruded from malted brown rice and pigeon pea flour blends were investigated. Malted pigeon pea and brown rice flours were processed into blends, extruded under various conditions of feed moisture levels (15-20), feed compositions (8-30%), and barrel temperatures (100-130 °C), and analyzed using Response Surface Methodology with a Box-Behnken design. The impacts of malting and extrusion were assessed on the following functional qualities: bulk density, rheology, swelling capacity, water absorption capacity, and solubility. The physical quality assessment included a 2-D photographic representation of the extrudates, a microscopic assessment of their internal structure, expansion index, color parameters (L*, a*, b*), and alterations in the color index. Increased feed moisture, malted pigeon pea, and decreased barrel temperature resulted in a higher bulk density (0.72 to 0.84 g/cm3) of the extrudates. There was a decrease in water absorption capacity (6.82-4.49%) with an increase in barrel temperature above 100 °C. All the samples showed a decrease in viscosity with increasing shear rate. At low barrel temperatures, feed compositions, and feed moistures, extrusion led to increases in the expansion index (3.5 to 12.94) and the color lightness (66.83-81.71) of the extrudates. Samples with a higher proportion of malted brown rice showed a higher expansion index, lower bulk density, and lighter color of the extrudates.
Collapse
Affiliation(s)
- Chinenye Azuka
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (M.H.); (C.B.)
- Department of Food Science and Technology, University of Nigeria, Nsukka 410001, Nigeria; (A.O.); (A.N.); (G.O.)
| | - Amarachi Onwuchekwa
- Department of Food Science and Technology, University of Nigeria, Nsukka 410001, Nigeria; (A.O.); (A.N.); (G.O.)
| | - Adaora Nwosu
- Department of Food Science and Technology, University of Nigeria, Nsukka 410001, Nigeria; (A.O.); (A.N.); (G.O.)
| | - Mel Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (M.H.); (C.B.)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (M.H.); (C.B.)
| | - Gabriel Okafor
- Department of Food Science and Technology, University of Nigeria, Nsukka 410001, Nigeria; (A.O.); (A.N.); (G.O.)
| |
Collapse
|
8
|
Martín-Diana AB, Jiménez-Pulido IJ, Aguiló-Aguayo I, Abadías M, Pérez-Jiménez J, Rico D. Peach Peel Extrusion for the Development of Sustainable Gluten-Free Plant-Based Flours. Molecules 2025; 30:573. [PMID: 39942677 PMCID: PMC11819671 DOI: 10.3390/molecules30030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The food industry generates substantial waste, contributing to environmental challenges, such as pollution and greenhouse gas emissions. Utilizing by-products, particularly fruit peels that are rich in fiber, antioxidants, and vitamins, presents a sustainable approach to reducing waste, while enhancing the nutritional value of food products. Specifically, peach peel can be used to produce gluten-free flours, with increased fiber content and antioxidant properties. Extrusion technology is a highly effective method for developing these functional flours, as it improves digestibility, reduces anti-nutrients, and enhances nutrient bioavailability. This study investigates the potential of combining corn flour with peach peel flour, derived from Royal Summer peachs (RSF), at different concentrations (0%, 5%, and 15%). A factorial experimental design was utilized to evaluate the impact of RSF incorporation on the proximate composition, antioxidant capacity, and functional properties of the flour. The results indicate that flours containing 15% RSF demonstrated significant improvements in terms of the dietary fiber content (5.90 g per 100 g-1) and antioxidant capacity (ABTS•+ 745.33 µmol TE per 100 g-1), meeting the "source of fiber" labelling requirements. The glycemic index of the 15% RSF flour was reduced to 78.09 compared to non-enriched flours. The functional properties of the flour, such as swelling and gelation capacities, were also enhanced with RSF incorporation. These findings highlight the potential of RSF-enriched flours in regard to the development of sustainable, health-promoting, plant-based, and gluten-free flours.
Collapse
Affiliation(s)
- Ana Belen Martín-Diana
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain;
| | - Iván Jesús Jiménez-Pulido
- Agrarian Technological Institute of Castilla and Leon (ITACyL), Ctra. Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain;
| | | | - Maribel Abadías
- IRTA, Postharvest, Fruitcentre, 25003 Lleida, Spain; (I.A.-A.); (M.A.)
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Daniel Rico
- Endocrinology and Clinical Nutrition Research Center (CIENC/IENVA), Faculty of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, 47005 Valladolid, Spain
| |
Collapse
|
9
|
He W, Tang J, Chen Y, Liu G, Li Z, Tu J, Li Y. Effects of Extrusion Treatment on the Physicochemical and Baking Quality of Japonica Rice Batters and Rice Breads. Gels 2025; 11:86. [PMID: 39996629 PMCID: PMC11853857 DOI: 10.3390/gels11020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Gluten-free rice bread made from japonica rice finds challenge in achieving a good shape and structure, presenting a significant obstacle in the baking industry. This study aims to improve the quality of rice bread with japonica rice flour by hot extrusion treatment (without additives). The effects of extrusion on the amylose content, gelatinization degree, hydration capacity, short-range molecular ordering, and microstructure of japonica rice flour were investigated. The results show that the amylose content of the extruded flour increased by 12.43% and the gelatinization degree of it increased by 13.23 times, showing disrupted starch granules, numerous pores, and a better hydration capacity. The addition of extruded flour improved the overall viscoelasticity of the batter. Compared to the control group, the specific volume and porosity of the optimized rice bread were increased by 19.46% and 61.92%, respectively. The gas cell density was increased by 4.63 times, and the average gas cell area of rice bread was reduced by 47.14%. The correlations among the raw material properties of rice flour, the batter properties, and the quality of rice bread products were revealed by principal component analysis. This study demonstrates that the addition of moderate amounts of extruded japonica rice flour could improve the quality of rice bread products.
Collapse
Affiliation(s)
- Wenxia He
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003, China; (W.H.); (J.T.); (Y.C.); (Z.L.); (Y.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Changhui Road 666, Zhenjiang 212100, China;
| | - Jingni Tang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003, China; (W.H.); (J.T.); (Y.C.); (Z.L.); (Y.L.)
| | - Yang Chen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003, China; (W.H.); (J.T.); (Y.C.); (Z.L.); (Y.L.)
- School of Biotechnology, Jiangsu University of Science and Technology, Changhui Road 666, Zhenjiang 212100, China;
| | - Guanhui Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003, China; (W.H.); (J.T.); (Y.C.); (Z.L.); (Y.L.)
- Jiangsu Provincial Research Center for Grain Bioprocessing Engineering, Zhenjiang 211102, China
| | - Zhenni Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003, China; (W.H.); (J.T.); (Y.C.); (Z.L.); (Y.L.)
- Jiangsu Provincial Research Center for Grain Bioprocessing Engineering, Zhenjiang 211102, China
| | - Jie Tu
- School of Biotechnology, Jiangsu University of Science and Technology, Changhui Road 666, Zhenjiang 212100, China;
| | - Yixuan Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003, China; (W.H.); (J.T.); (Y.C.); (Z.L.); (Y.L.)
- Jiangsu Provincial Research Center for Grain Bioprocessing Engineering, Zhenjiang 211102, China
| |
Collapse
|
10
|
Wang YY, Yang Y, Bian X, Ma CM, Ren LK, Fu Y, Liu BX, Fu JN, Shi YG, Zhang N. Effects of soy protein isolate interaction with brown rice starch on the multiscale structure of brown rice bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:649-660. [PMID: 39229832 DOI: 10.1002/jsfa.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Gluten-free bread (GFB) has technical bottlenecks such as hard texture, rough taste and low nutrition in practical production. In order to solve these problems, this study used germinated brown rice starch as the main raw material, and investigated the effects of soybean isolate protein (SPI) on the multiscale structure of germinated brown rice starch and bread quality. RESULTS A gluten-free rice bread process simulation system was established, and the interaction between SPI and starch in the simulation system was characterized. The result shows that the interaction forces between SPI and germinated brown rice starch were mainly represented by hydrogen bonds, and with the addition of SPI, the crystallinity of starch showed a downward trend. At the same time, when the amount of SPI was 3%, the appearance quality was the best and the specific volume of bread was 1.08 mL g-1. When the amount of SPI was 6%, the texture quality was the best. Compared with the bread without SPI, the hardness of the bread with 6% SPI was reduced by 0.13 times, the springiness was increased by 0.03 times, the color was the most vibrant, the L* value being 1.02 times the original, and the baking loss was reduced to 0.98 times the original. CONCLUSIONS The interaction force between SPI and germinated brown rice starch and its effect on bread quality were clarified, and these results inform choices about providing a theoretical basis for the subsequent development of higher-quality GFB. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Chun-Min Ma
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Li-Kun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Bao-Xiang Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jia-Ning Fu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yan-Guo Shi
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
11
|
Cheng L, Liu X, Ma Y, Huang X, Zhang X, Liu J, Song L, Qiao M, Li T, Wang T. Effects of different processing methods on phenolic compounds in flaxseed meal. Food Chem X 2024; 24:101934. [PMID: 39582661 PMCID: PMC11582773 DOI: 10.1016/j.fochx.2024.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
This study examined effects of different processing methods on phenolic compounds in flaxseed meal. The optimal SE treatment was 1.0 MPa for 3 min, and the contents of total flavonoids and phenolic acid were 2.26 times and 1.63 times of the control group, respectively. Notably, erucic acid increased 85.76 %. Optimal extrusion conditions (15 % moisture content, 140 °C, 29 hz) led to the presence of rutin and a 2.81 times increase in protocatechuic acid content over the control. Fermenting with 3 % Bacillus subtilis for 4 days yielded gallic acid in bound form and vanillic acid in free form, with protocatechuic acid increasing 40.65 % compared to the control. Among all the treatments, extrusion produced the highest levels of phenolic compounds in flaxseed meal. Each treatment significantly increased the open ring isomer ester phenol (SDG) compared to the control. Overall, various processing methods impacted the phenolic content and composition in flaxseed meal differently.
