1
|
Ghalamkari S, Mianesaz H, Chitsaz A, Ghazavi M, Salehi M. Proband-Only Exome Sequencing for Intellectual Disability in Iran: Diagnostic Yield and Genetic Insights. Am J Med Genet A 2025; 197:e63915. [PMID: 39655768 DOI: 10.1002/ajmg.a.63915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 03/08/2025]
Abstract
Intellectual disability (ID) is a leading cause for referral to genetic services, with the most severe cases typically attributed to single genetic defects. This study aimed to evaluate the diagnostic yield of cost-effective proband-only exome sequencing for individuals diagnosed with ID within the Iranian population for the first time where a high rate of parental consanguinity exists. A total of 99 unrelated patients with ID were investigated by exome sequencing during 8 years. As a result, 43 pathogenic/likely pathogenic variants were identified in 40 patients, indicating a molecular diagnostic rate of 40.4% (40/99). The inclusion of five chromosomal copy number variations in the subsequent analysis increased the diagnostic rate of proband-only exome sequencing to 45.4% (45/99). Additionally, parental testing revealed five de novo variants. This contributed to a total diagnostic rate of 50.5% (50/99). In our study, proband-only exome sequencing achieved a remarkable diagnostic rate, identifying nearly half of the ID cases. This rate of diagnosis could be primarily attributed to prevalent consanguineous marriage in the Iranian population and the rare identification of de novo variants. With the ongoing advancements in neurogenetics, proband-only exome sequencing demonstrates significant potential as a future cost-effective diagnostic approach in Iran.
Collapse
Affiliation(s)
- Safoura Ghalamkari
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hamidreza Mianesaz
- Department of Human Genetics, Medical School, University of Debrecen, Debrecen, Hungary
| | - Ahmad Chitsaz
- Department of Neurology, Isfahan University of Medical Sciences Isfahan, Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Lai G, Gu Q, Lai Z, Chen H, Chen J, Huang J. The application of whole-exome sequencing in the early diagnosis of rare genetic diseases in children: a study from Southeastern China. Front Pediatr 2024; 12:1448895. [PMID: 39439447 PMCID: PMC11493614 DOI: 10.3389/fped.2024.1448895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background Genetic diseases exhibit significant clinical and genetic diversity, leading to a complex and challenging diagnostic process. Exploiting novel approaches is imperative for the molecular diagnosis of genetic diseases. In this study, we utilized whole-exome sequencing (WES) to facilitate early diagnosis in patients suspected of genetic disorders. Methods This retrospective analysis included 144 patients diagnosed by singleton-WES Trio-WES between January 2021 and December 2023. We investigated the relevance of diagnosis rates with age, clinical presentation, and sample type. Results Among the 144 patients, 61 were diagnosed, yielding an overall diagnostic rate of 42.36%, with Trio-WES demonstrating a significantly higher diagnostic rate of 51.43% (36/70) compared to singleton-WES at 33.78% (25/74) (p < 0.05). Global developmental delay had a diagnosis rate of 67.39%, significantly higher than muscular hypotonia at 30.43% (p < 0.01) among different clinical phenotypic groups. Autosomal dominant disorders accounted for 70.49% (43/61) of positive cases, with autosomal abnormalities being fivefold more prevalent than sex chromosome abnormalities. Notably, sex chromosome abnormalities were more prevalent in males (80%, 8/10). Furthermore, 80.56% (29/36) of pathogenic variants were identified as de novo mutations through Trio-WES. Conclusions These findings highlight the effectiveness of WES in identifying genetic variants, and elucidating the molecular basis of genetic diseases, ultimately enabling early diagnosis in affected children.
Collapse
Affiliation(s)
| | | | | | | | | | - Jungao Huang
- Central Laboratory, Ganzhou Maternal and Child Health Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Li W, Li Z, Fu J, Xu K, Mei D, Wang X, Li T, Du X. Case report: Second report of neuromuscular syndrome caused by biallelic variants in ASCC3. Front Genet 2024; 15:1382275. [PMID: 39286456 PMCID: PMC11402803 DOI: 10.3389/fgene.2024.1382275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Activating Signal Cointegrator 1 Complex, Subunit 3 (ASCC3) has been implicated in the pathogenesis of neurodevelopmental disorders and neuromuscular diseases (MIM: 620700). This paper analyzes the clinical manifestations of three patients with developmental delay caused by ASCC3 genetic variation. Additionally, we discuss the previously reported clinical features of these patients along with our own findings, thereby enhancing our understanding of these genetic disorders and providing valuable insights into diagnosis, treatment, and potential interventions for affected individuals. Methods In this study, we utilized trio-whole-exome sequencing (Trio-WES) and trio-copy number variations sequencing (Trio-CNV-seq) to analyze three unique families diagnosed with developmental delay caused by variation in ASCC3. Additionally, we retrospectively examined eleven previously reported ASCC3 genetic variations exhibiting similar clinical features. Results Proband I (family 1) and Proband III (family 3) exhibited global developmental delays, characterized by intellectual disability, motor impairment, language retardation, lower muscle strength, and reduced muscle tone in their extremities. Proband II (family 2) presented poor response and dysphagia during feeding within 7 days after birth, clinical examination displayed short limbs, long trunk proportions, and clenched fists frequently observed alongside high muscle tone in his limbs -all indicative signs of developmental delay. Trio-WES revealed compound heterozygous variants in ASCC3 inherited from their parents. Proband I carried c. [489 dup]; [1897C>T], proband II carried c. [2314C>T]; [5002T>A], and proband III carried c. [5113G>T]; [718delG] variations, respectively. Conclusion This study present the first report of Chinese children carrying compound heterozygous genetic variants in ASCC3 with LOF variants, elucidating the relationship between these variants and various aspects of intellectual disability. This novel finding expands the existing spectrum of ASCC3 variations.
Collapse
Affiliation(s)
- Wang Li
- Department of Neurology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Henan Children's Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhongliang Li
- Department of Neonatology, Weifang Maternity and Child Care Hospital, Weifang, China
| | - Junhui Fu
- Department of Neurology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- Department of Rehabilitation Medicine, Zhoukou Sixth People's Hospital, Zhoukou, China
| | - Kaili Xu
- Department of Neurology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Henan Children's Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
- Department of Neurology, Henan Children's Hospital, Zhengzhou, China
- Department of Neurology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiaona Wang
- Henan Children's Neurodevelopment Engineering Research Center, Children's Hospita Affiliated to Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Taisong Li
- Beijing Chigene Translational Medical Research Center, Beijing, China
| | - Xilong Du
- Beijing Chigene Translational Medical Research Center, Beijing, China
| |
Collapse
|
4
|
Khan H, Harripaul R, Mikhailov A, Herzi S, Bowers S, Ayub M, Shabbir MI, Vincent JB. Biallelic variants identified in 36 Pakistani families and trios with autism spectrum disorder. Sci Rep 2024; 14:9230. [PMID: 38649688 PMCID: PMC11035605 DOI: 10.1038/s41598-024-57942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
With its high rate of consanguineous marriages and diverse ethnic population, little is currently understood about the genetic architecture of autism spectrum disorder (ASD) in Pakistan. Pakistan has a highly ethnically diverse population, yet with a high proportion of endogamous marriages, and is therefore anticipated to be enriched for biallelic disease-relate variants. Here, we attempt to determine the underlying genetic abnormalities causing ASD in thirty-six small simplex or multiplex families from Pakistan. Microarray genotyping followed by homozygosity mapping, copy number variation analysis, and whole exome sequencing were used to identify candidate. Given the high levels of consanguineous marriages among these families, autosomal recessively inherited variants were prioritized, however de novo/dominant and X-linked variants were also identified. The selected variants were validated using Sanger sequencing. Here we report the identification of sixteen rare or novel coding variants in fifteen genes (ARAP1, CDKL5, CSMD2, EFCAB12, EIF3H, GML, NEDD4, PDZD4, POLR3G, SLC35A2, TMEM214, TMEM232, TRANK1, TTC19, and ZNF292) in affected members in eight of the families, including ten homozygous variants in four families (nine missense, one loss of function). Three heterozygous de novo mutations were also identified (in ARAP1, CSMD2, and NEDD4), and variants in known X-linked neurodevelopmental disorder genes CDKL5 and SLC35A2. The current study offers information on the genetic variability associated with ASD in Pakistan, and demonstrates a marked enrichment for biallelic variants over that reported in outbreeding populations. This information will be useful for improving approaches for studying ASD in populations where endogamy is commonly practiced.
Collapse
Affiliation(s)
- Hamid Khan
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Sumayah Herzi
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Sonya Bowers
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | | | - Muhammad Imran Shabbir
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Asghari Sarfaraz A, Jabbarpour N, Bonyadi M, Khalaj-Kondory M. Identification and bioinformatics analysis of a novel variant in the HERC2 gene in a patient with intellectual developmental disorder. J Neurogenet 2024; 38:19-25. [PMID: 38884635 DOI: 10.1080/01677063.2024.2365634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
HERC2-associated neurodevelopmental-disorders(NDD) encompass a cluster of medical conditions that arise from genetic mutations occurring within the HERC2 gene. These disorders can manifest a spectrum of symptoms that impact the brain and nervous system, including delayed psychomotor development, severe mental retardation, seizures and autistic features. Whole-Exome-Sequencing(WES) was performed on a ten-year-old male patient referred to the genetic center for genetic analysis. Blood samples were collected from the proband, his parents, and his sister to extract DNA. PCR-Sanger-sequencing was utilized to validate the findings obtained from WES. In order to obtain a more thorough understanding of the impact of the mutation, an extensive analysis was conducted using bioinformatics tools. WES data analysis identified a homozygous single nucleotide change(C > T) at position c14215 located in exon ninety-two of the HERC2 gene (NC_000015.10(NM_004667.6):c.14215C > T). The absence of this mutation among our cohort composed of four hundred normal healthy adults from the same ethnic group, and its absence in any other population database, confirms the pathogenicity of the mutation. This study revealed that the substitution of arginine with a stop codon within the Hect domain caused a premature stop codon at position 4739(p.Arg4739Ter). This mutation significantly results in the production of a truncated HERC2 protein with an incomplete HECT domain. In the final stage of ubiquitin attachment, HECT E3 ubiquitin ligases play a catalytic role by creating a thiolester intermediate using their conserved catalytic cysteine (Cys4762). This intermediate is formed before ubiquitin is transferred to a substrate protein. The truncation of the HERC2 protein is expected to disrupt its ability to perform this function, which could potentially hinder important regulatory processes related to the development and maintenance of synapses. The identification of a novel pathogenic variant, NC_000015.10(NM_004667.6):c.14215C > T, located within the ninety-two exon of the HERC2 gene, is notable for its association with an autosomal recessive inheritance pattern in cases of Intellectual Developmental Disorder(IDD). In the end, this variant could potentially play a part in the underlying mechanisms leading to the onset of intellectual developmental disorder.
Collapse
Affiliation(s)
- Asal Asghari Sarfaraz
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Neda Jabbarpour
- Animal Biology Department, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mortaza Bonyadi
- Center of Excellence for Biodiversity, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
6
|
La Rocca LA, Frank J, Bentzen HB, Pantel JT, Gerischer K, Bovier A, Krawitz PM. Understanding recessive disease risk in multi-ethnic populations with different degrees of consanguinity. Am J Med Genet A 2024; 194:e63452. [PMID: 37921563 DOI: 10.1002/ajmg.a.63452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Population medical genetics aims at translating clinically relevant findings from recent studies of large cohorts into healthcare for individuals. Genetic counseling concerning reproductive risks and options is still mainly based on family history, and consanguinity is viewed to increase the risk for recessive diseases regardless of the demographics. However, in an increasingly multi-ethnic society with diverse approaches to partner selection, healthcare professionals should also sharpen their intuition for the influence of different mating schemes in non-equilibrium dynamics. We, therefore, revisited the so-called out-of-Africa model and studied in forward simulations with discrete and not overlapping generations the effect of inbreeding on the average number of recessive lethals in the genome. We were able to reproduce in both frameworks the drop in the incidence of recessive disorders, which is a transient phenomenon during and after the growth phase of a population, and therefore showed their equivalence. With the simulation frameworks, we also provide the means to study and visualize the effect of different kin sizes and mating schemes on these parameters for educational purposes.
