1
|
Liu C, Liu L, Lin H, Deng S, Zeng H, Shi X, Ling Z, Zhou F, Liu Z, Guo S. New biological strategies for preventing and controlling food contaminants in the supply chain: Smart use of common plant-derived substances. Food Chem 2025; 479:143757. [PMID: 40088659 DOI: 10.1016/j.foodchem.2025.143757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Traditional means of contaminant management that rely on chemical additives and high-temperature processing have raised concerns about long-term safety and environmental issues in the modern food supply chain. Therefore, sustainable, safe, and innovative strategies are urgently needed. Plant-derived substances are known for their biological activity and antifouling potential as natural alternatives for contamination control. This review examines the sources of various contaminants, the categories of plant-derived substances, the action mechanisms, and their feasibility in the food supply chain. The smart use of plant-derived substances to improve microbial, chemical, and metal contamination in the food blockchain is not only a profound fusion of nature and technology, but also a mutual combination of ecological preservation and food safety. However, the realization of its commercialization is subject to multiple sanctions, but as the thorny issues are gradually resolved, the consolidation and market for the new strategies will thrive.
Collapse
Affiliation(s)
- Changwei Liu
- School of Resource & Environment and Safety Engineerng, Hunan University of Science and Technology, Xiangtan 411201, China; School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lu Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Senwen Deng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hongzhe Zeng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xin Shi
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhixiang Ling
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fang Zhou
- School of Chemistry and Environmental Sciences, Xiangnan University, Chenzhou, Hunan 423000, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, Hunan, China.
| | - Shiyin Guo
- School of Resource & Environment and Safety Engineerng, Hunan University of Science and Technology, Xiangtan 411201, China; School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
2
|
Gong L, Yang S, Zhang Z, Xu H. The Anti-obesity Effects of Lotus (Nelumbo nucifera Gaertn.) Seed Red Skin (Testa) Catechins by Regulating Lipoprotein Lipase Expression and Activity. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:76. [PMID: 39985678 DOI: 10.1007/s11130-025-01308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Lipoprotein lipase (LPL) participates in the development of obesity by regulating triglyceride hydrolysis and fat storage or oxidation. In this study, the anti-obesity effects of lotus seed skin catechins and its mechanisms associated with LPL modulation were demonstrated. In vivo, catechins reduced body weight in high-fat diet-induced obese mice, improved lipid metabolism and antioxidant indices, and modulated LPL activity in adipose and skeletal muscle tissues. The expression of peroxisome proliferator-activated receptor γ (PPARγ) and (angiopoietin-like 4 proteins) ANGPTL4 mRNA and protein was significantly upregulated in epididymal fat depot but downregulated in skeletal muscle tissue. In vitro cell experiments and chromatin immunoprecipitation (ChIP) assays further revealed that the binding sites of PPARγ protein in the ANGPTL4 promoter region were enriched in adipocytes or reduced in skeletal muscle cells in response to catechin treatment. Therefore, lotus seed skin catechins exhibit anti-obesity activity in vivo and in vitro by specifically regulating the activity and expression of LPL in target tissues.
Collapse
Affiliation(s)
- Lingxiao Gong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing, 100048, China
- Ministry of Education, National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing, 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Shiping Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing, 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Zishuo Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing, 100048, China
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Hong Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing, 100048, China.
- Ministry of Education, National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing, 100048, China.
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing, 100048, China.
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
3
|
Gao X, Kan X, Du F, Sun L, Li X, Liu J, Liu X, Yao D. The Manufacturing Process of Lotus ( Nelumbo Nucifera) Leaf Black Tea and Its Microbial Diversity Analysis. Foods 2025; 14:519. [PMID: 39942112 PMCID: PMC11817234 DOI: 10.3390/foods14030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Lotus leaves combine both edible and medicinal properties and are rich in nutrients and bioactive compounds. In this study, the lotus leaf tea was prepared using a black tea fermentation process, and the functional components and microbial changes during fermentation were investigated. The results indicated that the activity of polyphenol oxidase showed an initial rise followed by a decline as fermentation progressed, peaked at 3 h with 1.07 enzyme activity units during fermentation. The lotus leaf fermented tea has high levels of soluble sugars (20.92 ± 0.53 mg/g), total flavonoids (1.59 ± 0.05 mg GAE/g), and total polyphenols (41.34 ± 0.87 mg RE/g). Its antioxidant activity was evaluated using ABTS, DPPH, and hydroxyl radical scavenging assays, with results of 18.90 ± 1.02 mg Vc/g, 47.62 ± 0.51 mg Vc/g, and 17.58 ± 1.06 mg Vc/g, respectively. The microbial community also shifted during fermentation. Fusarium played a significant role during the fermentation process. This study demonstrated that the black tea fermentation process improved the functional components and biological activity of lotus leaf tea by optimizing the synergistic effect of enzymatic oxidation and microbial fermentation. The findings not only realized the comprehensive utilization of lotus leaf resources but also provided a foundation for developing innovative functional beverages with enhanced bioactive properties.
Collapse
Affiliation(s)
- Xiaojing Gao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xuhui Kan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Linhe Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xixi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Jixiang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Xiaojing Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China; (X.G.); (X.K.); (F.D.); (L.S.); (X.L.); (J.L.)
- Jiangsu Engineering Research Center for Landscape Plant Resources and Germplasm Innovation, Nanjing 210014, China
| |
Collapse
|
4
|
Verma R, Sahu A, Gupta RK, Sanyal I. Sonication-assisted Rhizobium radiobacter-mediated genetic transformation of Indian Lotus (Nelumbo nucifera Gaertn.). Transgenic Res 2025; 34:4. [PMID: 39775301 DOI: 10.1007/s11248-024-00427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to develop a reliable and efficient genetic transformation method for the ornamental Indian Lotus (Nelumbo nucifera Gaertn.) using the sonication-assisted Rhizobium radiobacter-mediated transformation technique. To conduct the transformation, shoot apical meristem explants were infected with Rhizobium radiobacter (synonym Agrobacterium tumefaciens) strain LBA 4404 containing a binary vector pBI121 that harbours the GUS reporter gene (uidA) and kanamycin resistance gene nptII for plant selection. To improve the transformation efficiency, we optimized parameters such as bacterial cell density, sonication duration, infection time, co-cultivation duration, acetosyringone concentration, cefotaxime, and kanamycin concentrations. Sonication treatment at 42 kHz for 90 s recorded the highest transformation efficiency. The selection of regenerated plantlets was performed on a kanamycin-supplemented selection medium. The putative transformants showed GUS expression in the leaves and petioles. The presence of the GUS gene was also confirmed in the putative transformants through PCR, with the appearance of the expected amplicon size of 520 bp. The presence of nptII was confirmed by PCR in the putatively transformed plants with an amplicon size of 530 bp. The maximum regeneration frequency obtained was 72.66%, and the highest transformation efficiency achieved was 9.0% in the Indian Lotus.
