1
|
Mulla MH, Norizan MN, Mohammad Rawi NF, Mohamad Kassim MH, Abdullah CK, Abdullah N, Norrrahim MNF. A review of fire performance of plant-based natural fibre reinforced polymer composites. Int J Biol Macromol 2025; 305:141130. [PMID: 39965704 DOI: 10.1016/j.ijbiomac.2025.141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/26/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Natural fibre from plant-based reinforced polymer composites (NFRPCs) offers an attractive solution for various applications due to their cost-effectiveness, sustainability, and favourable properties. These materials provide high strength and stiffness while remaining lightweight, which is especially advantageous in weight-sensitive applications. However, their susceptibility to high flammability poses a significant challenge for applications requiring robust fire resistance. Consequently, researchers and engineers face the primary task of enhancing flame retardancy and thermal stability in NFRPCs. This paper provides a comprehensive review of the flammability and flame retardancy aspects of NFRPCs, delving into critical elements such as modification methods, the interfacial bond between natural fibres and the polymer matrix, fibre type, loading ratio, fibre orientation, polymer type, and composite structure. Understanding these factors is crucial for improving material fire resistance. The paper explores various flame-retardant strategies for NFRPCs, including additives, coatings, treatments, and nanomaterial hybridization. Detailed insights into mechanisms and characterization techniques related to thermal and flame retardancy are provided, covering aspects like thermal degradation, char formation, gas-phase reactions, fire testing methods, universally accepted standards, and specific flame-retardant requirements for NFRPCs in diverse applications such as automotive, aerospace, marine, and civil construction. The discussion on future directions emphasizes the development of innovative flame-retardant materials, improving composite design and fabrication improvements, and assessing fire performance and environmental impact.
Collapse
Affiliation(s)
- Mohammed Huzaifa Mulla
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Che Ku Abdullah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Norli Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
2
|
Wen C, Lin X, Wang J, Liu H, Liu G, Xu X, Zhang J, Liu J. Protein-Pectin Delivery Carriers for Food Bioactive Ingredients: Preparation, Release Mechanism, and Application. Compr Rev Food Sci Food Saf 2025; 24:e70183. [PMID: 40285448 DOI: 10.1111/1541-4337.70183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/02/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Food bioactive ingredients have received widespread attention due to their excellent nutritional and functional properties, regulating the organism. However, some food bioactive ingredients have the disadvantages of poor stability and low bioavailability, which limits their wider application in food. The current study has recently shown a growing interest in designing delivery systems due to their advantages in encapsulating, protecting, and controlling the release of food bioactive ingredients. This review summarizes the classification of protein-pectin delivery carriers, including emulsions, nanoparticles, microcapsules, gels, and films. Besides, the typical preparation methods and the factors affecting the stability of the carriers were presented. Moreover, the release mechanism of the protein-pectin delivery carriers was introduced. Furthermore, the applications of protein-pectin delivery carriers were also described. The protein-pectin delivery carriers have broad research prospects in the functional food and nutritional field. Protein-pectin delivery carriers can enhance the protection of food bioactive ingredient delivery due to their strong interaction force and excellent emulsification properties. Therefore, they can effectively protect food bioactive ingredients from harsh processing conditions and adverse environments in vivo, and improve their physicochemical properties, stability, and bioavailability, which have good application prospects.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jieyu Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Zhang W, Azizi-Lalabadi M, Can Karaca A, Abedi-Firoozjah R, Assadpour E, Zhang F, Jafari SM. A review of bio-based dialdehyde polysaccharides as multifunctional building blocks for biomedical and food science applications. Int J Biol Macromol 2025; 309:142964. [PMID: 40210025 DOI: 10.1016/j.ijbiomac.2025.142964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Food science and biomedical engineering are key disciplines related to human health, with the development of functional materials being an important research direction in both fields. In recent years, dialdehyde polysaccharides (DAPs), as green biopolymers, have become increasingly important in functional materials within food science and biomedical engineering. This work systematically summarizes the sources and properties of various DAPs, introduces their preparation methods and common DAP-based functional biomaterials, including hydrogels, scaffolds, films, coatings, nanoparticles, and nanofibers. Importantly, this work also reviews DAP applications in functional materials for food science and biomedical engineering, such as drug delivery, wound dressings, tissue engineering, food packaging films/edible coatings, food emulsions, antibacterial nanoparticles, and enzyme immobilization. Finally, the work briefly discusses the biosafety of DAPs. To conclude, this study provides a toolkit for developing functional materials in these fields and offers important reference value regarding the broad application of DAPs.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Reza Abedi-Firoozjah
- Student Research committee, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Edo GI, Ndudi W, Ali ABM, Yousif E, Zainulabdeen K, Akpoghelie PO, Isoje EF, Igbuku UA, Opiti RA, Athan Essaghah AE, Ahmed DS, Umar H, Alamiery AA. Chitosan: An overview of its properties, solubility, functional technologies, food and health applications. Carbohydr Res 2025; 550:109409. [PMID: 39892276 DOI: 10.1016/j.carres.2025.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
The properties and potential applications of chitosan have attracted a lot of interest; each year, the number of publications and patents based on this polymer increases. A significant obstacle to the application of chitosan is its limited solubility in basic and neutral solutions. The fact that chitosan is a series of molecules with variations in size, content, and monomer distribution rather than a single polymer with a well-defined structure and a natural origin is another significant barrier. Some of the claimed biological qualities are distinct, and these characteristics have a fundamental effect on the polymer's technological and biological performance. The poor solubility of the polymer can be improved by chitosan chemistry, and in this assessment, we discuss the changes made to make chitosan more soluble and its possible uses. We concentrate on a few of the primary biological characteristics of chitosan and how they relate to the physicochemical characteristics of the polymer. The use of chitosan in the environmentally friendly manufacture of metallic nanoparticles as well as its usage as a booster for biocatalysts are two further applications of polymers that are linked to green processes that we revisit. This study also presents information about utilizing chitosan's technological advantages.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Winifred Ndudi
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Khalid Zainulabdeen
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Patrick Othuke Akpoghelie
- Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Endurance Fegor Isoje
- Science, Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Rapheal Ajiri Opiti
- Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Environmental Sciences, Department of Urban and Regional Planning, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Ahmed A Alamiery
- Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, P.O. Box: 64004, An Nasiriyah, Thi Qar, Iraq
| |
Collapse
|
5
|
Santhoshkumar P, Ramu D, Mahalakshmi L, Moses JA. 3D printed edible electronics: Components, fabrication approaches and applications. Biosens Bioelectron 2025; 272:117059. [PMID: 39752889 DOI: 10.1016/j.bios.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential to create a safe, environmentally friendly, economical, and naturally degraded inside the human body. EEs have the potential to be used as medical and health devices to monitor physiological conditions and possibly treat diseases. These edible devices include different components, such as sensors, actuators, and other electronic elements, all made from edible ingredients such as sugars, proteins, polysaccharides, polymers, and others. Among the different fabrication approaches, 3D printing can provide reliable solutions to specific requirements. The concept of EEs has the potential to transform healthcare, providing more convenient, less invasive alternatives and personalized, customizable products for patients that beat traditional manufacturing methods. While the potential is enormous, there are critical challenges, notably ensuring the long-term stability, and regulatory and safety of these devices within the human body. Accordingly, a detailed understanding of the underlying concepts, fabrication approaches, design considerations, and action in the body/application range has been presented. As an evolving field, there is ample scope for research and multiple challenges must be addressed; these are elaborated towards the concluding sections of this article.