Collapse
Affiliation(s)
- Luis A La Rocca
- Institute for Applied Mathematics, University of Bonn, Bonn, Germany
| | - Julia Frank
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Heidi Beate Bentzen
- Centre for Medical Ethics, Faculty of Medicine, Univeristy of Oslo, Oslo, Norway
| | - Jean Tori Pantel
- Department of Digitalization and General Practice, University Hospital RWTH Aachen, Aachen, Germany
| | - Konrad Gerischer
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Anton Bovier
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter M Krawitz
- Institute for Applied Mathematics, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Zare Ashrafi F, Akhtarkhavari T, Fattahi Z, Asadnezhad M, Beheshtian M, Arzhangi S, Najmabadi H, Kahrizi K. Emerging Epidemiological Data on Rare Intellectual Disability Syndromes from Analyzing the Data of a Large Iranian Cohort. ARCHIVES OF IRANIAN MEDICINE 2023; 26:186-197. [PMID: 38301078 PMCID: PMC10685746 DOI: 10.34172/aim.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.
Collapse
Affiliation(s)
- Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
8
|
The emerging importance of METTL5-mediated ribosomal RNA methylation. Exp Mol Med 2022; 54:1617-1625. [PMID: 36266443 PMCID: PMC9636144 DOI: 10.1038/s12276-022-00869-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
The study of the epitranscriptome has thus far focused largely on mRNA methylation. Recent human genetics studies suggest that methylation of ribosomal RNA also contributes to brain development and cognition. In particular, the m6A modification at the A-1832 position of the 18S rRNA is installed by METTL5. Mutations or deletions of Mettl5 in humans and mice, respectively, cause abnormal translation and gene expression that in turn mediates stem cell behaviors such as differentiation. In this review, we provide an overview of the current knowledge of the methyltransferase METTL5, as well as the molecular biology surrounding m6A on rRNA and how it regulates cell behavior.
Collapse
|
9
|
Krepischi ACV, Villela D, da Costa SS, Mazzonetto PC, Schauren J, Migliavacca MP, Milanezi F, Santos JG, Guida G, Guarischi-Sousa R, Campana G, Kok F, Schlesinger D, Kitajima JP, Campagnari F, Bertola DR, Vianna-Morgante AM, Pearson PL, Rosenberg C. Chromosomal microarray analyses from 5778 patients with neurodevelopmental disorders and congenital anomalies in Brazil. Sci Rep 2022; 12:15184. [PMID: 36071085 PMCID: PMC9452501 DOI: 10.1038/s41598-022-19274-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Chromosomal microarray analysis (CMA) has been recommended and practiced routinely since 2010 both in the USA and Europe as the first-tier cytogenetic test for patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. However, in Brazil, the use of CMA is still limited, due to its high cost and complexity in integrating the results from both the private and public health systems. Although Brazil has one of the world’s largest single-payer public healthcare systems, nearly all patients referred for CMA come from the private sector, resulting in only a small number of CMA studies in Brazilian cohorts. To date, this study is by far the largest Brazilian cohort (n = 5788) studied by CMA and is derived from a joint collaboration formed by the University of São Paulo and three private genetic diagnostic centers to investigate the genetic bases of neurodevelopmental disorders and congenital abnormalities. We identified 2,279 clinically relevant CNVs in 1886 patients, not including the 26 cases of UPD found. Among detected CNVs, the corresponding frequency of each category was 55.6% Pathogenic, 4.4% Likely Pathogenic and 40% VUS. The diagnostic yield, by taking into account Pathogenic, Likely Pathogenic and UPDs, was 19.7%. Since the rational for the classification is mostly based on Mendelian or highly penetrant variants, it was not surprising that a second event was detected in 26% of those cases of predisposition syndromes. Although it is common practice to investigate the inheritance of VUS in most laboratories around the world to determine the inheritance of the variant, our results indicate an extremely low cost–benefit of this approach, and strongly suggest that in cases of a limited budget, investigation of the parents of VUS carriers using CMA should not be prioritized.
Collapse
Affiliation(s)
- Ana C V Krepischi
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil.,Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | - Silvia Souza da Costa
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | | | | | | | | | | | - Gustavo Guida
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | | | | | | | | | | | - Debora R Bertola
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil.,Instituto da Criança Do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Angela M Vianna-Morgante
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | - Peter L Pearson
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil
| | - Carla Rosenberg
- The Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, ZIP Code 05508-090, Brazil. .,Diagnósticos da América S.A., DASA, São Paulo, Brazil.
| |
Collapse
|
10
|
Rafiullah R, Albalawi AM, Alaradi SR, Alluqmani M, Mushtaq M, Wali A, Basit S. An expansion of phenotype: novel homozygous variant in the MED17 identified in patients with progressive microcephaly and global developmental delay. J Neurogenet 2022; 36:108-114. [PMID: 36508181 DOI: 10.1080/01677063.2022.2149748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Global developmental delay (GDD) is a lifelong disability that affects 1-3% of the population around the globe. It is phenotypically variable and highly heterogeneous in terms of the underlying genetics. Patients with GDD are intellectually disabled (ID) manifesting cognitive impairment and deficient adaptive behavior. Here, we investigated a two-looped consanguineous family segregating severe ID, seizure, and progressive microcephaly. Magnetic resonance imaging (MRI) of the brain showed mild brain atrophy and myelination defect. Whole exome sequencing (WES) was performed on the DNA samples of two patients and a novel homozygous missense variant (Chr11:g0.93528085; NM_004268.5_c.871T > C; p. Trp291Gly) was identified in the MED17 gene. Sanger sequencing revealed that the identified variant is heterozygous in both parents and healthy siblings. This variant is conserved among different species, causes a non-conserved amino acid change, and is predicted deleterious by various in silico tools. The variant is not reported in population variant databases. MED17 (OMIM: 613668) encodes for the mediator of RNA polymerase II transcription complex subunit 17. Structure modeling of MED17 protein revealed that Trp291 is involved in different inter-helical interactions, providing structural stability. Replacement of Trp291Gly, a less hydrophobic amino acid loses the inter-helical interaction leading to a perturb variant of MED17 protein.
Collapse
Affiliation(s)
- Rafiullah Rafiullah
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Alia M Albalawi
- Center for Genetics and Inherited Diseases, Taibah University, Madinah, Saudi Arabia
| | - Sultan R Alaradi
- Department of Laboratory and Blood Bank, Alwajh General Hospital, Ministry of Health, Alwajh, Saudi Arabia
| | - Majed Alluqmani
- College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Muhammad Mushtaq
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Abdul Wali
- Department of Biotechnology, Faculty of Life Sciences & Informatics, BUITEMS, Quetta, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah, Saudi Arabia.,Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
11
|
Wan RP, Liu ZG, Huang XF, Kwan P, Li YP, Qu XC, Ye XG, Chen FY, Zhang DW, He MF, Wang J, Mao YL, Qiao JD. YWHAZ variation causes intellectual disability and global developmental delay with brain malformation. Hum Mol Genet 2022; 32:462-472. [PMID: 36001342 PMCID: PMC9851741 DOI: 10.1093/hmg/ddac210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
YWHAZ encodes an adapter protein 14-3-3ζ, which is involved in many signaling pathways that control cellular proliferation, migration and differentiation. It has not been definitely correlated to any phenotype in OMIM. To investigate the role of YWHAZ gene in intellectual disability and global developmental delay, we conducted whole-exon sequencing in all of the available members from a large three-generation family and we discovered that a novel variant of the YWHAZ gene was associated with intellectual disability and global developmental delay. This variant is a missense mutation of YWHAZ, p.Lys49Asn/c.147A > T, which was found in all affected members but not found in other unaffected members. We also conducted computational modeling and knockdown/knockin with Drosophila to confirm the role of the YWHAZ variant in intellectual disability. Computational modeling showed that the binding energy was increased in the mutated protein combining with the ligand indicating that the c147A > T variation was a loss-of-function variant. Cognitive defects and mushroom body morphological abnormalities were observed in YWHAZ c.147A > T knockin flies. The YWHAZ knockdown flies also manifested serious cognitive defects with hyperactivity behaviors, which is consistent with the clinical features. Our clinical and experimental results consistently suggested that YWHAZ was a novel intellectual disability pathogenic gene.
Collapse
Affiliation(s)
- Rui-Ping Wan
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Xiao-Fei Huang
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Ping Kwan
- School of Veterinary Science, University of Sydney, Sydney 2050, Australia
| | - Ya-Ping Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xing-Guang Ye
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Feng-Ying Chen
- Department of Radiology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Da-Wei Zhang
- Department of Radiology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong 528011, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yu-Ling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Jing-Da Qiao
- To whom correspondence should be addressed at: Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China. Tel: 86-13242327861;
| |
Collapse
|
12
|
Khan A, Bruno LP, Alomar F, Umair M, Pinto AM, Khan AA, Khan A, Saima, Fabbiani A, Zguro K, Furini S, Mencarelli MA, Renieri A, Resciniti S, Peña-Guerra KA, Guzmán-Vega FJ, Arold ST, Ariani F, Khan SN. SPTBN5, Encoding the βV-Spectrin Protein, Leads to a Syndrome of Intellectual Disability, Developmental Delay, and Seizures. Front Mol Neurosci 2022; 15:877258. [PMID: 35782384 PMCID: PMC9248767 DOI: 10.3389/fnmol.2022.877258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 12/14/2022] Open
Abstract
Whole exome sequencing has provided significant opportunities to discover novel candidate genes for intellectual disability and autism spectrum disorders. Variants in the spectrin genes SPTAN1, SPTBN1, SPTBN2, and SPTBN4 have been associated with neurological disorders; however, SPTBN5 gene-variants have not been associated with any human disorder. This is the first report that associates SPTBN5 gene variants (ENSG00000137877: c.266A>C; p.His89Pro, c.9784G>A; p.Glu3262Lys, c.933C>G; p.Tyr311Ter, and c.8809A>T; p.Asn2937Tyr) causing neurodevelopmental phenotypes in four different families. The SPTBN5-associated clinical traits in our patients include intellectual disability (mild to severe), aggressive tendencies, accompanied by variable features such as craniofacial and physical dysmorphisms, autistic behavior, and gastroesophageal reflux. We also provide a review of the existing literature related to other spectrin genes, which highlights clinical features partially overlapping with SPTBN5.