Collapse
Affiliation(s)
- Rita Verma
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anshu Sahu
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajan Kumar Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indraneel Sanyal
- Plant Transgenic Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Zheng H, Xu Y, Wu Y, Huangfu X, Chen W, He K, Yang Y. Effects of Three Modification Methods on the In Vitro Gastrointestinal Digestion and Colonic Fermentation of Dietary Fiber from Lotus Leaves. Foods 2024; 13:3768. [PMID: 39682840 DOI: 10.3390/foods13233768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Shear emulsifying (SE), ball milling (BM), and autoclave treatment (AT) were utilized for the modification of lotus leaves, and the effects on in vitro gastrointestinal digestion and colonic fermentation of insoluble dietary fiber (IDF) from lotus leaves were compared. Compared with SEIDF and ATIDF, BMIDF released more polyphenols and exhibited better antioxidant capacity during in vitro gastrointestinal digestion. The IDF of lotus leaves changed the gut microbiota composition during in vitro colonic fermentation. SEIDF was beneficial to the diversity of gut microbiota compared with BMIDF and ATIDF. Among the three IDF groups of lotus leaves, six significant differences of OTUs were all in ATIDF; however there was the highest relative abundance of Escherichia-Shigella in ATIDF. In addition, the concentrations of butyric acid and valeric acid produced by SEIDF were significantly higher than that of BMIDF and ATIDF. Overall, SE modification improved the colonic fermentation characteristics of IDFs in lotus leaves more effectively; while BM modification helped to promote the release of polyphenols from IDFs in lotus leaves during in vitro gastrointestinal digestion. The research lays the foundation for the application of the dietary fiber of lotus leaves as a premium fiber additive in functional food.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuhang Wu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuantong Huangfu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxiu Chen
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua 418000, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
6
|
Liu H, Wang S, Qiu K, Zheng C, Tan H. Preparation, structural characterization, and biological activities of lotus polysaccharides: A review. Int J Biol Macromol 2024; 279:135191. [PMID: 39216588 DOI: 10.1016/j.ijbiomac.2024.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lotus (Nelumbo nucifera), belonging to the family of Nelumbonaceae, is a beautiful aquatic perennial plant. It has been used as an ancient horticulture plant and famous agricultural crop for thousands of years. Modern phytochemical and pharmacological experiments have proved that polysaccharide is one of the most pivotal bioactive constituents of lotus. Hence, the systematic review covering the fundamental research advances and developing prospects of N. nucifera polysaccharides (NNPs) is an urgent demand to provide theoretical basis for their further research and application. The present review summarizes current emerging research progresses on the polysaccharides isolated from lotus, and it focuses on advanced extraction and purification methods, unique structural features, engaging biological activities, potential molecular mechanisms, as well as the relationship of structure and activity of NNPs. This review sheds light on the potential values of NNPs in affording functionally bioactive agents in food industry or therapeutically effective medicines for health care. In addition, this review will provide valuable insights for further commercial product development and promising industrial application of NNPs in both of the fundamental research communities and food or pharmaceutical industries in future.
Collapse
Affiliation(s)
- Hongxin Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Kaidi Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haibo Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Song Y, Ke Y, Lin L, Zhao M. Comparison of in vivo glycolipid metabolism regulation pathway of lotus leaf polysaccharide and its combination with flavonoids and alkaloids: Effectiveness of high-pressure homogenization-assisted dual enzyme extraction. FOOD BIOSCI 2024; 61:104618. [DOI: 10.1016/j.fbio.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Alkanad M, Hani U, V AH, Ghazwani M, Haider N, Osmani RAM, M D P, Hamsalakshmi, Bhat R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024; 50:634-673. [PMID: 38169069 DOI: 10.1002/biof.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
With the rising prevalence of diabetes and its association with cognitive impairment, interest in the use of dietary alkaloids and other natural products has grown significantly. Understanding how these compounds manage diabetic cognitive dysfunction (DCD) is crucial. This comprehensive review explores the etiology of DCD and the effects of alkaloids in foods and dietary supplements that have been investigated as DCD therapies. Data on how dietary alkaloids like berberine, trigonelline, caffeine, capsaicin, 1-deoxynojirimycin, nuciferine, neferine, aegeline, tetramethylpyrazine, piperine, and others regulate cognition in diabetic disorders were collected from PubMed, Research Gate, Web of Science, Science Direct, and other relevant databases. Dietary alkaloids could improve memory in behavioral models and modulate the mechanisms underlying the cognitive benefits of these compounds, including their effects on glucose metabolism, gut microbiota, vasculopathy, neuroinflammation, and oxidative stress. Evidence suggests that dietary alkaloids hold promise for improving cognition in diabetic patients and could open exciting avenues for future research in diabetes management.