Collapse
Affiliation(s)
- Lin Cheng
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xiaoyong Liu
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xinru Zhang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Jinrui Liu
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Tiange Li
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Tianlin Wang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| |
Collapse
|
12
|
Kabeer S, Mary SJ, Govindarajan N, Essa MM, Qoronfleh MW. Traditional weaning foods and processing methods with fortification for sustainable development of infants to combat zero hunger: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2263-2274. [PMID: 39431181 PMCID: PMC11486866 DOI: 10.1007/s13197-024-06065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 10/22/2024]
Abstract
Weaning foods are soft digestible baby foods introduced along with breast milk for infants of 6 to 24 months. Early nutrition is a crucial one for proper growth and wellbeing. Researchers have developed weaning food from locally available ingredients with appropriate processing methods without losing actual nutrients value. Despite this, micronutrient malnutrition irrespective of the country status is a potential threat. This is overcome by fortifying micronutrients in the formulated weaning foods. Typically, formulated weaning foods are prepared from fruits and cereal grains that are abundant in micronutrients. Different processing methods are adopted to maintain the original natural characteristics of the ingredients. Traditional homemade weaning foods always have an upper hand over industrialized ones. Additionally, fortification enhances the micronutrients in weaning food and helps in uprooting the hidden hunger thereby helping in the sustainable development goals. This review focuses and delivers insights on the various processing methods and cereal-fruit weaning foods as traditional homemade ready-to-serve food supplement. It also highlights the impact of fortification of weaning foods against micronutrient malnutrition. On the whole this work emphasizes on the importance of sustainable weaning foods and how babies can be brought up into healthy grown-ups achieving zero hunger.
Collapse
Affiliation(s)
- Safreena Kabeer
- Department of Food Process Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
| | - S Jeroline Mary
- Department of Food Process Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
- Department of Food Technology, Dhanalakshmi Srinivasan College of Engineering and Technology, ECR, Mamallapuram, Chennai 603104, Tamil Nadu India
| | - Nagamaniammai Govindarajan
- Department of Food Process Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - M. Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, P.O. Box 5825, Doha, Qatar
| |
Collapse
|
13
|
Salam KMHAE, El-Soud GMA, Marei AESM, Abdel-Rheim KHM, Abdel-Megeed A, Lamlom SF. Influence of parboiling conditions on rice grain quality characters and insect infestation with rice weevil (Sitophilus oryzae. L) of some rice cultivars. BMC PLANT BIOLOGY 2024; 24:978. [PMID: 39420297 PMCID: PMC11484108 DOI: 10.1186/s12870-024-05651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Parboiling improves rice grain hardness and reduces susceptibility to Sitophilus oryzae infestation by gelatinizing the starch and enhancing resistance.A newly designed electric machine was used to parboil four Egyptian rice cultivars-Sakha 108, Giza 178, Super 300, and Egyptian Yasmin-at 70, 75, and 80 °C and determine their susceptibility to Sitophilus oryzae L. (Coleoptera: Curculionidae) infestation. Results indicated that heating affected most traits in all four rice cultivars during both study seasons 2021 and 2022. Super 300 rice cultivar exhibited the highest hulling values (81.23 and 81.42%) when heated to 80 °C, while the Yasmin rice cultivar showed the lowest values for hulling (77.66 and 77.45%) at 70 °C. while Giza 178 cultivar showed a significant decrease in broken percentage (90.85 and 94.02%) compared to control when heated to 80 °C. The results also indicated that the Yasmin rice cultivar had the highest values for white belly, hardness, and gel consistency at 80 °C, while the Sakha 108 cultivar showed the lowest values for these traits at 70 °C. Furthermore, the protein, elongation, and water uptake characters significantly responded to the different investigated treatments. Yasmin cultivar at 80 °C showed the highest significant values for protein (9.26 and 9.47%), elongation (65.02 and 65.44%), and water uptake (453.2 and 455.1 ml water/100 g milled grains) in both seasons. Sakha 108 cultivar had the lowest values for these traits at 70 °C. The S. oryzae insects responded differently to the rice cultivars. Using Dobie's Index of Susceptibility, all cultivars were classified as resistant to S. oryzae infestation. Super 300 was moderately resistant before parboiling but resistant after heat treatment. In conclusion, the study underscores the influence of pre-storage parboiling on rice weevil infestation, suggesting that heat treatment could serve as an effective control measure. These findings emphasize the importance of parboiling conditions in enhancing rice grain quality and bolstering resistance to insect infestation.
Collapse
Affiliation(s)
- Khaled M H Abd El Salam
- Rice Technology Training Center (RTTC), Field Crops Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Germine M Abou El-Soud
- Rice Technology Training Center (RTTC), Field Crops Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Abd El Salam M Marei
- Rice Technology Training Center (RTTC), Field Crops Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Khaled H M Abdel-Rheim
- Cereals and Stored Product Insects Research Department, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| | - Ahmed Abdel-Megeed
- Department of Plant Protection, Faculty of Agriculture, (Saba‑Basha), Alexandria University, Alexandria, Egypt
| | - Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| |
Collapse
|
14
|
Adebayo AI, Oladunjoye AO. Proximate, structural, textural, sensory and microbiological properties of non-gluten extrudate using Sorghum ( Sorghum bicolor L. Moench) and a sprouted legume ( Phaseolus lunatus L.). FOOD SCI TECHNOL INT 2024:10820132241289157. [PMID: 39397487 DOI: 10.1177/10820132241289157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The inclusion of legumes as functional ingredients in a gluten-free extrusion process has been gaining attention in recent times. In this study, sorghum and germinated lima bean flour (100, 90:10, 80:20, 70:30, 60:40 and 50:50) was extruded (feed moisture - 18%, screw speed - 250 rpm, barrel temperatures 50 °C-120 °C-120 °C, die hole diameter - 3 mm) and analysed for functional, proximate, textural, structural, pasting, microbiological and sensory properties. With 100% sorghum used as control, lima beans addition significantly (p < 0.05) improved the loose (0.37-0.44 g/ml) and packed (0.63-0.72 g/ml) bulk density, while water (5.00-3.15 g/g) and oil (2.45-1.60 g/g) absorption capacity and expansion ratio (3.11-2.30) decreased, respectively. An increase in protein (12.77-18.00%), crude fibre (2.58-5.17%) and ash content (2.11-3.12%) were observed in the extrudate, while the (L*) colour parameter (54.49-43.62), hardness (180.04-78.36 N) and pasting viscosities reduced with addition of lima beans. The structural micrograph depicted air-trapped bubbles with thick walls after adding lima beans, while a notable decline in microbial count below approved limits was observed after 8 weeks of storage. Sensory scores showed that values obtained were above average with the 90:10 sorghum-lima bean ratio having the highest score. The economic and industrial value of underutilised legumes such as lima bean can be promoted as functional ingredients via extrusion in addressing coeliac disease and alternative sources of protein, especially in developing countries.
Collapse
|
15
|
Wang K, Ma J, Wang L, Yue X, Ma X, Huo J, Duan Y, Wang P, Yu X, Xiao Z. Insight into the relationship between the starch crystalline structure and textural quality and physicochemical properties of reconstituted rice: Influence of feed moisture content. Int J Biol Macromol 2024; 280:135758. [PMID: 39299432 DOI: 10.1016/j.ijbiomac.2024.135758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Reconstituted rice was prepared by extrusion with different feed moistures (30 %, 33 %, 36 %, 39 % and 42 %), and the relationship between the crystalline structure, physicochemical properties, and textual quality of reconstituted rice was studied. The results revealed that, with the feed moisture increased (33 %-36 %), the gelatinization degree reached 97.28 % and the bound water content increased by 23.58 %. The water absorption index and swelling power index reached 8.35 g/g and 9.46 g/g, respectively, and the texture properties were close to those of native rice. Higher extrusion feed moisture (39 %-42 %) increased the setback value (206.00 cP) and breakdown value (721.33 cP) of starch, and the hardness and gumminess of reconstituted rice were also increased (p < 0.05). The starch crystalline structure was disrupted by extrusion and changed to a surface fractal structure, the relative crystallinity decreased from 26.87 % to 6.68 %, and the degree of order decreased from 1.680 to 1.006. Correlation analysis revealed that the crystalline structure of starch and water distribution would affect the textural and hydration properties of reconstituted rice. The results provide theoretical references and data support for improving the edibility and quality of reconstituted rice and enhancing the utilization rate of broken rice.
