1
|
Shi D, Xu X, Wang J, Bu T, Sun P, Yang K, Cai M. Synergistic anti-inflammatory effects of Ganoderma lucidum polysaccharide and ganoderic acid A on LPS-induced RAW264.7 cells by inhibition of TLR4/NF-κB activation. Int J Biol Macromol 2025; 309:143074. [PMID: 40220822 DOI: 10.1016/j.ijbiomac.2025.143074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Ganoderma lucidum, a food-grade medicinal mushroom, is rich in biologically active components that offer significant health benefits. This study investigated the synergistic anti-inflammatory effects of Ganoderma lucidum polysaccharide (GLP-1) and ganoderic acid A (GAA) in RAW264.7 cells. GLP-1 was a low molecular weight β-D-glucan with an alternating backbone structure formed by →3)-β-D-Glcp-(1 → and →4)-β-D-Glcp-(1 → linkages. Notably, significant synergistic effects were observed at a mass concentration ratio of GAA: GLP-1 of 1:4. The combination of GLP-1 and GAA more effectively inhibited the production of NO, pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and reactive oxygen species (ROS) compared to each component alone. Additionally, the combination increased anti-inflammatory cytokine levels (IL-10) and restored mitochondrial membrane potential. RT-qPCR and Western blot results suggested that GLP-1 and GAA may co-target the TLR4/NF-κB signaling pathways to achieve their synergistic anti-inflammatory effects. These findings provide valuable insights for future synergistic application of active ingredients from natural products.
Collapse
Affiliation(s)
- Dongcheng Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Xinhui Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jian Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| |
Collapse
|
2
|
Zheng C, Li J, Liu H, Wang Y. Effect of drying temperature on composition of edible mushrooms: Characterization and assessment via HS-GC-MS and IR spectral based volatile profiling and chemometrics. Curr Res Food Sci 2024; 9:100819. [PMID: 39234276 PMCID: PMC11372843 DOI: 10.1016/j.crfs.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024] Open
Abstract
Edible wild mushrooms are one of the popular ingredients due to their high quality and unique flavor and nutrients. To gain insight into the effect of drying temperature on its composition, 86 Boletus bainiugan were divided into 5 groups and dried at different temperatures. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for the identification of volatile organic compounds (VOCs) of Boletus bainiugan. The 21 differential VOCs that distinguish different drying temperatures of Boletus bainiugan were identified. 65 °C retained more VOCs. There were differences in their types and content at different temperatures, proteins, polysaccharides, crude fibers, and fats. Fourier transform near-infrared (FT-NIR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and two-dimensional correlation spectroscopy (2DCOS) images were successfully characterized for differences in the chemical composition of Boletus bainiugan. Partial least squares discriminant analysis (PLS-DA) verified the variability in the chemical composition of Boletus bainiugan with the coefficient of determination (R2) = 0.95 and predictive performance (Q2) = 0.75 with 92.31% accuracy. Next, infrared spectroscopy provides a fast and efficient assessment of the content of Boletus bainiugan nutrients (proteins, polysaccharides, crude fibers, and fats).
Collapse
Affiliation(s)
- Chuanmao Zheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong, 657000, Yunnan, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| |
Collapse
|
3
|
Huang HC, Shi YJ, Vo TLT, Hsu TH, Song TY. The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds. J Fungi (Basel) 2024; 10:523. [PMID: 39194849 DOI: 10.3390/jof10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The pharmacological effects of the fruiting body of Ophiocordyceps sinensis (O. sinensis) such as antioxidant, anti-virus, and immunomodulatory activities have already been described, whereas the anti-inflammatory effects and active components of the submerged culture of O. sinesis (SCOS) still need to be further verified. This study aimed to investigate the active compounds in the fermented liquid (FLOS), hot water (WEOS), and 50-95% (EEOS-50, EEOS-95) ethanol extracts of SCOS and their anti-inflammatory effects and potential mechanisms in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. The results demonstrated that all of the SCOS extracts could inhibit NO production in BV2 cells. EEOS-95 exhibited the strongest inhibitory effects (71% inhibitory ability at 500 µg/mL), and its ergosterol, γ-aminobutyric acid (GABA), total phenolic, and total flavonoid contents were significantly higher than those of the other extracts (18.60, 18.60, 2.28, and 2.14 mg/g, p < 0.05, respectively). EEOS-95 also has a strong inhibitory ability against IL-6, IL-1β, and TNF-α with an IC50 of 617, 277, and 507 µg/mL, respectively, which is higher than that of 1 mM melatonin. The anti-inflammatory mechanism of EEOS-95 seems to be associated with the up-regulation of PPAR-γ/Nrf-2/HO-1 antioxidant-related expression and the down-regulation of NF-κB/COX-2/iNOS pro-inflammatory expression signaling. In summary, we demonstrated that EEOS-95 exhibits neuroinflammation-mediated neurodegenerative disorder activities in LPS-induced inflammation in brain microglial cells.
