1
|
Sui Y, Peng C, Zhou P, Qiu L, Qu C, Li W, Wu C, Liu J. Insect odorant-binding protein modified biosensor for sensitive and specific electrochemical detection of alcohols. Biosens Bioelectron 2025; 278:117382. [PMID: 40101655 DOI: 10.1016/j.bios.2025.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Olfaction biosensors are playing crucial roles in detecting volatile organic compounds (VOCs) in various domains, while the response pattern of biosensors to different alcohols and the underlying reasons for the differences in response remain unclear. Herein, this study presents a sensitive electrochemical olfactory biosensor utilizing Drosophila odorant-binding protein (LUSH) as a sensing material for the detection of 11 alcohols with different molecular structures (alkyl chain lengths, hydroxyl group numbers, and cyclic alcohols) and phenol. The electrodes covalently immobilized with the LUSH proteins were characterized by atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), and their ability to detect alcohols was investigated through EIS. Results showed that the LUSH modified biosensor exhibited ultrasensitive detection of multiple alcohols (detection limits: 10-100 fM), with linear ranges from 10-14 to 10-7 M and coefficients of determination (R2) of 0.948-0.992. In addition, the biosensor demonstrated high selectivity toward interfering compounds (selectivity coefficients <0.22), excellent reproducibility (relative standard deviation, RSD: 1.2%, n = 4 for parallel sensors), and good stability (response decreased by 10.2% on the 10th day). Notably, the sensitivity of the biosensor to alcohols showed alkyl chain-length dependence of n-alcohols and was influenced by the number of hydroxyl groups and the cyclic structure. More importantly, molecular docking revealed the binding modes, binding energies, and key amino acids involved in the LUSH-alcohol interaction and explained the response discrepancies.
Collapse
Affiliation(s)
- Yutong Sui
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Cong Peng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peng Zhou
- Beijing Environmental Engineering Technology CO., LTD, 101111, China
| | - Lina Qiu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Chen Qu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenhui Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Institute of Graphic Communication, Beijing, 102600, China.
| |
Collapse
|
2
|
Mekuli R, Shoukat M, Dugat-Bony E, Bonnarme P, Landaud S, Swennen D, Hervé V. Iron-based microbial interactions: the role of iron metabolism in the cheese ecosystem. J Bacteriol 2025:e0053924. [PMID: 40237503 DOI: 10.1128/jb.00539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Iron is involved in various microbial metabolisms and interactions and is an essential micronutrient for most microorganisms. This review focuses on the cheese ecosystem, in which iron is sparse (median concentration of 2.9 mg/kg based on a literature survey) and of limited bioavailability due to the presence of various metal-binding agents in the cheese matrix. Cheese microorganisms overcome this low bioavailability of iron by producing and/or importing ferric iron-specific chelators called siderophores. We introduce these siderophores and their specific transporters, which play a key role in ecological interactions and microbial metabolism. We discuss the impact of iron on all the major taxa (fungi, bacteria, and viruses) and functional groups (starters, ripening microorganisms, and pathogens) present and interacting in cheese, from the community to individual levels. We describe the ways in which cheese-ripening microorganisms use iron and the effects of iron limitation on major metabolic pathways, including the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis. The cheese ecosystem is a relevant in situ model for improving our understanding of iron biochemistry and its putative role in microbe-microbe interactions. Yet, this review highlights critical gaps in our understanding of iron's role in cheese from fundamental ecological and biochemical perspectives to applied microbiology, with broader implications for the quality, safety, and organoleptic properties of cheese.
Collapse
Affiliation(s)
- Rina Mekuli
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Mahtab Shoukat
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Eric Dugat-Bony
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Pascal Bonnarme
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Sophie Landaud
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Dominique Swennen
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| | - Vincent Hervé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, France
| |
Collapse
|
3
|
Fang S, Xia Y, Chen M, Zhong F. The availability of ethanol: A decisive factor in the biosynthesis of ethyl esters in enzyme-modified cheese flavor. Food Chem 2025; 483:144245. [PMID: 40222134 DOI: 10.1016/j.foodchem.2025.144245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/18/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Lactic acid bacteria (LABs) exhibit a strong acid-producing capability in the manufacturing of enzyme-modified cheese flavor (EMCF), but their limited ester synthesis ability resulted in EMCF having strong sour aroma with imbalance flavor. Strains with higher esterase activity were screened by simulated fermentation. Lacticaseibacillus casei exhibited greater activity in synthesizing ethyl hexanoate and ethyl octanoate, while Lactobacillus helveticus had a higher yield of ethyl acetate. The analysis of volatile compounds revealed that ethyl esters were not detected under the conditions of both fatty acids and esterases, indicating that ethanol served as a key substrate limiting the synthesis of esters. The addition of ethanol significantly increased both the variety and concentration of volatile compounds, especially acids, alcohols, and ethyl esters. Sensory analysis indicated that ethanol contributed to the development of fruity and wine aromas. EMCF exhibitd a softer flavor at 0.5 % ethanol addition, which providing practical insights for balancing EMCF flavor.
Collapse
Affiliation(s)
- Sicong Fang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Food Sensory Science and Technology, China National Light Industry, Wuxi, 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Yixun Xia
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Food Sensory Science and Technology, China National Light Industry, Wuxi, 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Maoshen Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Food Sensory Science and Technology, China National Light Industry, Wuxi, 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Fang Zhong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Food Sensory Science and Technology, China National Light Industry, Wuxi, 214122, China.
| |
Collapse
|
4
|
Masiá C, Fernández-Varela R, Logan A, Bose U, Stockmann R, Ong L, Gras S, Jensen PE, Yazdi SR, Gambetta JM. Assessing the impact of bacterial blends, crosslinking enzyme and storage times on volatile and non-volatile compound production in fermented pea protein emulsion gels. Food Chem 2025; 465:142030. [PMID: 39579398 DOI: 10.1016/j.foodchem.2024.142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Pea protein is a promising ingredient for plant-based cheese production but has poor consumer acceptance due to intrinsic beany flavors. Fermentation could potentially decrease these off-flavors while also producing desirable cheese-like aromas. Pea protein emulsion gels were fermented using four different bacterial blends for 16 weeks with and without the crosslinking enzyme transglutaminase. The volatile organic compound (VOC) profiles were assessed by GC-MS and the peptide profile was measured by LC-MS/MS during storage. VOC production was mainly affected by the composition of the bacterial blends, followed by storage time. Crosslinking of the protein gel structure had minimal impact on VOC production. The peptide-level profiling revealed that crosslinking can reduce peptide size and the production of bitterness-like peptides in some blends. This study provides insights into the effect of bacterial blends, storage time, and enzymatic crosslinking on the production of volatile components and peptides related to aroma and peptide profiles for pea protein.
Collapse
Affiliation(s)
- Carmen Masiá
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia; Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark; Plant Based Application Department, Novonesis, Gl. Venlighedsvej 14, 2970 Hørsholm, Denmark; The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | | | - Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia
| | - Utpal Bose
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia
| | - Regine Stockmann
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia
| | - Lydia Ong
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Sally Gras
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark
| | - Saeed Rahimi Yazdi
- Plant Based Application Department, Novonesis, Gl. Venlighedsvej 14, 2970 Hørsholm, Denmark
| | - Joanna M Gambetta
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee 3030, VIC, Australia.
| |
Collapse
|
5
|
Khan MU, Farid A, Liu S, Zhen L, Alahmad K, Chen Z, Kong L. Innovative approaches for enzyme immobilization in milk processing: advancements and industrial applications. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 39841104 DOI: 10.1080/10408398.2025.2450528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The dairy industry is progressively integrating advanced enzyme technologies to optimize processing efficiency and elevate product quality. Among these technologies, enzyme immobilization has emerged as a pivotal innovation, offering considerable benefits in terms of enzyme reusability, stability, and overall process sustainability. This review paper explores the latest improvements in enzyme immobilization techniques and their industrial applications within milk processing. It examines various immobilization strategies, including adsorption, affinity binding, ionic and covalent binding, entrapment, encapsulation, and cross-linking, highlighting their effectiveness in improving the performance of key enzymes such as lactases, lipases, proteases and transglutaminases. The paper also delves into the economic and ecological benefits of enzyme immobilization, emphasizing its role in reducing production costs and environmental impact while maintaining or enhancing the quality of dairy products. By analyzing current trends and technological developments, this review provides a comprehensive overview of how innovative enzyme immobilization approaches are transforming milk processing. It concludes with a discussion on future research directions and potential industrial applications, underscoring the importance of continued innovation in this field to meet the increasing demands of the global dairy market.
Collapse
Affiliation(s)
- Mati Ullah Khan
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
| | - Anum Farid
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
| | - Shuang Liu
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
| | - Limin Zhen
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd, Hohhot, P.R. China
| | - Kamal Alahmad
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
| | - Zhiwei Chen
- School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, P.R. China
- Shandong Provincial Innovation Center for Dairy Technology, Zibo, P.R. China
- Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo, P.R. China
| | - Ling Kong
- Shandong Provincial Innovation Center for Dairy Technology, Zibo, P.R. China
- Shandong Engineering Research Center for Food Rapid Analysis Technology, Zibo, P.R. China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, P.R. China
| |
Collapse
|
6
|
Chaves CRS, Salamandane A, Vieira EJF, Salamandane C. Antibiotic Resistance in Fermented Foods Chain: Evaluating the Risks of Emergence of Enterococci as an Emerging Pathogen in Raw Milk Cheese. Int J Microbiol 2024; 2024:2409270. [PMID: 39749146 PMCID: PMC11695086 DOI: 10.1155/ijm/2409270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage. Focusing on cheese production as a key fermented food, the study will investigate various aspects, including dairy farm management, milk acquisition, milk handling, and the application of good manufacturing practices (GMP) and good hygiene practices (GHP) in cheese production. The findings of this review highlight that ARGs found in LAB are similar to those observed in hygiene indicator bacteria like E. coli and pathogens like S. aureus. The deliberate use of antibiotics in dairy farms and the incorrect use of disinfectants in cheese factories contribute to the prevalence of antibiotic-resistant bacteria in cheeses. Cheese factories, with their high frequency of horizontal gene transfer, are environments where the microbiological diversity of raw milk can enhance ARG transfer. The interaction between the raw milk microbiota and other environmental microbiotas, facilitated by cross-contamination, increases metabolic communication between bacteria, further promoting ARG transfer. Understanding these bacterial and ARG interactions is crucial to ensure food safety for consumers.