Collapse
|
13
|
Alvarenga AB, Oliveira HR, Miller SP, Silva FF, Brito LF. Genetic Modeling and Genomic Analyses of Yearling Temperament in American Angus Cattle and Its Relationship With Productive Efficiency and Resilience Traits. Front Genet 2022; 13:794625. [PMID: 35444687 PMCID: PMC9014094 DOI: 10.3389/fgene.2022.794625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cattle temperament has been considered by farmers as a key breeding goal due to its relevance for cattlemen's safety, animal welfare, resilience, and longevity and its association with many economically important traits (e.g., production and meat quality). The definition of proper statistical models, accurate variance component estimates, and knowledge on the genetic background of the indicator trait evaluated are of great importance for accurately predicting the genetic merit of breeding animals. Therefore, 266,029 American Angus cattle with yearling temperament records (1-6 score) were used to evaluate statistical models and estimate variance components; investigate the association of sex and farm management with temperament; assess the weighted correlation of estimated breeding values for temperament and productive, reproductive efficiency and resilience traits; and perform a weighted single-step genome-wide association analysis using 69,559 animals genotyped for 54,609 single-nucleotide polymorphisms. Sex and extrinsic factors were significantly associated with temperament, including conception type, age of dam, birth season, and additional animal-human interactions. Similar results were observed among models including only the direct additive genetic effect and when adding other maternal effects. Estimated heritability of temperament was equal to 0.39 on the liability scale. Favorable genetic correlations were observed between temperament and other relevant traits, including growth, feed efficiency, meat quality, and reproductive traits. The highest approximated genetic correlations were observed between temperament and growth traits (weaning weight, 0.28; yearling weight, 0.28). Altogether, we identified 11 genomic regions, located across nine chromosomes including BTAX, explaining 3.33% of the total additive genetic variance. The candidate genes identified were enriched in pathways related to vision, which could be associated with reception of stimulus and/or cognitive abilities. This study encompasses large and diverse phenotypic, genomic, and pedigree datasets of US Angus cattle. Yearling temperament is a highly heritable and polygenic trait that can be improved through genetic selection. Direct selection for temperament is not expected to result in unfavorable responses on other relevant traits due to the favorable or low genetic correlations observed. In summary, this study contributes to a better understanding of the impact of maternal effects, extrinsic factors, and various genomic regions associated with yearling temperament in North American Angus cattle.
Collapse
Affiliation(s)
- Amanda B Alvarenga
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Stephen P Miller
- American Angus Association, Angus Genetics Inc., St Joseph, MO, United States
| | - Fabyano F Silva
- Department of Animal Sciences, Federal University of Vicosa, Viçosa, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Brea-Fernández AJ, Álvarez-Barona M, Amigo J, Tubío-Fungueiriño M, Caamaño P, Fernández-Prieto M, Barros F, De Rubeis S, Buxbaum J, Carracedo Á. Trio-based exome sequencing reveals a high rate of the de novo variants in intellectual disability. Eur J Hum Genet 2022; 30:938-945. [PMID: 35322241 PMCID: PMC9349217 DOI: 10.1038/s41431-022-01087-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Intellectual disability (ID), a neurodevelopmental disorder affecting 1-3% of the general population, is characterized by limitations in both intellectual function and adaptive skills. The high number of conditions associated with ID underlines its heterogeneous origin and reveals the difficulty of obtaining a rapid and accurate genetic diagnosis. However, the Next Generation Sequencing, and the whole exome sequencing (WES) in particular, has boosted the diagnosis rate associated with ID. In this study, WES performed on 244 trios of patients clinically diagnosed with isolated or syndromic ID and their respective unaffected parents has allowed the identification of the underlying genetic basis of ID in 64 patients, yielding a diagnosis rate of 25.2%. Our results suggest that trio-based WES facilitates ID's genetic diagnosis, particularly in patients who have been extensively waiting for a definitive molecular diagnosis. Moreover, genotypic information from parents provided by trio-based WES enabled the detection of a high percentage (61.5%) of de novo variants inside our cohort. Establishing a quick genetic diagnosis of ID would allow early intervention and better clinical management, thus improving the quality of life of these patients and their families.
Collapse
Affiliation(s)
- Alejandro J Brea-Fernández
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.
| | - Miriam Álvarez-Barona
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jorge Amigo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| | - María Tubío-Fungueiriño
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Pilar Caamaño
- Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| | - Montserrat Fernández-Prieto
- Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Francisco Barros
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain
| | | | - Joseph Buxbaum
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica (FPGMX), Santiago de Compostela, Spain.,Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Biallelic loss of TRAPPC9 function links vesicle trafficking pathway to autosomal recessive intellectual disability. J Hum Genet 2022; 67:279-284. [PMID: 34983975 DOI: 10.1038/s10038-021-01007-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The trafficking protein particle (TRAPP) complex subunit 9 (C9) protein is a member of TRAPP-II complexes and regulates vesicle trafficking. Biallelic mutations in the TRAPPC9 gene are responsible for intellectual disability with expanded developmental delay, epilepsy, microcephaly, and brain atrophy. TRAPPC9-related disease list is still expanding, however, the functional effects of only a limited fraction of these have been studied. METHODS In a patient with a pathological variant in TRAPPC9, clinical examination and cranial imaging findings were evaluated. Whole-exome sequencing, followed by Sanger sequencing was performed to detect and verify the variant. To confirm the functional effect of the mutation; variant mRNA and protein expression levels were evaluated by qRT-PCR and Western blotting. Immunostaining for TRAPPC9 and lipid droplet accumulation were examined. RESULTS We have identified a novel homozygous c.696C>G (p.Phe232Leu) pathogenic variant in TRAPPC9 (NM_031466.6) gene as a cause of severe developmental delay. Functional characterization of the TRAPPC9 variant resulted in decreased mRNA and protein expression. The intracellular findings showed that TRAPPC9 protein build-up around the nucleus in mutant type while there was no specific accumulation in the control cell line. This disrupted protein pattern affected the amount of neutral lipid-carrying vesicles and their homogenous distribution at a decreasing level. CONCLUSION Biallelic variants in the TRAPPC9 gene have been reported as the underlying cause of intellectual disability. This study provides functional evidence of the novel variant in TRAPPC9 We demonstrated that the loss of function variant exclusively targeting TRAPPC9 may explicate the neurological findings through vesicle trafficking.
Collapse
|
16
|
Novel PRMT7 mutation in a rare case of dysmorphism and intellectual disability. J Hum Genet 2022; 67:19-26. [PMID: 34244600 DOI: 10.1038/s10038-021-00955-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/05/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
Protein arginine N-methyltransferase 7 (PRMT7) encodes an arginine methyltransferase central to a number of fundamental biological processes, mutations in which result in an autosomal recessive developmental disorder characterized by short stature, brachydactyly, intellectual developmental disability and seizures (SBIDDS). To date, fewer than 15 patients with biallelic mutations in PRMT7 have been documented. Here we report brothers from a consanguineous Iraqi family presenting with a developmental disorder characterized by global developmental delay, shortened stature, facial dysmorphisms, brachydactyly, and kidney dysfunction. In both affected brothers, whole genome sequencing (WGS) identified a novel homozygous substitution in PRMT7 (ENST00000339507.5), c.1097 G > A (p.Cys366Tyr), considered to account for the majority of the phenotypic presentation. Rare compound heterozygous mutations in the dysplasia-associated perlecan-encoding HSPG2 gene (ENST00000374695.3) were also found (c.10721-2dupA, p.Ser71Asn and c.212 G > A), potentially accounting for the kidney dysfunction. In addition to expanding the known mutational spectrum of variably expressive PRMT7 mutations alongside potential digenic inheritance with HSPG2, this report underlines the diagnostic utility of a WGS-guided analysis in the detection of rare genetic disorders.
Collapse
|
17
|
Polla DL, Fard MAF, Tabatabaei Z, Habibzadeh P, Levchenko OA, Nikuei P, Makrythanasis P, Hussain M, von Hardenberg S, Zeinali S, Fallah MS, Schuurs-Hoeijmakers JHM, Shahzad M, Fatima F, Fatima N, Kaat LD, Bruggenwirth HT, Fleming LR, Condie J, Ploski R, Pollak A, Pilch J, Demina NA, Chukhrova AL, Sergeeva VS, Venselaar H, Masri AT, Hamamy H, Santoni FA, Linda K, Ahmed ZM, Kasri NN, de Brouwer APM, Bergmann AK, Hethey S, Yavarian M, Ansar M, Riazuddin S, Riazuddin S, Silawi M, Ruggeri G, Pirozzi F, Eftekhar E, Sheshdeh AT, Bahramjahan S, Mirzaa GM, Lavrov AV, Antonarakis SE, Faghihi MA, van Bokhoven H. Biallelic variants in TMEM222 cause a new autosomal recessive neurodevelopmental disorder. Genet Med 2021; 23:1246-1254. [PMID: 33824500 PMCID: PMC8725574 DOI: 10.1038/s41436-021-01133-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. METHODS A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. RESULTS Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. CONCLUSION Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.
Collapse
Affiliation(s)
- Daniel L. Polla
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil.,These authors contributed equally: Daniel L. Polla, Mohammad Ali Farazi Fard
| | - Mohammad Ali Farazi Fard
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,These authors contributed equally: Daniel L. Polla, Mohammad Ali Farazi Fard
| | - Zahra Tabatabaei
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | | | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Present address: Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Mureed Hussain
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Janneke H. M. Schuurs-Hoeijmakers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohsin Shahzad
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan.,Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical Research Center, University of Health Sciences, Lahore, Pakistan
| | - Fareeha Fatima
- Center for Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan
| | - Neelam Fatima
- Center for Excellence in Molecular Biology, University of Punjab, Lahore, Pakistan
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Hennie T. Bruggenwirth
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Leah R. Fleming
- St. Luke’s Children’s Genetics and Metabolic Clinic, Boise, ID, USA
| | - John Condie
- St Luke’s Pediatric Neurology Clinic, Boise, ID, USA
| | - Rafal Ploski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Jacek Pilch
- Department of Pediatric Neurology, Medical University of Silesia, Katowice, Poland
| | | | | | | | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amira T. Masri
- Faculty of Medicine, Pediatric Department Division of Child Neurology, The University of Jordan, Amman, Jordan
| | - Hanan Hamamy
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Federico A. Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Department of Endocrinology Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Katrin Linda
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan P. M. de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anke K. Bergmann
- Department of Human Genetics, Hannover Medical School, Hanover, Germany
| | - Sven Hethey
- Department of Neuropediatrics, Children’s and Youth Hospital Auf der Bult, Hanover, Germany
| | - Majid Yavarian
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Sheikh Riazuddin
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan.,Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical Research Center, University of Health Sciences, Lahore, Pakistan
| | - Mohammad Silawi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Gaia Ruggeri
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Filomena Pirozzi
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Ebrahim Eftekhar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afsaneh Taghipour Sheshdeh
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Shima Bahramjahan
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ghayda M. Mirzaa
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Department of Psychiatry & Behavioral Sciences, Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Inositol monophosphatase 1 (IMPA1) mutation in intellectual disability patients impairs neurogenesis but not gliogenesis. Mol Psychiatry 2021; 26:3558-3571. [PMID: 32839513 DOI: 10.1038/s41380-020-00862-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
Abstract
A homozygous mutation in the inositol monophosphatase 1 (IMPA1) gene was recently identified in nine individuals with severe intellectual disability (ID) and disruptive behavior. These individuals belong to the same family from Northeastern Brazil, which has 28 consanguineous marriages and 59 genotyped family members. IMPA1 is responsible for the generation of free inositol from de novo biosynthesis and recycling from inositol polyphosphates and participates in the phosphatidylinositol signaling pathway. To understand the role of IMPA1 deficiency in ID, we generated induced pluripotent stem cells (iPSCs) from patients and neurotypical controls and differentiated these into hippocampal dentate gyrus-like neurons and astrocytes. IMPA1-deficient neuronal progenitor cells (NPCs) revealed substantial deficits in proliferation and neurogenic potential. At low passage NPCs (P1 to P3), we observed cell cycle arrest, apoptosis, progressive change to a glial morphology and reduction in neuronal differentiation. These observations were validated by rescuing the phenotype with myo-inositol supplemented media during differentiation of patient-derived iPSCs into neurons and by the reduction of neurogenic potential in control NPCs-expressing shIMPA1. Transcriptome analysis showed that NPCs and neurons derived from ID patients have extensive deregulation of gene expression affecting pathways necessary for neurogenesis and upregulation of gliogenic genes. IMPA1 deficiency did not affect cell cycle progression or survival in iPSCs and glial progenitor cells or astrocyte differentiation. Therefore, this study shows that the IMPA1 mutation specifically affects NPC survival and neuronal differentiation.