Collapse
Affiliation(s)
- Hsien-Chi Huang
- PhD Program of Biotechnology and Bioindustry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan
| | - Yu-Juan Shi
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Thuy-Lan-Thi Vo
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tuzz-Ying Song
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| |
Collapse
|
4
|
Su P, Qiu H, Liang L, Weng L, Liu Y, Liu J, Wu L, Meng F. The antioxidant activity of polysaccharides from Armillaria gallica. Front Nutr 2024; 11:1277877. [PMID: 38419855 PMCID: PMC10899455 DOI: 10.3389/fnut.2024.1277877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
The purpose of this study was to investigate the antioxidant activity of Armillaria gallica polysaccharides. It explored whether Armillaria gallica polysaccharides (AgP) could prevent HepG2 cells from H2O2-induced oxidative damage. The results demonstrated that HepG2 cells were significantly protected by AgP, and efficiently suppressed the production of reactive oxygen species (ROS) in HepG2 cells. Additionally, AgP significantly decreased the abnormal leakage of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) caused by H2O2, protecting cell membrane integrity. It was discovered that AgP was also found to regulate the activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), while reducing malondialdehyde (MDA), thus protecting cells from oxidative damage. According to the flow cytometry analysis and measurement of caspase-3, caspase-8, and caspase-9 activities, AgP could modulate apoptosis-related proteins and attenuate ROS-mediated cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fanxin Meng
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
5
|
Zheng C, Li J, Liu H, Wang Y. Review of postharvest processing of edible wild-grown mushrooms. Food Res Int 2023; 173:113223. [PMID: 37803541 DOI: 10.1016/j.foodres.2023.113223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Edible wild-grown mushrooms, plentiful in resources, have excellent organoleptic properties, flavor, nutrition, and bioactive substances. However, fresh mushrooms, which have high water and enzymatic activity, are not protected by cuticles and are easily attacked by microorganisms. And wild-grown mushroom harvesting is seasonal the harvest of edible wild-grown mushrooms is subject to seasonality, so their market availability is challenging. Many processing methods have been used for postharvest mushroom processing, including sun drying, freezing, packaging, electron beam radiation, edible coating, ozone, and cooking, whose effects on the parameters and composition of the mushrooms are not entirely positive. This paper reviews the effect of processing methods on the quality of wild and some cultivated edible mushrooms. Drying and cooking, as thermal processes, reduce hardness, texture, and color browning, with the parallel that drying reduces the content of proteins, polysaccharides, and phenolics while cooking increases the chemical composition. Freezing, which allows mushrooms to retain better hardness, color, and higher chemical content, is a better processing method. Water washing and ozone help maintain color by inhibiting enzymatic browning. Edible coating facilitates the maintenance of hardness and total sugar content. Electrolytic water (EW) maintains total phenol levels and soluble protein content. Pulsed electric field and ultrasound (US) inhibit microbial growth. Frying maintains carbohydrates, lipids, phenolics, and proteins. And the mushrooms processed by these methods are safe. They are the focus of future research that combines different methods or develops new processing methods, molecular mechanisms of chemical composition changes, and exploring the application areas of wild mushrooms.
Collapse
Affiliation(s)
- Chuanmao Zheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jieqing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Honggao Liu
- Yunnan Key Laboratory of Gastrodia and Fungi Symbiotic Biology, Zhaotong University, Zhaotong 657000, Yunnan, China.