Collapse
Affiliation(s)
- Celso Raul Silambo Chaves
- Clinical Laboratory of the Matacuane Military Health Center, Avenida Alfredo Lawley No 42, Matacuane, Beira, Mozambique
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| | - Acácio Salamandane
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| | - Emília Joana F. Vieira
- Laboratory of Active Principles, National Center for Scientific Research, Ministry of Higher Education, Science, Technology and Innovation, Avenida Ho Chi Min No 201, Luanda, Angola
| | - Cátia Salamandane
- Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
- Laboratory of Food Quality and Safety, Lúrio Interdisciplinary Research Center, Lúrio University, Marrere Campus, Nampula 4250, Mozambique
| |
Collapse
|
7
|
Sibono L, Manis C, Zucca F, Atzori L, Errico M, Tronci S, Casula M, Dedola A, Pes M, Caboni P, Grosso M. Metabolomic profiling of Fiore Sardo cheese: Investigation of the influence of thermal treatment and ripening time using univariate and multivariate classification techniques. Food Chem 2024; 456:139930. [PMID: 38876075 DOI: 10.1016/j.foodchem.2024.139930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
The effect of different sub-pasteurization heat treatments and different ripening times was investigated in this work. The metabolite profiles of 95 cheese samples were analyzed using GC-MS in order to determine the effects of thermal treatment (raw milk, 57 °C and 68 °C milk thermization) and ripening time (105 and 180 days). ANOVA test on GC-MS peaks complemented with false discovery rate correction was employed to identify the compounds whose levels significantly varied over different ripening times and thermal treatments. The univariate t-test classifier and Partial Least Square Discriminant Analysis (PLS-DA) provided acceptable classification results, with an overall accuracy in cross-validation of 76% for the univariate model and 72% from the PLS-DA. The metabolites that mostly changed with ripening time were amino acids and one endocannabinoid (i.e., arachidonoyl amide), while compounds belonging to the classes of biogenic amines and saccharides resulted in being strongly affected by the thermization process.
Collapse
Affiliation(s)
- Leonardo Sibono
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, Cagliari 09123, Italy
| | - Cristina Manis
- Dipartimento di Scienze della vita e Ambiente, Cittadella Universitaria di Monserrato Blocco A, Monserrato 09012, Italy
| | - Francesca Zucca
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, Cagliari 09123, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Massimiliano Errico
- Department of Green Technology, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Stefania Tronci
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, Cagliari 09123, Italy
| | - Mattia Casula
- Dipartimento di Scienze della vita e Ambiente, Cittadella Universitaria di Monserrato Blocco A, Monserrato 09012, Italy
| | - Alessio Dedola
- Agris Sardegna, Servizio Ricerca Prodotti di Origine Animale, Agris Sardegna, Loc., Bonassai, 07040 Sassari, Italy
| | - Massimo Pes
- Agris Sardegna, Servizio Ricerca Prodotti di Origine Animale, Agris Sardegna, Loc., Bonassai, 07040 Sassari, Italy
| | - Pierluigi Caboni
- Dipartimento di Scienze della vita e Ambiente, Cittadella Universitaria di Monserrato Blocco A, Monserrato 09012, Italy.
| | - Massimiliano Grosso
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, Cagliari 09123, Italy
| |
Collapse
|
8
|
Brandsma JB, Brinkman J, Wolkers-Rooijackers JCM, van Swam I, van Uitert K, Zwietering MH, Smid EJ. Pyruvate stimulates transamination of leucine into α-ketoisocaproic acid and supports 3-methylbutanal production by Lactococcus lactis. J Appl Microbiol 2024; 135:lxae257. [PMID: 39380147 DOI: 10.1093/jambio/lxae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024]
Abstract
AIM To investigate the effect of pyruvate and glucose on leucine transamination and 3-methylbutanal production by Lactococcus lactis, including the comparison with cells possessing glutamate dehydrogenase (GDH) activity. METHODS AND RESULTS Lactococcus lactis cells were incubated in chemically defined medium (CDM) with the pH controlled at 5.2 to mimic cheese conditions. Pyruvate supplementation stimulated the production of the key flavour compound 3-methylbutanal by 3-4 times after 72 h of incubation. Concurrently, alanine production increased, demonstrating the involvement of pyruvate in transamination reactions. Glucose-metabolizing cells excreted α-ketoisocaproic acid and produced even 3 times more 3-methylbutanal after 24 h than pyruvate-supplemented cells. Conjugal transfer technique was used to transfer the plasmid pGdh442 carrying the gdh gene encoding for GDH to L. lactis. Introducing GDH did not stimulate the excretion of α-ketoisocaproic acid and the production of 3-methylbutanal. CONCLUSIONS These results demonstrate that Lactococcus uses pyruvate to transaminate leucine into α-ketoisocaproic acid which supports 3-methylbutanal production. Surprisingly, GDH activity did not stimulate leucine transamination and 3-methylbutanal production.
Collapse
Affiliation(s)
- Johannes B Brandsma
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Wageningen, 6708 WH, The Netherlands
| | - Judith Brinkman
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Wageningen, 6708 WH, The Netherlands
| | | | - Iris van Swam
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Wageningen, 6708 WH, The Netherlands
| | - Kim van Uitert
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Wageningen, 6708 WH, The Netherlands
| | - Marcel H Zwietering
- Wageningen University & Research, Food Microbiology, Wageningen, 6708 WG, The Netherlands
| | - Eddy J Smid
- Wageningen University & Research, Food Microbiology, Wageningen, 6708 WG, The Netherlands
| |
Collapse
|
9
|
Estrada-Hernández CA, Becerra-Cedillo MB, Hernández Velázquez IA, Mejía-Buenfil HE, Olivera-Martínez T, Salto-González IB, Torres-López F, Quirasco M. Microbiological Evaluation of Two Mexican Artisanal Cheeses: Analysis of Foodborne Pathogenic Bacteria in Cotija Cheese and Bola de Ocosingo Cheese by qPCR. Foods 2024; 13:2824. [PMID: 39272589 PMCID: PMC11394692 DOI: 10.3390/foods13172824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cotija and Bola de Ocosingo are artisanal ripened cheeses produced in Mexico. Both are made with raw bovine milk from free-grazing cows and with no starter cultures. Unlike culture-based techniques, molecular methods for pathogen detection in food allow a shorter turnaround time, higher detection specificity, and represent a lower microbiological risk for the analyst. In the present investigation, we analyzed 111 cheese samples (95 Cotija and 16 Bola de Ocosingo) by qPCR (TaqMan®) after an enrichment-culture step specific to each foodborne bacterium. The results showed that 100% of the samples were free of DNA from Listeria monocytogenes, Brucella spp., Escherichia coli enterotoxigenic (ETEC), and O157:H7; 9% amplified Salmonella spp. DNA; and 11.7%, Staphylococcus aureus DNA. However, the threshold cycle (Ct) values of the amplified targets ranged between 23 and 30, indicating DNA from non-viable microorganisms. Plate counts supported this assumption. In conclusion, 100% of the cheeses analyzed were safe to consume, and the enrichment step before DNA extraction proved essential to discern between viable and non-viable microorganisms. Hygienic milking, milk handling, cheese manufacturing, and ripening are crucial to achieve an adequate microbiological quality of cheeses made with raw milk.
Collapse
Affiliation(s)
- Cindy Adriana Estrada-Hernández
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Belén Becerra-Cedillo
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Irma Angélica Hernández Velázquez
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Hermann E Mejía-Buenfil
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Tania Olivera-Martínez
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - I Berenice Salto-González
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Frida Torres-López
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Maricarmen Quirasco
- Food and Biotechnology Department, School of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
10
|
Luo H, Akkermans S, Verheyen D, Wang J, Polanska M, Van Impe JFM. Tuning and modeling cheese flavor. Compr Rev Food Sci Food Saf 2024; 23:e13420. [PMID: 39217506 DOI: 10.1111/1541-4337.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Flavor is a major sensory attribute affecting consumers' preference for cheese products. Differences in cheesemaking change the cheese microenvironment, thereby affecting cheese flavor profiles. A framework for tuning cheese flavor is proposed in this study, which depicts the full picture of flavor development and modulation, from manufacturing and ripening factors through the main biochemical pathways to flavor compounds and flavor notes. Taking semi-hard and hard cheeses as examples, this review describes how cheese flavor profiles are affected by milk type and applied treatment, fat and salt content, microbiota composition and microbial interactions, ripening time, temperature, and environmental humidity, together with packaging method and material. Moreover, these factors are linked to flavor profiles through their effects on proteolysis, the further catabolism of amino acids, and lipolysis. Acids, alcohols, ketones, esters, aldehydes, lactones, and sulfur compounds are key volatiles, which elicit fruity, sweet, rancid, green, creamy, pungent, alcoholic, nutty, fatty, and sweaty flavor notes, contributing to the overall flavor profiles. Additionally, this review demonstrates how data-driven modeling techniques can link these influencing factors to resulting flavor profiles. This is done by providing a comprehensive review on the (i) identification of key factors and flavor compounds, (ii) discrimination of cheeses, and (iii) prediction of flavor notes. Overall, this review provides knowledge tools for cheese flavor modulation and sheds light on using data-driven modeling techniques to aid cheese flavor analysis and flavor prediction.