Collapse
|
19
|
Abe‐Hatano C, Iida A, Kosugi S, Momozawa Y, Terao C, Ishikawa K, Okubo M, Hachiya Y, Nishida H, Nakamura K, Miyata R, Murakami C, Takahashi K, Hoshino K, Sakamoto H, Ohta S, Kubota M, Takeshita E, Ishiyama A, Nakagawa E, Sasaki M, Kato M, Matsumoto N, Kamatani Y, Kubo M, Takahashi Y, Natsume J, Inoue K, Goto Y. Whole genome sequencing of 45 Japanese patients with intellectual disability. Am J Med Genet A 2021; 185:1468-1480. [PMID: 33624935 PMCID: PMC8247954 DOI: 10.1002/ajmg.a.62138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Intellectual disability (ID) is characterized by significant limitations in both intellectual functioning and adaptive behaviors, originating before the age of 18 years. However, the genetic etiologies of ID are still incompletely elucidated due to the wide range of clinical and genetic heterogeneity. Whole genome sequencing (WGS) has been applied as a single-step clinical diagnostic tool for ID because it detects genetic variations with a wide range of resolution from single nucleotide variants (SNVs) to structural variants (SVs). To explore the causative genes for ID, we employed WGS in 45 patients from 44 unrelated Japanese families and performed a stepwise screening approach focusing on the coding variants in the genes. Here, we report 12 pathogenic and likely pathogenic variants: seven heterozygous variants of ADNP, SATB2, ANKRD11, PTEN, TCF4, SPAST, and KCNA2, three hemizygous variants of SMS, SLC6A8, and IQSEC2, and one homozygous variant in AGTPBP1. Of these, four were considered novel. Furthermore, a novel 76 kb deletion containing exons 1 and 2 in DYRK1A was identified. We confirmed the clinical and genetic heterogeneity and high frequency of de novo causative variants (8/12, 66.7%). This is the first report of WGS analysis in Japanese patients with ID. Our results would provide insight into the correlation between novel variants and expanded phenotypes of the disease.
Collapse
Affiliation(s)
- Chihiro Abe‐Hatano
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Aritoshi Iida
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Chikashi Terao
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Clinical Research CenterShizuoka General HospitalShizuokaJapan
- The Department of Applied GeneticsThe School of Pharmaceutical Sciences, University of ShizuokaShizuokaJapan
| | - Keiko Ishikawa
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Mariko Okubo
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Yasuo Hachiya
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Hiroya Nishida
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Kazuyuki Nakamura
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| | - Rie Miyata
- Department of PediatricsTokyo‐Kita Medical CenterTokyoJapan
| | - Chie Murakami
- Department of PediatricsKitakyusyu Children's Rehabilitation CenterFukuokaJapan
| | - Kan Takahashi
- Department of PediatricsOme Municipal General HospitalTokyoJapan
| | - Kyoko Hoshino
- Department of PediatricsMinami Wakayama Medical CenterWakayamaJapan
| | - Haruko Sakamoto
- Department of NeonatologyJapanese Red Cross Osaka HospitalOsakaJapan
| | - Sayaka Ohta
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Masaya Kubota
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Eri Takeshita
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Akihiko Ishiyama
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Eiji Nakagawa
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Masayuki Sasaki
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Mitsuhiro Kato
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineKanagawaJapan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Department of Computational Biology and Medical SciencesGraduate School of Frontier Sciences, The University of TokyoTokyoJapan
| | - Michiaki Kubo
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yoshiyuki Takahashi
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Jun Natsume
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yu‐Ichi Goto
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
20
|
Nagayoshi Y, Chujo T, Hirata S, Nakatsuka H, Chen CW, Takakura M, Miyauchi K, Ikeuchi Y, Carlyle BC, Kitchen RR, Suzuki T, Katsuoka F, Yamamoto M, Goto Y, Tanaka M, Natsume K, Nairn AC, Suzuki T, Tomizawa K, Wei FY. Loss of Ftsj1 perturbs codon-specific translation efficiency in the brain and is associated with X-linked intellectual disability. SCIENCE ADVANCES 2021; 7:7/13/eabf3072. [PMID: 33771871 PMCID: PMC7997516 DOI: 10.1126/sciadv.abf3072] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/09/2021] [Indexed: 05/06/2023]
Abstract
FtsJ RNA 2'-O-methyltransferase 1 (FTSJ1) gene has been implicated in X-linked intellectual disability (XLID), but the molecular pathogenesis is unknown. We show that Ftsj1 is responsible for 2'-O-methylation of 11 species of cytosolic transfer RNAs (tRNAs) at the anticodon region, and these modifications are abolished in Ftsj1 knockout (KO) mice and XLID patient-derived cells. Loss of 2'-O-methylation in Ftsj1 KO mouse selectively reduced the steady-state level of tRNAPhe in the brain, resulting in a slow decoding at Phe codons. Ribosome profiling showed that translation efficiency is significantly reduced in a subset of genes that need to be efficiently translated to support synaptic organization and functions. Ftsj1 KO mice display immature synaptic morphology and aberrant synaptic plasticity, which are associated with anxiety-like and memory deficits. The data illuminate a fundamental role of tRNA modification in the brain through regulation of translation efficiency and provide mechanistic insights into FTSJ1-related XLID.
Collapse
Affiliation(s)
- Y Nagayoshi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - T Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - S Hirata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - H Nakatsuka
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - C-W Chen
- Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - M Takakura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - K Miyauchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Y Ikeuchi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan
| | - B C Carlyle
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - R R Kitchen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - T Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - F Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
| | - M Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Y Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neurology, NCNP, Tokyo 187-8551, Japan
| | - M Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - K Natsume
- Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - A C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - T Suzuki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - K Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - F-Y Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
21
|
Yousefipour F, Mozhdehipanah H, Mahjoubi F. Identification of two novel homozygous nonsense mutations in TRAPPC9 in two unrelated consanguineous families with intellectual Disability from Iran. Mol Genet Genomic Med 2021; 9:e1610. [PMID: 33513295 PMCID: PMC8683625 DOI: 10.1002/mgg3.1610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/12/2022] Open
Abstract
Background Pathogenic mutations in TRAPPC9 are associated with autosomal recessive Intellectual Disability (ID), a major public health issue that affects about 1–3% of children worldwide. Method Clinical evaluation, magnetic resonance imaging, peripheral blood karyotype, Multiplex ligation‐dependent probe amplification (MLPA), array CGH, and whole‐exome sequencing were used to characterize etiology in three patients from two unrelated consanguineous families of Iranian descent with intellectual disability. Results Whole‐exome sequencing showed two novel homozygous nonsense mutations (c.937C>T) in exon 3 and (c.3103C>T) in exon 19 of TRAPPC9 (NM_031466.7) in two unrelated consanguineous families. Conclusion The two novel variants found in TRAPPC9 caused truncated protein and clinical manifestations such as ID, developmental delay, microcephaly, and brain abnormalities in three patients.
Collapse
Affiliation(s)
| | - Hossein Mozhdehipanah
- Department of Neurology, Bou Ali Sina Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | | |
Collapse
|
22
|
Intellectual disability-associated factor Zbtb11 cooperates with NRF-2/GABP to control mitochondrial function. Nat Commun 2020; 11:5469. [PMID: 33122634 PMCID: PMC7596099 DOI: 10.1038/s41467-020-19205-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/24/2020] [Indexed: 11/08/2022] Open
Abstract
Zbtb11 is a conserved transcription factor mutated in families with hereditary intellectual disability. Its precise molecular and cellular functions are currently unknown, precluding our understanding of the aetiology of this disease. Using a combination of functional genomics, genetic and biochemical approaches, here we show that Zbtb11 plays essential roles in maintaining the homeostasis of mitochondrial function. Mechanistically, we find Zbtb11 facilitates the recruitment of nuclear respiratory factor 2 (NRF-2) to its target promoters, activating a subset of nuclear genes with roles in the biogenesis of respiratory complex I and the mitoribosome. Genetic inactivation of Zbtb11 resulted in a severe complex I assembly defect, impaired mitochondrial respiration, mitochondrial depolarisation, and ultimately proliferation arrest and cell death. Experimental modelling of the pathogenic human mutations showed these have a destabilising effect on the protein, resulting in reduced Zbtb11 dosage, downregulation of its target genes, and impaired complex I biogenesis. Our study establishes Zbtb11 as an essential mitochondrial regulator, improves our understanding of the transcriptional mechanisms of nuclear control over mitochondria, and may help to understand the aetiology of Zbtb11-associated intellectual disability.
Collapse
|
23
|
Bodnar B, DeGruttola A, Zhu Y, Lin Y, Zhang Y, Mo X, Hu W. Emerging role of NIK/IKK2-binding protein (NIBP)/trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases. Transl Res 2020; 224:55-70. [PMID: 32434006 PMCID: PMC7442628 DOI: 10.1016/j.trsl.2020.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
NFκB signaling and protein trafficking network play important roles in various biological and pathological processes. NIK-and-IKK2-binding protein (NIBP), also known as trafficking protein particle complex 9 (TRAPPC9), is a prototype member of a novel protein family, and has been shown to regulate both NFκB signaling pathway and protein transport/trafficking. NIBP is extensively expressed in the nervous system and plays an important role in regulating neurogenesis and neuronal differentiation. NIBP/TRAPPC9 mutations have been linked to an autosomal recessive intellectual disability syndrome, called NIBP Syndrome, which is characterized by nonsyndromic autosomal recessive intellectual disability along with other symptoms such as obesity, microcephaly, and facial dysmorphia. As more cases of NIBP Syndrome are identified, new light is being shed on the role of NIBP/TRAPPC9 in the central nervous system developments and diseases. NIBP is also involved in the enteric nervous system. This review will highlight the importance of NIBP/TRAPPC9 in central and enteric nervous system diseases, and the established possible mechanisms for developing a potential therapeutic.
Collapse
Affiliation(s)
- Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Arianna DeGruttola
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; MD/PhD and Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
24
|
Khan A, Miao Z, Umair M, Ullah A, Alshabeeb MA, Bilal M, Ahmad F, Rappold GA, Ansar M, Carapito R. Two Cases of Recessive Intellectual Disability Caused by NDST1 and METTL23 Variants. Genes (Basel) 2020; 11:E1021. [PMID: 32878022 PMCID: PMC7563614 DOI: 10.3390/genes11091021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/03/2022] Open
Abstract
Intellectual disability (ID) is a highly heterogeneous genetic condition with more than a thousand genes described so far. By exome sequencing of two consanguineous families presenting hallmark features of ID, we identified two homozygous variants in two genes previously associated with autosomal recessive ID: NDST1 (c.1966G>A; p.Asp656Asn) and METTL23 (c.310T>C; p.Phe104Leu). The segregation of the variants was validated by Sanger sequencing in all family members. In silico homology modeling of wild-type and mutated proteins revealed substantial changes in the secondary structure of both proteins, indicating a possible effect on function. The identification and validation of new pathogenic NDST1 and METTL23 variants in two cases of autosomal recessive ID further highlight the importance of these genes in proper brain function and development.