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| |
Collapse
|
6
|
Guan Y, Shi D, Wang S, Sun Y, Song W, Liu S, Wang C. Hericium coralloides Ameliorates Alzheimer's Disease Pathologies and Cognitive Disorders by Activating Nrf2 Signaling and Regulating Gut Microbiota. Nutrients 2023; 15:3799. [PMID: 37686830 PMCID: PMC10489620 DOI: 10.3390/nu15173799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is prone to onset and progression under oxidative stress conditions. Hericium coralloides (HC) is an edible medicinal fungus that contains various nutrients and possesses antioxidant properties. In the present study, the nutritional composition and neuroprotective effects of HC on APP/PS1 mice were examined. Behavioral experiments showed that HC improved cognitive dysfunction in APP/PS1 mice. Immunohistochemical and Western blotting results showed that HC reduced the levels of p-tau and amyloid-β deposition in the brain. By altering the composition of the gut microbiota, HC promoted the growth of short-chain fatty acid-producing bacteria and suppressed the growth of Helicobacter. Metabolomic results showed that HC decreased D-glutamic acid and oxidized glutathione levels. In addition, HC reduced the levels of reactive oxygen species, enhanced the secretion of superoxide dismutase, catalase, and glutathione peroxidase, inhibited the production of malondialdehyde and 4-hydroxynonenal, and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Collectively, HC demonstrated antioxidant activity by activating Nrf2 signaling and regulating gut microbiota, further exerting neuroprotective effects. This study confirms that HC has the potential to be a clinically effective AD therapeutic agent and offers a theoretical justification for both the development and use of this fungus.
Collapse
Affiliation(s)
- Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Dongyu Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Shimiao Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Yueying Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Wanyu Song
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (D.S.); (Y.S.); (W.S.)
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (Y.G.); (S.W.)
| |
Collapse
|
7
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
8
|
Rangsinth P, Sharika R, Pattarachotanant N, Duangjan C, Wongwan C, Sillapachaiyaporn C, Nilkhet S, Wongsirojkul N, Prasansuklab A, Tencomnao T, Leung GPH, Chuchawankul S. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023; 12:2529. [PMID: 37444267 DOI: 10.3390/foods12132529] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ergosterol is an important sterol commonly found in edible mushrooms, and it has important nutritional value and pharmacological activity. Ergosterol is a provitamin. It has been well established that edible mushrooms are an excellent food source of vitamin D2 because ergosterol is a precursor that is converted to vitamin D2 under ultraviolet radiation. The pharmacological effects of ergosterol, which include antimicrobial, antioxidant, antimicrobial, anticancer, antidiabetic, anti-neurodegenerative, and other activities, have also been reported. This review aims to provide an overview of the available evidence regarding the pharmacological effects of ergosterol and its underlying mechanisms of action. Their potential benefits and applications are also discussed.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Rajasekharan Sharika
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chamaiphron Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nichaporn Wongsirojkul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Lu W, Chen JT, Shi YF, Chen MS, Wang PP, Zhang XJ, Xiao CJ, Li D, Cao CY, Li CH, Gao JM. Diversified cassane family diterpenoids from the leaves of Caesalpinia minax exerting anti-neuroinflammatory activity through suppressing MAPK and NF-κB pathways in BV-2 microglia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 315:116653. [PMID: 37236383 DOI: 10.1016/j.jep.2023.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia minax Hance, whose seeds are known as "Ku-shi-lian" in China, have been used in Chinese folk medicine for treatment of rheumatism, dysentery, and skin itching. However, the anti-neuroinflammatory constituents of its leaves and their mechanism are rarely reported. AIM OF THE STUDY To search for new anti-neuro-inflammatory compounds from the leaves of C. minax and elucidate their mechanism on anti-neuroinflammatory effect. MATERIALS AND METHODS The main metabolites of the ethyl acetate fraction from C. minax were analyzed and purified via HPLC and various column chromatography techniques. Their structures were elucidated on the basis of 1D and 2D NMR, HR-ESI-MS, and single crystal X-ray diffraction analysis. Anti-neuroinflammatory activity was evaluated in BV-2 microglia cells induced by LPS. The expression levels of molecules in NF-κB and MAPK signaling pathways were analyzed through western blotting. Meanwhile, the time- and dose-dependent expression of associated proteins such as iNOS and COX-2 were detected by western blotting. Furthermore, Compounds 1 and 3 were performed on the NF-κB p65 active site using molecular docking simulation to elucidate the molecular level inhibition mechanism. RESULTS 20 cassane diterpenoids, including two novel ones (caeminaxins A and B) were isolated from the leaves of C. minax Hance. Caeminaxins A and B possessed a rare unsaturated carbonyl moiety in their