Collapse
Affiliation(s)
- P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - Dheetchanya Ramu
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - L Mahalakshmi
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India.
| |
Collapse
|
6
|
Li R, Cui S, Song T, Zhang J, Zhang H, Wang J. Research Progress on Cereal Protein-Based Films: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4483-4496. [PMID: 39960453 DOI: 10.1021/acs.jafc.4c11712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Recently, to address plastic pollution and food safety issues, the development of biodegradable materials has become a research hotspot. Cereal proteins have been widely used in natural biodegradable packaging films due to their excellent hydrophobicity and film-forming ability, including wheat gluten protein, zein, rice protein, and oat protein. Although pure cereal protein-based films have the disadvantages of insufficient stability and lack of functionality, a variety of measures have been taken to enhance the performance of the films to expand the application range of cereal protein-based films. This Review briefly reviews the fabrication process of cereal protein-based films. The interaction of various additives (plasticizers, biopolymers, nanoparticles, bioactive ingredients, and indicators) with cereal proteins is highlighted. Four methods for fabricating cereal protein-based films (casting, extrusion, electrospinning, and 3D printing) are summarized. Additionally, the impact of several novel technologies on the performance improvement of cereal protein-based films, including ultrasonic, cold plasma, and high-pressure treatment, is discussed. Finally, the application scenarios of cereal protein-based films in active and smart food packaging are discussed, and the challenges of stability and safety of these packaging films are pointed out. In conclusion, this Review identifies the development potential of cereal protein-based films in food packaging fields.
Collapse
Affiliation(s)
- Rumeng Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Sa Cui
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Tiancong Song
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Junhui Zhang
- COFCO Nutrition and Health Research Institute Co. Ltd., Beijing 102209, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| | - Jing Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-products), Beijing Technology and Business University, Beijing, 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
7
|
Subramaniyan V, Sellamuthu PS, Jarugala J, Sadiku ER. Effect of PVA-based films incorporated with postbiotics, flax seed mucilage and guar gum to enhance the postharvest quality of fig fruits. Food Chem 2025; 465:142018. [PMID: 39571449 DOI: 10.1016/j.foodchem.2024.142018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 12/18/2024]
Abstract
Eco-friendly antimicrobial bio-composite films (BCF) were produced by using guar gum (GG), flax seed mucilage (FM) and polyvinyl alcohol (PVA), supplemented with cell-free supernatant (CFS) of Lactobacillus plantarum (L. p) and Lactobacillus delbrueckii (L. d) by the solvent casting technique. The BCF was categorized into: PVA, PVA + FM, PVA + GG, PVA + FM + GG, PVA + FM + CFS, PVA + GG + CFS, PVA + FM + GG + CFS. The film's mechanical, morphological, physical, and antimicrobial properties were characterised. The mechanical, and hydrophobic features of the BCF were increased with the incorporation of FM, GG, and these attributes were faintly decreased with the fusion of postbiotics in films. However, BCF with postbiotics exhibited antimicrobial activity and UV barrier and biodegradable traits, while BCF without postbiotics did not show any antimicrobial effect. According to the characterization study the fabricated PVA + FM + GG and PVA + FM + GG + CFS was employed as packaging material for fig fruit to prolong the shelf life. Overall, PVA + FM + GG + CFS-based packed fig fruits has prolonged shelf life of till 12 days.
Collapse
Affiliation(s)
- Vishnupriya Subramaniyan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Periyar Selvam Sellamuthu
- Department of Food Process Engineering, Postharvest Research Lab, School of Bioengineering, SRM Institute of Science and Technology, Potheri, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| | - Jayaramudu Jarugala
- Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Emmanuel Rotimi Sadiku
- Institute of Nanoengineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria West Campus, Pretoria, South Africa
| |
Collapse
|
8
|
Xiao M, Chen S, Yang Y, Hu K, Song Y, Hou Z, Sun S, Yang L. Potential of natural polysaccharide for ovarian cancer therapy. Carbohydr Polym 2025; 348:122946. [PMID: 39567158 DOI: 10.1016/j.carbpol.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Ovarian cancer, characterized by high lethality, presents a significant clinical challenge. The standard first-line treatment is surgery and chemotherapy; however, postoperative chemotherapy is often ineffective and associated with severe side effects and the development of drug resistance. Consequently, there is an urgent need for innovative drug delivery strategies to enhance therapeutic efficacy. Natural polysaccharide polymers with high bioactivity have been extensively investigated for use alone or as adjuvants to chemotherapy and radiotherapy, and also for the preparation of efficient delivery systems for ovarian cancer therapy. This paper aims to review recent advances in the application of natural polysaccharides, including hyaluronic acid, chitosan, alginate, and cellulose, in the therapy of ovarian cancer. This paper primarily discusses the anti-tumor properties inherent to these natural polysaccharide polymers and offers a summary of their role in delivery systems used in ovarian cancer therapy.
Collapse
Affiliation(s)
- Miaomiao Xiao
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Siwen Chen
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China
| | - Yaochen Yang
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ke Hu
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yantao Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| | - Siyu Sun
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
9
|
Cao A, Huang D, Wang Z, Hu B, Qiang X. Enhanced physicochemical properties of chitosan films with in situ generation of kafirin particles: optimization via response surface methodology. RSC Adv 2025; 15:124-134. [PMID: 39758895 PMCID: PMC11694256 DOI: 10.1039/d4ra07107g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
Biodegradable food packaging has gained significant attention owing to environmental concerns. Chitosan (CS), a natural polysaccharide, is popular in packaging films, however, its high hydrophilicity, brittleness, and low mechanical strength limit its use. To improve CS film performance, kafirin (Kaf), glycerol (GE), and tannic acid (TA) were added to create biocomposite films. The response surface method (RSM) was used to develop predictive models, with Kaf, GE, and TA as independent variables. Optimal film properties were achieved with a CS to Kaf ratio of 9 : 1, 20% GE as a plasticizer, and 5% TA. The addition of Kaf and TA increased the tensile strength and improved hygroscopicity, solubility loss, swelling, and water contact angle. GE enhanced the film flexibility. Overall, the composite films showed improved mechanical strength, water resistance, and UV resistance, indicating strong potential for food packaging applications.
Collapse
Affiliation(s)
- Aoguo Cao
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Dajian Huang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Zhehui Wang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Binbin Hu
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| | - Xiaohu Qiang
- School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 PR China
| |
Collapse
|
10
|
Zhou X, Jiang Y, Youssef M, Teng Y, Li J, Li B, Zhan F. Partial Substitution of Egg White Protein by Sodium Caseinate/Tannin Acid/Octenyl Succinate Starch Composite: A Study on the Physicochemical Properties in Cake and Ice Cream. J Texture Stud 2024; 55:e12870. [PMID: 39623259 DOI: 10.1111/jtxs.12870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
The development of egg substitutes to partially or completely replace eggs is a noteworthy food trend in academia and industry. Previous studies have systematically investigated the potential of sodium caseinate (Na-Cas)/tannic acid (TA)/octenyl succinate starch (OSA-Starch) composites as foaming agents. The objective of this study was to extend the previous study and explore the potential application of Na-Cas/TA/OSA-Starch composites as egg replacers. Cakes and ice creams were produced by replacing 25%, 50%, and 75% of egg white with Na-Cas/TA/OSA-Starch composites. Some physical, rheological, and textural properties of cake and ice cream were determined to evaluate the feasibility of replacing egg white with Na-Cas/TA/OSA-Starch. Compared to the control, 25% Na-Cas/TA/OSA-Starch composites replacement of egg whites resulted in an increase in specific volume of the prepared cakes, an increase in hardness, a decrease in elasticity, and an increase in chewiness. As the amount of Na-Cas/TA/OSA-Starch composites substituted for eggs increased, the melt resistance of the ice cream decreased, the hardness increased, and the viscosity decreased, while the hardness and chewiness of the cake tended to increase. In conclusion, Na-Cas/TA/OSA-Starch composites have great potential as a new food ingredient for functional dairy ingredients in ice cream and cakes.