Collapse
Affiliation(s)
- Maged Alkanad
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Annegowda H V
- Department of Pharmacognosy, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Pandareesh M D
- Center for Research and Innovations, Adichunchanagiri University, BGSIT, Mandya, India
| | - Hamsalakshmi
- Department of Pharmacognosy, Cauvery College of Pharmacy, Cauvery Group of Institutions, Mysuru, India
| | - Rajeev Bhat
- ERA-Chair in Food By-Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
9
|
Yu X, Wang Y, Yan X, Leng T, Xie J, Yu Q, Chen Y. Metabolomics Combined with Correlation Analysis Revealed the Differences in Antioxidant Activities of Lotus Seeds with Varied Cultivars. Foods 2024; 13:1084. [PMID: 38611388 PMCID: PMC11011491 DOI: 10.3390/foods13071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Functional foods have potential health benefits for humans. Lotus seeds (LS) as functional foods have excellent antioxidant activities. However, the differences in chemical composition of different LS cultivars may affect their antioxidant activities. This study comprehensively analyzed the differences among five LS cultivars based on metabolomics and further revealed the effects of metabolites on antioxidant activities by correlation analysis. A total of 125 metabolites were identified in LS using UPLC-Q/TOF-MS. Then, 15 metabolites were screened as differential metabolites of different LS cultivars by chemometrics. The antioxidant activities of LS were evaluated by DPPH•, FRAP, and ABTS•+ assays. The antioxidant activities varied among different LS cultivars, with the cultivar Taikong 66 showing the highest antioxidant activities. The correlation analysis among metabolites and antioxidant activities highlighted the important contribution of phenolics and alkaloids to the antioxidant activities of LS. Particularly, 11 metabolites such as p-coumaric acid showed significant positive correlation with antioxidant activities. Notably, 6 differential metabolites screened in different LS cultivars showed significant effects on antioxidant activities. These results revealed the important effects of phytochemicals on the antioxidant activities of different LS cultivars. This study provided evidence for the health benefits of different LS cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
10
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Mitophagy suppression by miquelianin-rich lotus leaf extract induces 'beiging' of white fat via AMPK/DRP1-PINK1/PARKIN signaling axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2597-2609. [PMID: 37991930 DOI: 10.1002/jsfa.13143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Lotus (Nelumbo nucifera) leaf has been described to have anti-obesity activity, but the role of white fat 'browning' or 'beiging' in its beneficial metabolic actions remains unclear. Here, 3T3-L1 cells and high-fat-diet (HFD)-fed mice were used to evaluate the effects of miquelianin-rich lotus leaf extract (LLE) on white-to-beige fat conversion and its regulatory mechanisms. RESULTS Treatment with LLE increased mitochondrial abundance, mitochondrial membrane potential and NAD+ /NADH ratio in 3T3-L1 cells, suggesting its potential in promoting mitochondrial activity. qPCR and/or western blotting analysis confirmed that LLE induced the expression of beige fat-enriched gene signatures (e.g. Sirt1, Cidea, Dio2, Prdm16, Ucp1, Cd40, Cd137, Cited1) and mitochondrial biogenesis-related markers (e.g. Nrf1, Cox2, Cox7a, Tfam) in 3T3-L1 cells and inguinal white adipose tissue of HFD-fed mice. Furthermore, we found that LLE treatment inhibited mitochondrial fission protein DRP1 and blocked mitophagy markers such as PINK1, PARKIN, BECLIN1 and LC-3B. Chemical inhibition experiments revealed that AMPK/DRP1 signaling was required for LLE-induced beige fat formation via suppressing PINK1/PARKIN/mitophagy. CONCLUSION Our data reveal a novel mechanism underlying the anti-obesity effect of LLE, namely the induction of white fat beiging via AMPK/DRP1/mitophagy signaling. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Cui R, Zhang C, Pan ZH, Hu TG, Wu H. Probiotic-fermented edible herbs as functional foods: A review of current status, challenges, and strategies. Compr Rev Food Sci Food Saf 2024; 23:e13305. [PMID: 38379388 DOI: 10.1111/1541-4337.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.
Collapse
Affiliation(s)
- Rui Cui
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Cong Zhang
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Zhen-Hui Pan
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
12
|
Yan C, Zhan Y, Yuan S, Cao Y, Chen Y, Dong M, Zhang H, Chen L, Jiang R, Liu W, Jin W, Huang Y. Nuciferine prevents obesity by activating brown adipose tissue. Food Funct 2024; 15:967-976. [PMID: 38175708 DOI: 10.1039/d3fo03632d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Increasing evidence suggests that brown adipose tissue (BAT) plays an important role in obesity and related diseases. Increasing the amount or activity of BAT could prevent obesity. Therefore, a safe and effective method of activating BAT is urgently required. Here, we evaluated the potential effects of lotus leaf extract (LLE) on BAT function. We found that LLE substantially increased UCP1 mRNA and protein levels as well as thermogenic protein expression in primary brown adipocytes. Additionally, LLE treatment reduced diet-induced obesity and improved glucose homeostasis owing to BAT activation and increased energy expenditure. We found that nuciferine, an active ingredient of LLE, could dose-dependently activate BAT in vitro and in vivo, alleviate diet-induced obesity, and improve glucose homeostasis by increasing energy expenditure. Mechanistically, we found that nuciferine induced PPARG coactivator 1 alpha (PGC1-α) expression, which is a key gene involved in mitochondrial biogenesis promoter activity, by directly binding to RXRA. Furthermore, RXRA knockdown abolished expression of the nuciferine-induced mitochondrial and thermogenesis-related gene in primary brown adipocytes. In summary, we found that LLE and nuciferine have a notable effect on BAT activation and highlight the potential applications of the main component of LLE in preventing obesity and treating metabolic disorders.
Collapse
Affiliation(s)
- Chunlong Yan
- Yanbian University Agriculture College, Yanji, Jilin, China
| | - Yang Zhan
- Jiangzhong Pharmaceutical Co., Ltd, Jiangxi, China
| | - Shouli Yuan
- Academy for Advanced Interdisciplinary Studies, Beijing, China
| | - Yujing Cao
- Institute of Zoology Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Chaoyang District, Beijing, China.
| | - Yi Chen
- Chinese PLA General Hospital First Medical Center, Department of Gastroenterology and Hepatology, Beijing, China
| | - Meng Dong
- Institute of Zoology Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Chaoyang District, Beijing, China.
| | - Hanlin Zhang
- Institute of Zoology Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Chaoyang District, Beijing, China.
| | - Li Chen
- Institute of Zoology Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Chaoyang District, Beijing, China.
| | - Rui Jiang
- Institute of Zoology Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Chaoyang District, Beijing, China.
| | - Wenjun Liu
- Jiangzhong Pharmaceutical Co., Ltd, Jiangxi, China
| | - Wanzhu Jin
- Institute of Zoology Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Chaoyang District, Beijing, China.