Collapse
Affiliation(s)
- Huabin Luo
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Davy Verheyen
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jian Wang
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Monika Polanska
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F M Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
11
|
Tian H, Zheng G, Yu H, Yuan H, Lou X, Sun Y, Wang M, Chen C. Investigation of the interaction between lactones and ketones in a Cheddar cheese matrix using Feller's additive model, σ-τ plots, U-models, and aroma addition experiments. J Dairy Sci 2024; 107:5496-5511. [PMID: 38428493 DOI: 10.3168/jds.2023-24339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
The objective of this study was to examine the sensory interactions between lactones and ketones in a Cheddar simulation matrix through perceptual interaction analysis. The olfactory thresholds of 6 key lactones had values ranging from 8.32 to 58.88 μg/kg, whereas those of the 4 key ketones ranged from 6.61 to 660.69 μg/kg. Both Feller's additive model and σ-τ plots demonstrated complex interactions in 24 binary mixtures composed of the 6 lactones and 4 ketones, including synergy, addition, and masking effects. Specifically, we found that 6 binary mixtures exhibited aroma synergistic effects using both methods. Moreover, the σ-τ plot showed a synergistic effect of aroma in 3 ternary mixtures. The U-model further confirmed the synergistic effects of the 6 groups of binary systems and 3 groups of ternary systems on aroma at actual cheese concentrations. In an aroma addition experiment, the combination of δ-octalactone and diacetyl in binary mixtures had the most pronounced effect on enhancing milk flavor. In ternary mixtures, 2 combinations, namely δ-octalactone/δ-dodecalactone/diacetyl and γ-dodecalactone/δ-dodecalactone/acetoin, significantly enhanced the milky and sweet aroma properties of cheese, while also enhancing the overall acceptability of the cheese aroma.
Collapse
Affiliation(s)
- Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Guomao Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinman Lou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yating Sun
- Dr. Cheese (Shanghai) Technology Co. Ltd., Shanghai 200041, China
| | - Mingquan Wang
- Shanghai Milkground Food Tech Co. Ltd., Shanghai 201404, China
| | - Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
12
|
Abi-Rizk H, Jouan-Rimbaud Bouveresse D, Chamberland J, Cordella CBY. Chemometrics-driven monitoring of cheese ripening: a multimodal spectroscopic and scanning electron microscopy investigation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3732-3744. [PMID: 38808623 DOI: 10.1039/d4ay00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The integration of spectroscopic techniques with chemometrics offers a means to monitor quality changes in dairy products throughout processing and storage. This study employed Attenuated Total Reflectance-Mid-Infrared Spectroscopy (ATR-MIR) coupled with Independent Components Analysis (ICA), and 3D Front-Face Fluorescence Spectroscopy (FFFS) paired with Common Components and Specific Weight Analysis (CCSWA). The research focused on Cheddar cheeses aged for 1, 2, 3, and 5 years, alongside Comté cheeses aged for 6, 9, and 12 months. The adopted approach offered valuable insights into the intricate cheese aging process within the food matrix. The ICA proportions and CCSWA scores highlighted the significant impact of biochemical transformations during maturation on the aging process. The extracted independent components (ICs) revealed variations in the vibration modes of amides, lipids, amino acids, and organic acids, facilitating the distinction between different cheese age categories. Additionally, CCSWA outcomes identified age-related differences through shifts in tryptophan fluorescence characteristics as the cheeses aged. These results were consistent with the observed alterations in the microstructure of cheese samples over time, corroborated by Scanning Electron Microscopy (SEM) imagery. The introduced multimodal methodology serves as a significant asset for determining the ripening stage of various types of cheese, offering a detailed perspective of cheese maturation beneficial to the dairy industry and researchers.
Collapse
Affiliation(s)
- Hala Abi-Rizk
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, 2425 Rue de l'agriculture, Québec, QC G1V 0A6, Canada.
- Institute of Nutrition and Functional Foods (INAF), Québec, QC G1V 0A6, Canada
| | | | - Julien Chamberland
- Institute of Nutrition and Functional Foods (INAF), Québec, QC G1V 0A6, Canada
- Department of Food Sciences, STELA Dairy Research Center, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christophe B Y Cordella
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, 2425 Rue de l'agriculture, Québec, QC G1V 0A6, Canada.
- Institute of Nutrition and Functional Foods (INAF), Québec, QC G1V 0A6, Canada
| |
Collapse
|
13
|
Barreto Pinilla CM, Brandelli A, Ataíde Isaia H, Guzman F, Sundfeld da Gama MA, Spadoti LM, Torres Silva E Alves A. Probiotic Potential and Application of Indigenous Non-Starter Lactic Acid Bacteria in Ripened Short-Aged Cheese. Curr Microbiol 2024; 81:202. [PMID: 38829392 DOI: 10.1007/s00284-024-03729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024]
Abstract
There are massive sources of lactic acid bacteria (LAB) in traditional dairy products. Some of these indigenous strains could be novel probiotics with applications in human health and supply the growing needs of the probiotic industry. In this work, were analyzed the probiotic and technological properties of three Lactobacilli strains isolated from traditional Brazilian cheeses. In vitro tests showed that the three strains are safe and have probiotic features. They presented antimicrobial activity against pathogenic bacteria, auto-aggregation values around 60%, high biofilm formation properties, and a survivor of more than 65% to simulated acid conditions and more than 100% to bile salts. The three strains were used as adjunct cultures separately in a pilot-scale production of Prato cheese. After 45 days of ripening, the lactobacilli counts in the cheeses were close to 8 Log CFU/g, and was observed a reduction in the lactococci counts (around -3 Log CFU/g) in a strain-dependent manner. Cheese primary and secondary proteolysis were unaffected by the probiotic candidates during the ripening, and the strains showed no lipolytic effect, as no changes in the fatty acid profile of cheeses were observed. Thus, our findings suggest that the three strains evaluated have probiotic properties and have potential as adjunct non-starter lactic acid bacteria (NSLAB) to improve the quality and functionality of short-aged cheeses.
Collapse
Affiliation(s)
| | - Adriano Brandelli
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Henrique Ataíde Isaia
- Laboratory of Applied Microbiology and Biochemistry, Institute of Food Science and Technology (ICTA), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Frank Guzman
- Grupo de Investigación en Epidemiología y Diseminación de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Perú
| | | | - Leila Maria Spadoti
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, Brazil
| | | |
Collapse
|
14
|
Abarquero D, Duque C, Bodelón R, López I, Muñoz J, María Fresno J, Eugenia Tornadijo M. Autochthonous cultures to improve the quality of PGI Castellano cheese: Impact on proteolysis, microstructure and texture during ripening. Food Res Int 2024; 186:114306. [PMID: 38729707 DOI: 10.1016/j.foodres.2024.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.
Collapse
Affiliation(s)
- Daniel Abarquero
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain
| | - Cristina Duque
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain
| | - Raquel Bodelón
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain
| | - Inés López
- Department of Innovation and Product Development, Queserías Entrepinares. Avenida de Santander 140, 47011 Valladolid, Spain
| | - Julio Muñoz
- Department of Innovation and Product Development, Queserías Entrepinares. Avenida de Santander 140, 47011 Valladolid, Spain
| | - José María Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Universidad de León, 24071 León, Spain.
| |
Collapse
|
15
|
Płoska J, Garbowska M, Rybak K, Berthold-Pluta A, Stasiak-Różańska L. Study on application of biocellulose-based material for cheese packaging. Int J Biol Macromol 2024; 264:130433. [PMID: 38408577 DOI: 10.1016/j.ijbiomac.2024.130433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Bacterial cellulose (BC, biocellulose) is a natural polymer of microbiological origin that meets the criteria of a biomaterial for food packaging. The aim of the research was to obtain biocellulose and test its chemical as well as physical characterization as a potential packaging for Dutch-type cheeses. Four variants of biocellulose-based material were obtained: not grinded and grinded variants obtained from YPM medium (YPM-BCNG and YPM-BCG, respectively) and not grinded and grinded variants from acid whey (AW) (AW-BCNG and AW-BCG, respectively). It was demonstrated that AW-BCNG exhibited the highest thermostability and the highest degradation temperature (348 °C). YPM-BCG and YPM-BCNG demonstrated higher sorption properties (approx. 40 %) compared to AW-BCG and AW-BCNG (approx. 15 %). Cheese packaged in biocellulose (except for YPM-BCNG) did not differ in water, fat, or protein content compared to the control cheese. All of the biocellulose packaging variants provided the cheeses with protection against unfavourable microflora. It was demonstrated that cheeses packaged in biocellulose were characterized by lower hardness, fracturability, gumminess, and chewiness than the control cheese sample. The results obtained indicate that BC may be a suitable packaging material for ripening cheeses, which shows a positive impact on selected product features.
Collapse
Affiliation(s)
- J Płoska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland.
| | - M Garbowska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - K Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - A Berthold-Pluta
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| | - L Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska Street 159c, 02-776 Warsaw, Poland
| |
Collapse
|
16
|
Pellegrino L, Rosi V, Sindaco M, D’Incecco P. Proteomics Parameters for Assessing Authenticity of Grated Grana Padano PDO Cheese: Results from a Three-Year Survey. Foods 2024; 13:355. [PMID: 38338491 PMCID: PMC10855795 DOI: 10.3390/foods13030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Assessing the authenticity of PDO cheeses is an important task because it allows consumer expectations to be fulfilled and guarantees fair competition for manufacturers. A 3-year survey was carried out, analyzing 271 samples of grated Grana Padano (GP) PDO cheese collected on the European market. Previously developed analytical methods based on proteomics approaches were adopted to evaluate the compliance of market samples with selected legal requirements provided by the specification for this cheese. Proteolysis follows highly repeatable pathways in GP cheese due to the usage of raw milk, natural whey starter, and consistent manufacturing and ripening conditions. From selected casein breakdown products, it is possible to calculate the actual cheese age (should be >9 months) and detect the presence of excess rind (should be <18%). Furthermore, due to the characteristic pattern of free amino acids established for GP, distinguishing it from closely related cheese varieties is feasible. Cheese age ranged from 9 to 25 months and was correctly claimed on the label. Based on the amino acid pattern, three samples probably contained defective cheese and there was only one imitation cheese. Few samples (9%) were proven to contain some excess rind. Overall, this survey highlighted that the adopted control parameters can assure the quality of grated GP.