Collapse
Affiliation(s)
- Xiaorui Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Jiang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Yongxin Teng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fuchao Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Zou J, Zhong H, Jiang C, Zhu G, Lin X, Huang Y. Ginkgo biloba leaf polysaccharide-stabled selenium nanozyme as an efficient glutathione peroxidase mimic for the preservation of bananas and cherry tomatoes. Food Chem 2024; 459:140443. [PMID: 39003861 DOI: 10.1016/j.foodchem.2024.140443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
To develop functional, sustainable and eco-friendly active packaging materials as alternatives to plastic films, we successfully prepared Ginkgo biloba leaf polysaccharide-stabilized selenium nanomaterials (Se-GBLP). Se-GBLP with glutathione peroxidase-like activity could efficiently remove harmful reactive oxygen species. As a functional additive, Se-GBLP was incorporated into degradable chitosan (CS) to fabricate CS/Se-GBLP films. The addition of Se-GBLP improved the mechanical properties, UV-visible light barrier performance, water vapor permeability, and antioxidant activity of the films. Preservation experiments demonstrated CS/Se-GBLP film could maintain quality and prolong the storage time of bananas and cherry tomatoes. It was the first time to use selenium-based nanozyme for fruit preservation. This work offered a cost-effective solution to reduce post-harvest losses, increasing sustainability and profitability. Future research should focus on more factors affecting freshness such as variety, maturity, harvest and storage conditions to improve preservation, as well as on the material's safety concern and environmental impact.
Collapse
Affiliation(s)
- Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xueer Lin
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
13
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
14
|
Dumas L, de Souza MC, Bonafe EG, Martins AF, Monteiro JP. Optimized Incorporation of Silver Nanoparticles onto Cotton Fabric Using k-Carrageenan Coatings for Enhanced Antimicrobial Properties. ACS APPLIED BIO MATERIALS 2024; 7:6908-6918. [PMID: 39316373 PMCID: PMC11497209 DOI: 10.1021/acsabm.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The incorporation of bactericidal properties into textiles is a widely sought-after aspect, and silver nanoparticles (AgNPs) can be used for this. Here, we evaluate a strategy for incorporating AgNPs into a cotton fabric. For this purpose, a bactericidal textile coating based on a composite of AgNPs and kappa-carrageenan (k-CA) was proposed. The composite was obtained by heating the silver precursor (AgNO3) directly in k-CA solution for green synthesis and in situ AgNPs stabilization. Cotton substrates were added to the heated composite solution for surface impregnation and hydrogel film formation after cooling. Direct synthesis of AgNPs on a fabric was also tested. The results showed that the application of a coating based on k-CA/AgNPs composite can achieve more than twice the silver loading on the fabric surface compared to the textile subjected to direct AgNPs incorporation. Furthermore, silver release tests in water showed that higher Ag+ levels were reached for k-CA/AgNPs-coated cotton. Therefore, inoculation tests with the bacteria Staphylococcus aureus (SA) using the agar diffusion method showed that samples covered with the composite resulted in significantly larger inhibition halos. This indicated that the use of the composite as a coating for cotton fabric improved its bactericidal activity against SA.
Collapse
Affiliation(s)
- Luana Dumas
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Matheus Cardoso de Souza
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Elton Guntendorfer Bonafe
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| | - Alessandro Francisco Martins
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
- Department
of Chemistry, Pittsburgh State University, Pittsburgh, Kansas 66762, United States
| | - Johny Paulo Monteiro
- Laboratory
of Materials, Macromolecules and Composites (LAMMAC), Federal University of Technology—Paraná (UTFPR), Apucarana, Paraná 86812-460, Brazil
| |
Collapse
|
15
|
Yermagambetova A, Tazhibayeva S, Takhistov P, Tyussyupova B, Tapia-Hernández JA, Musabekov K. Microbial Polysaccharides as Functional Components of Packaging and Drug Delivery Applications. Polymers (Basel) 2024; 16:2854. [PMID: 39458682 PMCID: PMC11511474 DOI: 10.3390/polym16202854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
This review examines microbial polysaccharides' properties relevant to their use in packaging and pharmaceutical applications. Microbial polysaccharides are produced by enzymes found in the cell walls of microbes. Xanthan gum, curdlan gum, pullulan, and bacterial cellulose are high-molecular-weight substances consisting of sugar residues linked by glycoside bonds. These polysaccharides have linear or highly branched molecular structures. Packaging based on microbial polysaccharides is readily biodegradable and can be considered as a renewable energy source with the potential to reduce environmental impact. In addition, microbial polysaccharides have antioxidant and prebiotic properties. The physico-chemical properties of microbial polysaccharide-based films, including tensile strength and elongation at break, are also evaluated. These materials' potential as multifunctional packaging solutions in the food industry is demonstrated. In addition, their possible use in medicine as a drug delivery system is also considered.
Collapse
Affiliation(s)
- Aigerim Yermagambetova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Sagdat Tazhibayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Paul Takhistov
- Department of Food Science, Rutgers State University of New Jersey, New Brunswick, NJ 07102, USA;
| | - Bakyt Tyussyupova
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| | - José Agustín Tapia-Hernández
- Departamento de Investigación y Posgrado en Alimentos (DIPA), University of Sonora, Hermosillo 83000, Sonora, Mexico;
| | - Kuanyshbek Musabekov
- Department of Chemical Technology and Chemistry, Kazakh-British Technical University, Almaty 050000, Kazakhstan;
| |
Collapse
|
16
|
Negrete-Bolagay D, Guerrero VH. Opportunities and Challenges in the Application of Bioplastics: Perspectives from Formulation, Processing, and Performance. Polymers (Basel) 2024; 16:2561. [PMID: 39339026 PMCID: PMC11434805 DOI: 10.3390/polym16182561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
Tremendously negative effects have been generated in recent decades by the continuously increasing production of conventional plastics and the inadequate management of their waste products. This demands the production of materials within a circular economy, easy to recycle and to biodegrade, minimizing the environmental impact and increasing cost competitiveness. Bioplastics represent a sustainable alternative in this scenario. However, the replacement of plastics must be addressed considering several aspects along their lifecycle, from bioplastic processing to the final application of the product. In this review, the effects of using different additives, biomass sources, and processing techniques on the mechanical and thermal behavior, as well as on the biodegradability, of bioplastics is discussed. The importance of using bioplasticizers is highlighted, besides studying the role of surfactants, compatibilizers, cross-linkers, coupling agents, and chain extenders. Cellulose, lignin, starch, chitosan, and composites are analyzed as part of the non-synthetic bioplastics considered. Throughout the study, the emphasis is on the use of well-established manufacturing processes, such as extrusion, injection, compression, or blow molding, since these are the ones that satisfy the quality, productivity, and cost requirements for large-scale industrial production. Particular attention is also given to fused deposition modeling, since this additive manufacturing technique is nowadays not only used for making prototypes, but it is being integrated into the development of parts for a wide variety of biomedical and industrial applications. Finally, recyclability and the commercial requirements for bioplastics are discussed, and some future perspectives and challenges for the development of bio-based plastics are discussed, with the conclusion that technological innovations, economic incentives, and policy changes could be coupled with individually driven solutions to mitigate the negative environmental impacts associated with conventional plastics.