structures. Most of the metabolites exhibited potent inhibition effects with IC50 values ranging from 10.86 ± 0.82 to 32.55 ± 0.47μM. Among them, caeminaxin A inhibited seriously the expression of iNOS and COX-2 proteins and restrained the phosphorylation of MAPK and the activation of NF-κB signaling pathways in BV-2 cells. The anti-neuro-inflammatory mechanism of caeminaxin A has been studied systematically for the first time. Furthermore, biosynthesis pathways for compounds 1-20 were discussed. CONCLUSIONS The new cassane diterpenoid, caeminaxin A, alleviated the expression of iNOS and COX-2 protein and down-regulated of intracellular MAPK and NF-κB signaling pathways. The results implied that cassane diterpenoids had potential to be developed into therapeutic agents for neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Wang Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jin-Ting Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Ye-Fan Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Meng-Song Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Pan-Pan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xiu-Juan Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Chao-Jiang Xiao
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Xueren Road 22, Dali, 671000, PR China
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Chen-Yu Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Chun-Huan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| |
Collapse
|
10
|
Hsien Li P, Shih YJ, Lu WC, Huang PH, Wang CCR. Antioxidant, antibacterial, anti-inflammatory, and anticancer properties of Cinnamomum kanehirae Hayata leaves extracts. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
11
|
Zhang W, Guo Y, Cheng Y, Yao W, Qian H. Neuroprotective effects of polysaccharide from Sparassis crispa on Alzheimer's disease-like mice: Involvement of microbiota-gut-brain axis. Int J Biol Macromol 2023; 225:974-986. [PMID: 36402384 DOI: 10.1016/j.ijbiomac.2022.11.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease that may cause neurotoxicity and imbalance in gut microbiota. A polysaccharide derived from Sparassis crispa-1 (SCP-1) acts as a neuroprotective agent in vitro. There is, however, no clarity on the mechanism responsible for SCP-1's neuroprotective effects against AD. In this study, C57BL/6J male mice were treated with D-galactose and AlCl3 to establish an animal model of AD, followed by treatment with SCP-1. As evidenced by behavioral tests and brain pathology, SCP-1 treatment ameliorated learning deficits and defective spatial recognition, reduced amyloidogenesis, and modulated the neurotransmitter levels (γ-aminobutyric acid, glutamate, and acetylcholine) in the brain of AD mice. The results of 16S rRNA sequencing revealed that SCP-1 reshaped the gut microbiota composition, especially by promoting the proliferation of butyrate-producing genera, such as Intestinaimonas, [Eubacterium] ventriosum group, Lachnospiraceae_UCG_010, and Lachnospiraceae_UCG_001, and suppressing the growth of inflammation-related bacteria (i.e., Escherichia/Shigella). Furthermore, SCP-1 significantly attenuated inflammation by reducing the levels of inflammatory cytokines, maintaining intestinal barrier function, inhibiting glial activation, and decreasing the expression of toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB). Collectively, our findings suggest that SCP-1 may prevent the development of AD via modulation of gut microbiota and suppression of inflammation, for a potential application in preventing or managing AD.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
12
|
Duan X, Yang H, Wang C, Liu H, Lu X, Tian Y. Microbial synthesis of cordycepin, current systems and future perspectives. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
López AR, Barea-Sepúlveda M, Barbero GF, Ferreiro-González M, López-Castillo JG, Palma M, Espada-Bellido E. Essential Mineral Content (Fe, Mg, P, Mn, K, Ca, and Na) in Five Wild Edible Species of Lactarius Mushrooms from Southern Spain and Northern Morocco: Reference to Daily Intake. J Fungi (Basel) 2022; 8:jof8121292. [PMID: 36547625 PMCID: PMC9781426 DOI: 10.3390/jof8121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mushroom consumption has increased in recent years due to their beneficial properties to the proper functioning of the body. Within this framework, the high potential of mushrooms as a source of essential elements has been reported. Therefore, the present study aims to determine the mineral content of seven essential metals, Fe, Mg, Mn, P, K, Ca, and Na, in twenty samples of mushrooms of the genus Lactarius collected from various locations in southern Spain and northern Morocco, by FAAS, UV-Vis spectroscopy, and ICP-OES after acid digestion. Statistics showed that K was the macronutrient found at the highest levels in all mushrooms studied. ANOVA showed that there were statistically significant differences among the species for K, P, and Na. The multivariate study suggested that there were differences between the accumulation of the elements according to the geographic location and species. Furthermore, the intake of 300 g of fresh mushrooms of each sample covers a high percentage of the RDI, but does not meet the recommended daily intake (RDI) for any of the metals studied, except for Fe. Even considering these benefits, the consumption of mushrooms should be moderated due to the presence of toxic metals, which may pose health risks.