Collapse
Affiliation(s)
| | | | | | - Paolo D’Incecco
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (L.P.); (V.R.); (M.S.)
| |
Collapse
|
17
|
Zhang J, Zhong L, Wang P, Song J, Shi C, Li Y, Oyom W, Zhang H, Zhu Y, Wen P. HS-SPME-GC-MS Combined with Orthogonal Partial Least Squares Identification to Analyze the Effect of LPL on Yak Milk's Flavor under Different Storage Temperatures and Times. Foods 2024; 13:342. [PMID: 38275709 PMCID: PMC10815618 DOI: 10.3390/foods13020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Flavor is a crucial parameter for assessing the sensory quality of yak milk. However, there is limited information regarding the factors influencing its taste. In this study, the effects of endogenous lipoprotein lipase (LPL) on the volatile flavor components of yak milk under storage conditions of 4 °C, 18 °C and 65 °C were analyzed via headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) combined with orthogonal partial least-squares (OPSL) discrimination, and the reasons for the changes in yak milk flavors were investigated. Combined with the difference in the changes in volatile flavor substance before and after the action of LPL, LPL was found to have a significant effect on the flavor of fresh yak milk. Fresh milk was best kept at 4 °C for 24 h and pasteurized for more than 24 h. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to characterize the volatile components in yak milk under various treatment conditions. Twelve substances with significant influence on yak milk flavor were identified by measuring their VIP values. Notably, 2-nonanone, heptanal, and ethyl caprylate exhibited OAV values greater than 1, indicating their significant contribution to the flavor of yak milk. Conversely, 4-octanone and 2-heptanone displayed OAV values between 0.1 and 1, showing their important role in modifying the flavor of yak milk. These findings can serve as monitoring indicators for assessing the freshness of yak milk.
Collapse
Affiliation(s)
- Jinliang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (L.Z.); (J.S.); (C.S.); (Y.L.)
| | - Liwen Zhong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (L.Z.); (J.S.); (C.S.); (Y.L.)
| | - Pengjie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (H.Z.)
| | - Juan Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (L.Z.); (J.S.); (C.S.); (Y.L.)
| | - Chengrui Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (L.Z.); (J.S.); (C.S.); (Y.L.)
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (L.Z.); (J.S.); (C.S.); (Y.L.)
| | - William Oyom
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (P.W.); (H.Z.)
| | - Yanli Zhu
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (L.Z.); (J.S.); (C.S.); (Y.L.)
| |
Collapse
|
18
|
Tondhoush A, Soltani M, Azarikia F, Homayouni‐Rad A, Karami M. Fabrication of UF-white cheese: Obtaining a different proteolysis rate, texture, and flavor via using combinations of mesophilic starter culture and Lactobacillus helveticus. Food Sci Nutr 2024; 12:328-339. [PMID: 38268878 PMCID: PMC10804073 DOI: 10.1002/fsn3.3769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024] Open
Abstract
The effect of using mesophilic starter culture (Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. cremoris) and Lactobacillus helveticus (L. helveticus) at different ratios (100:0, 75:25, 50:50, 25:75, and 0:100) on the quality properties of UF-white cheese during 90 days of ripening was studied. The results revealed that an increase in L. helveticus ratio caused a significant decrease in the pH and total protein contents of the cheeses (p < .05). No significant changes were observed in the dry matter content of the cheeses (p > .05). The use of higher ratios of L. helveticus led to a noticeable increase in proteolysis and lipolysis indices in the cheeses (p < .05). The cheese produced with higher ratios of L. helveticus had less storage (G') and loss (G″) moduli compared to other cheeses. The more open structure was seen in the cheeses produced using higher ratios of L. helveticus. Regarding sensory properties, lower scores of body and texture, and higher scores of odor and flavor were assigned to the cheeses produced using higher ratios of L. helveticus. In conclusion, the use of combinations of mesophilic starter culture and L. helveticus at specific ratios (75:25 and 25:75) led to improve quality characteristics of UF-white cheese.
Collapse
Affiliation(s)
- Arash Tondhoush
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mostafa Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition and Food Sciences Research Center, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Fatemeh Azarikia
- Department of Food Technology, Faculty of Agricultural Technology (Aburaihan)University of TehranTehranIran
| | - Aziz Homayouni‐Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Mostafa Karami
- Department of Food Science and Technology, College of Food IndustryBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
19
|
Di Trana A, Sabia E, Di Rosa AR, Addis M, Bellati M, Russo V, Dedola AS, Chiofalo V, Claps S, Di Gregorio P, Braghieri A. Caciocavallo Podolico Cheese, a Traditional Agri-Food Product of the Region of Basilicata, Italy: Comparison of the Cheese's Nutritional, Health and Organoleptic Properties at 6 and 12 Months of Ripening, and Its Digital Communication. Foods 2023; 12:4339. [PMID: 38231870 DOI: 10.3390/foods12234339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Traditional agri-food products (TAPs) are closely linked to the peculiarities of the territory of origin and are strategic tools for preserving culture and traditions; nutritional and organoleptic peculiarities also differentiate these products on the market. One such product is Caciocavallo Podolico Lucano (CPL), a stretched curd cheese made exclusively from raw milk from Podolian cows, reared under extensive conditions. The objective of this study was to characterise CPL and evaluate the effects of ripening (6 vs. 12 months) on the quality and organoleptic properties, using the technological "artificial senses" platform, of CPL produced and sold in the region of Basilicata, Italy. Additionally, this study represents the first analysis of cheese-related digital communication and trends online. The study found no significant differences between 6-month- and 12-month-ripened cheese, except for a slight increase in cholesterol levels in the latter. CPL aged for 6 and 12 months is naturally lactose-free, rich in bioactive components, and high in vitamin A and antioxidants and has a low PUFA-n6/n3 ratio. The "artificial sensory profile" was able to discriminate the organoleptic fingerprints of 6-month- and 12-month-ripened cheese. The application of a socio-semiotic methodology enabled us to identify the best drivers to create effective communication for this product. The researchers recommend focusing on creating a certification mark linked to the territory for future protection.
Collapse
Affiliation(s)
- Adriana Di Trana
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Emilio Sabia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | | | - Mara Bellati
- Behavior and Brain Lab IULM, Center of Research on Neuromarketing, IULM University, 20143 Milano, Italy
| | - Vincenzo Russo
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", IULM University, 20143 Milano, Italy
| | | | - Vincenzo Chiofalo
- Department of Veterinary Sciences, University of Messina, Viale Palatucci 13, 98168 Messina, Italy
| | - Salvatore Claps
- CREA Research Centre for Animal Production and Aquaculture, 85051 Bella, Italy
| | - Paola Di Gregorio
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| | - Ada Braghieri
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
20
|
Silva LF, Sunakozawa TN, Monteiro DA, Casella T, Conti AC, Todorov SD, Barretto Penna AL. Potential of Cheese-Associated Lactic Acid Bacteria to Metabolize Citrate and Produce Organic Acids and Acetoin. Metabolites 2023; 13:1134. [PMID: 37999230 PMCID: PMC10673126 DOI: 10.3390/metabo13111134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Lactic acid bacteria (LAB) are pivotal in shaping the technological, sensory, and safety aspects of dairy products. The evaluation of proteolytic activity, citrate utilization, milk pH reduction, and the production of organic compounds, acetoin, and diacetyl by cheese associated LAB strains was carried out, followed by Principal Component Analysis (PCA). Citrate utilization was observed in all Leuconostoc (Le.) mesenteroides, Le. citreum, Lactococcus (Lc.) lactis, Lc. garvieae, and Limosilactobacillus (Lm.) fermentum strains, and in some Lacticaseibacillus (Lact.) casei strains. Most strains exhibited proteolytic activity, reduced pH, and generated organic compounds. Multivariate PCA revealed Le. mesenteroides as a prolific producer of acetic, lactic, formic, and pyruvic acids and acetoin at 30 °C. Enterococcus sp. was distinguished from Lact. casei based on acetic, formic, and pyruvic acid production, while Lact. casei primarily produced lactic acid at 37 °C. At 42 °C, Lactobacillus (L.) helveticus and some L. delbrueckii subsp. bulgaricus strains excelled in acetoin production, whereas L. delbrueckii subsp. bulgaricus and Streptococcus (S.) thermophilus strains primarily produced lactic acid. Lm. fermentum stood out with its production of acetic, formic, and pyruvic acids. Overall, cheese-associated LAB strains exhibited diverse metabolic capabilities which contribute to desirable aroma, flavor, and safety of dairy products.