Collapse
Affiliation(s)
| | - Víctor H. Guerrero
- Department of Materials, Escuela Politécnica Nacional, Quito 170525, Ecuador;
| |
Collapse
|
17
|
Li L, Zha W, Huang X, Gong Y, Li S. Fabrication and Application of Tannin Double Quaternary Ammonium Salt/Polyvinyl Alcohol as Efficient Sterilization and Preservation Material for Food Packaging. Molecules 2024; 29:4264. [PMID: 39275112 PMCID: PMC11397647 DOI: 10.3390/molecules29174264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Food packaging films play a vital role in preserving and protecting food. The focus has gradually shifted to safety and sustainability in the preparation of functional food packaging materials. In this study, a bisquaternary ammonium salt of tannic acid (BQTA) was synthesized, and the bioplastics based on BQTA and polyvinyl alcohol (PVA) were created for packaging applications. The impact of BQTA on antibacterial effect, antioxidant capacity, opacity, ultraviolet (UV) protective activity, mechanical strength, thermal stability, and anti-fog of the resultant bioplastics was examined. In vitro antibacterial experiments confirmed that BQTA possesses excellent antimicrobial properties, and only a trace amount addition of BQTA in PVA composite film could inhibit about 100% of Escherichia coli and Staphylococcus aureus. Compared to BQTA/PVA bioplastics with pure PVA, the experiment findings demonstrate that BQTA/PVA bioplastics show strong antioxidant and UV protection action and the performance of fruit preservation. It also revealed a small improvement in thermal stability and tensile strength. The small water contact angle, even at low BQTA concentrations, gave BQTA/PVA bioplastics good anti-fog performance. Based on the findings, bioplastics of BQTA/PVA have the potential to be used to create packaging, and they can be applied as the second (inner) layer of the primary packaging to protect food freshness and nutrition due to their antioxidant activity and biocompatibility.
Collapse
Affiliation(s)
- Laiqi Li
- Solid-State Ion Institute, College of Chemistry and Chemical Engineering, Hu-Nan University, Changsha 410006, China
| | - Wenke Zha
- Advanced Energy Storage Key Technology and Reliability R&D Center (AESC), School of Mechanical Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Ximei Huang
- Zhongshan Nenghe Biotech Co., Ltd., Zhongshan 528400, China
| | - Yangyi Gong
- Solid-State Ion Institute, College of Chemistry and Chemical Engineering, Hu-Nan University, Changsha 410006, China
| | - Sufang Li
- Solid-State Ion Institute, College of Chemistry and Chemical Engineering, Hu-Nan University, Changsha 410006, China
| |
Collapse
|
18
|
Silue Y, Fawole OA. Global Research Network Analysis of Edible Coatings and Films for Preserving Perishable Fruit Crops: Current Status and Future Directions. Foods 2024; 13:2321. [PMID: 39123513 PMCID: PMC11311519 DOI: 10.3390/foods13152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Edible coatings and films have gained substantial attention as a promising and sustainable technology for fruit preservation. This study employed a bibliometric analysis to identify core research areas, research gaps, and emerging trends, thus providing a comprehensive roadmap for future research on the use of edible coatings and films for fruit quality preservation. The study involved 428 research articles related to edible coatings and films for fruit preservation published in the Scopus database before 06 October 2023. Utilizing Vosviewer and R for network analysis, we generated network visualization maps, research performance statistics, and identified key contributors and their collaborations. The results show the evolution of this field into three distinct phases: Initial Exploration (1998-2007), Growing Interest (2008-2015), and Rapid Expansion (2016-2023). The study revealed contributions from 1713 authors, with the first article appearing in 1998. Brazil and China emerged as the most productive countries in this domain. The core research areas focus on biomaterials, functional properties, and natural substances. Identified research gaps include pilot and industrial-scale applications, the lack of a regulatory framework and safety guidelines, and the application of artificial intelligence (AI), particularly deep learning and machine learning, in this field of edible coatings and films for fruit preservation. Overall, this study offers a scientific understanding of past achievements and ongoing research needs, thus aiming to boost a broader adoption of edible coatings and films by consumers and the food industry to preserve fruit quality, thereby enhancing their societal and environmental impact.
Collapse
Affiliation(s)
- Yardjouma Silue
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa;
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| | - Olaniyi Amos Fawole
- Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa;
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
19
|
Saavedra-Leos Z, Carrizales-Loera A, Lardizábal-Gutiérrez D, López-Martínez LA, Leyva-Porras C. Exploring the Equilibrium State Diagram of Maltodextrins across Diverse Dextrose Equivalents. Polymers (Basel) 2024; 16:2014. [PMID: 39065331 PMCID: PMC11280782 DOI: 10.3390/polym16142014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigates the equilibrium state diagram of maltodextrins with varying dextrose equivalents (DE 10 and 30) for quercetin microencapsulation. Using XRD, SEM, and optical microscopy, three transition regions were identified: amorphous (aw 0.07-0.437), semicrystalline (aw 0.437-0.739), and crystalline (aw > 0.739). In the amorphous region, microparticles exhibit a spherical morphology and a fluffy, pale-yellow appearance, with Tg values ranging from 44 to -7 °C. The semicrystalline region shows low-intensity diffraction peaks, merged spherical particles, and agglomerated, intense yellow appearance, with Tg values below 2 °C. The crystalline region is characterized by fully collapsed microstructures and a continuous, solid material with intense yellow color. Optimal storage conditions are within the amorphous region at 25 °C, aw 0.437, and a water content of 1.98 g H2O per g of dry powder. Strict moisture control is required at higher storage temperatures (up to 50 °C) to prevent microstructural changes. This research enhances understanding of maltodextrin behavior across diverse dextrose equivalents, aiding the development of stable microencapsulated products.
Collapse
Affiliation(s)
- Zenaida Saavedra-Leos
- Multidisciplinary Academic Unit, Altiplano Region (COARA), Autonomous University of San Luis Potosi, Carretera a Cedral km 5+600, Matehuala 78700, Mexico; (Z.S.-L.); (A.C.-L.)
| | - Anthony Carrizales-Loera
- Multidisciplinary Academic Unit, Altiplano Region (COARA), Autonomous University of San Luis Potosi, Carretera a Cedral km 5+600, Matehuala 78700, Mexico; (Z.S.-L.); (A.C.-L.)
| | - Daniel Lardizábal-Gutiérrez
- Advanced Materials Research Center (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Laura Araceli López-Martínez
- Academic Coordination of the Western High Plateau Region, Autonomous University of San Luis Potosi, Salinas de Hidalgo 78600, Mexico;
| | - César Leyva-Porras
- Advanced Materials Research Center (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| |
Collapse
|
20
|
Kanagalakshmi M, Devi SG, Subasini S, Amalan AJ, Pius A. Experimental assessment of biostimulants on mung bean growth on a soilless culture system using superabsorbent pectin based hydrogel. Int J Biol Macromol 2024; 273:133058. [PMID: 38866278 DOI: 10.1016/j.ijbiomac.2024.133058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Sustainable agriculture initiatives are needed to ensure the food security of the people all over the world. Soilless cultivation methods using hydrogels may give a revolutionary response as well as a more ecological and productive alternative to conventional farming. This study attempted extraction of pectin from the rind of albedo yellow passion fruit (Passiflora edulis var. flavicarpa Degener)and hydrogels from pectin and activated carbon was compared with pure pectin hydrogel; Pectin- Activated Carbon hydrogels (PAC) showed a microporous structure with excellent hydrophilicity and showed superior water holding capacity. Then the prepared hydrogels were examined with various instrumental techniques like FTIR, SEM, XRD, Raman, BET and rheological properties. In the BET analysis, PAC3 shows the highest surface area of 28.771 m2/g when compared to PAC0 at 15.063 m2/g. The germination experiments were performed using mung beans. This study provides an opportunity for the application of pectin hydrogels in agriculture field specifically for home garden or rooftop cultivation.