Collapse
Affiliation(s)
- Kexin Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lishuang Wang
- Liaoning Agricultural Vocational and Technical College, Yingkou 115009, China
| | - Xiqing Yue
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoqi Ma
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinjie Huo
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Yumin Duan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Xiaoshuai Yu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
16
|
Nithya A, Vishwakarma S, Dalbhagat CG, Mishra HN. Apparent amylose content positively influences the quality of extruded fortified rice kernels. Carbohydr Polym 2024; 338:122213. [PMID: 38763715 DOI: 10.1016/j.carbpol.2024.122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
The present research studies the impact of apparent amylose content (AAC) on the quality of fortified rice kernels (FRK), a health food designed to combat iron deficiency anemia by fortifying with iron, folic acid, and vitamin B12. Five FRK formulations with varying AAC (0.46-23.89 %) were prepared, and AAC influence on the extruder-system parameter and physicochemical, cooking, and textural properties of FRK was investigated. The torque, die-pressure, length, redness, and cooking time increased with an increase in AAC and were in the range of 12.55-22.81 Nm, 58.31-88.96 bar, 4.58-5.09 mm, 0.35-1.15, and 6.1-11.2 min, respectively. The other parameters, such as the breadth, whiteness index, and cooking loss decreased with an increase in AAC. Except for cohesiveness, all other textural properties of cooked FRK increased with an increase in AAC. These correlations of the FRK properties with AAC were confirmed through multivariate analysis. SEM, XRD, FTIR, and rheology supported the observed AAC trends in FRK properties. SEM showed a reduction in pores and cracks with an increase in AAC. The XRD and FTIR showed an increase in crystallinity with an increase in AAC due to better gelatinization leading to rapid retrogradation. This leads to better physical, cooking, and textural properties of FRK.
Collapse
Affiliation(s)
- A Nithya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| | - Siddharth Vishwakarma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
17
|
Huang Y, Liu L, Sun B, Zhu Y, Lv M, Li Y, Zhu X. A Comprehensive Review on Harnessing Soy Proteins in the Manufacture of Healthy Foods through Extrusion. Foods 2024; 13:2215. [PMID: 39063299 PMCID: PMC11276047 DOI: 10.3390/foods13142215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The global development of livestock production systems, accelerated by the growing demand for animal products, has greatly contributed to land-use change, greenhouse gas emissions, and pollution of the local environment. Further, excessive consumption of animal products has been linked with cardiovascular diseases, digestive system diseases, diabetes, and cancer. On the other hand, snacks, pasta, and bread available on the market are made from wheat, fat, salt, and sugar, which contribute to the risk of cardiovascular diseases. To counter these issues, a range of plant protein-based food products have been developed using different processing techniques, such as extrusion. Given the easy scalability, low cost of extrusion technology, and health benefits of soy proteins, this review focuses on the extrusion of soy protein and the potential application of soy protein-based extrudates in the manufacture of healthy, nutritious, and sustainable meat analogs, snacks, pasta products, and breakfast cereals. This review discusses the addition of soy protein to reformulate hypercaloric foods through extrusion technology. It also explores physical and chemical changes of soy proteins/soy protein blends during low and high moisture extrusion. Hydrogen bonds, disulfide bonds, and hydrophobic interactions influence the properties of the extrudates. Adding soy protein to snacks, pasta, breakfast cereals, and meat analogs affects their nutritional value, physicochemical properties, and sensory characteristics. The use of soy proteins in the production of low-calorie food could be an excellent opportunity for the future development of the soybean processing industry.
Collapse
Affiliation(s)
- Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Linlin Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Bingyu Sun
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Mingshou Lv
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; (Y.H.); (L.L.); (B.S.); (Y.Z.); (M.L.)
| |
Collapse
|
18
|
Antúnez S, Fuentes N, Gutierrez M, Carcelén F, Trillo F, López S, Bezada S, Rivadeneira V, Pizarro S, Nuñez J. Effect of Different Levels of Extruded Coffee ( Coffea arabica) Pulp Flour on the Productive Performance and Intestinal Morphometry of Cobb 500 Broiler Chickens. Animals (Basel) 2024; 14:1170. [PMID: 38672318 PMCID: PMC11047547 DOI: 10.3390/ani14081170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 04/28/2024] Open
Abstract
Coffee pulp is a by-product of the coffee industry. Due to conventional management techniques, it represents a severe environmental problem due to its negative impact on the soil (anaerobic fermentation and pH changes), water sources (the infiltration of pollutants into streams, acidification of water sources, and modification of microorganisms), and biodiversity (soil microbiology, fish, crustaceans, and other vertebrates). Therefore, it is essential to develop protocols for the treatment of this waste so that it can be used again in other productive activities under the circular economy approach. This means that all the waste from a production process can be reused, can generate value for the benefit of the producer, and, in turn, mitigate the environmental impact. The objective of this study was to evaluate the replacement of 5 levels of wheat bran (WB) with extruded coffee pulp flour (ECPF) as an alternative to a conventional fiber source in broiler finisher diets. A total of 300 Cobb 500 chickens in the finishing phase were assessed in the study, grouped in 5 treatments: T1, a conventional diet or control treatment (100% WB and 0% ECPF), T2 (75% WB and 25% ECPF), T3 (50% WB and 50% ECPF), T4 (25% WB and 75% ECPF), and T5 (0% WB and 100% ECPF). Feed intake, weight gain, feed conversion ratio (FCR), and intestinal morphometry (villus length: VL, villus width: VW, crypt depth: CD, villus height/crypt depth ratio: V/C, and villus surface area: VSA) were evaluated at the level of the duodenum, jejunum, and ileum. Feed intake decreased correspondingly as the ECPF in the diet was increased, with statistical differences (p < 0.01) between their averages; the most significant weight gain (834.61 g) was evidenced with the T2 treatment, this being statistically different (p < 0.01) from T4 and T5; similarly, the best FCR (1.58) was evidenced with the T2 treatment, followed by the control treatment T1 (with 1.64); however, they were not statistically different (p > 0.05). All treatment results were similar to the VL control samples in the three intestinal portions, except for the T5 in the jejunum, which showed statistical differences from the control. In VW, the treatment results were similar to the control samples of the jejunum and ileum; however, in the duodenum, the T5 results showed the highest value (172.18 μm), being statistically different (p < 0.05) from the other treatments being evaluated. For CD, it was only in the duodenum that the T2 and T3 treatments were similar to the control. Likewise, for V/C in the duodenum, only the T2 results were similar to the control. There was no significant difference in the VSA among the different treatment groups. T2 showed better production parameters without altering the intestinal villi. In conclusion, ECPF is a potential input for use to replace up to 25% of WB in the feed of broilers in the finishing phase.
Collapse
Affiliation(s)
- Steven Antúnez
- Laboratorio de Producción Avícola y Especies Menores, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (S.A.); (V.R.)
| | - Nadia Fuentes
- Instituto Veterinario de Investigaciones Tropicales y de Altura (IVITA), Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Carretera Huaral-Chancay km 6.5, Huaral 15200, Lima, Peru;
| | - Marco Gutierrez
- AG-RESEARCH S.A.C., Av. Alfonso Ugarte SN Sapallanga, Huancayo 12400, Junín, Peru; (M.G.); (S.P.)
| | - Fernando Carcelén
- Laboratorio de Bioquímica, Nutrición y Alimentación Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (F.C.); (S.L.); (S.B.)
| | - Fritz Trillo
- Departamento Académico de Producción Animal, Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima 15024, Lima, Peru
| | - Sofía López
- Laboratorio de Bioquímica, Nutrición y Alimentación Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (F.C.); (S.L.); (S.B.)
| | - Sandra Bezada
- Laboratorio de Bioquímica, Nutrición y Alimentación Animal, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (F.C.); (S.L.); (S.B.)
| | - Virginia Rivadeneira
- Laboratorio de Producción Avícola y Especies Menores, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (S.A.); (V.R.)
| | - Samuel Pizarro
- AG-RESEARCH S.A.C., Av. Alfonso Ugarte SN Sapallanga, Huancayo 12400, Junín, Peru; (M.G.); (S.P.)
| | - Jimny Nuñez
- Laboratorio de Producción Avícola y Especies Menores, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Av. Circunvalación 28, San Borja 15021, Lima, Peru; (S.A.); (V.R.)
| |
Collapse
|
19
|
Ikuse M, Richter JK, Ganjyal GM. Talc and calcium carbonate inclusions in direct expanded pea starch extrudates exhibit different behavior under increasing screw speeds. J Food Sci 2024; 89:2292-2304. [PMID: 38380684 DOI: 10.1111/1750-3841.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 01/07/2024] [Indexed: 02/22/2024]
Abstract
The ability to modulate direct expanded product structures improves the versatility and range of product applications. The effect of nucleating agents, namely, talc and calcium carbonate (CC), on the expansion characteristics of pea starch extrudates as impacted by screw speed was explored. Pea starch blends with increasing levels of nucleating agents (0.25%, 1%, and 2%) at 18% moisture (w.b.) were extruded across a range of screw speeds (150, 250, 350, and 450 rpm). The water absorption index, water solubility index (WSI), expansion ratio (ER), unit density, and cell count were determined to evaluate the performance of nucleating agents. The nucleating efficiency of CC, as assessed by cell count, improved with increasing screw speeds. In contrast, the nucleating efficiency of talc was influenced by inclusion levels irrespective of screw speed. ER values ranged from 2.10 to 2.88, where higher nucleating agent inclusions and screw speeds corresponded with lower ER values. Increased nucleating agents and screw speeds corresponded to higher WSI values suggesting the nucleating agents promoted starch degradation. The nucleating agents appeared to promote flow instabilities indicated upon assessment of the extrudate surface. PRACTICAL APPLICATION: This study provides helpful information on the expanded extrudate structure of pea starch as influenced by screw speed and nucleating agents. These findings may help the food industry select processing parameters and appropriate nucleating agent inclusion levels when producing new expanded products with unique textures.