Collapse
Affiliation(s)
- Luana Faria Silva
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tássila Nakata Sunakozawa
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Diego Alves Monteiro
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Tiago Casella
- Department of Dermatological, Infectious and Parasitic Diseases, FAMERP—São José do Rio Preto Medical School, São José do Rio Preto 15090-000, SP, Brazil;
| | - Ana Carolina Conti
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Food Science and Experimental Nutrition, Faculty of Pharmaceutical Sciences, USP—São Paulo University, São Paulo 05508-000, SP, Brazil;
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Ana Lúcia Barretto Penna
- Institute of Biosciences, Humanities and Exact Sciences, Food Engineering and Technology Department, UNESP—São Paulo State University, São José do Rio Preto 15054-000, SP, Brazil; (L.F.S.); (T.N.S.); (D.A.M.); (A.C.C.)
| |
Collapse
|
21
|
Song Z, Cao Y, Qiao H, Wen P, Sun G, Zhang W, Han L. Analysis of the effect of Tenebrio Molitor rennet on the flavor formation of Cheddar cheese during ripening based on gas chromatography-ion mobility spectrometry (GC-IMS). Food Res Int 2023; 171:113074. [PMID: 37330834 DOI: 10.1016/j.foodres.2023.113074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to evaluate the potential application of Tenebrio Molitor rennet (TMR) in Cheddar cheese production, and to use gas chromatography-ion mobility spectrometry (GC-IMS) to monitor flavor compounds and fingerprints of cheese during ripening. The results indicated that Cheddar cheese prepared from TMR (TF) has fat content significantly lower than that of commercial rennet (CF) (p < 0.05). However, the results of the sensory evaluation showed that there were no statistically significant differences between the two kinds of cheese (p > 0.05). Both cheeses were rich in free amino acids and free fatty acids. Compared to the CF cheese, gamma-aminobutyric acid and Ornithine contents of the TF cheese reached 187 and 749 mg/kg, respectively, during 120 days of ripening. Moreover, GC-IMS provided information on the characteristics of 40 flavor substances (monomers and dimers) in the TF cheese during ripening. Only 30 flavor substances were identified in the CF cheese. The fingerprint of the two kinds of cheese during ripening can be established by GC-IMS and principal component analysis based on the identified flavor compounds. Therefore, TMR has potential application in Cheddar cheese production. GC-IMS might be applied for the quick, accurate and comprehensive monitoring of cheese flavor during ripening.
Collapse
Affiliation(s)
- Zhaoyang Song
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yinjuan Cao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Haijun Qiao
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Guozheng Sun
- Qingyang Food Inspection and Testing Center, Qingyang, Gansu, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
22
|
Sibono L, Grosso M, Tronci S, Errico M, Addis M, Vacca M, Manis C, Caboni P. Investigation of Seasonal Variation in Fatty Acid and Mineral Concentrations of Pecorino Romano PDO Cheese: Imputation of Missing Values for Enhanced Classification and Metabolic Profile Reconstruction. Metabolites 2023; 13:877. [PMID: 37512584 PMCID: PMC10386313 DOI: 10.3390/metabo13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Seasonal variation in fatty acids and minerals concentrations was investigated through the analysis of Pecorino Romano cheese samples collected in January, April, and June. A fraction of samples contained missing values in their fatty acid profiles. Probabilistic principal component analysis, coupled with Linear Discriminant Analysis, was employed to classify cheese samples on a production season basis while accounting for missing data and quantifying the missing fatty acid concentrations for the samples in which they were absent. The levels of rumenic acid, vaccenic acid, and omega-3 compounds were positively correlated with the spring season, while the length of the saturated fatty acids increased throughout the production seasons. Concerning the classification performances, the optimal number of principal components (i.e., 5) achieved an accuracy in cross-validation equal to 98%. Then, when the model was tasked with imputing the lacking fatty acid concentration values, the optimal number of principal components resulted in an R2 value in cross-validation of 99.53%.
Collapse
Affiliation(s)
- Leonardo Sibono
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Massimiliano Grosso
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Stefania Tronci
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Massimiliano Errico
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Margherita Addis
- Agris Sardegna, Servizio Ricerca Prodotti di Origine Animale, Agris Sardegna, Loc., Bonassai, 07040 Sassari, Italy
| | - Monica Vacca
- Servizio Ricerca Studi Ambientali, Difesa delle Colture e Qualità delle Produzioni, Viale Trieste, 09123 Cagliari, Italy
| | - Cristina Manis
- Dipartimento di Scienze della vita e Ambiente, Cittadella Universitaria di Monserrato Blocco A, 09012 Monserrato, Italy
| | - Pierluigi Caboni
- Dipartimento di Scienze della vita e Ambiente, Cittadella Universitaria di Monserrato Blocco A, 09012 Monserrato, Italy
| |
Collapse
|
23
|
Li J, Dadmohammadi Y, Abbaspourrad A. Understanding animal-based flavor generation, mechanisms and characterization: Cheddar cheese and bacon flavors. Crit Rev Food Sci Nutr 2023; 64:10950-10969. [PMID: 37431669 DOI: 10.1080/10408398.2023.2230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Natural animal-based flavors have great appeal to consumers and have broad applications in the food industry. In this review, we summarized findings related to bacon and Cheddar cheese flavors' components and their precursors, reaction mechanisms, influential factors, and characterization methods. The results show that free sugars, free amino acids, peptides, vitamins, lipids, and nitrites are precursors to bacon flavor. The conditions governing the formation of bacon flavor are thermally dependent, which facilitates the use of thermal food processing to generate such a flavor. For Cheddar cheese flavor, milk ingredients such as lactose, citrate, fat, and casein are reported as precursors. The optimum conditions to generate Cheddar cheese flavor from precursors are quite strict, which limits its application in food processing. As an alternative, it is more practical to generate Cheddar cheese flavor by combining key aroma compounds using thermal food processing. This review provides the food industry the comprehensive information about the generation of bacon and Cheddar cheese flavors using precursor molecules.
Collapse
Affiliation(s)
- Jieying Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Boran OS, Sulejmani E, Hayaloglu AA. Acceleration of proteolysis, flavour development and enhanced bioactivity in a model cheese using Kuflu cheese slurry: An optimisation study. Food Chem 2023; 412:135495. [PMID: 36731232 DOI: 10.1016/j.foodchem.2023.135495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
This study aimed to use Kuflu (a mould-ripened cheese) cheese slurry to accelerate ripening, improve biological activity and flavour development in a model cheese in terms of proteolysis and volatile compounds. Response surface methodology (RSM) was employed for the model cheese to determine higher proteolysis and volatile development level during ripening as a function of Kuflu cheese slurry addition level (0-5 %), salt concentration (1-3 %) and ripening temperature (5-15 °C). The highest aminopeptidase activities (0.140 and 0.187 OD/g per hour) were determined in 15-day-old samples containing 3 % and 5 % Kuflu cheese slurry, respectively. Also, the use of Kuflu cheese slurry, regardless of ripening, caused an increase in ABTS*+ antioxidants, angiotensin-converting enzyme (ACE)-inhibition activity and volatile compounds in model cheeses. The sensory evaluation indicated that the use of 3 % (w/w) Kuflu cheese slurry, storage temperature 10 °C for 15 days provided better flavour, odour, texture, colour, appearance and overall acceptability. In conclusion, using Kuflu cheese slurry for model cheese production enhanced the level of proteolysis and volatile flavour composition with shortened ripening time.
Collapse
Affiliation(s)
- O S Boran
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey
| | - E Sulejmani
- Department of Food Technology, University of Tetova, 1200 Tetovo, Macedonia
| | - A A Hayaloglu
- Department of Food Engineering, Inonu University, 44280 Malatya, Turkey.
| |
Collapse
|
25
|
Ami Y, Kodama N, Umeda M, Nakamura H, Shirasawa H, Koyanagi T, Kurihara S. Levilactobacillus brevis with High Production of Putrescine Isolated from Blue Cheese and Its Application. Int J Mol Sci 2023; 24:ijms24119668. [PMID: 37298617 DOI: 10.3390/ijms24119668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Polyamine intake has been reported to help extend the lifespan of animals. Fermented foods contain high concentrations of polyamines, produced by fermenting bacteria. Therefore, the bacteria, isolated from fermented foods that produce large amounts of polyamines, are potentially used as a source of polyamines for humans. In this study, the strain Levilactobacillus brevis FB215, which has the ability to accumulate approximately 200 µM of putrescine in the culture supernatant, was isolated from fermented foods, specifically the Blue Stilton cheese. Furthermore, L. brevis FB215 synthesized putrescine from agmatine and ornithine, which are known polyamine precursors. When cultured in the extract of Sakekasu, a byproduct obtained during the brewing of Japanese rice wine containing high levels of both agmatine and ornithine, L. brevis FB215 grew to OD600 = 1.7 after 83 h of cultivation and accumulated high concentrations (~1 mM) of putrescine in the culture supernatant. The fermentation product also did not contain histamine or tyramine. The Sakekasu-derived ingredient fermented by the food-derived lactic acid bacteria developed in this study could contribute to increasing polyamine intake in humans.
Collapse
Affiliation(s)
- Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Narumi Kodama
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Masahiro Umeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hanae Nakamura
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Hideto Shirasawa
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| | - Takashi Koyanagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
26
|
Amer DA, Albadri AAM, El-Hamshary HA, Nehela Y, El-Hawary MY, Makhlouf AH, Awad SA. Impact of Salting Techniques on the Physio-Chemical Characteristics, Sensory Properties, and Volatile Organic Compounds of Ras Cheese. Foods 2023; 12:foods12091855. [PMID: 37174391 PMCID: PMC10177958 DOI: 10.3390/foods12091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Ras cheese is the main Egyptian hard cheese that is well-known worldwide. Herein, we investigated how different salting techniques affect the physio-chemical properties, sensory properties, and volatile compounds of Ras cheese over a six-month ripening period. Five Ras cheese treatments were made from pasteurized cow's milk using various salting techniques: traditional salting of Ras cheese, salting by applying all of the salt to the curd after the entire whey drainage, salting by applying all of the salt to the curd after half to two-thirds of the whey drainage, salting in a brine solution for 24 h without dry salting, and salting in a brine solution for 12 h and then dry salting. The obtained results by GC-MS recorded that thirty-eight volatile compounds were identified in Ras cheese treatments after six months of ripening, and the development of volatile compounds was affected by the salting technique as well as the ripening period of the cheeses, which played a major role in the type and concentration of volatile compounds. Results revealed that there are six esters, 15 fatty acids, five ketones, two aldehydes, four alcohols, and eight other compounds identified in most treatments. Some physio-chemical characteristics and sensory properties were found to have high correlations with the storage period, while some others have low correlations during the ripening period.