Collapse
Affiliation(s)
- M Kanagalakshmi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - S Gopika Devi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - S Subasini
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - A Joel Amalan
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram, Dindigul 624 302, Tamil Nadu, India.
| |
Collapse
|
21
|
Dini I. "Edible Beauty": The Evolution of Environmentally Friendly Cosmetics and Packaging. Antioxidants (Basel) 2024; 13:742. [PMID: 38929181 PMCID: PMC11200421 DOI: 10.3390/antiox13060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The cosmetics industry plays a significant role in the global economy and consumer lifestyles. Its dynamic and adaptable characteristics make it a key player worldwide. The cosmetics industry generates enormous profits globally, injecting billions of dollars into the world's economy each year. The industry's marketing efforts, product launches, and trends influence consumer behavior and perceptions of beauty, contributing to cultural dialogues and societal norms. This study, conducted with a rigorous bibliometric and systematic literature review, offers a comprehensive overview of recent progress in edible cosmetics. The "skincare you can eat" is an innovative branch of cosmetics that employs food co-products and by-products to create edible skincare and hair products and edible packaging materials to advance human well-being and sustainability while honoring the ecological boundaries of our planet. Nutrients and antioxidants derived from organic waste are used in cosmetics and packaging. Some doubts remain about the capacity of edible packaging to be attractive to consumers and offer a reasonable shelf life for cosmetics, and also about safety. It is desirable for the authorities to guarantee consumer health through carefully regulating labeling requirements and good manufacturing practices for cosmetics and edible packaging.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
22
|
Tian Y, Sun F, Wang Z, Yuan C, Wang Z, Guo Z, Zhou L. Research progress on plant-based protein Pickering particles: Stabilization mechanisms, preparation methods, and application prospects in the food industry. Food Chem X 2024; 21:101066. [PMID: 38268843 PMCID: PMC10806259 DOI: 10.1016/j.fochx.2023.101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
At present, there have been many research articles reporting that plant-based protein Pickering particles from different sources are used to stabilize Pickering emulsions, but the reports of corresponding review articles are still far from sufficient. This study focuses on the research hotspots and related progress on plant-based protein Pickering particles in the past five years. First, the article describes the mechanism by which Pickering emulsions are stabilized by different types of plant-based protein Pickering particles. Then, the extraction, preparation, and modification methods of various plant-based protein Pickering particles are highlighted to provide a reference for the development of greener and more efficient plant-based protein Pickering particles. The article also introduces some of the most promising applications of Pickering emulsions stabilized by plant-based protein Pickering particles in the food field. Finally, the paper also discusses the potential applications and challenges of plant-based protein Pickering particles in the food industry.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhuying Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
23
|
Xiang F, Liu Z, Hu H, Mitra P, Ma X, Zhu J, Shi A, Wang Q. Advances of blend films based on natural food soft matter: Multi-scale structural analysis. Int J Biol Macromol 2024; 258:128770. [PMID: 38104689 DOI: 10.1016/j.ijbiomac.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The blend films made of food soft matter are of growing interest to the food packaging industries as a pro-environment packaging option. The blend films have become a novel pattern to replace traditional plastics gradually due to their characteristics of biodegradability, sustainability, and environmental friendliness. This review discussed the whole process of the manufacturing of food soft matter blend films from the raw material to the application due to multi-scale structural analysis. There are 3 stages and 12 critical analysis points of the entire process. The raw material, molecular self-assembly, film-forming mechanism and performance test of blend films are investigated. In addition, 11 kinds of blend films with different functional properties by casting are also preliminarily described. The industrialization progress of blend films can be extended or facilitated by analysis of the 12 critical analysis points and classification of the food soft matter blend films which has a great potential in protecting environment by developing sustainable packaging solutions.
Collapse
Affiliation(s)
- Fei Xiang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Pranabendu Mitra
- Department of Kinesiology, Health, Food, and Nutritional Sciences, University of Wisconsin-Stout, Menomonie, WI 54751, USA
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
24
|
Saeed AM, Taha AG, Dardeer HM, Aly MF. One-pot synthesis of novel chitosan-salicylaldehyde polymer composites for ammonia sensing. Sci Rep 2024; 14:239. [PMID: 38168141 PMCID: PMC10761969 DOI: 10.1038/s41598-023-50243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Chitosan (Chs)-salicylaldehyde (Sal) polymer derivatives were formed via the reaction of Chs-Sal with zinc oxide nanoparticles (ZnO NPs) and beta-cyclodextrin (β-CD). These polymers were synthesized through inclusion with β-CD and doping with ZnO NPs to give pseudopolyrotaxane and Chs-Sal/ZnO NPs composite, respectively, for low-temperature detection and sensing of NH3 vapors as great significance in environmental control and human health. Additionally, the polymer (Chs-Sal/β-CD/ZnO NPs) was prepared via the insertion of generated composite (Chs-Sal/ZnO NPs) through β-cyclodextrin ring. The structural and morphological characterizations of the synthesized derivatives were confirmed by utilizing FTIR, XRD and, SEM, respectively. Also, the optical properties and thermal gravimetric analysis (TGA) of the synthesized polymers were explored. The obtained results confirmed that using β-CD or ZnO NPs for modification of polymer (Chs-Sal) dramatically enhanced thermal stability and optical features of the synthesized polymers. Investigations on the NH3-sensing properties of Chs-Sal/β-CD/ZnO NPs composite were carried out at concentrations down to 10 ppm and good response and recovery times (650 s and 350 s, respectively) at room temperature (RT) and indicated that modification by β-CD and doping with ZnO NPs effectively improves the NH3-sensing response of Chs-Sal from 712 to 6192 using Chs-Sal/β-CD/ZnO NPs, respectively, with low LOD and LOQ of 0.12 and 0.4 ppb, respectively.