Collapse
Affiliation(s)
- Marina Ikuse
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Jana K Richter
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
20
|
Liu X, Zhao X, Ma C, Wu M, Fan Q, Fu Y, Zhang G, Bian X, Zhang N. Effects of Extrusion Technology on Physicochemical Properties and Microstructure of Rice Starch Added with Soy Protein Isolate and Whey Protein Isolate. Foods 2024; 13:764. [PMID: 38472878 DOI: 10.3390/foods13050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
In order to improve the retrogradation of rice starch (RS) and the quality of rice products, soy protein isolate (SPI), whey protein isolate (WPI), and rice flour were mixed and further extruded into mixed flour. The physicochemical properties and morphology of starch of extruded rice flour (ERS) and starch of extruded mixtures of SPI, WPI, and rice flour (SPI-WPI-ERS) were analyzed. The distribution of amylopectin chain length, molecular weight, microstructure, crystallinity, short-range ordered structure, pasting properties, and thermodynamic properties of RS, ERS, and SPI-WPI-ERS were measured. The results showed that, compared with rice starch, the proportion of long-chain starch, total starch content, and molecular weight were decreased in ERS and SPI-WPI-ERS, but the proportion of short-chain and amylose content was increased. The short-range order structure was destroyed. The water absorption of ERS and SPI-WPI-ERS was much higher than rice starch at 55 °C, 65 °C, and 75 °C, but lower than that of rice starch at 95 °C. Therefore, the retrogradation characteristics of SPI-WPI-ERS were improved. The setback of rice starch products was reduced and the setback of SPI-WPI-ERS was lower than that of ERS. Overall, the retrogradation of rice starch was delayed by adding exogenous protein and extrusion technology, and the application range of rice flour in staple food products was broadened.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiangxiang Zhao
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ming Wu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Qiqi Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
21
|
Hao M, Zhu X, Ji X, Shi M, Yan Y. Effect of Konjac Glucomannan on Structure, Physicochemical Properties, and In Vitro Digestibility of Yam Starch during Extrusion. Foods 2024; 13:463. [PMID: 38338597 PMCID: PMC10855837 DOI: 10.3390/foods13030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In this study, the effect of konjac glucomannan (KGM, 0-5%) on the structure, physicochemical properties, and in vitro digestibility of extruded yam starch (EYS) was investigated. The EYS became rougher on the surface and the particle size increased as observed using scanning electron microscopy and particle size analysis. X-ray diffraction and Raman results revealed that the relative crystallinity (18.30% to 22.30%) of EYS increased, and the full width at half maxima at 480 cm-1 decreased with increasing KGM content, indicating the increment of long-range and short-range ordered structure. Differential scanning calorimetry and rheological results demonstrated that KGM enhanced thermal stability and the gel strength of EYS due to enhanced interaction between KGM and YS molecules. Additionally, a decrease in the swelling power and viscosity of EYS was observed with increased KGM content. The inclusion of KGM in the EYS increased the resistant starch content from 11.89% to 43.51%. This study provides a dual-modified method using extrusion and KGM for modified YS with high thermal stability, gel strength, and resistance to digestion.
Collapse
Affiliation(s)
- Mengshuang Hao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaopei Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
| | - Yizhe Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (M.H.); (X.Z.); (M.S.)
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
22
|
Zambrano Y, Bornhorst GM, Bouchon P. Understanding the physical breakdown and catechin bioaccessibility of third generation extruded snacks enriched with catechin using the human gastric simulator. Food Funct 2024; 15:930-952. [PMID: 38170559 DOI: 10.1039/d3fo03857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The nutritional quality of third-generation snacks prepared from rice flour by extrusion can be improved by the addition of polyphenols such as catechins, which are known to be more stable at high temperatures. However, the extrusion parameters can impact the breakdown and release of bioactive compounds and decrease the catechin bioaccessibility. Accordingly, this study investigated the impact of different extrusion parameters, including different extrusion temperatures (110, 135, and 150 °C) and moisture content prior to extrusion (27 and 31%), on the breakdown and bioaccessibility of catechin-enriched snacks during in vitro dynamic digestion using the Human Gastric Simulator (HGS). The extrusion parameters did not significantly impact most measured variables by themselves, indicating that within the tested ranges, any of the processing conditions could be used to produce a product with similar digestive behavior. However, the interaction of extrusion parameters (temperature and moisture content) played a significant role in the snack behavior during digestion. For example, the combination of 27% moisture content and 150 °C extrusion temperature had higher catechin bioaccessibility and higher starch hydrolysis than the other treatments. Overall, these findings suggest that the processing conditions of third generation snacks enriched with catechin can be optimized within certain ranges with limited modifications in the digestive properties.
Collapse
Affiliation(s)
- Yadira Zambrano
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Macul 6904411, Chile.
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA.
| | - Pedro Bouchon
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Macul 6904411, Chile.
| |
Collapse
|
23
|
Ouyang J, Fan K, Li Q, Wang F, Li W, Su X. Mechanism of feed moisture levels in extrusion treatment to improve the instant properties of Chinese yam (Dioscorea opposita Thunb.) flour. Food Chem 2024; 431:137056. [PMID: 37573749 DOI: 10.1016/j.foodchem.2023.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Extruded yam flour was prepared at different feed moisture to improve its instant properties. The water solubility index (WSI) and water absorption index (WAI) were used to compare the instant properties of yam flour. Their chemical compositions, particle size distribution, crystalline structure, and microscopic forms were also analyzed to assess the effects of feed moisture on the instant properties of yam flour. We found that extrusion significantly improved the instant properties of yam flour, while the WSI value increased from 29.50% to 71.86% and the WAI value decreased from 387.88% to 228.06% with decreased feed moisture. Extrusion led to the degradation of total starch and amylopectin, and the contents of soluble substances increased markedly. Extrusion destroyed the granular and crystalline structures, which were reconstituted as amylose-lipid complexes with a significant decrease in relative crystallinity. Increasing the feed moisture was beneficial to the flow and color retention, while lower feed moisture was more favorable to enhance the instant properties.
Collapse
Affiliation(s)
- Jia Ouyang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Kuanxiu Fan
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Qingming Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, Hunan, China
| | - Feng Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, Hunan, China
| | - Wenjia Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, Hunan, China
| | - Xiaojun Su
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China; Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, Hunan, China.
| |
Collapse
|
24
|
Pismag RY, Polo MP, Hoyos JL, Bravo JE, Roa DF. Effect of extrusion cooking on the chemical and nutritional properties of instant flours: a review. F1000Res 2024; 12:1356. [PMID: 38434661 PMCID: PMC10905115 DOI: 10.12688/f1000research.140748.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/05/2024] Open
Abstract
Satisfying the nutritional requirements of consumers has made food industries focus on the development of safe, innocuous, easy-to-prepare products with high nutritional quality through efficient processing technologies. Extrusion cooking has emerged as a prominent technology associated with the nutritional and functional attributes of food products. This review aims to establish a theoretical framework concerning the influence of extrusion parameters on the functional and nutritional properties of precooked or instant flours, both as end-products and ingredients. It highlights the pivotal role of process parameters within the extruder, including temperature, screw speed, and raw materials moisture content, among others, and elucidates their correlation with the modifications observed in the structural composition of these materials. Such modifications subsequently induce notable changes in the ultimate characteristics of the food product. Detailed insights into these transformations are provided within the subsequent sections, emphasizing their associations with critical phenomena such as nutrient availability, starch gelatinization, protein denaturation, enhanced in vitro digestibility, reduction in the content of antinutritional factors (ANFs), and the occurrence of Maillard reactions during specific processing stages. Drawing upon insights from available literature, it is concluded that these effects represent key attributes intertwined with the nutritional properties of the end-product during the production of instant flours.