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Huang
- Institute of Zoology Chinese Academy of Sciences, Key Laboratory of Animal Ecology and Conservation Biology, Chaoyang District, Beijing, China.
| |
Collapse
|
13
|
Veerichetty V, Saravanabavan I, Pradeep A, Abiraamasundari R. Development of gummy bear supplements and in vitro exploration of antioxidant and antiproliferative potential of Nuciferine. J Ayurveda Integr Med 2024; 15:100868. [PMID: 38183956 PMCID: PMC10789615 DOI: 10.1016/j.jaim.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Nuciferine's extensive therapeutic potential, including its robust antioxidant properties, is explored in response to the growing consumer preference for value-added organic foods. OBJECTIVE This study focuses on the formulation of gummy bear supplements fortified with nuciferine from Nelumbonucifera. The research highlights nuciferine's ability to combat oxidative stress induced by reactive oxygen species (ROS) and examines its application in maintaining basal ROS levels during oxidative stress conditions in skin melanoma cells. METHODS Characterization of extracted nuciferine through FTIR and UV-vis spectroscopy ensures product quality, while sensory evaluation compares honey and sugar as natural sweeteners for optimal flavor and consumer preference. SK-Mel-28 cellular ROS levels were measured using 2',7' -dichlorofluorescin diacetate dye before and after nuciferine treatment. SK-Mel-28 cell viability and dose response of nuciferine treatment was assessed using MTT assay. RESULTS Nuciferine shows potent inhibition of SK-Mel-28 cell proliferation with an IC50 of 39.31 ± 5.280 μg/ml and showed no cytotoxicity in normal L6 skeletal muscle cells. This study compares the sensory properties of honey and sugar based gummy bear formulations. CONCLUSION This project aims to create a high-quality, health-promoting dietary supplement that aligns with the evolving trends in organic nutrition and antioxidant supplementation.
Collapse
Affiliation(s)
| | | | - Aarushi Pradeep
- Department of Biotechnology, Kumaraguru College of Technology, India
| | | |
Collapse
|
14
|
Wang Z, Yang T, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Miquelianin in Folium Nelumbinis extract promotes white-to-beige fat conversion via blocking AMPK/DRP1/mitophagy and modulating gut microbiota in HFD-fed mice. Food Chem Toxicol 2023; 181:114089. [PMID: 37804915 DOI: 10.1016/j.fct.2023.114089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The main purpose of the present study was to investigate the effect of miquelianin (quercetin 3-O-glucuronide, Q3G), one of the main flavonoids in the Folium Nelumbinis extract (FNE), on beige adipocyte formation and its underlying mechanisms. In 3T3-L1 adipocytes Q3G (12.8%)-rich FNE treatment upregulated beige-related markers such as SIRT1, COX2, PGC-1α, TFAM, and UCP1. Furthermore, Q3G enhanced mitochondrial biosynthesis and inhibited mitophagy by downregulating the expression of PINK1, PARKIN, BECLIN1 and LC-3B in 3T3-L1 cells. Moreover, in high-fat-diet (HFD)-fed mice, Q3G markedly inhibited body weight gain, reduced blood glucose/lipid levels, reduced white adipose tissues (WAT) and mitigated hepatic steatosis. Meanwhile, the induced beiging accompanied by suppressed mitophagy was also demonstrated in inguinal WAT (iWAT). Chemical intervention of AMPK activity with Compound C (Com C) and Acadesine (AICAR) revealed that AMPK/DRP1 signaling was involved in Q3G-mediated mitophagy and the beiging process. Importantly, 16S rRNA sequencing analysis showed that Q3G beneficially reshaped gut microbiota structure, specifically inhibiting unclassified_Lachnospiraceae, Faecalibaculum, Roseburia and Colidextribacter while increasing Bacteroides, Akkermansia and Mucispirillum, which may potentially facilitate WAT beiging. Collectively, our findings provide a novel biological function for Folium Nelumbinis and Q3G in the fight against obesity through activating the energy-dissipating capacity of beige fat.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tian Yang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Mark Christian
- School of Science and Technology, Trent University, Clifton, Nottingham, NG11 8NS, United Kingdom.
| | - Zhiyong He
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Yan P, Liu J, Huang Y, Li Y, Yu J, Xia J, Liu M, Bai R, Wang N, Guo L, Liu G, Yang X, Zeng J, He B. Lotus leaf extract can attenuate salpingitis in laying hens by inhibiting apoptosis. Poult Sci 2023; 102:102865. [PMID: 37499615 PMCID: PMC10413199 DOI: 10.1016/j.psj.2023.102865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to determine whether the lotus leaf extract (LLE) had the effect of treating salpingitis in laying hens. First, the salpingitis model was established by the method of bacterial infection. Differential genes between salpingitis and healthy laying hens were identified by transcriptome sequencing, and GO and KEGG enrichment analyses were performed. Groups of treatment of antibiotics and LLE were established to verify the feasibility of the lotus leaf extract in treating salpingitis. Furthermore, the active component and pharmacological effects of LLE were identified using the UPLC-Q-TOF-MS and network pharmacology technique. At last, the mechanism of LLE treating salpingitis was further evaluated by DF-1 cells infected with bacteria. The results showed that LLE significantly reduced the levels of TLR4 and IFN-γ (P < 0.05), accelerated the levels of IgA and IgG (P < 0.05), regulated the levels of SOD and MDA (P < 0.05) in laying hens with salpingitis. A total of 1,874 differential genes were obtained according to the transcriptome sequencing. It was revealed a significant role in cell cycle and apoptosis by enrichment analysis. In addition, among the 28 components identified by UPLC-Q-TOF-MS, 20 components acted on 58 genes, including CDK1, BIRC5, and CA2 for treating salpingitis. After bacterial infection, cells were damaged and unable to complete the normal progression of the cell cycle, leading to cell cycle arrest and further apoptosis formation. However, with the intervention of LLE, bacterial infection was resisted. The cells proliferation was extensively restored, and the expression of NO was increased. The addition of LLE significantly decreased cell apoptosis. The G1 phase increased, the S phase and the G2 phase decreased in the model group; after the intervention of LLE, the G1 phase gradually returned to the average level, and G2 and S phases increased. The mRNA expression levels of BIRC5, CDK1, and CA2 were consistent with the predicted results in network pharmacology. At the same time, the mRNA expression levels of Caspase-3 and Caspase-7 were reduced after added with LLE. The mRNA expression levels of TNF-α, TRADD, FADD, Caspase-8, Caspase-10, and Caspase-9 (P < 0.05), which would inhibit death receptor activation and decrease the apoptotic cascade, were upregulated after bacterial infection. However, the results in LLE groups were downregulated (P < 0.05). Meanwhile, the mRNA expression levels of BCL-2 in LLE groups were increased significantly compared with it in model group (P < 0.05). Notably, LLE administration inhibited apoptosis and regulated the cell cycle distribution in the salpingitis induced by bacterial infection. These results indicated that the LLE attenuated bacterial-induced salpingitis by modulating apoptosis and immune function in laying hens.