Collapse
Affiliation(s)
- Amjad Khan
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, 67085 Strasbourg, France;
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK;
- Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, No.1878 North Sichuan Road, Hongkou District, Shanghai 200081, China
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
| | - Amir Ullah
- Nephrology and Dialysis Unit, District Head Quarter Teaching Hospital, Bannu 28100, Pakistan;
| | - Mohammad A. Alshabeeb
- Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia;
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.B.); (M.A.)
| | - Farooq Ahmad
- Department of Chemistry, Women University Swabi, Khyber Pakhtunkhwa 23430, Pakistan;
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, 69118 Heidelberg, Germany;
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (M.B.); (M.A.)
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, 67085 Strasbourg, France;
- Service d’Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67091 Strasbourg, France
| |
Collapse
|
25
|
Sanderson MR, Badior KE, Fahlman RP, Wevrick R. The necdin interactome: evaluating the effects of amino acid substitutions and cell stress using proximity-dependent biotinylation (BioID) and mass spectrometry. Hum Genet 2020; 139:1513-1529. [PMID: 32529326 DOI: 10.1007/s00439-020-02193-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by the loss of function of a set of imprinted genes on chromosome 15q11-15q13. One of these genes, NDN, encodes necdin, a protein that is important for neuronal differentiation and survival. Loss of Ndn in mice causes defects in the formation and function of the nervous system. Necdin is a member of the melanoma-associated antigen gene (MAGE) protein family. The functions of MAGE proteins depend highly on their interactions with other proteins, and in particular MAGE proteins interact with E3 ubiquitin ligases and deubiquitinases to form MAGE-RING E3 ligase-deubiquitinase complexes. Here, we used proximity-dependent biotin identification (BioID) and mass spectrometry (MS) to determine the network of protein-protein interactions (interactome) of the necdin protein. This process yielded novel as well as known necdin-proximate proteins that cluster into a protein network. Next, we used BioID-MS to define the interactomes of necdin proteins carrying coding variants. Variant necdin proteins had interactomes that were distinct from wildtype necdin. BioID-MS is not only a useful tool to identify protein-protein interactions, but also to analyze the effects of variants of unknown significance on the interactomes of proteins involved in genetic disease.
Collapse
Affiliation(s)
| | - Katherine E Badior
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Han JY, Lee IG. Genetic tests by next-generation sequencing in children with developmental delay and/or intellectual disability. Clin Exp Pediatr 2020; 63:195-202. [PMID: 32024334 PMCID: PMC7303420 DOI: 10.3345/kjp.2019.00808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Developments in next-generation sequencing (NGS) techogies have assisted in clarifying the diagnosis and treatment of developmental delay/intellectual disability (DD/ID) via molecular genetic testing. Advances in DNA sequencing technology have not only allowed the evolution of targeted panels but also, and more currently enabled genome-wide analyses to progress from research era to clinical practice. Broad acceptance of accuracy- guided targeted gene panel, whole-exome sequencing (WES), and whole-genome sequencing (WGS) for DD/ID need prospective analyses of the increasing cost-effectiveness versus conventional genetic testing. Choosing the appropriate sequencing method requires individual planning. Data are required to guide best-practice recommendations for genomic testing, regarding various clinical phenotypes in an etiologic approach. Targeted panel testing may be recommended as a first-tier testing approach for children with DD/ID. Family-based trio testing by WES/WGS can be used as a second test for DD/ ID in undiagnosed children who previously tested negative on a targeted panel. The role of NGS in molecular diagnostics, treatment, prediction of prognosis will continue to increase further in the coming years. Given the rapid pace of changes in the past 10 years, all medical providers should be aware of the changes in the transformative genetics field.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Goo Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
27
|
Exome sequencing revealed a novel homozygous METTL23 gene mutation leading to familial mild intellectual disability with dysmorphic features. Eur J Med Genet 2020; 63:103951. [PMID: 32439618 DOI: 10.1016/j.ejmg.2020.103951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/06/2020] [Accepted: 05/09/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Genetic factors represent a considerable part of the etiologies of intellectual disability; however, the identification of causal genetic anomaly has long been complicated by the great clinical and genetic heterogeneity of this type of disease. With advances in next-generation sequencing technologies and functional studies, the identification of genes involved in intellectual development has led to more accurate diagnostics and better understanding of the underlying biological pathways. CASE REPORT We report on the case of two Moroccan siblings presenting mild intellectual disability with minimal dysmorphic features in which whole exome sequencing analysis revealed homozygous mutation in the METTL23 gene. Mutations in this gene have been reported to cause autosomal recessive mild intellectual disability but the association with dysmorphic features remains controversial. CONCLUSION Hereby, we highlight the similarity of the dysmorphic traits and the characteristic facial features in patients with METTL23-related intellectual disability, suggesting the consideration of a distinct clinical entity associating mild intellectual deficiency with specific facial dysmorphy for an efficient diagnosis orientation and a better phenotype-genotype correlation in intellectual disability disorders.
Collapse
|
28
|
Ansar M, Paracha SA, Serretti A, Sarwar MT, Khan J, Ranza E, Falconnet E, Iwaszkiewicz J, Shah SF, Qaisar AA, Santoni FA, Zoete V, Megarbane A, Ahmed J, Colombo R, Makrythanasis P, Antonarakis SE. Biallelic variants in FBXL3 cause intellectual disability, delayed motor development and short stature. Hum Mol Genet 2020; 28:972-979. [PMID: 30481285 DOI: 10.1093/hmg/ddy406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
FBXL3 (F-Box and Leucine Rich Repeat Protein 3) encodes a protein that contains an F-box and several tandem leucine-rich repeats (LRR) domains. FBXL3 is part of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase complex that binds and leads to phosphorylation-dependent degradation of the central clock protein cryptochromes (CRY1 and CRY2) by the proteasome and its absence causes circadian phenotypes in mice and behavioral problems. No FBXL3-related phenotypes have been described in humans. By a combination of exome sequencing and homozygosity mapping, we analyzed two consanguineous families with intellectual disability and identified homozygous loss-of-function (LoF) variants in FBXL3. In the first family, from Pakistan, an FBXL3 frameshift variant [NM_012158.2:c.885delT:p.(Leu295Phefs*25)] was the onlysegregating variant in five affected individuals in two family loops (LOD score: 3.12). In the second family, from Lebanon, we identified a nonsense variant [NM_012158.2:c.445C>T:p.(Arg149*)]. In a third patient from Italy, a likely deleterious non-synonymous variant [NM_012158.2:c.1072T>C:p.(Cys358Arg)] was identified in homozygosity. Protein 3D modeling predicted that the Cys358Arg change influences the binding with CRY2 by destabilizing the structure of the FBXL3, suggesting that this variant is also likely to be LoF. The eight affected individuals from the three families presented with a similar phenotype that included intellectual disability, developmental delay, short stature and mild facial dysmorphism, mainly large nose with a bulbous tip. The phenotypic similarity and the segregation analysis suggest that FBXL3 biallelic, LoF variants link this gene with syndromic autosomal recessive developmental delay/intellectual disability.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Sohail Aziz Paracha
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Muhammad T Sarwar
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jamshed Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Justyna Iwaszkiewicz
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, Switzerland
| | - Sayyed Fahim Shah
- Department of Medicine, KMU Institute of Medical Sciences, Kohat, Pakistan
| | | | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Department of Endocrinology Diabetes and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Molecular Modeling Group, Batiment Genopode, Unil Sorge, Lausanne, Switzerland.,Department of Fundamental Oncology, Lausanne University, Ludwig Institute for Cancer Research, Route de la Corniche 9A, Epalinges, Switzerland
| | | | - Jawad Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Roberto Colombo
- Institute of Clinical Biochemistry, Faculty of Medicine, Catholic University IRCCS Policlinico Gemelli, Rome, Italy.,Center for the Study of Rare Hereditary Diseases, Niguarda Ca' Granda Metropolitan Hospital, Milan, Italy
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Banihashemi S, Tahmasebi-Birgani M, Mohammadiasl J, Hajjari M. Whole exome sequencing identified a novel nonsense INPP4A mutation in a family with intellectual disability. Eur J Med Genet 2020; 63:103846. [PMID: 31978615 DOI: 10.1016/j.ejmg.2020.103846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 11/26/2022]
Abstract
Intellectual disability (ID) is characterized by significant deficits in adaptive behaviors and cognitive functioning. The involvement of both genetic and environmental factors in pathogenesis of the ID, makes the diagnosis of the disease more complicated. Nowadays, the entrance of next generation sequencing (NGS) approaches has facilitated the discovery of causative genes in this genetically heterogeneous disease. Here, we report a novel nonsense mutation (c.115 C > T, p.Gln39X) of INPP4A gene in a family with inherited ID using whole exome sequencing (WES). The mutation was completely co-segregated with disease phenotype in all affected members, and unaffected members of family were either homozygous or heterozygous. In silico analysis predicted the c.115 C > T; p.Gln39X as probably pathogenic variant. It seems that mutated transcript would degrade through nonsense-mediated decay (NMD) or potentially form strongly truncated protein lacking functionally important domain like C2A_copine. The INPP4A is an important neuroprotective protein which is preferentially detected in brain. The variant c.115C > T; p.Gln39X is the third reported mutation of INPP4A gene in neurological diseases. Such variants further expand the mutation spectrum in INPP4A and substantiate its role in the pathogenesis of ID. However, more experimental data are needed for considering these mutations in genetic counseling.
Collapse
Affiliation(s)
- Sara Banihashemi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Javad Mohammadiasl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Noor Genetics Laboratory, Ahvaz, Iran
| | - Mohammadreza Hajjari
- Department of Biology, Faculty of sciences, Shahid chamran university of Ahvaz, Ahvaz, Iran
| |
Collapse
|
30
|
Assoum M, Bruel AL, Crenshaw ML, Delanne J, Wentzensen IM, McWalter K, Dent KM, Vitobello A, Kuentz P, Thevenon J, Duffourd Y, Thauvin-Robinet C, Faivre L. Novel KIAA1033/WASHC4 mutations in three patients with syndromic intellectual disability and a review of the literature. Am J Med Genet A 2020; 182:792-797. [PMID: 31953988 DOI: 10.1002/ajmg.a.61487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/13/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
Abstract
In 2011, KIAA1033/WASHC4 was associated with autosomal recessive intellectual disability (ARID) in a large consanguineous family comprising seven affected individuals with moderate ID and short stature. Since then, no other cases of KIAA1033 variants have been reported. Here we describe three additional patients (from two unrelated families) with syndromic ID due to compound heterozygous KIAA1033 variants ascertained by exome sequencing (ES). Two sisters, aged 4 and 5.5 years, had a stop-gain and a missense variants, each inherited from one parent (p.(Gln442*) and p.(Asp1048Gly)). Both had learning disabilities, macrocephaly, dysmorphic features, skeletal anomalies, and subependymal heterotopic nodules. In addition, the younger sibling had a congenital absence of the right internal carotid and bilateral sensorineural hearing loss. The third patient was aged 34 years and had two missense variants, one inherited from each parent (p.(Lys1079Arg) and p.(His503Arg)). This patient presented with mild ID, short stature, and microcephaly. KIAA1033 encodes a large protein (WASHC4), which is part of the WASH complex. The WASH complex is involved in the regulation of the fission of tubules that serve as transport intermediates during endosome sorting. Another member of the WASH complex, KIAA0196/WASHC5, has already been implicated in ARID with brain and cardiac malformations, under the designation of 3C or Ritscher-Schinzel syndrome (MIM#20210). ES has proved efficient for finding replications of genes with insufficient data in the literature to be defined as new OMIM genes. We conclude that KIAA1033 is responsible for a heterogeneous ARID phenotype, and additional description will be needed to refine the clinical phenotype.