Collapse
Affiliation(s)
- Ahmed Muhammed Saeed
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Ahmed Gaber Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Hemat Mohamed Dardeer
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Moustafa Fawzy Aly
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
25
|
Padhy D, Sharma S, Singh S. Andrographolide protect against lipopolysacharides induced vascular endothelium dysfunction by abrogation of oxidative stress and chronic inflammation in Sprague-Dawley rats. J Biochem Mol Toxicol 2024; 38:e23632. [PMID: 38229310 DOI: 10.1002/jbt.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
The development of heart disease involves interconnected factors such as oxidative stress, inflammation, and vascular dysfunction. Andrographolide (AG), known for its potent antioxidant and anti-inflammatory properties, has the potential to counteract lipopolysaccharides (LPS)-induced endothelial dysfunction by reducing oxidative stress and inflammation. Our research aimed to investigate the effects of AG on alleviating vascular endothelium dysfunction, oxidative stress, and inflammation in an experimental model induced by LPS. To create chronic vascular endothelium dysfunction, inflammation, and oxidative stress, rats received weekly injections of LPS via their tail vein over a 6-week period. The study evaluated the therapeutic effects of orally administered AG (50 mg/kg/day) on diseased conditions. We conducted aortic histology and measured nitric oxide (NO) thresholds, superoxide dismutase (SOD) activity, constitutive nitric oxide (cNOS) activity, and inducible nitric oxide (iNOS) levels, alongside several inflammatory biomarkers. To evaluate endothelial dysfunction, we assessed endothelium-dependent and endothelium-independent vasorelaxation in aortas through histopathological and various immunoassays examinations. Vascular Endothelial inflammatory activity was consequently enhanced in LPS groups animals when compared to normal control, also endothelial performance were dependently improved by AG therapy. IL-1β and tumors necrosis factor levels in the aorta decreased in a dose-dependent manner after exogenous AG delivery to LPS-treated rats. However, in current research work aortic SOD activity, NO levels, and cNOS activity increased, whereas aortic malondialdehyde levels and iNOS activity decreased after the AG treatment. These findings suggest that long-term AG therapy could be considered as a potential therapy to avoid vascular endothelial dysfunction and major nonobstructive coronary artery disease.
Collapse
Affiliation(s)
- Debiprasad Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
26
|
Wu Y, Yu X, Ding W, Remón J, Xin M, Sun T, Wang TTY, Yu LL, Wang J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int J Biol Macromol 2023; 249:125922. [PMID: 37482166 DOI: 10.1016/j.ijbiomac.2023.125922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.
Collapse
Affiliation(s)
- Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Xueling Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, PR China.
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain
| | - Mengmeng Xin
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China.
| |
Collapse
|
27
|
Roy S, Siracusa V. Multifunctional Application of Biopolymers and Biomaterials. Int J Mol Sci 2023; 24:10372. [PMID: 37373519 PMCID: PMC10299085 DOI: 10.3390/ijms241210372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Biopolymers and biomaterials are two interconnected key topics, which have recently drawn significant attention from researchers across all fields, owing to the emerging potential in multifunctional use [...].
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Valentina Siracusa
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| |
Collapse
|
28
|
Li XL, Shen Y, Hu F, Zhang XX, Thakur K, Rengasamy KRR, Khan MR, Busquets R, Wei ZJ. Fortification of polysaccharide-based packaging films and coatings with essential oils: A review of their preparation and use in meat preservation. Int J Biol Macromol 2023; 242:124767. [PMID: 37164134 DOI: 10.1016/j.ijbiomac.2023.124767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
As the demand for botanical food additives and eco-friendly food packaging materials grows, the use of essential oils, edible biodegradable films and coatings are becoming more popular in packaging. In this review, we discussed the recent research trends in the use of natural essential oils, as well as polysaccharide-based coatings and films: from the composition of the substrates to preparing formulations for the production of film-forming technologies. Our review emphasized the functional properties of polysaccharide-based edible films that contain plant essential oils. The interactions between essential oils and other ingredients in edible films and coatings including polysaccharides, lipids, and proteins were discussed along with effects on film physical properties, essential oil release, their active role in meat preservation. We presented the opportunities and challenges related to edible films and coatings including essential oils to increase their industrial value and inform the development of edible biodegradable packaging, bio-based functional materials, and innovative food preservation technologies.
Collapse
Affiliation(s)
- Xiao-Li Li
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, KT1 2EE, Surrey, England, the United Kingdom of Great Britain and Northern Ireland
| | - Yi Shen
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Fei Hu
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Xiu-Xiu Zhang
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rosa Busquets
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Zhao-Jun Wei
- School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
29
|
Lei XX, Zou CY, Hu JJ, Jiang YL, Zhang XZ, Zhao LM, He T, Zhang QY, Li YX, Li-Ling J, Xie HQ. Click-crosslinked in-situ hydrogel improves the therapeutic effect in wound infections through antibacterial, antioxidant and anti-inflammatory activities. CHEMICAL ENGINEERING JOURNAL 2023; 461:142092. [DOI: 10.1016/j.cej.2023.142092] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
30
|
Gubitosa J, Rizzi V, Fini P, Fanelli F, Sibillano T, Corriero N, Cosma P. Chitosan/snail slime films as multifunctional platforms for potential biomedical and cosmetic applications: physical and chemical characterization. J Mater Chem B 2023; 11:2638-2649. [PMID: 36629337 DOI: 10.1039/d2tb02119f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the pollution problem, the use of more sustainable materials with a reduced environmental impact, spanning across biocompatible and biodegradable polymers, is growing worldwide in many different fields, particularly when referring to applications in Life Sciences. Accordingly, with the aim of developing multifunctional materials for potential cosmetic/biomedical purposes, this work reports the physical and chemical characterization of chitosan-based films blended with snail slime, exhibiting antioxidant and sunscreen features. A suitable formulation for preparing free-standing chitosan platforms, mixing low molecular weight chitosan, lactic acid, glycerol, and snail slime into an appropriate ratio, is thus described. The results obtained by morphological analysis and ATR-FTIR spectroscopy, XRD, swelling analysis (also when varying pH, ionic strength, and temperature), and WVTR measurements evidence a uniform distribution of snail slime inside the chitosan network, forming more compacted structures. At first, the UV-Vis analysis is used to investigate the theoretical Sun Protection Factor, finding that these innovative platforms can be used for preventing sunburn. Then, the antioxidant features are investigated using the ABTS assay, displaying a snail slime-mediated and dose-dependent boosted activity.
Collapse
Affiliation(s)
- Jennifer Gubitosa
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| | - Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Fiorenza Fanelli
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia (CNR-NANOTEC) c/o Dipartimento di Chimica, Università degli Studi "Aldo Moro", Via Orabona, 4, 70126 Bari, Italy
| | - Teresa Sibillano
- Consiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola, 122/O 70126 Bari, Italy
| | - Nicola Corriero
- Consiglio Nazionale delle Ricerche CNR-IC, UOS Bari, Via Amendola, 122/O 70126 Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dipartimento di Chimica, Via Orabona, 4, 70126 Bari, Italy.
| |
Collapse
|
31
|
Fabrication of starch-based packaging materials. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
This chapter aims to provide the reader with some information about the possibility of starch as a suitable substitute for synthetic polymers in biodegradable food packaging. This is due to the starch has good characteristics which are great biodegradability, low cost and also easy to gain from natural resources. However, some of technical challenges are also introduced before starch-based polymers can be used in more applications. These technical challenges involved preparation methods and incorporation of additives and these are being summarized in this topic. Hence, the enhancement of starch can be done in order to prepare innovative starch-based biodegradable materials.