Collapse
Affiliation(s)
- Dina A Amer
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Abdinn A M Albadri
- Department of Biology, College of Science, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanaa A El-Hamshary
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Yasser Nehela
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Mohamed Y El-Hawary
- Department of Food Science and Technology, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Abeer H Makhlouf
- Department of Agricultural Botany, Faculty of Agriculture, Minufiya University, Shibin El-Kom 32511, Egypt
| | - Sameh A Awad
- Dairy Microorganisms and Cheese Research Laboratory (DMCR), Department of Dairy Science and Technology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
27
|
Farag MA, Ashaolu TJ, Guirguis H, Khalifa I. Implementation of HACCP in the production of Egyptian cheeses: A review. EFOOD 2023. [DOI: 10.1002/efd2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | | | - Hania Guirguis
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture Benha University Moshtohor Egypt
| |
Collapse
|
28
|
Zhang X, Zheng Y, Liu Z, Su M, Cao W, Zhang H. Review of the applications of metabolomics approaches in dairy science: From factory to human. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
29
|
Involvement of Versatile Bacteria Belonging to the Genus Arthrobacter in Milk and Dairy Products. Foods 2023; 12:foods12061270. [PMID: 36981196 PMCID: PMC10048301 DOI: 10.3390/foods12061270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Milk is naturally a rich source of many essential nutrients; therefore, it is quite a suitable medium for bacterial growth and serves as a reservoir for bacterial contamination. The genus Arthrobacter is a food-related bacterial group commonly present as a contaminant in milk and dairy products as primary and secondary microflora. Arthrobacter bacteria frequently demonstrate the nutritional versatility to degrade different compounds even in extreme environments. As a result of their metabolic diversity, Arthrobacter species have long been of interest to scientists for application in various industry and biotechnology sectors. In the dairy industry, strains from the Arthrobacter genus are part of the microflora of raw milk known as an indicator of hygiene quality. Although they cause spoilage, they are also regarded as important strains responsible for producing fermented milk products, especially cheeses. Several Arthrobacter spp. have reported their significance in the development of cheese color and flavor. Furthermore, based on the data obtained from previous studies about its thermostability, and thermoacidophilic and thermoresistant properties, the genus Arthrobacter promisingly provides advantages for use as a potential producer of β-galactosidases to fulfill commercial requirements as its enzymes allow dairy products to be treated under mild conditions. In light of these beneficial aspects derived from Arthrobacter spp. including pigmentation, flavor formation, and enzyme production, this bacterial genus is potentially important for the dairy industry.
Collapse
|
30
|
Rungreungthanapol T, Homma C, Akagi KI, Tanaka M, Kikuchi J, Tomizawa H, Sugizaki Y, Isobayashi A, Hayamizu Y, Okochi M. Volatile Organic Compound Detection by Graphene Field-Effect Transistors Functionalized with Fly Olfactory Receptor Mimetic Peptides. Anal Chem 2023; 95:4556-4563. [PMID: 36802525 DOI: 10.1021/acs.analchem.3c00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
An olfactory receptor mimetic peptide-modified graphene field-effect transistor (gFET) is a promising solution to overcome the principal challenge of low specificity graphene-based sensors for volatile organic compound (VOC) sensing. Herein, peptides mimicking a fruit fly olfactory receptor, OR19a, were designed by a high-throughput analysis method that combines a peptide array and gas chromatography for the sensitive and selective gFET detection of the signature citrus VOC, limonene. The peptide probe was bifunctionalized via linkage of a graphene-binding peptide to facilitate one-step self-assembly on the sensor surface. The limonene-specific peptide probe successfully achieved highly sensitive and selective detection of limonene by gFET, with a detection range of 8-1000 pM, while achieving facile sensor functionalization. Taken together, our target-specific peptide selection and functionalization strategy of a gFET sensor demonstrates advancement of a precise VOC detection system.
Collapse
Affiliation(s)
- Tharatorn Rungreungthanapol
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ken-Ichi Akagi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan
| | - Jun Kikuchi
- Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideyuki Tomizawa
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Yoshiaki Sugizaki
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Atsunobu Isobayashi
- Corporate Research & Development Center, Toshiba Corporation, 1, Komukai-Toshiba-Cho, Saiwai-ku, Kawasaki 212-8583, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
31
|
Queiroz LL, Lacorte GA, Isidorio WR, Landgraf M, de Melo Franco BDG, Pinto UM, Hoffmann C. High Level of Interaction between Phages and Bacteria in an Artisanal Raw Milk Cheese Microbial Community. mSystems 2023; 8:e0056422. [PMID: 36475872 PMCID: PMC9948729 DOI: 10.1128/msystems.00564-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/19/2022] [Indexed: 12/13/2022] Open
Abstract
Microbial starter cultures are used in the production of many cheeses around the world, such as Parmigiano-Reggiano, in Italy, Époisses, in France, and Canastra, in Brazil, providing many of the unique features of these cheeses. Bacteriophages (phages) are ubiquitous and well known to modulate the structure of bacterial communities, and recent data indicate that cheeses contain a high abundance of naturally occurring phages. Here, we analyze the viral and bacterial metagenomes of Canastra cheese: a traditional artisanal Brazilian cheese produced using an endogenous starter culture and raw milk. Over 1,200 viral operational taxonomic units were recovered using both isolated viral-like particles and complete metagenomic DNA. Common viral families identified included Siphoviridae and Myoviridae, with 40% of putative phage genomes unidentified at the family level of classification. We observed very high phage diversity, which varied greatly across different cheese producers, with 28% of phage genomes detected in only one producer. Several metagenome-assembled genomes were recovered for lactic acid-producing bacteria, as well as nonstarter bacterial species, and we identified several phage-bacterium interactions, at the strain level of resolution, varying across distinct cheese producers. We postulate that at least one bacterial strain detected could be endogenous and unique to the Canastra cheese-producing region in Brazil and that its growth seems to be modulated by autochthonous phages present in this artisanal production system. This phage-host relationship is likely to influence the fermentation dynamics and ultimately the sensorial profile of these cheeses, with implications for other similar cheese production systems around the world. IMPORTANCE Our work demonstrated a dynamic yet stable microbial ecosystem during cheese production using an endogenous starter culture. This was observed across several distinct producers and was marked by genomic evidence of continued phage-bacterium interactions, such as the presence of bacterial defense mechanisms. Furthermore, we provide evidence of unique microbial signatures for each individual cheese producer studied in the region, a fact that may have profound consequences on product traceability. This was the first effort to describe and understand the bacteriophage composition and ecological dynamics within the Brazilian Canastra cheese production system. The study of this prototypical backslopping production system provides a solid background for further mechanistic studies of the production of many cheeses around the world.
Collapse
Affiliation(s)
- Luciano Lopes Queiroz
- Microbiology Graduate Program, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Gustavo Augusto Lacorte
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
- Instituto Federal de Minas Gerais, Bambuí, Minas Gerais, Brazil
| | - William Ricardo Isidorio
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mariza Landgraf
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Bernadette Dora Gombossy de Melo Franco
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Christian Hoffmann
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Fernandez CM, Alves J, Gaspar PD, Lima TM, Silva PD. Innovative processes in smart packaging. A systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:986-1003. [PMID: 35279845 DOI: 10.1002/jsfa.11863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/26/2022] [Accepted: 03/13/2022] [Indexed: 05/15/2023]
Abstract
Smart packaging provides one possible solution that could reduce greenhouse gas emissions. In comparison with traditional packaging, which aims to extend the product's useful life and to facilitate transport and marketing, smart packaging allows increased efficiency, for example by ensuring authenticity and traceability from the product's origin, preventing fraud and theft, and improving security. Consequently, it may help to reduce pollution, food losses, and waste associated with the food supply chain. However, some questions must be answered to fully understand the advantages and limitations of its use. What are the most suitable smart packaging technologies for use in agro-industrial subsectors such as meat, dairy, fruits, and vegetables, bakery, and pastry? What are the opportunities from a perspective of life extension, process optimization, traceability, product quality, and safety? What are the future challenges? An up-to-date, systematic review was conducted of literature relevant to the application of indicator technologies, sensors, and data carriers in smart packaging, to answer these questions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos M Fernandez
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Joel Alves
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Pedro Dinis Gaspar
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Tânia M Lima
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| | - Pedro D Silva
- Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
- C-MAST - Center for Mechanical and Aerospace Science and Technologies, Rua Marquês de D'Ávila e Bolama, Covilhã, Portugal
| |
Collapse
|
33
|
Physical sampling practices and principles: Is it an underappreciated facet of dairy science? Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Unno R, Suzuki T, Osaki Y, Matsutani M, Ishikawa M. Causality Verification for the Correlation between the Presence of Nonstarter Bacteria and Flavor Characteristics in Soft-Type Ripened Cheeses. Microbiol Spectr 2022; 10:e0289422. [PMID: 36354338 PMCID: PMC9769828 DOI: 10.1128/spectrum.02894-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/12/2022] Open
Abstract
Flavor characteristics of ripened cheese are established by various bacteria, such as lactic acid bacteria, Actinobacteria, and Proteobacteria, which spontaneously develop during the cheese-manufacturing process. We previously revealed the relationship between bacterial microbiota and flavor components in soft-type ripened cheeses by using a multiomics approach that combined metagenomics and metabolomics; however, we could not establish a causal relationship. This study aimed to substantiate the causal nature of the correlations revealed by the multiomics approach by using cheese-ripening tests with single isolate inoculation. The bacterial diversity and composition in surface mold-ripened cheeses from Japan and France varied, depending on the differences between the milks (pasteurized or raw), cheese positions (core or rind), and manufacturers. Although the volatile compounds did not clearly reflect the distinctive characteristics of the cheese samples, nonstarter lactic acid bacteria, Actinobacteria, and Proteobacteria positively correlated with ketones and sulfur compounds, as evidenced by a Spearman's correlation analysis. Cheese-ripening tests conducted after inoculation with single bacterial strains belonging to the above-mentioned taxa confirmed that these bacteria formed volatile compounds, in agreement with the correlations observed. In particular, various flavor compounds, such as acids, esters, ketones, and sulfur compounds, were detected in cheese inoculated with Pseudoalteromonas sp. TS-4-4 strain. These findings provide important insights into the role of nonstarter bacteria in the development of cheese flavor and into the effectiveness of the multiomics approach in screening for bacteria that can improve the quality of cheese products. IMPORTANCE Our previous study revealed that the existence of various bacteria, such as lactic acid bacteria, Actinobacteria, and Proteobacteria, clearly correlated with the abundance of flavor components, such as volatile compounds, in soft-type ripened cheeses via a multiomics approach that used 16S rRNA gene amplicon sequencing and headspace gas chromatography-mass spectrometry. However, this approach only showed correlations derived from statistical analyses rather than causal relationships. Therefore, in the present study, we performed cheese-ripening tests using nonstarter bacteria to substantiate the correlations revealed by the multiomics approach in soft-type ripened cheese. Our results suggest the capability of nonstarter bacteria, such as Proteobacteria, to impart flavor to cheese and the effectiveness of the multiomics approach in screening for microbial isolates that can improve the quality of cheese. Overall, our research provides new insights into the importance of bacteria in cheese production.