Collapse
Affiliation(s)
- Mirna Assoum
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Ange-Line Bruel
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Melissa L Crenshaw
- Division of Genetics, Johns Hopkins All Children's Hospital, Johns Hopkins University School of Medicine, St. Petersburg, Florida
| | - Julian Delanne
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | | | | | - Karin M Dent
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Antonio Vitobello
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Paul Kuentz
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Julien Thevenon
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Yannis Duffourd
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Christel Thauvin-Robinet
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Laboratoire de Génétique chromosomique et moléculaire, UF Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Laurence Faivre
- UMR-Inserm 1231 GAD team, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, Dijon, France
| |
Collapse
|
31
|
Au PYB, Eaton A, Dyment DA. Genetic mechanisms of neurodevelopmental disorders. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:307-326. [PMID: 32958182 DOI: 10.1016/b978-0-444-64150-2.00024-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neurodevelopmental disorders encompass a broad range of conditions, which include autism, epilepsy, and intellectual disability. These disorders are relatively common and have associated clinical and genetic heterogeneity. Technology has driven much of our understanding of these diseases and their genetic underlying mechanisms, particularly highlighted by the study of large cohorts with comparative genomic hybridization and the more recent implementation of next-generation sequencing (NGS). The mapping of copy number variants throughout the genome has highlighted the recurrent, highly penetrant, de novo variation in syndromic forms of neurodevelopmental disease. NGS of affected individuals and their parents led to a dramatic shift in our understanding as these studies showed that a significant proportion of affected individuals carry rare, de novo variants within single genes that explain their disease presentation. Deep sequencing studies further implicate mosaicism as another mechanism of disease. However, it has also become clear that while rare variants explain a significant proportion of sporadic neurodevelopmental disease, rare variation still does not fully account for the familial clustering and high heritability observed. Common variants, including those within these known disease genes, are also shown to contribute significantly to overall risk. There is also increasing awareness of the important contribution of epigenetic factors and gene-environment interactions.
Collapse
Affiliation(s)
- P Y Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Alison Eaton
- Department of Medical Genetics, The Stollery Children's Hospital, Edmonton, AB, Canada
| | - David A Dyment
- Department of Genetics, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
32
|
Muthusamy B, Bellad A, Prasad P, Bandari AK, Bhuvanalakshmi G, Kiragasur RM, Girimaj SC, Pandey A. A Novel LINS1 Truncating Mutation in Autosomal Recessive Nonsyndromic Intellectual Disability. Front Psychiatry 2020; 11:354. [PMID: 32499722 PMCID: PMC7247441 DOI: 10.3389/fpsyt.2020.00354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The large majority of cases with intellectual disability are syndromic (i.e. occur with other well-defined clinical phenotypes) and have been studied extensively. Autosomal recessive nonsyndromic intellectual disability is a group of genetically heterogeneous disorders for which a number of potentially causative genes have been identified although the molecular basis of most of them remains unexplored. Here, we report the clinical characteristics and genetic findings of a family with two male siblings affected with autosomal recessive nonsyndromic intellectual disability. Whole exome sequencing was carried out on two affected male siblings and unaffected parents. A potentially pathogenic variant identified in this study was confirmed by Sanger sequencing to be inherited in an autosomal recessive fashion. We identified a novel nonsense mutation (p.Gln368Ter) in the LINS1 gene which leads to loss of 389 amino acids in the C-terminus of the encoded protein. The truncation mutation causes a complete loss of LINES_C domain along with loss of three known phosphorylation sites and a known ubiquitylation site in addition to other evolutionarily conserved regions of LINS1. LINS1 has been reported to cause MRT27 (mental retardation, autosomal recessive 27), a rare autosomal recessive nonsyndromic intellectual disability, with limited characterization of the phenotype. Identification of a potentially pathogenic truncating mutation in LINS1 in two profoundly intellectually impaired patients also confirms its role in cognition.
Collapse
Affiliation(s)
- Babylakshmi Muthusamy
- Institute of Bioinformatics, Bangalore, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Anikha Bellad
- Institute of Bioinformatics, Bangalore, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Pramada Prasad
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Aravind K Bandari
- Institute of Bioinformatics, Bangalore, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | | | - R M Kiragasur
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Satish Chandra Girimaj
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
33
|
Lindholm Carlström E, Halvardson J, Etemadikhah M, Wetterberg L, Gustavson KH, Feuk L. Linkage and exome analysis implicate multiple genes in non-syndromic intellectual disability in a large Swedish family. BMC Med Genomics 2019; 12:156. [PMID: 31694657 PMCID: PMC6833288 DOI: 10.1186/s12920-019-0606-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/18/2019] [Indexed: 01/20/2023] Open
Abstract
Background Non-syndromic intellectual disability is genetically heterogeneous with dominant, recessive and complex forms of inheritance. We have performed detailed genetic studies in a large multi-generational Swedish family, including several members diagnosed with non-syndromic intellectual disability. Linkage analysis was performed on 22 family members, nine affected with mild to moderate intellectual disability and 13 unaffected family members. Methods Family members were analyzed with Affymetrix Genome-Wide Human SNP Array 6.0 and the genetic data was used to detect copy number variation and to perform genome wide linkage analysis with the SNP High Throughput Linkage analysis system and the Merlin software. For the exome sequencing, the samples were prepared using the Sure Select Human All Exon Kit (Agilent Technologies, Santa Clara, CA, USA) and sequenced using the Ion Proton™ System. Validation of identified variants was performed with Sanger sequencing. Results The linkage analysis results indicate that intellectual disability in this family is genetically heterogeneous, with suggestive linkage found on chromosomes 1q31-q41, 4q32-q35, 6p25 and 14q24-q31 (LOD scores of 2.4, simulated p-value of 0.000003 and a simulated genome-wide p-value of 0.06). Exome sequencing was then performed in 14 family members and 7 unrelated individuals from the same region. The analysis of coding variation revealed a pathogenic and candidate variants in different branches of the family. In three patients we find a known homozygous pathogenic mutation in the Homo sapiens solute carrier family 17 member 5 (SLC17A5), causing Salla disease. We also identify a deletion overlapping KDM3B and a duplication overlapping MAP3K4 and AGPAT4, both overlapping variants previously reported in developmental disorders. Conclusions DNA samples from the large family analyzed in this study were initially collected based on a hypothesis that affected members shared a major genetic risk factor. Our results show that a complex phenotype such as mild intellectual disability in large families from genetically isolated populations may show considerable genetic heterogeneity.
Collapse
Affiliation(s)
- Eva Lindholm Carlström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden.
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Mitra Etemadikhah
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Lennart Wetterberg
- Department of Clinical Neuroscience (CNS), K8, Karolinska Institutet, Stockholm, Sweden
| | - Karl-Henrik Gustavson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Box 815, SE-751 08, Uppsala, Sweden
| |
Collapse
|
34
|
Bi-allelic Variants in METTL5 Cause Autosomal-Recessive Intellectual Disability and Microcephaly. Am J Hum Genet 2019; 105:869-878. [PMID: 31564433 DOI: 10.1016/j.ajhg.2019.09.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/04/2019] [Indexed: 02/01/2023] Open
Abstract
Intellectual disability (ID) is a genetically and clinically heterogeneous disorder, characterized by limited cognitive abilities and impaired adaptive behaviors. In recent years, exome sequencing (ES) has been instrumental in deciphering the genetic etiology of ID. Here, through ES of a large cohort of individuals with ID, we identified two bi-allelic frameshift variants in METTL5, c.344_345delGA (p.Arg115Asnfs∗19) and c.571_572delAA (p.Lys191Valfs∗10), in families of Pakistani and Yemenite origin. Both of these variants were segregating with moderate to severe ID, microcephaly, and various facial dysmorphisms, in an autosomal-recessive fashion. METTL5 is a member of the methyltransferase-like protein family, which encompasses proteins with a seven-beta-strand methyltransferase domain. We found METTL5 expression in various substructures of rodent and human brains and METTL5 protein to be enriched in the nucleus and synapses of the hippocampal neurons. Functional studies of these truncating variants in transiently transfected orthologous cells and cultured hippocampal rat neurons revealed no effect on the localization of METTL5 but alter its level of expression. Our in silico analysis and 3D modeling simulation predict disruption of METTL5 function by both variants. Finally, mettl5 knockdown in zebrafish resulted in microcephaly, recapitulating the human phenotype. This study provides evidence that biallelic variants in METTL5 cause ID and microcephaly in humans and highlights the essential role of METTL5 in brain development and neuronal function.
Collapse
|
35
|
Ramos J, Han L, Li Y, Hagelskamp F, Kellner SM, Alkuraya FS, Phizicky EM, Fu D. Formation of tRNA Wobble Inosine in Humans Is Disrupted by a Millennia-Old Mutation Causing Intellectual Disability. Mol Cell Biol 2019; 39:e00203-19. [PMID: 31263000 PMCID: PMC6751630 DOI: 10.1128/mcb.00203-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The formation of inosine at the wobble position of eukaryotic tRNAs is an essential modification catalyzed by the ADAT2/ADAT3 complex. In humans, a valine-to-methionine mutation (V144M) in ADAT3 that originated ∼1,600 years ago is the most common cause of autosomal recessive intellectual disability (ID) in Arabia. While the mutation is predicted to affect protein structure, the molecular and cellular effects of the V144M mutation are unknown. Here, we show that cell lines derived from ID-affected individuals expressing only ADAT3-V144M exhibit decreased wobble inosine in certain tRNAs. Moreover, extracts from the same cell lines of ID-affected individuals display a severe reduction in tRNA deaminase activity. While ADAT3-V144M maintains interactions with ADAT2, the purified ADAT2/3-V144M complexes exhibit defects in activity. Notably, ADAT3-V144M exhibits an increased propensity to form aggregates associated with cytoplasmic chaperonins that can be suppressed by ADAT2 overexpression. These results identify a key role for ADAT2-dependent folding of ADAT3 in wobble inosine modification and indicate that proper formation of an active ADAT2/3 complex is crucial for proper neurodevelopment.
Collapse
Affiliation(s)
- Jillian Ramos
- Department of Biology, University of Rochester, Rochester, New York, USA
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
| | - Lu Han
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Yan Li
- Department of Biology, University of Rochester, Rochester, New York, USA
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
| | - Felix Hagelskamp
- Department of Chemistry, Ludwig Maximilians Universität München, Munich, Germany
| | - Stefanie M Kellner
- Department of Chemistry, Ludwig Maximilians Universität München, Munich, Germany
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Eric M Phizicky
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Dragony Fu
- Department of Biology, University of Rochester, Rochester, New York, USA
- Center for RNA Biology, University of Rochester and University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
36
|
Factores de predisposición genéticos y epigenéticos de los trastornos de ansiedad. REVISTA IBEROAMERICANA DE PSICOLOGÍA 2019. [DOI: 10.33881/2027-1786.rip.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Los trastornos de ansiedad constituyen un grupo de alteraciones psicológicas y neurológicas que representan varias formas de miedo y ansiedad anormales o patológicas (Orozco & Baldares, 2012). Aun cuando alrededor del 14% de la población del planeta ha sufrido algún trastorno de ansiedad, las causas que desencadenan el mismo no son del todo claras (Posada, 2013). La aproximación clásica de los estudios para la identificación de los factores de predisposición de estos trastornos neuropsiquiátricos se ha orientado a las teorías de la personalidad como la Teoría de Eysenck (Mitchell & Kumari, 2016) y la Teoría Bio-Psicológica de la personalidad (Knyazev, Pylkova, Slobodskoj-Plusnin, Bocharov, & Ushakov, 2015). Sin embargo, a partir de estos estudios, han surgido nuevas propuestas involucrando los aspectos neuroanatómicos y neurofuncionales. La transmisión eléctrica y química de la información y como esta se asocia a distintas conductas demuestran la relevación de la regulación de la producción y recaptación de neurotransmisores en sistema nervioso central (SNC). Aunque esta regulación se encuentra directamente relacionada con la expresión genética, em tanto se han identificado ciertos genes candidatos que aportan un porcentaje a esta predisposición, estos no son totalmente determinantes. Actualmente, dado a este vacío, se ha comenzado a investigar la influencia de factores epigenéticos que en conjunto con los factores genéticos permitirían ampliar la explicación de los factores de predisposición de ciertos trastornos neuropsiquiátricos que anteriormente eran considerados de etiología ambiental.