Collapse
Affiliation(s)
- Remigio Yamid Pismag
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| | - María Paula Polo
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| | - José Luis Hoyos
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| | - Jesús Eduardo Bravo
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| | - Diego Fernando Roa
- Faculty of Agricultural Science, Universidad del Cauca, Comuna 1, Cauca, Colombia
| |
Collapse
|
25
|
Yu X, Wang P, Wang L, Wang K, Duan Y, Huo J, Ma X, Dong S, Xin G, Xiao Z. Inhibition mechanism of rice glutelin on extruded starch digestion: From the structural properties of starch and enzyme activity. Food Res Int 2024; 175:113790. [PMID: 38129010 DOI: 10.1016/j.foodres.2023.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
To increase the anti-digestion ability of extruded rice starch (ERS), the influence of rice glutelin (RG) on digestive and structural characteristics of ERS were investigated. The resistant starch content increased from 4.49 % to 18.08 % as the RG content increased, while the digestion rate and digestion velocity constant were reduced by the incorporation of RG. Morphological observations showed that ERS was adhered and encapsulated by RG, and the specific area of starch granules were decreased after the addition of RG. The results of XRD and FTIR suggested that the long-range and short-range orders of ERS were improved due to the complexation with RG. The thickness of crystalline of ERS was increased while its amorphous region thickness was reduced by the supplementation with RG. The 1H NMR and 13C NMR data revealed that the branching degree and double helix content of ERS was increased by 46.24 % and 52.67 % when RG content reached to 12 %. Additionally, the addition of RG altered the molecular weight and chain length distribution of ERS. The α-amylase activity and glucoamylase activity was inhibited by RG. These results could provide a valuable basis for the application of RG in extruded rice starchy foods with lower glycemic index.
Collapse
Affiliation(s)
- Xiaoshuai Yu
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Peng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China
| | - Lishuang Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Kexin Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yumin Duan
- Experimental Center, Shenyang Normal University, Shenyang 110034, PR China
| | - Jinjie Huo
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xiaoqi Ma
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Shengzhong Dong
- Experimental Center, Shenyang Normal University, Shenyang 110034, PR China
| | - Guang Xin
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, PR China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China.
| |
Collapse
|
26
|
Zhuang P, Wu X, Li Q, Su X, Chen L. Extrusion as pretreatment for complexation of high-amylose starch with glycerin monostearin: Dependence on the guest molecule. Int J Biol Macromol 2024; 256:128439. [PMID: 38013076 DOI: 10.1016/j.ijbiomac.2023.128439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Low-moisture extrusion (LME) can modify starch structures and enrich their functionality. These LME-made starches may efficiently form inclusion complexes (ICs) with hydrophobic guest molecules, which is profoundly impacted by the guest molecule concentration. In this work, the influence of glycerin monostearin (GMS) concentration on the structure and in vitro digestibility of pre-extruded starch-GMS complexes was investigated. The results showed that LME pretreatment increased the complex index of high-amylose starch with GMS by 13 %. The appropriate GMS concentrations produced ICs with high crystallinity and excellent thermostability. The presence of IC retarded amylose retrogradation and dominated bound water in starches. In addition, highly crystallized ICs were resistant to enzymolysis and had a higher proportion of resistant starch. The acquired knowledge would provide a better understanding of the LME-modified starch and GMS concentration-regulated IC formation.
Collapse
Affiliation(s)
- Peirong Zhuang
- Quanzhou College of Technology, School of Health and Life, Quanzhou 362200, China.
| | - Xiaoyan Wu
- Quanzhou College of Technology, School of Health and Life, Quanzhou 362200, China
| | - Qingwang Li
- Quanzhou College of Technology, School of Health and Life, Quanzhou 362200, China
| | - Xinxin Su
- Quanzhou College of Technology, School of Health and Life, Quanzhou 362200, China
| | - Li Chen
- Quanzhou College of Technology, School of Health and Life, Quanzhou 362200, China
| |
Collapse
|
27
|
Yu T, Jing S, Jiaxin L, Aixia W, Mengzi N, Xue G, Lili W, Liya L, Fengzhong W, Litao T. Effects of Milling Methods on Rice Flour Properties and Rice Product Quality: A Review. RICE SCIENCE 2024; 31:33-46. [DOI: 10.1016/j.rsci.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Jha S, Sarkhel S, Saha S, Sahoo B, Kumari A, Chatterjee K, Mazumder PM, Sarkhel G, Mohan A, Roy A. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Res Int 2024; 175:113771. [PMID: 38129003 DOI: 10.1016/j.foodres.2023.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Exposing the hydrated-soft-starch matrix of intact grain or reconstituted flour dough to a high-temperature-short-time (HTST) leads to rapid vapor generation that facilitates high-pressure build-up in its elastic matrix linked to large deformation and expansion. The expanded starch matrix at high temperatures dries up quickly by flash vaporization of water, which causes loss of its structural flexibility and imparts a porous and rigid structure of the expanded porous starch matrix (EPSM). EPSM, with abundant pores in its construction, offers adsorptive effectiveness, solubility, swelling ability, mechanical strength, and thermal stability. It can be a sustainable and easy-to-construct alternative to porous starch (PS) in food and pharmaceutical applications. This review is a comparative study of PS and EPSM on their preparation methods, structure, and physicochemical properties, finding compatibility and addressing challenges in recommending EPSM as an alternative to PS in adsorbing, dispersing, stabilizing, and delivering active ingredients in a controlled and efficient way.
Collapse
Affiliation(s)
- Shipra Jha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Gautam Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Anand Mohan
- Department of Food Science & Technology, University of Georgia, Athens, GA 30602, USA
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India.
| |
Collapse
|
29
|
Zhu S, Hu S, Yuan L, Luo J, Ouyang L, Feng J, Li X, Zhou J. Pretreatment process of rice syrup production and analysis of physicochemical properties. CYTA - JOURNAL OF FOOD 2023. [DOI: 10.1080/19476337.2023.2168302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Shuilan Zhu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Shuai Hu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Linfeng Yuan
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jing Luo
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Linghua Ouyang
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jianxiong Feng
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Xin Li
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Jinying Zhou
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Yin X, Chen X, Hu J, Zhu L, Zhang H, Hong Y. Effects of distribution, structure and interactions of starch, protein and cell walls on textural formation of cooked rice: A review. Int J Biol Macromol 2023; 253:127403. [PMID: 37832614 DOI: 10.1016/j.ijbiomac.2023.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The constitution and forms of rice determine its processing and cooking properties and further control the cooked rice quality. As the two main components, starch and protein content correlations and their characteristics have been extensively explored. However, rice is mainly consumed as polished kernels, components distribution, cytoplasmic matrix, and cell walls work together, and the properties of extracted components or flour are difficult to reflect the quality of cooked rice accurately. Thus, this review summarizes the multi-scale structure changes of main components during real rice cooking conditions. The dynamic thermal changes and leaching behaviors in rice kernels are compared with pure starch or rice flour. The in situ changes and interactions of starch granules, protein bodies, and cell walls during cooking are reviewed. Based on this, different textural evaluation methods are compared, and the advantages and disadvantages are pointed out. The oral chewing perception and bionic chewing simulation for textual evaluation have gradually become hot. Both rice quality controllers and eating quality evaluators attempt to establish an accurate quality evaluation system with the increased demand for high-quality rice.
Collapse
Affiliation(s)
- Xianting Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiaoyu Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jiali Hu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Wu Q, Zhang X, Gao F, Wu M. Study on the Residence Time and Texture Prediction of Pea Protein Extrusion Based on Image Analysis. Foods 2023; 12:4408. [PMID: 38137212 PMCID: PMC10742850 DOI: 10.3390/foods12244408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
This paper initially involves three main processing parameters: screw speed, feeding speed, and initial material moisture content, exploring the RTD of materials inside the extruder barrel under varying parameters and clarifying the impact of parameter variations on RTD. Finally, machine vision technology was utilized to link extruded product images to texture features, and a texture prediction model based on image features was established using a Back Propagation (BP) neural network. Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) were applied to optimize the BP neural network. The results indicate that the feeding speed has a stronger impact than the screw speed on the extrusion process, and an increase in the initial material moisture content tends to shorten the RTD. Specifically, an increase in screw speed results in a denser product structure, while higher feeding speeds lead to reduced pore size in the microstructure. As the initial material moisture content increased from 55% to 70%, the average residence time MRT decreased from 265.21 s to 166.62 s. Additionally, elevated moisture content causes a more porous microstructure. After optimizing the texture prediction model of extruded products through the application of Particle Swarm Optimization and Genetic Algorithm models, it was discovered that the Genetic Algorithm was more effective in reducing errors (p < 0.05) than the Particle Swarm Optimization algorithm. It was found that the Particle Swarm Optimization model exhibited better prediction performance. The results of the prediction indicated a significant association between the image features of the product and hardness, resilience, and chewiness, as corroborated by correlation coefficients of 0.93913, 0.94040, and 0.94724, respectively.