Collapse
|
32
|
Wang Y, Wusigale, Luo Y. Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Grzebieniarz W, Biswas D, Roy S, Jamróz E. Advances in biopolymer-based multi-layer film preparations and food packaging applications. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Hou J, Liu S, Su M, Fan Y, Liu Y, Yan X. Fabrication of edible special wettability coating on polystyrene substrate and application in yogurt storage. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Zaharescu T. Synergistic effect of silica nanoparticles assisted by rosemary powder in the stabilization of styrene-isoprene-styrene triblock copolymer. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
High skin permeation, deposition and whitening activity achieved by xanthan gum string vitamin c flexible liposomes for external application. Int J Pharm 2022; 628:122290. [DOI: 10.1016/j.ijpharm.2022.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
|
37
|
Fukada K, Tajima T, Seyama M. Thermally Degradable Inductors with Water-Resistant Metal Leaf/Oleogel Wires and Gelatin/Chitosan Hydrogel Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44697-44703. [PMID: 36095329 DOI: 10.1021/acsami.2c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ingestible electronics monitor biometric information from outside the body. Making them with harmless or digestible materials will contribute to further reducing the burden on the patient's oral intake. Here, considering that the inductive part plays an important role in communications, we demonstrate a degradable inductor fabricated with harmless substances. Such a transient component must meet conflicting requirements for both operation and disassembly. Therefore, we integrated a substrate made of gelatin, a thermally degradable material, and a precision coil pattern made of edible gold or silver leaf. However, gelatin itself lost its initial shape easily due to quick sol-gel changes in physiological conditions. Thus, we managed the gelatin's thermal responsiveness by using a tangle of gelatin/chitosan gel networks and genipin, an organic cross-linking agent, and gained insights into the criteria for developing transient devices with thermo-degradability. In addition, to compensate for the lack of water resistance and low conductivity of thin metal foils, we propose a laminated structure with oleogel (beeswax/olive oil). LCR resonance circuits, by connecting a commercial capacitor to the coil, worked wirelessly in the megahertz band and gradually degraded in a warm-water environment. The presented organic electronics will contribute to the future development of transient wireless communications for implantable and ingestible medical devices or environmental sensors with natural and harmless ingredients.
Collapse
Affiliation(s)
- Kenta Fukada
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Takuro Tajima
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Michiko Seyama
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
38
|
Ma J, Ye G, Jia S, Ma H, Jia D, He J, Lv J, Chen X, Liu F, Gou K, Zeng R. Preparation of chitosan/peony (Paeonia suffruticosa Andr.) leaf extract composite film and its application in sustainable active food packaging. Int J Biol Macromol 2022; 222:2200-2211. [DOI: 10.1016/j.ijbiomac.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
39
|
Aman Mohammadi M, Dakhili S, Mirza Alizadeh A, Kooki S, Hassanzadazar H, Alizadeh-Sani M, McClements DJ. New perspectives on electrospun nanofiber applications in smart and active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2601-2617. [PMID: 36123813 DOI: 10.1080/10408398.2022.2124506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Packaging plays a critical role in determining the quality, safety, and shelf-life of many food products. There have been several innovations in the development of more effective food packaging materials recently. Polymer nanofibers are finding increasing attention as additives in packaging materials because of their ability to control their pore size, surface energy, barrier properties, antimicrobial activity, and mechanical strength. Electrospinning is a widely used processing method for fabricating nanofibers from food grade polymers. This review describes recent advances in the development of electrospun nanofibers for application in active and smart packaging materials. Moreover, it highlights the impact of these nanofibers on the physicochemical properties of packaging materials, as well as the application of nanofiber-loaded packaging materials to foods, such as dairy, meat, fruit, and vegetable products.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Kooki
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food safety and hygiene, Department of Environmental Health Engineering, School of public health, Tehran University of medical sciences, Tehran, Iran
| | | |
Collapse
|
40
|
San H, Laorenza Y, Behzadfar E, Sonchaeng U, Wadaugsorn K, Sodsai J, Kaewpetch T, Promhuad K, Srisa A, Wongphan P, Harnkarnsujarit N. Functional Polymer and Packaging Technology for Bakery Products. Polymers (Basel) 2022; 14:polym14183793. [PMID: 36145938 PMCID: PMC9501505 DOI: 10.3390/polym14183793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Polymeric materials including plastic and paper are commonly used as packaging for bakery products. The incorporation of active substances produces functional polymers that can effectively retain the quality and safety of packaged products. Polymeric materials can be used to produce a variety of package forms such as film, tray, pouch, rigid container and multilayer film. This review summarizes recent findings and developments of functional polymeric packaging for bakery products. Functional polymerics are mainly produced by the incorporation of non-volatile and volatile active substances that effectively retain the quality of packaged bakery products. Antimicrobial agents (either synthetic or natural substances) have been intensively investigated, whereas advances in coating technology with functional materials either as edible coatings or non-edible coatings have also preserved the quality of packaged bakery products. Recent patents demonstrate novel structural packaging designs combined with active functions to extend the shelf life of bakery products. Other forms of active packaging technology for bakery products include oxygen absorbers and ethanol emitters. The latest research progress of functional polymeric packaging for bakery products, which provides important reference value for reducing the waste and improving the quality of packaged products, is demonstrated. Moreover, the review systematically analyzed the spoilage factors of baked products from physicochemical, chemical and microbiological perspectives. Functional packaging using polymeric materials can be used to preserve the quality of packaged bakery products.
Collapse
Affiliation(s)
- Horman San
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Yeyen Laorenza
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Ehsan Behzadfar
- Chemical Engineering Department, Ryerson University, Toronto, ON M5B 2K3, Canada
- Sustainable Packaging Lab, School of Graphic Communications Management, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Uruchaya Sonchaeng
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Kiattichai Wadaugsorn
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Janenutch Sodsai
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Thitiporn Kaewpetch
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Khwanchat Promhuad
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Atcharawan Srisa
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Phanwipa Wongphan
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok 10900, Thailand
- Correspondence: ; Tel.: +66-2-562-5045
| |
Collapse
|
41
|
Luo D, Xie Q, Gu S, Xue W. Potato starch films by incorporating tea polyphenol and MgO nanoparticles with enhanced physical, functional and preserved properties. Int J Biol Macromol 2022; 221:108-120. [PMID: 36075301 DOI: 10.1016/j.ijbiomac.2022.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Due to the massive environmental pollution caused by synthetic plastic packaging accumulation and contemporary necessities of food packaging materials, the biodegradable and multifunctional bionanocomposite films based on potato starch (PS) incorporating tea polyphenol (TP) and MgO nanoparticles (MgO-NPs) were successfully fabricated by the solution casting method, and their physical and functional properties and application in fruits preservation were systematically investigated. Incorporation of TP and MgO-NPs improved the films' tensile strength, UV light-blocking, hydrophobicity and thermal stability, and decreased their moisture content (from 14.02 % to 11.21 %), water solubility (from 19.57 % to 16.56 %), and water vapor permeability (from 17.32 to 9.07 × 10-11 g∙m-1∙s-1∙Pa-1). Moreover, the PS/TP/MgO-NPs films exhibited strong antioxidant activity, and remarkable antibacterial activity against Escherichia coli and Staphylococcus aureus with the diameter of inhibition zone of 25.60 mm and 27.50 mm, respectively. SEM, ATR-FTIR and XRD analyses indicated the TP and MgO-NPs were dispersed homogeneously in the PS matrix, and identified the molecular interactions of hydrogen bond, hydrophobic interaction and electrostatic attraction. Biodegradability assessment showed that all the films were rapidly decomposed within ~20 days under simulated environmental conditions. Compared to control, the PS/TP/MgO-NPs film-forming solution coatings were capable of maintaining fruit quality by reducing the change in weight loss, firmness and total soluble solids. Overall, these results suggested that the multifunctional bionanocomposite films could be a potential approach for developing sustainable active food packaging.