Collapse
Affiliation(s)
- Alejandro R. López
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain
| | - Marta Barea-Sepúlveda
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (G.F.B.); (E.E.-B.); Tel.: +34-956-016355 (G.F.B. & E.E.-B.)
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain
| | - José Gerardo López-Castillo
- Unidad de Protección de la Salud, Distrito Sanitario Granada-Metropolitano, Consejería de Salud y Familias, Junta de Andalucía, 18150 Gójar, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (G.F.B.); (E.E.-B.); Tel.: +34-956-016355 (G.F.B. & E.E.-B.)
| |
Collapse
|
14
|
Anuar AM, Minami A, Matsushita H, Ogino K, Fujita K, Nakao H, Kimura S, Sabaratnam V, Umehara K, Kurebayashi Y, Takahashi T, Kanazawa H, Wakatsuki A, Suzuki T, Takeuchi H. Ameliorating Effect of the Edible Mushroom Hericium erinaceus on Depressive-Like Behavior in Ovariectomized Rats. Biol Pharm Bull 2022; 45:1438-1443. [PMID: 36184501 DOI: 10.1248/bpb.b22-00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen deficiency during menopause causes a variety of neurological symptoms, including depression. The edible Lion's Mane mushroom, Hericium erinaceus (Bull.: Fr.) Pers. (HE), is a medicinal mushroom that has the potential for a neuroprotective effect and ameliorating neurological diseases, such as depression, anxiety, and neurodegenerative diseases. HE contains phytoestrogens, including daidzein and genistein. However, the ameliorating effect of HE on menopausal symptoms is not well understood. Here we investigated the impact of methanol extract of the HE fruiting body on depressive-like behavior in postmenopausal model rats. The activation of estrogen receptor alpha (ERα) causes body weight loss and uterine weight gain. Body weight gain and uterine weight loss by estrogen deficiency in ovariectomized (OVX) rats were reversed with 17β-estradiol (E2) but not with HE. Thus, the phytoestrogens in HE may hardly activate ERα. Estrogen receptor beta (ERβ) is expressed in the brain, and activation of ERβ ameliorates menopausal depressive symptoms. Notably, depressive-like behavior in OVX rats evaluated in forced swim test was reduced by administration of not only E2 but also HE for 92 d. Long-term activation of ERα increases the risk of breast and uterine cancers. HE, therefore, may be effective in treating menopausal depression without the risk of carcinogenesis caused by ERα activation.
Collapse
Affiliation(s)
- Azliza Mad Anuar
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiroshi Matsushita
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University
| | - Kanako Ogino
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kosei Fujita
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hatsune Nakao
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shota Kimura
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya.,Institute of Biological Sciences, Faculty of Science, University of Malaya
| | - Kaoru Umehara
- Faculty of Pharmaceutical Sciences, Yokohama University of Pharmacy
| | - Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Akihiko Wakatsuki
- Department of Obstetrics and Gynecology, School of Medicine, Aichi Medical University
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hideyuki Takeuchi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
15
|
The Monkey Head Mushroom and Memory Enhancement in Alzheimer’s Disease. Cells 2022; 11:cells11152284. [PMID: 35892581 PMCID: PMC9331832 DOI: 10.3390/cells11152284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, and no effective treatments are available to treat this disorder. Therefore, researchers have been investigating Hericium erinaceus, or the monkey head mushroom, an edible medicinal mushroom, as a possible treatment for AD. In this narrative review, we evaluated six preclinical and three clinical studies of the therapeutic effects of Hericium erinaceus on AD. Preclinical trials have successfully demonstrated that extracts and bioactive compounds of Hericium erinaceus have potential beneficial effects in ameliorating cognitive functioning and behavioral deficits in animal models of AD. A limited number of clinical studies have been conducted and several clinical trials are ongoing, which have thus far shown analogous outcomes to the preclinical studies. Nonetheless, future research on Hericium erinaceus needs to focus on elucidating the specific neuroprotective mechanisms and the target sites in AD. Additionally, standardized treatment parameters and universal regulatory systems need to be established to further ensure treatment safety and efficacy. In conclusion, Hericium erinaceus has therapeutic potential and may facilitate memory enhancement in patients with AD.