Collapse
|
37
|
Hu H, Kahrizi K, Musante L, Fattahi Z, Herwig R, Hosseini M, Oppitz C, Abedini SS, Suckow V, Larti F, Beheshtian M, Lipkowitz B, Akhtarkhavari T, Mehvari S, Otto S, Mohseni M, Arzhangi S, Jamali P, Mojahedi F, Taghdiri M, Papari E, Soltani Banavandi MJ, Akbari S, Tonekaboni SH, Dehghani H, Ebrahimpour MR, Bader I, Davarnia B, Cohen M, Khodaei H, Albrecht B, Azimi S, Zirn B, Bastami M, Wieczorek D, Bahrami G, Keleman K, Vahid LN, Tzschach A, Gärtner J, Gillessen-Kaesbach G, Varaghchi JR, Timmermann B, Pourfatemi F, Jankhah A, Chen W, Nikuei P, Kalscheuer VM, Oladnabi M, Wienker TF, Ropers HH, Najmabadi H. Genetics of intellectual disability in consanguineous families. Mol Psychiatry 2019; 24:1027-1039. [PMID: 29302074 DOI: 10.1038/s41380-017-0012-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 01/17/2023]
Abstract
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Collapse
Affiliation(s)
- Hao Hu
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Guangzhou Women and Children's Medical Center, 510623, Guangzhou, China
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Luciana Musante
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ralf Herwig
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Cornelia Oppitz
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria
| | - Seyedeh Sedigheh Abedini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Vanessa Suckow
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sabine Otto
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Welfare Office, Semnan, 36156, Iran
| | - Faezeh Mojahedi
- Mashhad Medical Genetic Counseling Center, Mashhad, 91767, Iran
| | - Maryam Taghdiri
- Shiraz Genetic Counseling Center, Welfare Office, Shiraz, Iran
| | - Elaheh Papari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Saeide Akbari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15468, Iran
| | - Hossein Dehghani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Mohammad Reza Ebrahimpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ingrid Bader
- Kinderzentrum München, Technische Universität München, 81377, München, Germany
| | - Behzad Davarnia
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Monika Cohen
- Children's Center Munich, 81377, Munich, Germany
| | - Hossein Khodaei
- Meybod Genetics Research Center, Welfare Organization, Yazd, 89651, Iran
| | - Beate Albrecht
- Institute of Human Genetics, University Hospital Essen, 45122, Essen, Germany
| | - Sarah Azimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Birgit Zirn
- Genetikum Counseling Center, 70173, Stuttgart, Germany
| | - Milad Bastami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Dagmar Wieczorek
- Institute of Human Genetics and Anthropology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gholamreza Bahrami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Krystyna Keleman
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Leila Nouri Vahid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Andreas Tzschach
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Institute of Clinical Genetics, Technische Universität Dresden, Dresden, Germany
| | - Jutta Gärtner
- University Medical Center, Georg August University Göttingen, 37075, Göttingen, Germany
| | | | | | - Bernd Timmermann
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | | | - Aria Jankhah
- Shiraz Genetic Counseling Center, Shiraz, 71346, Iran
| | - Wei Chen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Thomas F Wienker
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Hans-Hilger Ropers
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute of Human Genetics, University Medicine, Mainz, Germany.
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran. .,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, 14667-13713, Iran.
| |
Collapse
|
38
|
Truncating biallelic variant in DNAJA1, encoding the co-chaperone Hsp40, is associated with intellectual disability and seizures. Neurogenetics 2019; 20:109-115. [PMID: 30972502 DOI: 10.1007/s10048-019-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Intellectual disability poses a huge burden on the health care system, and it is one of the most common referral reasons to the genetic and child neurology clinic. Intellectual disability (ID) is genetically heterogeneous, and it is associated with several other neurological conditions. Exome sequencing is a robust genetic tool and has revolutionized the process of molecular diagnosis and novel gene discovery. Besides its diagnostic clinical value, novel gene discovery is prime in reverse genetics, when human mutations help to understand the function of a gene and may aid in better understanding of the human brain and nervous system. Using WES, we identified a biallelic truncating variant in DNAJA1 gene (c.511C>T p.(Gln171*) in a multiplex Saudi consanguineous family. The main phenotype shared between the siblings was intellectual disability and seizure disorder.
Collapse
|
39
|
Mir YR, Kuchay RAH. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet 2019; 56:567-573. [PMID: 30842223 DOI: 10.1136/jmedgenet-2018-105821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1%-3% of the general population. The number of ID-causing genes is high. Many X-linked genes have been implicated in ID. Autosomal dominant genes have recently been the focus of several large-scale studies. The total number of autosomal recessive ID (ARID) genes is estimated to be very high, and most are still unknown. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause ARID has lagged behind, predominantly due to non-availability of sizeable families. A commonly used approach to identify genetic loci for recessive disorders in consanguineous families is autozygosity mapping and whole-exome sequencing. Combination of these two approaches has recently led to identification of many genes involved in ID. These genes have diverse function and control various biological processes. In this review, we will present an update regarding genes that have been recently implicated in ID with focus on ARID.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Raja Amir Hassan Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
40
|
Ugur Iseri SA, Yucesan E, Tuncer FN, Calik M, Kesim Y, Altiokka Uzun G, Ozbek U. Biallelic loss of EEF1D function links heat shock response pathway to autosomal recessive intellectual disability. J Hum Genet 2019; 64:421-426. [PMID: 30787422 DOI: 10.1038/s10038-019-0570-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/09/2019] [Accepted: 01/20/2019] [Indexed: 01/20/2023]
Abstract
Intellectual disability (ID) is a genetically heterogeneous neurodevelopmental disorder characterised by significantly impaired intellectual and adaptive functioning. ID is commonly syndromic and associated with developmental, metabolic and/or neurological findings. Autosomal recessive ID (ARID) is a significant component of ID especially in the presence of parental consanguinity. Several ultra rare ARID associated variants in numerous genes specific almost to single families have been identified by unbiased next generation sequencing technologies. However, most of these new candidate ARID genes have not been replicated in new families due to the rarity of associated alleles in this highly heterogeneous condition. To determine the genetic component of ARID in a consanguineous family from Turkey, we have performed SNP-based linkage analysis in the family along with whole exome sequencing (WES) in an affected sibling. Eventually, we have identified a novel pathogenic variant in EEF1D, which has recently been recognised as a novel candidate gene for ARID in a single family. EEF1D encodes a ubiquitously expressed translational elongation factor functioning in the cytoplasm. Herein, we suggest that the loss of function variants exclusively targeting the long EEF1D isoform may explicate the ARID phenotype through the heat shock response pathway, rather than interfering with the canonical translational elongation.
Collapse
Affiliation(s)
- Sibel Aylin Ugur Iseri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Emrah Yucesan
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Feyza Nur Tuncer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Calik
- Department of Pediatric Neurology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Yesim Kesim
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunes Altiokka Uzun
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ugur Ozbek
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.,Department of Medical Genetics, School of Medicine, Mehmet Ali Aydinlar Acibadem University, Istanbul, Turkey
| |
Collapse
|
41
|
Iqbal Z, Tawamie H, Ba W, Reis A, Halak BA, Sticht H, Uebe S, Kasri NN, Riazuddin S, van Bokhoven H, Abou Jamra R. Loss of function of SVBP leads to autosomal recessive intellectual disability, microcephaly, ataxia, and hypotonia. Genet Med 2019; 21:1790-1796. [DOI: 10.1038/s41436-018-0415-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
|
42
|
Kishore MT, Udipi GA, Seshadri SP. Clinical Practice Guidelines for Assessment and Management of intellectual disability. Indian J Psychiatry 2019; 61:194-210. [PMID: 30745696 PMCID: PMC6345136 DOI: 10.4103/psychiatry.indianjpsychiatry_507_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- M Thomas Kishore
- Clinical Psychology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Gautham Arunachal Udipi
- Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Shekhar P Seshadri
- Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
43
|
Identification of candidate gene FAM183A and novel pathogenic variants in known genes: High genetic heterogeneity for autosomal recessive intellectual disability. PLoS One 2018; 13:e0208324. [PMID: 30500859 PMCID: PMC6267965 DOI: 10.1371/journal.pone.0208324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
The etiology of intellectual disability (ID) is heterogeneous including a variety of genetic and environmental causes. Historically, most research has not focused on autosomal recessive ID (ARID), which is a significant cause of ID, particularly in areas where parental consanguinity is common. Identification of genetic causes allows for precision diagnosis and improved genetic counseling. We performed whole exome sequencing to 21 Turkish families, seven multiplex and 14 simplex, with nonsyndromic ID. Based on the presence of multiple affected siblings born to unaffected parents and/or shared ancestry, we consider all families as ARID. We revealed the underlying causative variants in seven families in MCPH1 (c.427dupA, p.T143Nfs*5), WDR62 (c.3406C>T, p.R1136*), ASPM (c.5219_5225delGAGGATA, p.R1740Tfs*7), RARS (c.1588A>G, p.T530A), CC2D1A (c.811delG, p.A271Pfs*30), TUSC3 (c.793C>T, p.Q265*) and ZNF335 (c.808C>T, p.R270C and c.3715C>A, p.Q1239K) previously linked with ARID. Besides ARID genes, in one family, affected male siblings were hemizygous for PQBP1 (c.459_462delAGAG, p.R153Sfs*41) and in one family the proband was female and heterozygous for X-chromosomal SLC9A6 (c.1631+1G>A) variant. Each of these variants, except for those in MCPH1 and PQBP1, have not been previously published. Additionally in one family, two affected children were homozygous for the c.377G>A (p.W126*) variant in the FAM183A, a gene not previously associated with ARID. No causative variants were found in the remaining 11 families. A wide variety of variants explain half of families with ARID. FAM183A is a promising novel candidate gene for ARID.
Collapse
|
44
|
Abstract
In the last few years, next-generation sequencing has led to enormous progress in deciphering monogenic forms of intellectual disability. Autosomal dominant intellectual disability (ADID) and X chromosomal intellectual disability (XLID) have been the focus of research. Apart from metabolic disorders, autosomal recessive intellectual disability (ARID) is still behind, probably because it is more heterogeneous and less prevalent in industrial populations. The prevalence of ARID in a cohort of affected children of an outbred population is estimated to be about 10%, with an upward tendency in still unclarified cases. The risk for ARID in children of first cousins or closer is a magnitude higher than for children of unrelated parents. Taken together, it seems that children of related parents are at a 2 to 3 times higher risk for ID. There are no prevalent ARID genes, pathways, or protein complexes and the functions of the affected proteins are very diverse and limited not only to neurological aspects. Thus, in a regular case, there is no reasoning for picking a few genes for a first diagnostic step, and a genetic diagnosis of ID in general, and ARID specifically, is better made using large panels or exome sequencing. In addition, in the last few months, evidence has been growing that many ARID genes are pleiotropic and that the resulting phenotypes may have a broad spectrum. For an exhaustive deciphering of the genetics of ARID, we suggest research at the level of single genes rather than large meta-analyses.