Collapse
Affiliation(s)
- Pupu Yan
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jiali Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yongxi Huang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yana Li
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jie Yu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jinjin Xia
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Man Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Ruonan Bai
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Ning Wang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Liwei Guo
- School of Animal Science, Yangtze University, Jingzhou 434020, China.
| | - Guoping Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Xiaolin Yang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Bin He
- Animal and Veterinary Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
16
|
Ngai HL, Lee HK, Shaw PC. DNA from herbs can be obtained from air and authenticated by polymerase chain reaction. Heliyon 2023; 9:e18946. [PMID: 37636375 PMCID: PMC10447936 DOI: 10.1016/j.heliyon.2023.e18946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
DNA barcoding of herbs allows accurate species authentication. However, the DNA of herbs are often not easily PCR amplified due to co-extraction of inhibitors. Methods have been developed to improve DNA extraction to reduce contaminants. These methods usually require toxic chemical treatments or expensive commercial kits and are labor intensive. In this report, we collected the air passed from the herbs and directly amplified the DNA obtained. Results showed that DNA could be obtained, and it was PCR amplifiable. Sequencing of the amplified DNA allowed species authentication. This DNA collection method is applicable to herbs from different plant tissues. It has the advantages of reducing the use of toxic substances and more economical.
Collapse
Affiliation(s)
- Hiu-Lam Ngai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- LDS YYC R&D Centre for Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
17
|
Hadidi M, Hossienpour Y, Nooshkam M, Mahfouzi M, Gharagozlou M, Aliakbari FS, Aghababaei F, McClement DJ. Green leaf proteins: a sustainable source of edible plant-based proteins. Crit Rev Food Sci Nutr 2023; 64:10855-10872. [PMID: 37395603 DOI: 10.1080/10408398.2023.2229436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The rise in the global population, which is projected to reach 9.7 billion by 2050, has resulted in an increased demand for proteins in the human diet. The green leaves of many plants are an affordable, abundant, and sustainable source of proteins suitable for human consumption. This article reviews the various sources of green leaf proteins that may play an important role in alleviating global malnutrition, including those from alfalfa, amaranth, cabbage, cassava, duckweed, moringa, olive, radish, spinach, sugar beet, and tea. The structure of green leaves and the location of the proteins within these leaves are described, as well as methods for extracting and purifying these proteins. The composition, nutritional profile, and functional attributes of green leaf proteins are then discussed. The potential advantages and disadvantages of using green leaf proteins as functional food ingredients are highlighted. The importance of obtaining a better understanding of the composition and structure of different green leaves and the proteins extracted from them is highlighted. This includes an assessment of non-protein nitrogen and anti-nutritional compounds that may be present. Furthermore, the impact of isolation and purification techniques on the functionality of the plant protein ingredients obtained must be carefully evaluated.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Yasaman Hossienpour
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Maryam Mahfouzi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Maryam Gharagozlou
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Faezeh Sadat Aliakbari
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources
| | - Fatemeh Aghababaei
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO-UAB, XIA, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
18
|
Dai G, Wang J, Zheng J, Xia C, Wang Y, Duan B. Bioactive polysaccharides from lotus as potent food supplements: a review of their preparation, structures, biological features and application prospects. Front Nutr 2023; 10:1171004. [PMID: 37448668 PMCID: PMC10338014 DOI: 10.3389/fnut.2023.1171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Lotus is a famous plant of the food and medicine continuum for millennia, which possesses unique nutritional and medicinal values. Polysaccharides are the main bioactive component of lotus and have been widely used as health nutritional supplements and therapeutic agents. However, the industrial production and application of lotus polysaccharides (LPs) are hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of LPs. This review comprehensively comments on the extraction and purification methods and structural characteristics of LPs. The SARs, bioactivities, and mechanisms involved are further evaluated. The potential application and safety issues of LPs are discussed. This review provides valuable updated information and inspires deeper insights for the large scale development and application of LPs.
Collapse
Affiliation(s)
- Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
19
|
Liu J, Peng J, Yang J, Wang J, Peng X, Yan W, Zhao L, Peng L, Zhou Y. Comparative Analysis of the Physicochemical Properties and Metabolites of Farinose and Crisp Lotus Roots ( Nelumbo nucifera Gaertn.) with Different Geographical Origins. Foods 2023; 12:2493. [PMID: 37444231 DOI: 10.3390/foods12132493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/18/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Lotus roots are widely consumed vegetables because of their great taste and abundant nutrients, but their quality varies with the environments and cultivar. This study systematically compared farinose (Elian No. 5) and crisp (Elian No. 6) lotus root cultivars from three geographical origins. Pasting and texture characteristics verified that Elian No. 5 possessed lower hardness and lower ability to withstand shear stress and heating during cooking compared with Elian No. 6. Untargeted metabolite profiling was first performed using ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) combined with a Zeno trap. In total, 188 metabolites were identified based on the matching chemistry database. Multivariate analysis demonstrated that lotus roots from different cultivars and origins could be adequately distinguished. Sixty-one differential metabolites were identified among three Elian No. 5 samples, and 28 were identified among three Elian No. 6 samples. Isoscopoletin, scopoletin, and paprazine were the most differential metabolites between Elian No. 5 and Elian No. 6. These results can inform future research on the discrimination and utilization of lotus roots.