Collapse
Affiliation(s)
- Ryosuke Unno
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Toshihiro Suzuki
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yumika Osaki
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Morio Ishikawa
- Department of Fermentation Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
35
|
Ferroukhi I, Bord C, Alvarez S, Fayolle K, Theil S, Lavigne R, Chassard C, Mardon J. Functional changes in Bleu d'Auvergne cheese during ripening. Food Chem 2022; 397:133850. [PMID: 35940097 DOI: 10.1016/j.foodchem.2022.133850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
The authentic characteristics of the famous Bleu d'Auvergne cheese were studied. Many parameters were analysed during the ripening of cheeses. Migrations of Na and Ca ions, associated with a pH gradient, occurred between the rind and the core. At 34 days, this cheese had a high salt content (2.87 %), contributing to 23 % of the recommended sodium intake for adults, but significant calcium (6.14 g/kg) and vitamin B12 (1.14 µg/100 g) levels. Thus, a 40 g serving contributed to 25 % of the population reference intake for Ca and 11 % of the adequate intake for B12. Proteolysis, yeast and mould counts strongly increased. Lactococcus and Streptococcus were predominant and correlated with B2 and B6 levels. Bleu d'Auvergne was characterised by salty taste, blue odour and aroma. This cheese has a noticeable B vitamins concentration, but the level of salt should be reduced to meet the nutritional guidelines, possibly by implementing alternative salting methods.
Collapse
Affiliation(s)
- Imène Ferroukhi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 545 Fromage 63370 Lempdes, France
| | - Cécile Bord
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 545 Fromage 63370 Lempdes, France
| | - Sylvie Alvarez
- Département qualité et économie alimentaires, VetAgro Sup 63370 Lempdes, France
| | - Karine Fayolle
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 545 Fromage 63370 Lempdes, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 545 Fromage 15000 Aurillac, France
| | - René Lavigne
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 545 Fromage 15000 Aurillac, France
| | - Christophe Chassard
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 545 Fromage 15000 Aurillac, France
| | - Julie Mardon
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 545 Fromage 63370 Lempdes, France.
| |
Collapse
|
36
|
Zeng H, Wang Y, Han H, Cao Y, Wang B. Changes in Key Aroma Compounds and Esterase Activity of Monascus-Fermented Cheese across a 30-Day Ripening Period. Foods 2022; 11:foods11244026. [PMID: 36553768 PMCID: PMC9778608 DOI: 10.3390/foods11244026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Monascus-fermented cheese (MC) is a new type of mold-ripened cheese that combines a traditional Chinese fermentation fungus, Monascus purpureus M1, with Western cheese fermentation techniques. In this study, the compositions of the volatile aroma compounds in MC were analyzed during a 30-day ripening period using SPME-Arrow and GC-O-MS. The activity of esterase in MC, which is a key enzyme catalyzing esterification reaction, was determined and compared with the control group (CC). Next, sensory analysis was conducted via quantitative descriptive analysis followed by Pearson correlation analysis between esterase activity and the key flavor compounds. A total of 76 compounds were detected. Thirty-three of these compounds could be smelled at the sniffing port and were identified as the key aroma compounds. The esterase activity in MC was found to be 1.24~1.33 times that of the CC. Moreover, the key odor features of ripened MC were alcohol and fruity flavors, considerably deviating from the sour and cheesy features found for the ripened CC. Furthermore, correlation analysis showed that esterase activity was strongly correlated (|r|> 0.75, p < 0.05) with various acids such as pentanoic and nonanoic acids and several aromatic esters, namely, octanoic acid ethyl ester and decanoic acid ethyl ester, revealing the key role that esterases play in developing the typical aroma of ripened MC.
Collapse
Affiliation(s)
| | | | | | | | - Bei Wang
- Correspondence: ; Tel.: +86-10-68984547
| |
Collapse
|
37
|
Rojas-Rivas E, Thomé-Ortiz H, Espinoza-Ortega A. A Preliminary Study on the Validity and Stability of Projective Methods: An Application of the Structural Approach of Social Representations with Traditional Mexican Cheeses. Foods 2022; 11:foods11243959. [PMID: 36553701 PMCID: PMC9777554 DOI: 10.3390/foods11243959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Projective methods are qualitative tools used to study food consumer behavior. In recent years, there has been an increase in studies that use these tools to analyze consumer behavior, particularly with the word association (WA) technique. However, one of the challenges in using these methods is the stability and validity of the data. This research aimed to obtain preliminary information on the stability and validity of the associations generated by consumers with the WA technique, using the structural approach of social representations. For this, two studies were carried out; for the first study, a face-to-face survey was carried out in which 89 consumers participated, who wrote the first words that came to mind with the stimulus “Aculco” on a ballot paper. For the second study, 122 consumers completed the same task as in the first study; however, the participants were recruited from an online survey. A random sample (n = 50) of both studies was selected to explore the stability and validity of the results. In the three study samples, the words were grouped into categories and analyzed through the structural approach of social representations. The frequency of mention of the identified categories was compared with the chi-square test and the average position (AP) and the Cognitive Salience Index (CSI) were calculated. Prototype maps were built to study the structure of the categories according to the central core and peripheral areas. Cluster analysis was performed to corroborate the structure of the representations. Finally, multiple factor analysis (MFA) was performed to determine the similarity of the results obtained from the three samples using the RV coefficient. No statistical differences (p > 0.05) were identified in most of the representations (n = 11) generated from the WA task. Furthermore, the representation “Cheese and dairy products” was positioned in the central core of the three maps. The APs and the CSIs of each representation were similar in the three study samples. The RV coefficient (≥0.80) indicated similarity in the representations obtained. Results of this research can be useful for future studies that attempt to compare the stability and validity of the information based on qualitative and more flexible methodologies. Some methodological implications related to the validity and stability of projective methods are discussed.
Collapse
|
38
|
Ricci M, Gasperi F, Betta E, Menghi L, Endrizzi I, Cliceri D, Franceschi P, Aprea E. Multivariate data analysis strategy to monitor Trentingrana cheese real-scale production through volatile organic compounds profiling. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Farag MA, Mansour ST, Nouh RA, Khattab AR. Crustaceans (shrimp, crab, and lobster): A comprehensive review of their potential health hazards and detection methods to assure their biosafety. J Food Saf 2022. [DOI: 10.1111/jfs.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Somaia T. Mansour
- Chemistry Department, School of Sciences & Engineering The American University in Cairo New Cairo Egypt
| | - Roua A. Nouh
- Chemistry Department, School of Sciences & Engineering The American University in Cairo New Cairo Egypt
| | - Amira R. Khattab
- Pharmacognosy Department, College of Pharmacy Arab Academy for Science, Technology and Maritime Transport Alexandria Egypt
| |
Collapse
|
40
|
Javaid M, Khan S, Haleem A, Rab S. Adoption of modern technologies for implementing industry 4.0: an integrated MCDM approach. BENCHMARKING-AN INTERNATIONAL JOURNAL 2022. [DOI: 10.1108/bij-01-2021-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PurposeModern technologies are seen as an essential component of the fourth industrial revolution (industry 4.0) and their adoption is vital to transform the existing manufacturing system into industry 4.0-based manufacturing system. Therefore, the primary objective of this research explores the barriers of modern technology adoption and their mitigating solutions in order to align with Industry 4.0 objectives.Design/methodology/approachBarriers to adopting modern technologies and respective mitigating solutions are identified from the available literature. Further, these barriers are ranked with the help of expert opinions by using the BWM method appropriately. The identified solutions are ranked using the combined compromise solution (CoCoSo) method.FindingsSeveral modern technologies and their capabilities are recognised to support the industry 4.0-based manufacturing systems. This study identifies 22 barriers to the effective adoption of modern technologies in manufacturing and 14 solutions to overcome these barriers. Change management, the high initial cost of technology and appropriate support infrastructure are the most significant barriers. The most prominent solutions to overcome the most considerable barriers are ‘supportive research, development and commercialisation environment’, ‘updated policy and effective implementation’ and ‘capacity building through training’ that are the top three solutions that need to be addressed.Research limitations/implicationsThe barriers and solutions of modern technology adoption are obtained through a comprehensive literature review, so there is a chance to ignore some significant barriers and their solutions. Furthermore, ranking barriers and solutions is done with expert opinion, which is not free from biases.Practical implicationsThis identification and prioritisation of barriers will help managers to understand the barriers so they can better prepare themselves. Furthermore, the suggested solutions to overcome these barriers are helpful for the managers and could be strategically adopted through optimal resource utilisation.Originality/valueThis study proposes a framework to identify and analyse the significant barriers and solutions to adopting modern technologies in the manufacturing system. It might be helpful for manufacturing organisations that are willing to transform their manufacturing system into industry 4.0.