Collapse
Affiliation(s)
- Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Shimin Gu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
42
|
Wu H, Wu H, Qing Y, Wu C, Pang J. KGM/chitosan bio-nanocomposite films reinforced with ZNPs: Colloidal, physical, mechanical and structural attributes. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Gupta V, Biswas D, Roy S. A Comprehensive Review of Biodegradable Polymer-Based Films and Coatings and Their Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175899. [PMID: 36079280 PMCID: PMC9457097 DOI: 10.3390/ma15175899] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 05/15/2023]
Abstract
Food sectors are facing issues as a result of food scarcity, which is exacerbated by rising populations and demand for food. Food is ordinarily wrapped and packaged using petroleum-based plastics such as polyethylene, polyvinyl chloride, and others. However, the excessive use of these polymers has environmental and health risks. As a result, much research is currently focused on the use of bio-based materials for food packaging. Biodegradable polymers that are compatible with food products are used to make edible packaging materials. These can be ingested with food and provide consumers with additional health benefits. Recent research has shifted its focus to multilayer coatings and films-based food packaging, which can provide a material with additional distinct features. The aim of this review article is to investigate the properties and applications of several bio-based polymers in food packaging. The several types of edible film and coating production technologies are also covered separately. Furthermore, the use of edible films and coatings in the food industry has been examined, and their advantages over traditional materials are also discussed.
Collapse
|
44
|
Seyedzade Hashemi S, Khorshidian N, Mohammadi M. An insight to potential application of synbiotic edible films and coatings in food products. Front Nutr 2022; 9:875368. [PMID: 35967779 PMCID: PMC9363822 DOI: 10.3389/fnut.2022.875368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Edible films and coatings have gained significant consideration in recent years due to their low cost and decreasing environmental pollution. Several bioactive compounds can be incorporated into films and coatings, including antioxidants, antimicrobials, flavoring agents, colors, probiotics and prebiotics. The addition of probiotics to edible films and coatings is an alternative approach for direct application in food matrices that enhances their stability and functional properties. Also, it has been noted that the influence of probiotics on the film properties was dependent on the composition, biopolymer structure, and intermolecular interactions. Recently, the incorporation of probiotics along with prebiotic compounds such as inulin, starch, fructooligosaccharide, polydextrose and wheat dextrin has emerged as new bioactive packaging. The simultaneous application of probiotics and prebiotics improved the viability of probiotic strains and elevated their colonization in the intestinal tract and provided health benefits to humans. Moreover, prebiotics created a uniform and compact structure by filling the spaces within the polymer matrix and increased opacity of edible films. The effects of prebiotics on mechanical and barrier properties of edible films was dependent on the nature of prebiotic compounds. This review aims to discuss the concept of edible films and coatings, synbiotic, recent research on synbiotic edible films and coatings as well as their application in food products.
Collapse
Affiliation(s)
- Sahar Seyedzade Hashemi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Duan A, Yang J, Wu L, Wang T, Liu Q, Liu Y. Preparation, physicochemical and application evaluation of raspberry anthocyanin and curcumin based on chitosan/starch/gelatin film. Int J Biol Macromol 2022; 220:147-158. [PMID: 35963358 DOI: 10.1016/j.ijbiomac.2022.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 01/20/2023]
Abstract
Raspberry anthocyanin (RA) from Rubus idaeus L. (Rosaceae) and curcumin (Cur) from Curcuma longa L. (Zingiberaceae) can effectively improve the physicochemical properties of composite films, and as bioactive pigment components, they can impart pH-responsive properties to the film. In this study, RA and Cur were added to chitosan/starch/gelatin composite film (CSG) to prepare CSG-RA, CSG-Cur, CSG-RA/Cur82 and CSG-RA/Cur73 color films by solution casting method. The color films could change color under different pH conditions and had higher antioxidant activities using ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay. The results from fourier transform infrared spectroscopy and scanning electron microscopy showed that RA and Cur were well dispersed in the CSG matrix and improved the structure of the composite films. The hydrophobic Cur increased the tensile strength from 6 Mpa (CSG) to 14 Mpa (CSG-Cur), but reduced the elongation at break from 55 % (CSG) to 40 % (CSG-Cur). These color films had a good fresh-keeping effect and freshness monitoring, in particular, CSG-RA/Cur73, had the better opacity, water solubility, thickness, moisture content and water vapor permeability than the other films. Briefly, binary pigment films had the potential to become a pH-sensitive indicator/packing film.
Collapse
Affiliation(s)
- Anbang Duan
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Jing Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China; Shanxi Jingxi Biotechnology Co., Ltd, Taiyuan, Shanxi, 030051, China.
| | - Liyang Wu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Tao Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Qingye Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Yongping Liu
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| |
Collapse
|
46
|
Li S, Fan M, Deng S, Tao N. Characterization and Application in Packaging Grease of Gelatin-Sodium Alginate Edible Films Cross-Linked by Pullulan. Polymers (Basel) 2022; 14:3199. [PMID: 35956713 PMCID: PMC9371049 DOI: 10.3390/polym14153199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Gelatin-sodium alginate-based edible films cross-linked with pullulan were prepared using the solution casting method. FTIR spectroscopy demonstrated the existence of hydrogen bonding interactions between the components, and scanning electron microscopy observed the component of the films, revealing electrostatic interactions and thus explaining the differences in the properties of the blend films. The best mechanical properties and oxygen barrier occurred at a 1:1 percentage of pullulan to gelatin (GP11) with sodium alginate dosing for modification. Furthermore, GP11 demonstrated the best thermodynamic properties by DSC analysis, the highest UV barrier (94.13%) and the best oxidation resistance in DPPH tests. The results of storage experiments using modified edible films encapsulated in fresh fish liver oil showed that GP11 retarded grease oxidation by inhibiting the rise in peroxide and anisidine values, while inappropriate amounts of pullulan had a pro-oxidative effect on grease. The correlation between oil oxidation and material properties was investigated, and water solubility and apparent color characteristics were also assessed.
Collapse
Affiliation(s)
- Shuo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
47
|
Houttuynia cordata polysaccharide alleviates chronic vascular inflammation by suppressing calcium-sensing receptor in rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
48
|
Koh LM, Khor SM. Current state and future prospects of sensors for evaluating polymer biodegradability and sensors made from biodegradable polymers: A review. Anal Chim Acta 2022; 1217:339989. [PMID: 35690422 DOI: 10.1016/j.aca.2022.339989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Since the invention of fully synthetic plastic in the 1900s, plastics have been extensively applied in various fields and represent a significant market due to their satisfactory properties. However, the non-biodegradable nature of most plastics has contributed to the accumulation of plastic waste, which poses a threat to both the environment and living beings. Given this, biodegradable polymers have emerged as eco-friendly substitutes for non-biodegradable polymers, and standard test methods have been established to evaluate polymer biodegradability. Technological advancement and the weaknesses of conventional test methods drive the invention of sensors that enable real-time monitoring of biodegradability. Besides, biodegradable polymers have been utilized to make sensors with different functionalities. Given this, the current paper is the first to compare and contrast sensors capable of identifying biodegradable polymers. The detection using sensors represents an innovative perspective for real-time monitoring of biodegradability. Besides, sensors made from biodegradable polymers are included, and these sensors are of different types and show various applications. Finally, the challenges associated with developing these sensors are described to advance future research.
Collapse
Affiliation(s)
- Lai Mun Koh
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
49
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
50
|
Effect of tannic acid-grafted chitosan coating on the quality of fresh pork slices during cold storage. Meat Sci 2022; 188:108779. [DOI: 10.1016/j.meatsci.2022.108779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023]
|