Collapse
|
16
|
Lion's Mane ( Hericium erinaceus) Exerts Anxiolytic Effects in the rTg4510 Tau Mouse Model. Behav Sci (Basel) 2022; 12:bs12070235. [PMID: 35877305 PMCID: PMC9312024 DOI: 10.3390/bs12070235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) significantly impairs the life of an individual both cognitively and behaviorally. Tau and beta-amyloid (Aβ) proteins are major contributors to the etiology of AD. This study used mice modeling AD through the presence of tau pathology to assess the effects of Hericium erinaceus (H. erinaceus), also known as Lion’s mane, on cognitive and non-cognitive behaviors. Despite neurocognitive and neurobiological effects of H. erinaceus being seen in both healthy and transgenic mice, no research to date has explored its effects on mice with solely tau pathology. In this study, mice were placed on a diet supplemented with H. erinaceus or a standard rodent diet for 4.5 months in order to determine the effect of this medicinal mushroom on behavior. Tau mice given H. erinaceus had significantly shorter latencies to enter the center of the open field (OF) (p < 0.05) and spent significantly more time in the open arms of the elevated zero maze (EZM) (p < 0.001) compared to tau control mice. Mice given H. erinaceus spent significantly more time in the open arms of and made more head dips in the elevated zero maze (EZM) (p < 0.05). While H. erinaceus had anxiolytic effects, no improvements were seen in spatial memory or activities of daily living. These findings provide additional support for the anxiolytic effects of H. erinaceus and point to its potential benefit as a therapeutic for anxiety in AD.
Collapse
|
17
|
Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. SUSTAINABILITY 2022. [DOI: 10.3390/su14094941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global food production faces many challenges, including climate change, a water crisis, land degradation, and desertification. These challenges require research into non-traditional sources of human foods. Edible mushrooms are considered an important next-generation healthy food source. Edible mushrooms are rich in proteins, dietary fiber, vitamins, minerals, and other bioactive components (alkaloids, lactones, polysaccharides, polyphenolic compounds, sesquiterpenes, sterols, and terpenoids). Several bioactive ingredients can be extracted from edible mushrooms and incorporated into health-promoting supplements. It has been suggested that several human diseases can be treated with extracts from edible mushrooms, as these extracts have biological effects including anticancer, antidiabetic, antiviral, antioxidant, hepatoprotective, immune-potentiating, and hypo-cholesterolemic influences. The current study focuses on sustainable approaches for handling edible mushrooms and their secondary metabolites, including biofortification. Comparisons between edible and poisonous mushrooms, as well as the common species of edible mushrooms and their different bioactive ingredients, are crucial. Nutritional values and the health benefits of edible mushrooms, as well as different biomedical applications, have been also emphasized. Further research is needed to explore the economic sustainability of different medicinal mushroom bioactive compound extracts and their potential applications against emerging diseases such as COVID-19. New approaches such as nano-biofortification are also needed to supply edible mushrooms with essential nutrients and/or to increase their bioactive ingredients.
Collapse
|
18
|
Zhang W, Hu B, Han M, Guo Y, Cheng Y, Qian H. Purification, structural characterization and neuroprotective effect of a neutral polysaccharide from Sparassis crispa. Int J Biol Macromol 2022; 201:389-399. [PMID: 34998886 DOI: 10.1016/j.ijbiomac.2021.12.165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022]
Abstract
In the present study, a purified polysaccharide (named SCP-1, Mw 1.368 × 104 Da) was isolated from Sparassis crispa, and its biological activity was evaluated in an oxidative stress model caused by H2O2 in hippocampal neuronal HT22 cells. SCP-1 was a heteropolysaccharide mainly comprising glucose, galactose, fucose, and mannose in a molar ratio of 52.10: 31.10: 15.04: 1.76. The main backbone of SCP-1 was predominantly composed of (1→6)-α-D-Galp, (1→6)-β-D-Glcp, (1→3)-β-D-Glcp, (1→2,6)-α-D-Galp and (1→3,6)-β-D-Glcp. The branches, substituted at the O-2 of Gal and O-3 of Glc, contained (1→6)-2-OMe-α-D-Galp, (1→4)-β-D-Glcp, (1→3)-β-D-Glcp, and terminated by T-α-L-Fucp and T-β-D-Glcp. Besides, SCP-1 could effectively protect the HT22 cells against H2O2-induced oxidative injury via decreasing the intracellular reactive oxygen species levels, modulating antioxidant enzymes, and reducing cell apoptosis. The findings suggested that SCP-1 holds a potential to be a natural antioxidant or as a neuroprotective agent.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Mei Han
- Department of Food Quality and Safety, Shanghai Business School, Shanghai 200235, P.R.China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China.