Collapse
|
41
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Tekin A, Hayaloglu AA. Understanding the mechanism of ripening biochemistry and flavour development in brine ripened cheeses. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Characterization of the key nonvolatile metabolites in Cheddar cheese by partial least squares regression (PLSR), reconstitution, and omission. Food Chem 2022; 403:134034. [DOI: 10.1016/j.foodchem.2022.134034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
|
44
|
Gao P, Zhang W, Wei M, Chen B, Zhu H, Xie N, Pang X, Marie-Laure F, Zhang S, Lv J. Analysis of the non-volatile components and volatile compounds of hydrolysates derived from unmatured cheese curd hydrolysis by different enzymes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
45
|
Ezzat MI, Issa MY, Sallam IE, Zaafar D, Khalil HMA, Mousa MR, Sabry D, Gawish AY, Elghandour AH, Mohsen E. Impact of different processing methods on the phenolics and neuroprotective activity of Fragaria ananassa Duch. extracts in a D-galactose and aluminum chloride-induced rat model of aging. Food Funct 2022; 13:7794-7812. [PMID: 35766389 DOI: 10.1039/d2fo00645f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Age-related diseases, including dementia, are a major health concern affecting daily human life. Strawberry (Fragaria ananassa Duch.) is the most eaten fruit worldwide due to its exceptional aroma and flavor. However, it's rapid softening and decay limit its shelf-life. Freezing and boiling represent the well-known conservation methods to extend its shelf-life. Therefore, we aimed to discover the phytochemical content differences of fresh and processed strawberries associated with investigating and comparing their neuroprotective effects in a rat model of aging. Female Wistar rats were orally pretreated with fresh, boiled, and frozen F. ananassa methanolic extracts (250 mg kg-1) for 2 weeks, and then these extracts were concomitantly exposed to D-galactose [65 mg kg-1, subcutaneously (S/C)] and AlCl3 (200 mg kg-1, orally) for 6 weeks to develop aging-like symptoms. The results of UPLC/ESI-MS phytochemical profiling revealed 36 secondary metabolites, including phenolics, flavonoids, and their glycoside derivatives. Compared with boiled and frozen extracts, the fresh extract ameliorated the behavioral deficits including anxiety and cognitive dysfunction, upregulated brain HO-1 and Nrf2 levels, and markedly reduced caspase-3 and PPAR-γ levels. Moreover, LDH and miRNA-9, 124 and 132 protein expressions were reduced. The histological architecture of the brain hippocampus was restored and glial fibrillary acidic protein (GFAP) immunoexpression was downregulated. In conclusion, the fresh extract has neuroprotective activity that could have a promising role in ameliorating age-related neurodegeneration.
Collapse
Affiliation(s)
- Marwa I Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Marwa Y Issa
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt.
| | - Ibrahim E Sallam
- Pharmacognosy Department, College of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, 12566, Egypt
| | - Dalia Zaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, el-Mokattam, Cairo, 11581, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed R Mousa
- Pathology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, 11562, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University, 11829, Egypt
| | - Aya Y Gawish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, el-Mokattam, Cairo, 11581, Egypt
| | - Ahmed H Elghandour
- Communication Department, Military Technical College, Cairo, 11766, Egypt
| | - Engy Mohsen
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt.
| |
Collapse
|
46
|
Microencapsulation of a Commercial Food-Grade Protease by Spray Drying in Cross-Linked Chitosan Particles. Foods 2022; 11:foods11142077. [PMID: 35885320 PMCID: PMC9317512 DOI: 10.3390/foods11142077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, the use of spray-drying technology for encapsulating Flavourzyme® (protease–peptidase complex) was evaluated to overcome the limitations (low encapsulation efficiency and no large-scale production) of other encapsulation processes. To the best of our knowledge, spray drying has not been applied previously for the immobilization of this enzyme. Firstly, bovine serum albumin (BSA), as a model protein, was encapsulated by spray drying in chitosan and tripolyphoshate (TPP) cross-linked-chitosan shell matrices. The results showed that the chitosan–TPP microcapsules provided a high encapsulation efficiency and better protein stability compared to the non-crosslinked chitosan microcapsules. The effect of enzyme concentration and drying temperature were tested during the spray drying of Flavourzyme®. In this regard, an activity yield of 88.0% and encapsulation efficiency of 78.6% were obtained with a concentration of 0.1% (v/v) and an inlet temperature of 130 °C. Flavourzyme®-loaded chitosan microcapsules were also characterized in terms of their size and morphology using scanning electron microscopy and laser diffractometry.
Collapse
|
47
|
Antioxidant and antihypertensive activity of Gouda cheese at different stages of ripening. Food Chem X 2022; 14:100284. [PMID: 35345793 PMCID: PMC8956798 DOI: 10.1016/j.fochx.2022.100284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
More intense proteolysis at 90 days caused an increase in antioxidant activity. Peptide exhibited radical scavenging properties, reducing capacity and chelating effect. Intense proteolysis caused lower angiotensin I-converting enzyme inhibitory activity. Bioactive peptides were generated from αs1-casein and β-casein. Ripening process of Gouda cheese results in a product with functional potential.
In Mexico, local ripened cheeses such as Chihuahua, Ranchero, and Cotija are produced, being consumed in great quantities together with imported cheeses. Proteolysis that takes place during ripening generates bioactive peptides; in this way the cheese acquires potential as a functional food. The ripening process of Gouda cheese was studied based on its bromatological and sensorial properties, bioactivity, and peptide profile. Ripened cheese met bromatological standard parameters and showed higher overall acceptability. After 90 days, bioactivity reached maximum values for radical scavenging (6.6%), ferric reducing power (11.2%), metal chelating effect (49%), and angiotensin I-converting enzyme inhibitory activity (66.2%). Eight peptides were identified, four from αS1-casein, f(1–9, 1–13, 1–14, and 25–36), and four from β-casein, f(11–28, 60–63, 193–209, and 197–205). Ripening of Gouda cheese results in a product with functional potential due to the presence of peptides with biological activity. Additionally, the methodology proposed in this work could be used by the dairy industry to monitor the manufacturing process and ripening of other types of cheeses.
Collapse
|
48
|
Cardinali F, Foligni R, Ferrocino I, Harasym J, Orkusz A, Franciosa I, Milanović V, Garofalo C, Mannozzi C, Mozzon M, Cocolin L, Osimani A, Aquilanti L. Microbial diversity, morpho-textural characterization, and volatilome profile of the Portuguese thistle-curdled cheese Queijo da Beira Baixa PDO. Food Res Int 2022; 157:111481. [DOI: 10.1016/j.foodres.2022.111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/04/2022]
|
49
|
El‐Shamy S, Farag MA. Volatiles profiling in heated cheese as analyzed using headspace solid‐phase microextraction coupled to gas chromatography coupled to mass spectrometry. EFOOD 2022. [DOI: 10.1002/efd2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Sherine El‐Shamy
- Department of Pharmacognosy, Faculty of Pharmacy Modern University for Technology & Information Cairo Egypt
| | - Mohamed A. Farag
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
- Department of Chemistry, School of Sciences & Engineering The American University in Cairo New Cairo Egypt
| |
Collapse
|
50
|
Li Y, Wang J, Wang T, Lv Z, Liu L, Wang Y, Li X, Fan Z, Li B. Differences between Kazak Cheeses Fermented by Single and Mixed Strains Using Untargeted Metabolomics. Foods 2022; 11:966. [PMID: 35407053 PMCID: PMC8997636 DOI: 10.3390/foods11070966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Mixed fermentation improves the flavor quality of food. Untargeted metabolomics were used to evaluate the impact of mixed fermentation and single-strain fermentation on the volatile and non-volatile compound profiles of Kazak cheese. Lacticaseibacillus paracasei SMN-LBK and Kluyveromyces marxianus SMN-S7-LBK were used to make mixed-fermentation cheese (M), while L. paracasei SMN-LBK was applied in single-strain-fermentation cheese (S). A higher abundances of acids, alcohols, and esters were produced via mixed fermentation. Furthermore, 397 differentially expressed non-volatile metabolites were identified between S and M during ripening. The flavor compounds in mixed-fermentation cheese mainly resulted from ester production (ethyl butanoate, ethyl acetate, ethyl octanoate, and ethyl hexanoate) and amino acid biosynthesis (Asp, Glu, Gln, and Phe). The metabolites were differentially expressed in nitrogen metabolism, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, D-alanine metabolism, and other metabolic pathways. The amount of flavor compounds was increased in M, indicating that L. paracasei SMN- LBK and K. marxianus SMN-S7-LBK had synergistic effects in the formation of flavor compounds. This study comprehensively demonstrated the difference in metabolites between mixed-fermentation and single-strain-fermentation cheese and provided a basis for the production of Kazak cheese with diverse flavor characteristics.
Collapse
Affiliation(s)
- Yandie Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Jianghan Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Tong Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Zhuoxia Lv
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Linting Liu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Yuping Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Xu Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
- Guangdong Yikewei Biotech Co., Ltd., Guangzhou 510520, China
| | - Zhexin Fan
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Baokun Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| |
Collapse
|