Collapse
Affiliation(s)
- Qi Wu
- Institute of Collaborative Innovation, University of Macau, University of Macau Avenida da Universidade Taipa, Macau 519000, China;
| | - Xun Zhang
- College of Engineering, China Agricultural University, P.O. Box 50, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| | - Fei Gao
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China;
| | - Min Wu
- College of Engineering, China Agricultural University, P.O. Box 50, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China;
| |
Collapse
|
32
|
Lima CT, dos Santos TM, Neves NDA, Lavado-Cruz A, Paucar-Menacho LM, Clerici MTPS, Meza SLR, Schmiele M. New Breakfast Cereal Developed with Sprouted Whole Ryegrass Flour: Evaluation of Technological and Nutritional Parameters. Foods 2023; 12:3902. [PMID: 37959021 PMCID: PMC10650639 DOI: 10.3390/foods12213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Ryegrass is one such cereal that has been underutilized in human nutrition despite its high nutritional and functional value due to the presence of phytochemicals and dietary fibers. Exploiting ryegrass for human consumption is an exciting option, especially for countries that do not produce wheat, as it is easily adaptable and overgrows, making it economically viable. This study evaluated the nutritional content of γ-aminobutyric acid and bioactive compounds (total soluble phenolic compounds) and the physicochemical and technological properties of partially substituting maize flour (MF) with sprouted whole ryegrass flour (SR) in developing extrusion-cooked breakfast cereals. A completely randomized design with substitutions ranging from 0 to 20% of MF with SR was employed as the experimental strategy (p < 0.05). Partial incorporation of SR increased the content of γ-aminobutyric acid and total soluble phenolic compounds. Using sprouted grains can adversely affect the technological quality of extruded foods, mainly due to the activation of the amylolytic enzymes. Still, ryegrass, with its high dietary fiber and low lipid content, mitigates these negative effects. Consequently, breakfast cereals containing 4 and 8% SR exhibited better physicochemical properties when compared to SR12, SR16, SR20, and USR10, presenting reduced hardness and increased crispness, and were similar to SR0. These results are promising for ryegrass and suggest that combining the age-old sprouting process with extrusion can enhance the nutritional quality and bioactive compound content of cereal-based breakfast products while maintaining some technological parameters, especially crispiness, expansion index, water solubility index, and firmness, which are considered satisfactory.
Collapse
Affiliation(s)
- Cristiane Teles Lima
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Brazil; (C.T.L.); (T.M.d.S.); (N.d.A.N.)
| | - Tatiane Monteiro dos Santos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Brazil; (C.T.L.); (T.M.d.S.); (N.d.A.N.)
| | - Nathália de Andrade Neves
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Brazil; (C.T.L.); (T.M.d.S.); (N.d.A.N.)
| | - Alicia Lavado-Cruz
- Departamento de Agroindustria y Agrónoma, Universidad del Santa (UNS), Nuevo Chimbote, Ancash 02712, Peru; (A.L.-C.); (L.M.P.-M.)
| | - Luz Maria Paucar-Menacho
- Departamento de Agroindustria y Agrónoma, Universidad del Santa (UNS), Nuevo Chimbote, Ancash 02712, Peru; (A.L.-C.); (L.M.P.-M.)
| | | | - Sílvia Letícia Rivero Meza
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPel), Pelotas 96160-000, Brazil;
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina 39100-000, Brazil; (C.T.L.); (T.M.d.S.); (N.d.A.N.)
| |
Collapse
|
33
|
Medina MB, Maldonado JB, Page LM, Resnik SL, Munitz MS. Pesticides in rice-based products commercialised in Argentina. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023:1-6. [PMID: 37830141 DOI: 10.1080/19393210.2023.2252782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023]
Abstract
People with coeliac disease have a limited diet. Therefore, rice-based products are an ideal alternative. Highlighting this import item, an analytical methodology was validated to determine pesticides in rice-based product samples. The precision was satisfactory for all pesticides since the RSD did not exceed 13% in any case. Regarding recovery, the method had values close to 100%. The limit of quantification was established at 10 µg/kg and the expanded uncertainty was less than 20%. After validation, 80 samples of toasts and rice crackers were analysed. All samples were compliant with the national regulations for dichlorvos and tebuconazole. The pesticide that was present in the highest number of samples was pirimiphos - methyl, but all below the maximum residue limit. From all samples analysed, 38 were positive for at least one pesticide and only one contained four pesticides simultaneously: deltamethrin, pirimiphos-methyl, kresoxim-methyl and epoxiconazole.
Collapse
Affiliation(s)
- María Belén Medina
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Julieta Belén Maldonado
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Lucas Matías Page
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| | - Silvia Liliana Resnik
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Argentina
- Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz, Luján, Argentina
| | - Martín Sebastián Munitz
- Instituto de Ciencia y Tecnología de los Alimentos de Entre Ríos (ICTAER/CONICET - UNER), Concordia, Argentina
- Facultad de Ciencias de la Alimentación, Universidad Nacional de Entre Ríos, Concordia, Argentina
| |
Collapse
|
34
|
Ma Y, Li J, Xue Y, Xu Y, Liu C, Su D. Comprehensive improvement of nutrients and volatile compounds of black/purple rice by extrusion-puffing technology. Front Nutr 2023; 10:1248501. [PMID: 37885443 PMCID: PMC10598597 DOI: 10.3389/fnut.2023.1248501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Black/purple rice is a pigmented rice variety that contains high levels of anthocyanins, flavonoids, and other valuable bioactive compounds. Owing to its robust anti-inflammatory and antioxidant properties, black/purple rice exerts a beneficial effect on human health. Extrusion puffing technology has emerged as a promising means of improving rice flavor with lesser effect on nutrient content. In this study, metabolomics approach was used to conduct comprehensive metabolomics analyses aimed at examining the impact of extrusion puffing on black/purple rice nutritional value and flavor. Methods Firstly, the basic nutrient composition contents and extrudate characteristics of black/purple rice and Extrusion puffed black/purple rice were conducted. Then metabolomics profiling analyses of black/purple rice samples were performed to explore the impact of the extrusion puffing process on nutrient content and bioactive properties, in which we quantitatively determined the flavonoids and evaluated relative contents of volatile compounds. Results These analyses revealed that following extrusion puffing, black/purple rice exhibited significant improvements in the content of nutrients including flavonoids, minerals, and proteins together. Extrusion puffing additionally increased the diversity of volatile compounds within black/purple rice. Discussion These results suggest that extrusion puffing represents an effective means of substantially improving the functional and nutritional properties of black/purple rice, offering beneficial effects on consumer health. Overall, these data provide novel insights into the quality of extrusion puffed black/purple rice that will guide future efforts to establish how extrusion puffing can alter the nutrient content in a range of foods, thereby supporting the further development of a range of healthy food products.
Collapse
Affiliation(s)
- Yanrong Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Jiaxing Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Yan Xue
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Yunbi Xu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Chunming Liu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Dingding Su
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| |
Collapse
|
35
|
Su CY, Xia T, Li D, Wang LJ, Wang Y. Hybrid biodegradable materials from starch and hydrocolloid: fabrication, properties and applications of starch-hydrocolloid film, gel and bead. Crit Rev Food Sci Nutr 2023; 64:12841-12859. [PMID: 37707437 DOI: 10.1080/10408398.2023.2257786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The potential for utilizing starch and hydrocolloids as sustainable biomaterials has garnered significant attention among researchers. The biodegradability and functional properties of composite films, gels, and beads, as well as their environmental friendliness, make them attractive options for a variety of applications. However, the hydrophilicity, brittleness, and regeneration limitations of starch materials can be addressed through the incorporation of non-starch hydrocolloids. This article summarizes the formation mechanisms and interactions of starch-hydrocolloid films, gels, and gel beads, evaluates the factors that affect their structural and functional properties, and presents an overview of the progress made in their physicochemical and functional applications. The structure of starch-hydrocolloid composites is primarily formed through hydrogen bond interactions, and the source, proportion, and preparation conditions of the components are critical factors that affect the properties of the biomaterials. Starch-hydrocolloid films are primarily used for extending the shelf life of food products and detecting food freshness. Starch-hydrocolloid gels are utilized as adsorption materials, wound dressings, and flexible sensors, and starch-hydrocolloid beads are primarily employed for the controlled release of bioactive substances. It is clear that starch-hydrocolloid composites have the potential to develop novel advanced materials for various applications in the food, biological, and materials industries.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Tong Xia
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
36
|
Wang C, Lin M, Yang Q, Fu C, Guo Z. The Principle of Steam Explosion Technology and Its Application in Food Processing By-Products. Foods 2023; 12:3307. [PMID: 37685239 PMCID: PMC10486971 DOI: 10.3390/foods12173307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Steam explosion technology is an emerging pretreatment method that has shown great promise for food processing due to its ability to efficiently destroy the natural barrier structure of materials. This narrative review summarizes the principle of steam explosion technology, its similarities and differences with traditional screw extrusion technology, and the factors that affect the technology. In addition, we reviewed the applications in food processing by-products in recent years. The results of the current study indicate that moderate steam explosion treatment can improve the quality and extraction rate of the target products. Finally, we provided an outlook on the development of steam explosion technology with a reference for a wider application of this technology in the food processing field.