| |
Collapse
|
19
|
Huang R, Zhu Z, Wu Q, Bekhit AEDA, Wu S, Chen M, Wang J, Ding Y. Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer's disease. Crit Rev Food Sci Nutr 2021; 63:2388-2406. [PMID: 34553662 DOI: 10.1080/10408398.2021.1975093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Recently, sustained neuroinflammatory response in microglia and astrocytes has been found to cause the deposition of amyloid beta plaques and the hyperphosphorylation of tau protein, thereby accelerating AD progression. The lipoxin A4-transcription factor nuclear factor-kappa B and mitogen-activated protein kinase pathways have been shown to play important roles in the regulation of inflammatory processes. There is growing research-based evidence suggesting that dietary whole-plant foods, such as mushrooms and berries, may be used as inhibitors for anti-neuroinflammation. The beneficial effects of whole-plant foods were mainly attributed to their high contents of functional macromolecules including polysaccharides, polyphenols, and bioactive peptides. This review provides up-to-date information on important molecular signaling pathways of neuroinflammation and discusses the anti-neuroinflammatory effects of whole-plant foods. Further, a critical evaluation of plants' macromolecular components that have the potential to prevent and/or relieve AD is provided. This work will contribute to better understanding the pathogenetic mechanism of neuroinflammation in AD and provide new approaches for AD therapy.
Collapse
Affiliation(s)
- Rui Huang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Zhenjun Zhu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China
| | | | - Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Mengfei Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, P.R. China
| | - Yu Ding
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou, P.R. China.,Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
20
|
Singh MP, Rai SN, Dubey SK, Pandey AT, Tabassum N, Chaturvedi VK, Singh NB. Biomolecules of mushroom: a recipe of human wellness. Crit Rev Biotechnol 2021; 42:913-930. [PMID: 34412526 DOI: 10.1080/07388551.2021.1964431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Indian system of medicine - Ayurveda says "When diet is wrong, medicine is of no use. When diet is correct, medicine is of no use". In this context, mushroom constitutes one of the major resources for nutraceuticals. Biomolecules of mushrooms have attracted the attention of researchers around the globe due to their proven healthy attributes. They have a plenitude of health-giving properties and these range from immunomodulatory, antiviral, antibacterial, antifungal, antioxidant, anti-inflammatory, antitumor, anticancer, anti-HIV, antidiabetic, anticholesterolic to antiarthritic activities.Mushrooms contain both primary and secondary metabolites. The primary metabolites provide energy while the secondary metabolite exhibits medicinal properties. Hence, the mushroom can be a recipe for human wellness and will play a significant role in fighting COVID-19 pandemics and other infectious diseases.The key findings suggested in this paper refer to the exploration of health and the healing traits of biomolecules of mushrooms. This article reviews the current status of the medicinal attributes of mushrooms and their biomolecules in different diseases such as cardiovascular, diabetes, reproductive diseases, cancer, and neurodegenerative diseases. The global malnutrition-related morbidity and mortality among children under five and lactating women presents a frightening picture and also a black spot on the human face. Malnutrition is responsible for more ill-health than any other cause. Mushrooms as a rich source of bioactive compounds can be claimed as "Best from the Waste" since they grow on the most abundant organic wastes of the Earth, the lignocellulosic substrate, and 'Best of the Rest' because they are excellent nutraceutical resources.