Collapse
Affiliation(s)
- Jiao Liu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jiawen Peng
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Yang
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jing Wang
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | | | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Youxiang Zhou
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
20
|
Zheng H, Sun Y, Zheng T, Zeng Y, Fu L, Zhou T, Jia F, Xu Y, He K, Yang Y. Effects of shear emulsifying/ball milling/autoclave modification on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus ( Nelumbo) leaves dietary fiber. Front Nutr 2023; 10:1064662. [PMID: 36908912 PMCID: PMC9995909 DOI: 10.3389/fnut.2023.1064662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Lotus (Nelumbo) leaves are rich in polyphenols and dietary fiber, which have the potential as a high-quality fiber material in functional food. However, lotus leaves exhibit dense structure and poor taste, it is vital to develop appropriate modification methods to improve the properties of lotus leaves dietary fiber. In this study, the effects of three modification methods with shear emulsifying (SE), ball milling (BM), and autoclave treatment (AT) on structure, physicochemical properties, phenolic compounds, and antioxidant capacity of lotus leave dietary fiber (LDF) were evaluated. SEM indicated that there were significant differences in the microstructure of modified LDFs. FT-IR spectra and X-ray diffraction pattern of modified LDFs revealed similar shapes, while the peak intensity and crystalline region changed by modification. SE showed the greatest effect on crystallization index. SE-LDF had the highest water holding capacity, water swelling capacity, and bound phenolic content in LDFs, which increased by 15.69, 12.02, and 31.81%, respectively, compared with the unmodified LDF. BM exhibited the most dramatic effect on particle size. BM-LDF had the highest free phenolic and total phenolic contents in LDFs, which increased by 32.20 and 29.05% respectively, compared with the unmodified LDF. Phenolic compounds in LDFs were mainly free phenolic, and modifications altered the concents of flavonoids. The BM-LDF and SE-LDF exhibited higher antioxidant capacity than that of AT-LDF. Overall, SE-LDF showed better physical properties, and BM-LDF showed better bioactive components. SE and BM were considered to be appropriate modification methods to enhance the properties of LDF with their own advantages.
Collapse
Affiliation(s)
- Hui Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yan Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tao Zheng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yiqiong Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Liping Fu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Tingting Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Fan Jia
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yao Xu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
21
|
Ma Z, Ma Y, Liu Y, Zhou B, Zhao Y, Wu P, Zhang D, Li D. Effects of Maturity and Processing on the Volatile Components, Phytochemical Profiles and Antioxidant Activity of Lotus ( Nelumbo nucifera) Leaf. Foods 2023; 12:foods12010198. [PMID: 36613414 PMCID: PMC9818530 DOI: 10.3390/foods12010198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, fresh lotus leaves at two maturity stages were processed to tea products by different methods (white-tea process, green-tea process and black-tea process). The volatile compounds, phytochemical profiles and antioxidant activities of lotus-leaf tea were investigated. A total of 81 volatile components were identified with HS-GC-IMS. The mature lotus-leaf tea showed more volatile compounds than the tender lotus-leaf tea. The lotus leaf treated with the white-tea process had more aroma components than other processing methods. In addition, six types of phenolic compounds, including luteolin, catechin, quercetin, orientin, hyperoside and rutin were identified in the lotus-leaf tea. The mature leaves treated with the green-tea process had the highest levels of TPC (49.97 mg gallic acid/g tea) and TFC (73.43 mg rutin/g tea). The aqueous extract of lotus-leaf tea showed positive scavenging capacities of DPPH and ABTS radicals, and ferric ion reducing power, whereas tender lotus leaf treated with the green-tea process exhibited the strongest antioxidant activity. What is more, the antioxidant activities had a significant positive correlation with the levels of TPC and TFC in lotus-leaf tea. Our results provide a theoretical basis for the manufacture of lotus-leaf-tea products with desirable flavor and health benefits.
Collapse
Affiliation(s)
- Zhili Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yu Ma
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yin Liu
- Wuhan Huanghelou Essence and Flavor Co., Ltd., Wuhan 430040, China
| | - Bei Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalin Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Wu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dexin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Deyuan Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
- Correspondence: ; Tel.: +86-18071533185
| |
Collapse
|
22
|
Wang Z, Xue C, Wang X, Zeng M, Wang Z, Chen Q, Chen J, Christian M, He Z. Quercetin 3-O-glucuronide-rich lotus leaf extract promotes a Brown-fat-phenotype in C 3H 10T 1/2 mesenchymal stem cells. Food Res Int 2023; 163:112198. [PMID: 36596137 DOI: 10.1016/j.foodres.2022.112198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Lotus (Nelumbo nucifera Gaertn.) is an aquatic perennial crop planted worldwide and its leaf (also called "He-Ye") has therapeutic effects on obesity. However, whether the underlying mechanism leads to increased energy expenditure by activation of brown adipocytes has not been clarified. Here, murine C3H10T1/2 mesenchymal stem cells (MSCs) were employed to investigate the effects of ethanol extracts from lotus leaf (LLE) on brown adipocytes formation and the underlying molecular mechanisms. The results showed LLE was rich in polyphenols (383.7 mg/g) and flavonoids (178.3 mg/g), with quercetin 3-O-glucuronide (Q3G) the most abundant (128.2 μg/mg). In LLE-treated C3H10T1/2 MSCs, the expressions of lipolytic factors (e.g., ATGL, HSL, and ABHD5) and brown regulators (e.g., Sirt1, PGC-1α, Cidea, and UCP1) were significantly upregulated compared to that in the untreated MSCs. Furthermore, LLE promoted mitochondrial biogenesis and fatty acid β-oxidation, as evidenced by increases in the expression of Tfam, Cox7A, CoxIV, Cox2, Pparα, and Adrb3. Likewise, enhanced browning and mitochondrial biogenesis were also observed in Q3G-stimulated cells. Importantly, LLE and Q3G induced phosphorylation of AMPK accompanied by a remarkable increase in the brown fat marker UCP1, while pretreatment with Compound C (an AMPK inhibitor) reversed these changes. Moreover, stimulating LLE or Q3G-treated cells with CL316243 (a beta3-AR agonist) increased p-AMPKα/AMPKα ratio and UCP1 protein expression, indicating β3-AR/AMPK signaling may involve in this process. Collectively, these observations suggested that LLE, especially the component Q3G, stimulates thermogenesis by activating brown adipocytes, which may involve the β3-AR/AMPK signaling pathway.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chaoyi Xue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom.
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Wang YF, Shen ZC, Li J, Liang T, Lin XF, Li YP, Zeng W, Zou Q, Shen JL, Wang XY. Phytochemicals, biological activity, and industrial application of lotus seedpod ( Receptaculum Nelumbinis): A review. Front Nutr 2022; 9:1022794. [PMID: 36267901 PMCID: PMC9577462 DOI: 10.3389/fnut.2022.1022794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Lotus (Nelumbo nucifera Gaertn.) is a well-known food and medicinal plant. Lotus seedpod (Receptaculum Nelumbinis) is the by-products during lotus products processing, which is considered as waste. Numerous studies have been conducted on its phytochemicals, biological activity and industrial application. However, the information on lotus seedpod is scattered and has been rarely summarized. In this review, summaries on preparation and identification of phytochemicals, the biological activities of extracts and phytochemicals, and applications of raw material, extracts and phytochemicals for lotus seedpod were made. Meanwhile, the future study trend was proposed. Recent evidence indicated that lotus seedpods extracts, obtained by non-organic and organic solvents, possessed several activities, which were influenced by extraction solvents and methods. Lotus seedpods were rich in phytochemicals categorized as different chemical groups, such as proanthocyanidins, oligomeric procyanidins, flavonoids, alkaloids, terpenoids, etc. These phytochemicals exhibited various bioactivities, including ameliorating cognitive impairment, antioxidation, antibacterial, anti-glycative, neuroprotection, anti-tyrosinase and other activities. Raw material, extracts and phytochemicals of lotus seedpods could be utilized as sources for biochar and biomass material, in food industry and as dye. This review gives well-understanding on lotus seedpod, and provides theoretical basis for its future research and application.