Collapse
Affiliation(s)
- Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Qingyu Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Chenying Fu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (C.W.); (M.L.); (Q.Y.); (C.F.)
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
37
|
Vivar-Vera MA, Navarro-Cortez RO, Hernández-Santos B, Ramírez-Rivera EJ, Torruco-Uco JG, Ramírez-Figueroa E, Amador-Mendoza A, Cruz-Cabrera I, Rodríguez-Miranda J. Multiresponse optimization of the extrusion process for ready-to-eat snacks from pineapple byproducts and maize flour. J Food Sci 2023; 88:3820-3838. [PMID: 37548648 DOI: 10.1111/1750-3841.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
This research aimed to optimize the processing conditions to obtain ready-to-eat extruded snacks with a high fiber content from mixtures of pineapple byproduct powder (PBP) and nixtamalized maize flour (PBP-NMF) or maize flour (PBP-MF). The effects of barrel temperature, feed moisture content, and PBP were evaluated. The increase in barrel temperature has a negative effect on the bulk density, the water absorption index, and the texture in both mixtures (PBP-MF and PBP-NMF) and increases the expansion index and the water solubility index in the mixture with MF. The increase in the feed moisture content increased the bulk density and water absorption index in both mixtures and the texture in the mixtures with MF. The increasing PBP decreases the expansion index and increases the water solubility index in both mixtures. The increase in PBP in the mixtures with MF decreases the water absorption index, texture, and bulk density. From the optimization, four products were obtained, two for the NMF mixture and two for the MF mixtures. The optimal formulations can be considered a good source of total fiber (12.46-12.78 g/100 g) and protein (8.27-8.85 g/100 g) with good acceptance by consumers. PRACTICAL APPLICATION: Pineapple byproducts in combination with nixtamalized and nonnixtamalized maize flour are viable raw materials for the development of ready-to-eat extruded snacks with a high content of dietary fiber and good acceptance by consumers. Due to their characteristic nutritional properties, the consumption of this ready-to-eat snack could present potential benefits for human health.
Collapse
Affiliation(s)
- María A Vivar-Vera
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Oaxaca, México
| | - Ricardo O Navarro-Cortez
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Área Académica de Ingeniería Agroindustrial y Alimentos, Hidalgo, México
| | | | | | - Juan G Torruco-Uco
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Oaxaca, México
| | | | | | - Irma Cruz-Cabrera
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtepec, Oaxaca, México
| | | |
Collapse
|
38
|
Kumari A, Roy A. Enhancing micronutrient absorption through simultaneous fortification and phytic acid degradation. Food Sci Biotechnol 2023; 32:1235-1256. [PMID: 37362807 PMCID: PMC10290024 DOI: 10.1007/s10068-023-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Phytic acid (PA), an endogenous antinutrient in cereals and legumes, hinders mineral absorption by forming less bioavailable, stable PA-mineral complexes. For individual micronutrients, the PA-to-mineral molar ratio below the critical level ensures better bioavailability and is achieved by adding minerals or removing PA from cereals and pulses. Although several PA reduction and fortification strategies are available, the inability to completely eradicate or degrade PA using available techniques always subdues fortification's impact by hindering fortified micronutrient absorption. The bioavailability of micronutrients could be increased through simultaneous PA degradation and fortification. Following primary PA reduction of the raw material, the fortification step should also incorporate additional essential control stages to further PA inactivation, improving micronutrient absorption. In this review, the chemistry of PA interaction with metal ions, associated controlling parameters, and its impact on PA reduction during fortification is also evaluated, and further suggestions were made for the fortification's success.
Collapse
Affiliation(s)
- Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand India
| |
Collapse
|
39
|
Wu Y, Lu H, Thanh NC, Al Obaid S, Alfarraj S, Jhanani GK, Xia C. Mixed pollutants adsorption potential of Eichhornia crassipes biochar on Manihot esculenta processing industry effluents. ENVIRONMENTAL RESEARCH 2023; 231:116074. [PMID: 37150391 DOI: 10.1016/j.envres.2023.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
The starch is one of the most essential food stuff and serves as a raw material for number of food products for the welfare of human. During the production process enormous volume of effluents are being released into the environment. In this regard, this study was performed to evaluate the physicochemical traits of Manihot esculenta processing effluent and possible sustainable approach to treat this issue using Eichhornia crassipes based biochar. The standard physicochemical properties analysis revealed that the most the parameters (EC was recorded as 4143.17 ± 67.12 mhom-1, TDS: 5825.62 ± 72.14 mg L-1, TS: 7489.21 ± 165.24 mg L-1, DO: 2.12 ± 0.21 mg L-1, BOD 2673.74 ± 153.53 mg L-1, COD: 6672.66 ± 131.21 mg L-1, and so on) were beyond the permissible limits and which can facilitate eutrophication. Notably, the DO level was considerably poor and thus can support the eutrophication. The trouble causing E. crassipes biomass was used as raw material for biochar preparation through pyrolysis process. The temperature ranging from 250 to 350 °C with residence time of 20-60 min were found as suitable temperature to provide high yield (56-33%). Furthermore, 10 g L-1 concentration of biochar showed maximum pollutant adsorption than other concentrations (5 g L-1 and 15 g L-1) from 1 L of effluent. The suitable temperature required to remediate the pollutants from the effluent by biochar was found as 45 °C and 35 °C at 10 g L-1 concentration. These results conclude that at such optimized condition, the E. crassipes effectively adsorbed most of the pollutants from the M. esculenta processing effluent. Furthermore, such pollutants adsorption pattern on biochar was confirmed by SEM analysis.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haiying Lu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Nguyen Chi Thanh
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh City, 700000, Viet Nam
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
40
|
Qadir N, Wani IA. Extrusion assisted interaction of rice starch with rice protein and fibre: Effect on physicochemical, thermal and in-vitro digestibility characteristics. Int J Biol Macromol 2023; 237:124205. [PMID: 36972820 DOI: 10.1016/j.ijbiomac.2023.124205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Rice starch has high digestibility due to its large carbohydrate content. Macromolecular enrichment of starch has the tendency to retard rate of starch hydrolysis. Hence, the current investigation was aimed to check the combined effect of extrusion assisted addition of rice protein (0, 10, 15 and 20 %) and fibre (0, 4, 8 and 12 %) to rice starch on physico-chemical and in-vitro digestibility characteristics of starch extrudates. It was observed from the study that 'a' and 'b' values, pasting temperature and resistant starch of starch blends and extrudates increased with the addition of protein and fibre. However, lightness value, swelling index, pasting properties and relative crystallinity of blends and extrudates decreased with the addition of protein and fibre. Maximum increase in thermal transition temperatures was observed for ESP3F3 extrudates due to absorption capacity of protein molecules which led to late onset of gelatinization. Therefore, enrichment of protein and fibre to rice starch during extrusion can be considered as a novel approach to reduce rate of rice starch digestion for catering nutritional requirements of diabetic population.
Collapse
Affiliation(s)
- Nafiya Qadir
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, India.
| | - Idrees Ahmed Wani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, India
| |
Collapse
|
41
|
Qian X, Sun B, Gu Y, Ma S, Wang X. Enhancing the quality of steamed oat cake by partially gelatinized starch in oat flour and its molecular mechanism. Int J Biol Macromol 2023; 238:124139. [PMID: 36958455 DOI: 10.1016/j.ijbiomac.2023.124139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/16/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
The aim of this study was to investigate the effect and mechanism of partially gelatinized starch in oat flour on the rheological characteristics of the oat batter and the quality of steamed oat cakes. The results showed that an increase in the gelatinization degree of oat flour destroyed the starch granular structure and the long-range molecular order of starch, accompanied by a decrease of crystallinity from 22.28 % to 8.72 % and the formation of a starch-lipid complex. The increased gelatinization degree of oat flour destroyed the protein network and promoted the formation of the starch gel network in oat batter. Meanwhile, the addition of gelatinized oat flour enhanced the elastic behavior of the oat batter and the gas retention ability of the fermented oat batter, while decreased the total gas volume from 1075.5 mL to 827.0 mL. The steamed oat cake containing 50 % gelatinization degree of oat flour (G50) showed moderate hardness, springiness and chewiness, as well as the largest cell area fraction (37.35 %), due to the formation of a dense starch gel-protein double network and the enhancement of long/short-range molecular order of starch. Thus, this study provided the feasibility of improving the quality of oat-based fermented products by changing the gelatinization degree of oat starch.