Collapse
Affiliation(s)
| | | | | | | | - Nazish Tabassum
- Centre of Biotechnology, University of Allahabad, Prayagraj, India
| | | | - Narsingh Bahadur Singh
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA.,Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA
| |
Collapse
|
21
|
Tomas-Hernandez S, Blanco J, Garcia-Vallvé S, Pujadas G, Ojeda-Montes MJ, Gimeno A, Arola L, Minghetti L, Beltrán-Debón R, Mulero M. Anti-Inflammatory and Immunomodulatory Effects of the Grifola frondosa Natural Compound o-Orsellinaldehyde on LPS-Challenged Murine Primary Glial Cells. Roles of NF-κβ and MAPK. Pharmaceutics 2021; 13:806. [PMID: 34071571 PMCID: PMC8229786 DOI: 10.3390/pharmaceutics13060806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
In response to foreign or endogenous stimuli, both microglia and astrocytes adopt an activated phenotype that promotes the release of pro-inflammatory mediators. This inflammatory mechanism, known as neuroinflammation, is essential in the defense against foreign invasion and in normal tissue repair; nevertheless, when constantly activated, this process can become detrimental through the release of neurotoxic factors that amplify underlying disease. In consequence, this study presents the anti-inflammatory and immunomodulatory properties of o-orsellinaldehyde, a natural compound found by an in silico approach in the Grifola frondosa mushroom, in astrocytes and microglia cells. For this purpose, primary microglia and astrocytes were isolated from mice brain and cultured in vitro. Subsequently, cells were exposed to LPS in the absence or presence of increasing concentrations of this natural compound. Specifically, the results shown that o-orsellinaldehyde strongly inhibits the LPS-induced inflammatory response in astrocytes and microglia by decreasing nitrite formation and downregulating iNOS and HO-1 expression. Furthermore, in microglia cells o-orsellinaldehyde inhibits NF-κB activation; and potently counteracts LPS-mediated p38 kinase and JNK phosphorylation (MAPK). In this regard, o-orsellinaldehyde treatment also induces a significant cell immunomodulation by repolarizing microglia toward the M2 anti-inflammatory phenotype. Altogether, these results could partially explain the reported beneficial effects of G. frondosa extracts on inflammatory conditions.
Collapse
Affiliation(s)
- Sarah Tomas-Hernandez
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - Jordi Blanco
- Physiology Unit, Laboratory of Toxicology and Environmental Health, Research in Neurobehavior and Health (NEUROLAB), School of Medicine, IISPV, Universitat Rovira i Virgili (URV), 43202 Tarragona, Catalonia, Spain;
| | - Santiago Garcia-Vallvé
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - Gerard Pujadas
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - María José Ojeda-Montes
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Aleix Gimeno
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, 08020 Barcelona, Catalonia, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain;
| | - Luisa Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain;
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain;
| |
Collapse
|
22
|
Rai SN, Mishra D, Singh P, Vamanu E, Singh MP. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomed Pharmacother 2021; 137:111377. [PMID: 33601145 DOI: 10.1016/j.biopha.2021.111377] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases (NDs) represent a common neurological pathology that determines a progressive deterioration of the brain or the nervous system. For treating NDs, comprehensive and alternative medicines have attracted scientific researchers' attention recently. Edible mushrooms are essential for preventing several age-based neuronal dysfunctions such as Parkinson's and Alzheimer's diseases. Mushroom such as Grifola frondosa, Lignosus rhinocerotis, Hericium erinaceus, may improve cognitive functions. It has also been reported that edible mushrooms (basidiocarps/mycelia extracts or isolated bioactive compounds) may reduce beta-amyloid-induced neurotoxicity. Medicinal mushrooms are being used for novel and natural compounds that help modulate immune responses and possess anti-cancer, anti-microbial, and anti-oxidant properties. Compounds such as polyphenols, terpenoids, alkaloids, sesquiterpenes, polysaccharides, and metal chelating agents are validated in different ND treatments. This review aims to assess mushrooms' role and their biomolecules utilization for treating different kinds of NDs. The action mechanisms, presented here, including reducing oxidative stress, neuroinflammation, and modulation of acetylcholinesterase activity, protecting neurons or stimulation, and regulating neurotrophins synthesis. We also provide background about neurodegenerative diseases and in-silico techniques of the drug research. High costs associated with experiments and current ethical law imply efficient alternatives with limited cost value. In silico approaches provide an alternative method with low cost that has been successfully implemented to cure ND disorders in recent days. We also describe the applications of computational procedures such as molecular docking, virtual high-throughput screening, molecular dynamic (MD) simulation, quantum-mechanical methods for drug design. They were reported against various targets in NDs.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India.
| | - Divya Mishra
- Centre of Bioinformatics, University of Allahabad, Prayagraj 211002, India.
| | - Payal Singh
- Department of Zoology, MMV, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 district, 011464 Bucharest, Romania.
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|