Collapse
Affiliation(s)
- Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yan-Ping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, China
| | - Wei Zeng
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jian-Lin Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China,*Correspondence: Xiao-Yin Wang,
| |
Collapse
|
24
|
Kuang W, Zhang L, Ye L, Ma J, Shi X, Lin Y, Sun X, Cui R. Genome and Transcriptome Sequencing Analysis of Fusarium commune Provides Insights into the Pathogenic Mechanisms of the Lotus Rhizome Rot. Microbiol Spectr 2022; 10:e0017522. [PMID: 35867414 PMCID: PMC9431280 DOI: 10.1128/spectrum.00175-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022] Open
Abstract
Fusarium wilt, a vascular wilt caused by F. commune, has been a serious problem for the lotus. Although some F. commune isolate genomes have been sequenced, little is known about the genomic information of the strain that causes Fusarium wilt of aquatic plants. In this study, the genome of F. commune FCN23 isolated from lotuses in China was sequenced using Illumina and PacBio sequencing platforms. The FCN23 genome consisted of 53 scaffolds with a combined size of 46,211,149 bp. According to the reference genome, F. oxysporum f. sp. lycopersici 4287 isolated from tomato, it was finally assembled into 14 putative chromosomes, including 10 core and 4 lineage-specific chromosomes. The genome contains about 3.45% repeats and encodes 14,698 putative protein-coding genes. Among these, 1,038 and 296 proteins were potentially secreted proteins and candidate effector proteins, respectively. Comparative genomic analysis showed that the CAZyme-coding genes and secondary metabolite biosynthesis genes of FCN23 were similar to those of other Ascomycetes. Additionally, the transcriptome of FCN23 during infection of lotus was analyzed and 7,013 differentially expressed genes were identified. Eight putative effectors that were upregulated in the infection stage were cloned. Among them, F23a002499 exhibited strong hypersensitive response after transiently expressed in Nicotiana benthamiana leaves. Our results provide a valuable genetic basis for understanding the molecular mechanism of the interaction between F. commune and aquatic plants. IMPORTANCE Fusarium commune is an important soilborne pathogen with a wide range of hosts and can cause Fusarium wilt of land plants. However, there are few studies on Fusarium wilt of aquatic plants. Lotus rhizome rot mainly caused by F. commune is a devastating disease that causes extensive yield and quality losses in China. Here, we obtained high-quality genomic information of the FCN23 using Illumina NovaSeq and the third-generation sequencing technology PacBio Sequel II. Compared to the reference genome F. oxysporum f. sp. lycopersici strain 4287, it contains 11 core and 3 lineage-specific chromosomes. Many differentially expressed genes associated with pathogenicity were identified by RNA sequencing. The genome and transcriptome sequences of FCN23 will provide important genomic information and insights into the infection mechanisms of F. commune on aquatic plants.
Collapse
Affiliation(s)
- Weigang Kuang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lifang Ye
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yachun Lin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaotang Sun
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Xu H, Gao H, Liu F, Gong L. Red-Skin Extracts of Lotus Seeds Alleviate High-Fat-Diet Induced Obesity via Regulating Lipoprotein Lipase Activity. Foods 2022; 11:foods11142085. [PMID: 35885328 PMCID: PMC9319479 DOI: 10.3390/foods11142085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
In recent years, obesity has become an epidemic and an important public health concern. This study was designed to explore the anti-obesity effects of red-skin extracts (RSE) from lotus seeds on high-fat-diet (HFD)-fed mice. In this study, a total of 55 phenolic compounds from the RSE were tentatively characterized using a UPLC-Q/TOF-MS system, including 9 phenolic acids and derivatives, 40 flavonoids, 2 proanthocyanidin, and 4 coumarins and derivatives. Our data demonstrated that RSE could significantly ameliorate obesity characteristics of HFD-fed mice by regulating tissue specific lipoprotein lipase (LPL) activities. In detailed, the activity and expression of LPL in adipose tissue was inhibited, and the activity and expression of LPL in skeletal muscle tissue was enhanced. Overall, these findings suggested that RSE from the red skin of lotus seeds could serve as a great candidate for a value-added, functional ingredient due to its anti-obesity effects via the regulation of LPL activity.
Collapse
Affiliation(s)
- Hong Xu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (H.X.); (F.L.)
| | - Hang Gao
- Beijing Academy of Food Sciences, Beijing 100068, China;
| | - Feiyue Liu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (H.X.); (F.L.)
| | - Lingxiao Gong
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (H.X.); (F.L.)
- Correspondence: author:
| |
Collapse
|
26
|
Nguyen TTL, Minh TL, Do DQ, Nguyen NVT. Optimization of alcohol extraction and spray-drying conditions for efficient processing and quality evaluation of instant tea powder from lotus and green tea leaves. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e84650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lotus and Green Tea leaves are two frequently used medicinal plants in Vietnam, utilized as food, drink, or in traditional treatments to help with weight loss and cholesterol reduction. The study’s major goal is to determine the parameters of the process preparation in order to generate instant tea powder that satisfies quality criteria for customer demand. Twenty experiments are conducted using the D-optimal model to evaluate the cause-effect relationship and optimize the production process of instant tea powder. Four independent variables are selected for the survey namely alcohol concentration (40%; 50%; 60%), carrier mass (10 g; 20 g; 30 g), inlet air temperature (160 °C; 170 °C) and flow rate (4 rpm/min; 5 rpm/min). The instant tea powder is effectively created and met quality parameters, with a drying performance, moisture content, total phenol and flavonoid content of 29.15%, 4.83%, 45.29 mg GA/g, and 70.68 mg QE/g, respectively. In conclusion, the optimal parameters of the preparation process were identified, which included an alcohol content of 60%, a carrier mass of 10 g, an inlet air temperature of 165 °C, and a flow rate of 4 rpm/min.