Collapse
Affiliation(s)
- Rami Jamra
- Institute of Human Genetics, University Medical Center, Philipp-Rosenthal-Str. 55, Leipzig, Germany
| |
Collapse
|
45
|
Liu Z, Zhang N, Zhang Y, Du Y, Zhang T, Li Z, Wu J, Wang X. Prioritized High-Confidence Risk Genes for Intellectual Disability Reveal Molecular Convergence During Brain Development. Front Genet 2018; 9:349. [PMID: 30279698 PMCID: PMC6153320 DOI: 10.3389/fgene.2018.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/09/2023] Open
Abstract
Dissecting the genetic susceptibility to intellectual disability (ID) based on de novo mutations (DNMs) will aid our understanding of the neurobiological and genetic basis of ID. In this study, we identify 63 high-confidence ID genes with q-values < 0.1 based on four background DNM rates and coding DNM data sets from multiple sequencing cohorts. Bioinformatic annotations revealed a higher burden of these 63 ID genes in FMRP targets and CHD8 targets, and these genes show evolutionary constraint against functional genetic variation. Moreover, these ID risk genes were preferentially expressed in the cortical regions from the early fetal to late mid-fetal stages. In particular, a genome-wide weighted co-expression network analysis suggested that ID genes tightly converge onto two biological modules (M1 and M2) during human brain development. Functional annotations showed specific enrichment of chromatin modification and transcriptional regulation for M1 and synaptic function for M2, implying the divergent etiology of the two modules. In addition, we curated 12 additional strong ID risk genes whose molecular interconnectivity with known ID genes (q-values < 0.3) was greater than random. These findings further highlight the biological convergence of ID risk genes and help improve our understanding of the genetic architecture of ID.
Collapse
Affiliation(s)
- Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Na Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yu Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yaoqiang Du
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tao Zhang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaobing Wang
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Lin S, Harlalka GV, Hameed A, Reham HM, Yasin M, Muhammad N, Khan S, Baple EL, Crosby AH, Saleha S. Novel mutations in ALDH1A3 associated with autosomal recessive anophthalmia/microphthalmia, and review of the literature. BMC MEDICAL GENETICS 2018; 19:160. [PMID: 30200890 PMCID: PMC6131798 DOI: 10.1186/s12881-018-0678-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/02/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autosomal recessive anophthalmia and microphthalmia are rare developmental eye defects occurring during early fetal development. Syndromic and non-syndromic forms of anophthalmia and microphthalmia demonstrate extensive genetic and allelic heterogeneity. To date, disease mutations have been identified in 29 causative genes associated with anophthalmia and microphthalmia, with autosomal dominant, autosomal recessive and X-linked inheritance patterns described. Biallelic ALDH1A3 gene variants are the leading genetic causes of autosomal recessive anophthalmia and microphthalmia in countries with frequent parental consanguinity. METHODS This study describes genetic investigations in two consanguineous Pakistani families with a total of seven affected individuals with bilateral non-syndromic clinical anophthalmia. RESULTS Using whole exome and Sanger sequencing, we identified two novel homozygous ALDH1A3 sequence variants as likely responsible for the condition in each family; missense mutation [NM_000693.3:c.1240G > C, p.Gly414Arg; Chr15:101447332G > C (GRCh37)] in exon 11 (family 1), and, a frameshift mutation [NM_000693.3:c.172dup, p.Glu58Glyfs*5; Chr15:101425544dup (GRCh37)] in exon 2 predicted to result in protein truncation (family 2). CONCLUSIONS This study expands the molecular spectrum of pathogenic ALDH1A3 variants associated with anophthalmia and microphthalmia, and provides further insight of the key role of the ALDH1A3 in human eye development.
Collapse
Affiliation(s)
- Siying Lin
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Gaurav V Harlalka
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan
| | - Hadia Moattar Reham
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Emma L Baple
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research, RILD Wellcome Wolfson Centre (Level 4), Royal Devon and Exeter NHS Foundation Trust, Exeter, Devon, EX2 5DW, UK
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
47
|
Gieldon L, Mackenroth L, Kahlert AK, Lemke JR, Porrmann J, Schallner J, von der Hagen M, Markus S, Weidensee S, Novotna B, Soerensen C, Klink B, Wagner J, Tzschach A, Jahn A, Kuhlee F, Hackmann K, Schrock E, Di Donato N, Rump A. Diagnostic value of partial exome sequencing in developmental disorders. PLoS One 2018; 13:e0201041. [PMID: 30091983 PMCID: PMC6084857 DOI: 10.1371/journal.pone.0201041] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Although intellectual disability is one of the major indications for genetic counselling, there are no homogenous diagnostic algorithms for molecular testing. While whole exome sequencing is increasingly applied, we questioned whether analyzing a partial exome, enriched for genes associated with Mendelian disorders, might be a valid alternative approach that yields similar detection rates but requires less sequencing capacities. Within this context 106 patients with different intellectual disability forms were analyzed for mutations in 4.813 genes after pre-exclusion of copy number variations by array-CGH. Subsequent variant interpretation was performed in accordance with the ACMG guidelines. By this, a molecular diagnosis was established in 34% of cases and candidate mutations were identified in additional 24% of patients. Detection rates of causative mutations were above 30%, regardless of further symptoms, except for patients with seizures (23%). We did not detect an advantage from partial exome sequencing for patients with severe intellectual disability (36%) as compared to those with mild intellectual disability (44%). Specific clinical diagnoses pre-existed for 20 patients. Of these, 5 could be confirmed and an additional 6 cases could be solved, but showed mutations in other genes than initially suspected. In conclusion partial exome sequencing solved >30% of intellectual disability cases, which is similar to published rates obtained by whole exome sequencing. The approach therefore proved to be a valid alternative to whole exome sequencing for molecular diagnostics in this cohort. The method proved equally suitable for both syndromic and non-syndromic intellectual disability forms of all severity grades.
Collapse
Affiliation(s)
- Laura Gieldon
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
- * E-mail:
| | - Luisa Mackenroth
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Anne-Karin Kahlert
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
- Klinik für angeborene Herzfehler und Kinderkardiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johannes R. Lemke
- Institut für Humangenetik, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Joseph Porrmann
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Jens Schallner
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maja von der Hagen
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Sabine Weidensee
- Mitteldeutscher Praxisverbund Humangenetik, Praxis Erfurt, Erfurt, Germany
| | - Barbara Novotna
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Soerensen
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Barbara Klink
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Johannes Wagner
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Andreas Tzschach
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Arne Jahn
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Franziska Kuhlee
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Karl Hackmann
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Evelin Schrock
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Nataliya Di Donato
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| | - Andreas Rump
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Dresden, Technische Universität Dresden, Germany
| |
Collapse
|
48
|
Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Mol Psychiatry 2018; 23:973-984. [PMID: 28397838 DOI: 10.1038/mp.2017.60] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations (ABI2, MAPK8, MPDZ, PIDD1, SLAIN1, TBC1D23, TRAPPC6B, UBA7 and USP44), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.
Collapse
|
49
|
Barrie ES, Li Y, Lamb-Thrush D, Hashimoto S, Matthews T, Mouhlas D, Pyatt R, Reshmi SC, Gastier-Foster JM, Pfau R, Astbury C. Pericentromeric regions of homozygosity on the X chromosome: Another likely benign population variant. Eur J Med Genet 2018; 61:416-420. [PMID: 29572065 DOI: 10.1016/j.ejmg.2018.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/19/2018] [Accepted: 02/24/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE While chromosomal regions of homozygosity (ROH) may implicate genes in known recessive disorders, their correlation to disease pathogenicity remains unclear. ROH around the centromere of the X chromosome (pericentromeric, pROH) is regarded as benign, although this has not been empirically demonstrated. METHODS We examined microarray results from 122 female individuals harboring ROH bordering the X centromere. RESULTS Consecutive ROH was most frequently observed for regions Xp11.23 to Xp11.21 and Xq11.1 to Xq12, with an average total size of 16.5 Mb. X chromosome pROH was unlikely related to phenotype in 41% (50/122) of cases due to other explanations: likely pathogenic deletion/duplication (17%, 21/122), apparently unaffected female (7%, 8/122), other clinical explanation (7%, 9/122), or consanguinity (10%, 12/122). Of the remaining cases with pROH as the only finding, four genes were associated with recessive disorders that overlapped one or more clinical features reported in our probands (KDM5C, FGD1, ZC4H2, and LAS1L). X chromosome pROH observed in our cohort overlapped with previously reported regions. CONCLUSIONS pROH on the X chromosome are commonly observed in both affected individuals with alternate causes of disease as well as in unaffected individuals, suggesting that X chromosome pROH has no clinically significant effect on phenotype.
Collapse
Affiliation(s)
- Elizabeth S Barrie
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yu Li
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA
| | - Devon Lamb-Thrush
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH, USA
| | - Sayaka Hashimoto
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH, USA
| | - Theodora Matthews
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH, USA
| | - Danielle Mouhlas
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH, USA
| | - Robert Pyatt
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pathology, Columbus, OH, USA
| | - Shalini C Reshmi
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pathology, Columbus, OH, USA
| | - Julie M Gastier-Foster
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pathology, Columbus, OH, USA
| | - Ruthann Pfau
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pathology, Columbus, OH, USA
| | - Caroline Astbury
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University College of Medicine, Department of Pathology, Columbus, OH, USA.
| |
Collapse
|
50
|
Zamarbide M, Oaks AW, Pond HL, Adelman JS, Manzini MC. Loss of the Intellectual Disability and Autism Gene Cc2d1a and Its Homolog Cc2d1b Differentially Affect Spatial Memory, Anxiety, and Hyperactivity. Front Genet 2018; 9:65. [PMID: 29552027 PMCID: PMC5840150 DOI: 10.3389/fgene.2018.00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes are mutated in non-syndromic intellectual disability (ID) and autism spectrum disorder (ASD), with each gene often involved in only a handful of cases. Such heterogeneity can be daunting, but rare recessive loss of function (LOF) mutations can be a good starting point to provide insight into the mechanisms of neurodevelopmental disease. Biallelic LOF mutations in the signaling scaffold CC2D1A cause a rare form of autosomal recessive ID, sometimes associated with ASD and seizures. In parallel, we recently reported that Cc2d1a-deficient mice present with cognitive and social deficits, hyperactivity and anxiety. In Drosophila, loss of the only ortholog of Cc2d1a, lgd, is embryonically lethal, while in vertebrates, Cc2d1a has a homolog Cc2d1b which appears to be compensating, indicating that Cc2d1a and Cc2d1b have a redundant function in humans and mice. Here, we generate an allelic series of Cc2d1a and Cc2d1b LOF to determine the relative role of these genes during behavioral development. We generated Cc2d1b knockout (KO), Cc2d1a/1b double heterozygous and double KO mice, then performed behavioral studies to analyze learning and memory, social interactions, anxiety, and hyperactivity. We found that Cc2d1a and Cc2d1b have partially overlapping roles. Overall, loss of Cc2d1b is less severe than loss of Cc2d1a, only leading to cognitive deficits, while Cc2d1a/1b double heterozygous animals are similar to Cc2d1a-deficient mice. These results will help us better understand the deficits in individuals with CC2D1A mutations, suggesting that recessive CC2D1B mutations and trans-heterozygous CC2D1A and CC2D1B mutations could also contribute to the genetics of ID.
Collapse
Affiliation(s)
- Marta Zamarbide
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Adam W. Oaks
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Heather L. Pond
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Julia S. Adelman
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - M. Chiara Manzini
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Washington, DC, United States
| |
Collapse
|