Collapse
Affiliation(s)
- Xiaojie Qian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Yujuan Gu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
42
|
Yu X, Wang L, Zhang J, Wang Z, Wang K, Duan Y, Xiao Z, Wang P. Understanding effects of glutelin on physicochemical and structural properties of extruded starch and the underlying mechanism. Carbohydr Polym 2023; 304:120513. [PMID: 36641194 DOI: 10.1016/j.carbpol.2022.120513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
This work studied effects of different amounts of rice glutelin (RG) on physicochemical and structural properties of extruded rice starch (ERS) and explored the underlying mechanism of interaction between rice starch and RG upon extrusion processing. The results showed that the addition of RG altered the pasting properties, improved the viscoelastic, and increased the water mobility of ERS. The weight loss of ERS decreased from 71.40 % to 62.61 %, while the degradation temperature increased from 290.48 °C to 296.25 °C as the RG content increased from 0 % to 12 %. The complex index of extruded starch-glutelin complexes significantly elevated from 10.40 % to 35.81 % when RG content increased from 6 % to 12 %. Fourier-transform infrared spectra confirmed that RG interacted with starch via Maillard reactions, and the binding strength between RG and starch was enhanced at a higher RG content. Furthermore, results of rheological property and chemical interactions demonstrated that hydrogen bonding, hydrophobic, and electrostatic interaction were formed between RG and starch during extrusion. In summary, the obtained results of this study can further enrich the theory of starch-protein interactions and show the possibility of RG applied in the extruded starchy foods.
Collapse
Affiliation(s)
- Xiaoshuai Yu
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Lishuang Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Junjie Zhang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Zhenguo Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Kexin Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yumin Duan
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China
| | - Zhigang Xiao
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Peng Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, PR China; College of Food Science and Technology, Bohai University, Jinzhou 121013, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
43
|
Effect of Marjoram Leaf Powder Addition on Nutritional, Rheological, Textural, Structural, and Sensorial Properties of Extruded Rice Noodles. Foods 2023; 12:foods12051099. [PMID: 36900617 PMCID: PMC10001210 DOI: 10.3390/foods12051099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Food-to-food fortification is an emerging technique to enrich the micronutrients in foods. Pertaining to this technique, noodles could also be fortified with natural fortificants. In this study, marjoram leaf powder (MLP) at a level of 2-10% was used as a natural fortificant to produce fortified rice noodles (FRNs) through an extrusion process. The MLP addition caused a significant increase in the iron, calcium, protein, and fiber in the FRNs. The noodles had a lower whiteness index than unfortified noodles but had a similar water absorption index. The water solubility index increased significantly due to the higher water retention ability of MLP. A rheological study showed a minimal effect of fortification on the gelling strength of the FRNs at lower levels. The microstructural studies found incremental cracks, which facilitated a lower cooking time and hardness but had an insignificant effect on the cooked noodle texture. Fortification improved the total phenolic content, antioxidant capacity, and total flavonoid content. However, no significant changes in bonds were observed, but a reduction in the noodles' crystallinity could be seen. The sensory analysis of the noodles reflected a higher acceptability of the 2-4% MLP fortified samples compared to the others. Overall, the MLP addition improved the nutritional content, antioxidant activity, and the cooking time but slightly affected the rheological, textural, and color properties of the noodles.
Collapse
|
44
|
Kaur T, Sodhi NS, Dhillon B, Sodhi KS. Application of electromyography (EMG) for textural evaluation of raw, steamed and parboiled Basmati rice cultivars (Pusa 1121 and Pusa 1509). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
45
|
Song J, Tang Y. Effect of extrusion temperature on characteristic amino acids, fatty acids, organic acids, and phenolics of white quinoa based on metabolomics. Food Res Int 2023; 169:112761. [DOI: 10.1016/j.foodres.2023.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
|
46
|
Hajjioui EA, Bouchaâla K, Faqir M, Essadiqi E. A review of manufacturing processes, mechanical properties and precipitations for aluminum lithium alloys used in aeronautic applications. Heliyon 2023; 9:e12565. [PMID: 36895401 PMCID: PMC9988507 DOI: 10.1016/j.heliyon.2022.e12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/21/2021] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
Military applications and the aeronautic industry are increasingly interested in aluminum lithium alloys (Al-Li) because of the properties required due to the presence of Lithium, which provides a very considerable gain concerning the mechanical properties compared to conventional aluminum alloys. The research and development departments are interested in improving these alloys especially in additive manufacturing process, which leads today to focus on the 3rd generation of Al-Li in terms of part quality - low density compared to the 1st and the 2nd generation. The objectives of this paper is to present a review of Al-Li alloys applications, its carachetrization, the precipitations and their impact on mechanical properties and grain refinement. The various manufacturing processes, methods and tests used are then deeply investigated and presented. The last investigations that have been gotten by scientists over the previous few years on Al-Li for different processes are also reviewed in this research.
Collapse
Affiliation(s)
- El Arbi Hajjioui
- International University of Rabat, AERO/AUTO School of Engineering, LERMA Lab. Sala El Jadida, Morocco
| | - Kenza Bouchaâla
- International University of Rabat, AERO/AUTO School of Engineering, LERMA Lab. Sala El Jadida, Morocco.,Mohammed V University, Mohammadia School of Engineers, ITACS Lab. Rabat, Morocco
| | - Mustapha Faqir
- International University of Rabat, AERO/AUTO School of Engineering, LERMA Lab. Sala El Jadida, Morocco
| | - Elhachmi Essadiqi
- International University of Rabat, AERO/AUTO School of Engineering, LERMA Lab. Sala El Jadida, Morocco
| |
Collapse
|
47
|
Dey D, Gu BJ, Ek P, Ross CF, Saunders SR, Ganjyal GM. Influences of modified fiber inclusion with varying particle size on corn starch-based extrudate expansion. J Food Sci 2023; 88:784-794. [PMID: 36647678 DOI: 10.1111/1750-3841.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023]
Abstract
The inclusion of cellulose nanocrystals (CNC) and microcrystalline cellulose (MCC) during extrusion processing of corn starch (CS) is presented in this study. Blends were prepared by incorporating CNC and MCC at different concentrations, 1%, 3%, 5%, and 10% w/w in CS. The crystallinity index (CrI) of CNC and MCC was determined using X-ray diffraction, and the chemical functionality of CNC, MCC, and CS was studied using Fourier transform infrared spectroscopy. The pasting properties of the blends were studied using Micro Visco-Amylo-Graph before extrusion. The blends were preconditioned to 18 ± 0.5% (w.b.) moisture and extruded using a twin-screw extruder at 200 and 250 rpm at 140°C. CS-CNC's expansion ratio (ER) values were 2.95 to 3.35 and 2.72 to 3.22 for MCC. CNC's CrI and particle size were significantly lower than MCC, allowing CNC-based extrudates to have ER values similar to the control even at high CNC concentration (≤10% w/w). This study demonstrated that fiber with particle size <100 µm can be added in direct-expanded product formulations at high concentrations without negatively influencing the extrudate texture while offering increased nutritional value. PRACTICAL APPLICATION: This study gives insight into the potential application of cellulose nanocrystals and microcrystalline cellulose in manufacturing direct-expanded extruded products, providing high fiber content without compromising the product quality. This knowledge could also be translated into manufacturing other food products such as breakfast cereals, pasta, and bread.
Collapse
Affiliation(s)
- Debomitra Dey
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Bon-Jae Gu
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - Pichmony Ek
- School of Food Science, Washington State University, Pullman, Washington, USA.,Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Carolyn F Ross
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Steven R Saunders
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
48
|
Zheng L, Regenstein JM, Wang Z, Zhang H, Zhou L. Reconstituted rice protein:The raw materials, techniques and challenges. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
49
|
Extrusion modification of cassava flour for improved mashing efficiency. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
50
|
Wang LS, Duan YM, Tong LF, Yu XS, Saleh ASM, Xiao ZG, Wang P. Effect of extrusion parameters on the interaction between rice starch and glutelin in the preparation of reconstituted rice. Int J Biol Macromol 2023; 225:277-285. [PMID: 36402395 DOI: 10.1016/j.ijbiomac.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Reconstituted rice produced by extrusion has been attracted attention due to nutritional fortification and convenient production. Nevertheless, how to achieve desirable qualities and physicochemical properties of reconstituted rice nearly to natural rice by regulating extrusion process parameters is difficult. Herein, rice starch/glutelin mixture as raw material of reconstituted rice was extruded at varying extrusion conditions. Specific mechanical energy (SME) and sectional expansion index (SEI) dropped with rise in density (R2 = 0.9117 and 0.8207). Solubility was enhanced with increase in product temperature (R2 = 0.9085), color darkened and shifted to reddish and yellowish as extrusion temperature increased (R2 = 0.8577). These trends were well fitted by sigmoid models. Furthermore, SME enhanced hydrophobic and electrostatic interactions between rice starch and glutelin and caused the reduction in crystallinity and thermal stability, promoting the formation of a bi-continuous matrix of protein aggregates with rice starch. The obtained results can be applied to guide the production of reconstituted rice with desirable qualities.
Collapse
Affiliation(s)
- Li-Shuang Wang
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Yu-Min Duan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Li-Feng Tong
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Xiao-Shuai Yu
- College of Food, Shenyang Agricultural University, Shenyang 110866, China
| | - Ahmed S M Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Egypt
| | - Zhi-Gang Xiao
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China.
| | - Peng Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|