Collapse
|
27
|
Wu DT, Feng KL, Li F, Hu YC, Wang SP, Gan RY, Zou L. In vitro digestive characteristics and microbial degradation of polysaccharides from lotus leaves and related effects on the modulation of intestinal microbiota. Curr Res Food Sci 2022; 5:752-762. [PMID: 35520274 PMCID: PMC9061614 DOI: 10.1016/j.crfs.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Polysaccharides exist as one of the most abundant components in lotus leaves, which attract increasing attention owing to their promising health-promoting benefits. In this study, the digestive and microbial degradation characteristics of lotus leaf polysaccharides (LLP) were studied by using an in vitro gastrointestinal model. The results suggested that LLP was stable in the human upper gastrointestinal tract in vitro according to its digestive stabilities at different simulated digestion stages. Conversely, the indigestible LLP (LLPI) could be remarkably utilized by intestinal microbiota in human feces during in vitro fermentation, and its fermentability was 58.11% after the in vitro fermentation of 48 h. Indeed, the microbial degradation characteristics of LLPI during in vitro fermentation by human fecal inoculum were revealed. The results showed that the content of reducing sugars released from LLPI obviously increased from 0.498 to 2.176 mg/mL at the initial fermentation stage (0–6 h), and its molecular weight sharply decreased from 4.08 × 104 to 2.02 × 104 Da. Notably, the molar ratios of arabinose (Ara), galactose (Gal), and galacturonic acid (GalA) in LLPI decreased from 2.89 to 1.40, from 5.46 to 3.72, and from 21.24 to 18.71, respectively, suggesting that the utilization of arabinose and galactose in LLPI by intestinal microbiota was much faster than that of galacturonic acid at the initial fermentation stage. Additionally, LLPI could remarkably regulate gut microbial composition by increasing the abundances of several beneficial microbes, including Bacteroides, Bifidobacterium, Megamonas, and Collinsella, resulting in the promoted generation of several short-chain fatty acids, especially acetic, propionic, and butyric acids. The findings from the present study are beneficial to better understanding the digestive and microbial degradation characteristics of LLP, which indicate that LLP can be used as a potential prebiotic for the improvement of intestinal health. LLP was stable in the human upper gastrointestinal tract in vitro. The indigestible LLP could be remarkably utilized by intestinal microbiota. Arabinose and galactose were quickly utilized at the initial fermentation stage. Bacteroides, Bifidobacterium, Megamonas, and Collinsella obviously increased. SCFAs, especially acetic, propionic, and butyric acids, remarkably promoted.
Collapse
|
28
|
Wang Z, Li Y, Ma D, Zeng M, Wang Z, Qin F, Chen J, Christian M, He Z. Alkaloids from lotus ( Nelumbo nucifera): recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34845950 DOI: 10.1080/10408398.2021.2009436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different parts of lotus (Nelumbo nucifera Gaertn.) including the seeds, rhizomes, leaves, and flowers, are used for medicinal purposes with health promoting and illness preventing benefits. The presence of active chemicals such as alkaloids, phenolic acids, flavonoids, and terpenoids (particularly alkaloids) may account for this plant's pharmacological effects. In this review, we provide a comprehensive overview and summarize up-to-date research on the biosynthesis, pharmacokinetics, and bioactivity of lotus alkaloids as well as their safety. Moreover, the potential uses of lotus alkaloids in the food, pharmaceutical, and cosmetic sectors are explored. Current evidence shows that alkaloids, mainly consisting of aporphines, 1-benzylisoquinolines, and bisbenzylisoquinolines, are present in different parts of lotus. The bioavailability of these alkaloids is relatively low in vivo but can be enhanced by technological modification using nanoliposomes, liposomes, microcapsules, and emulsions. Available data highlights their therapeutic and preventive effects on obesity, diabetes, neurodegeneration, cancer, cardiovascular disease, etc. Additionally, industrial applications of lotus alkaloids include their use as food, medical, and cosmetic ingredients in tea, other beverages, and healthcare products; as lipid-lowering, anticancer, and antipsychotic drugs; and in facial masks, toothpastes, and shower gels. However, their clinical efficacy and safety remains unclear; hence, larger and longer human trials are needed to achieve their safe and effective use with minimal side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Dandan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, UK
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
29
|
Deep Eutectic Solvent-Assisted Extraction, Partially Structural Characterization, and Bioactivities of Acidic Polysaccharides from Lotus Leaves. Foods 2021; 10:foods10102330. [PMID: 34681379 PMCID: PMC8534793 DOI: 10.3390/foods10102330] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Lotus leaves are often discarded as byproducts in the lotus industry. Polysaccharides are regarded as one of the essentially bioactive components in lotus leaves. Therefore, in order to promote the application of lotus leaves in the functional food industry, the deep eutectic solvent (DES) assisted extraction of polysaccharides from lotus leaves (LLPs) was optimized, and structural and biological properties of LLPs extracted by DES and hot water were further investigated. At the optimal extraction conditions (water content of 61.0% in DES, extraction temperature of 92 °C, liquid-solid ratio of 31.0 mL/g and extraction time of 126 min), the maximum extraction yield (5.38%) was obtained. Furthermore, LLP-D extracted by DES and LLP-W extracted by hot water possessed the same sugar residues, such as 1,4-α-D-GalAp, 1,4-α-D-GalAMep, 1,3,6-β-D-Galp, 1,4-β-D-Galp, 1,5-α-L-Araf, and 1,2-α-L-Rhap, suggesting the presence of homogalacturonan (HG), rhamnogalacturonan I and arabinogalactan in both LLP-W and LLP-D. Notably, LLP-D was much richer in HG fraction than that of LLP-W, suggesting that the DES could assist to specifically extract HG from lotus leaves. Additionally, the lower molecular weight and higher content of uronic acids were observed in LLP-D, which might contribute to its much stronger in vitro antioxidant, hypoglycemic, and immunomodulatory effects. These findings suggest that the optimized DES assisted extraction method can be a potential approach for specific extraction of acidic polysaccharides with good bioactivities from lotus leaves for applications in the functional food industry.
Collapse
|