1
|
Cheng S, Ning Z, Huang K, Yuan Y, Tan X, Pan Y, Zhang R, Tian L, Lu Y, Wang X, Lu D, Yang Y, Guan Y, Mamatyusupu D, Xu S. Analysis of sex-biased gene expression in a Eurasian admixed population. Brief Bioinform 2024; 25:bbae451. [PMID: 39293802 PMCID: PMC11410377 DOI: 10.1093/bib/bbae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/07/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Sex-biased gene expression differs across human populations; however, the underlying genetic basis and molecular mechanisms remain largely unknown. Here, we explore the influence of ancestry on sex differences in the human transcriptome and its genetic effects on a Eurasian admixed population: Uyghurs living in Xinjiang (XJU), by analyzing whole-genome sequencing data and transcriptome data of 90 XJU and 40 unrelated Han Chinese individuals. We identified 302 sex-biased expressed genes and 174 sex-biased cis-expression quantitative loci (sb-cis-eQTLs) in XJU, which were enriched in innate immune-related functions, indicating sex differences in immunity. Notably, approximately one-quarter of the sb-cis-eQTLs showed a strong correlation with ancestry composition; i.e. populations of similar ancestry tended to show similar patterns of sex-biased gene expression. Our analysis further suggested that genetic admixture induced a moderate degree of sex-biased gene expression. Interestingly, analysis of chromosome interactions revealed that the X chromosome acted on autosomal immunity-associated genes, partially explaining the sex-biased phenotypic differences. Our work extends the knowledge of sex-biased gene expression from the perspective of genetic admixture and bridges the gap in the exploration of sex-biased phenotypes shaped by autosome and X-chromosome interactions. Notably, we demonstrated that sex chromosomes cannot fully explain sex differentiation in immune-related phenotypes.
Collapse
Affiliation(s)
- Shuangshuang Cheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Zhilin Ning
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Ke Huang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New Area, Shanghai, 201210, China
| | - Yuan Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Xinjiang Tan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Rui Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Lei Tian
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
| | - Yajun Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Yaqun Guan
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College Xinjiang Medical University, 137 South Liyushan Road, Xincheng District, Urumqi, Xinjiang Uygur Autonomous Region, 830054, China
| | - Dolikun Mamatyusupu
- College of the Life Sciences and Technology, Xinjiang University, 666 Shengli Road, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, 830046, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Xuhui District, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New Area, Shanghai, 201210, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, 200438, China
| |
Collapse
|
2
|
Thomas L, Cuisset L, Papon JF, Tamalet A, Pin I, Abou Taam R, Faucon C, Montantin G, Tissier S, Duquesnoy P, Dastot-Le Moal F, Copin B, Carion N, Louis B, Chantot-Bastaraud S, Siffroi JP, Mitri R, Coste A, Escudier E, Thouvenin G, Amselem S, Legendre M. Skewed X-chromosome inactivation drives the proportion of DNAAF6-defective airway motile cilia and variable expressivity in primary ciliary dyskinesia. J Med Genet 2024; 61:595-604. [PMID: 38408845 DOI: 10.1136/jmg-2023-109700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a rare airway disorder caused by defective motile cilia. Only male patients have been reported with pathogenic mutations in X-linked DNAAF6, which result in the absence of ciliary dynein arms, whereas their heterozygous mothers are supposedly healthy. Our objective was to assess the possible clinical and ciliary consequences of X-chromosome inactivation (XCI) in these mothers. METHODS XCI patterns of six mothers of male patients with DNAAF6-related PCD were determined by DNA-methylation studies and compared with their clinical phenotype (6/6 mothers), as well as their ciliary phenotype (4/6 mothers), as assessed by immunofluorescence and high-speed videomicroscopy analyses. The mutated X chromosome was tracked to assess the percentage of cells with a normal inactivated DNAAF6 allele. RESULTS The mothers' phenotypes ranged from absence of symptoms to mild/moderate or severe airway phenotypes, closely reflecting their XCI pattern. Analyses of the symptomatic mothers' airway ciliated cells revealed the coexistence of normal cells and cells with immotile cilia lacking dynein arms, whose ratio closely mirrored their XCI pattern. CONCLUSION This study highlights the importance of searching for heterozygous pathogenic DNAAF6 mutations in all female relatives of male PCD patients with a DNAAF6 defect, as well as in females consulting for mild chronic respiratory symptoms. Our results also demonstrate that about one-third-ranging from 20% to 50%-normal ciliated airway cells sufficed to avoid severe PCD, a result paving the way for gene therapy.
Collapse
Affiliation(s)
- Lucie Thomas
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
| | - Laurence Cuisset
- Service de Médecine Génomique, Assistance Publique Hôpitaux de Paris (AP-HP), Université de Paris, Hôpital Cochin, Paris, F-75014, France
| | - Jean-Francois Papon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, AP-HP, Hôpital Bicêtre, Le Kremlin-Bicêtre, F-94270, France
- Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Inserm U955, CNRS ERL7240, Hôpital Henri-Mondor, Créteil, F-94010, France
| | - Aline Tamalet
- Département de Pneumologie Pédiatrique, Centre National de Référence des Maladies Respiratoires Rares RespiRare, AP-HP, Sorbonne Université, Hôpital Armand-Trousseau Hospital, Paris, F-75012, France
| | - Isabelle Pin
- Pédiatrie, CHU Grenoble Alpes, Grenoble, F-38500, France
| | - Rola Abou Taam
- Service de Pneumologie et Allergologie Pédiatriques, AP-HP, Hôpital Necker-Enfants Malades, Paris, F-75015, France
| | - Catherine Faucon
- Service d'Anatomopathologie, Laboratoire de Microscopie Electronique, Centre Hospitalier Intercommunal de Créteil, Créteil, F-94000, France
| | - Guy Montantin
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Sylvie Tissier
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Philippe Duquesnoy
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
| | | | - Bruno Copin
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Nathalie Carion
- Service de Médecine Génomique, Assistance Publique Hôpitaux de Paris (AP-HP), Université de Paris, Hôpital Cochin, Paris, F-75014, France
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Inserm U955, CNRS ERL7240, Hôpital Henri-Mondor, Créteil, F-94010, France
| | - Sandra Chantot-Bastaraud
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique chromosomique, AP-HP, Hôpital Trousseau, Paris, F-75012, France
| | - Jean-Pierre Siffroi
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique chromosomique, AP-HP, Hôpital Trousseau, Paris, F-75012, France
| | - Rana Mitri
- Service d'Anatomopathologie, Laboratoire de Microscopie Electronique, Centre Hospitalier Intercommunal de Créteil, Créteil, F-94000, France
| | - André Coste
- Institut Mondor de Recherche Biomédicale, Université Paris-Est Créteil, Inserm U955, CNRS ERL7240, Hôpital Henri-Mondor, Créteil, F-94010, France
- Service d'ORL et de Chirurgie Cervico-Faciale, AP-HP, Hôpital Henri-Mondor, Centre Hospitalier Intercommunal de Créteil, Créteil, F-94000, France
| | - Estelle Escudier
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Guillaume Thouvenin
- Département de Pneumologie Pédiatrique, Centre National de Référence des Maladies Respiratoires Rares RespiRare, AP-HP, Sorbonne Université, Hôpital Armand-Trousseau Hospital, Paris, F-75012, France
| | - Serge Amselem
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| | - Marie Legendre
- Childhood Genetic Diseases, Sorbonne Université, Inserm, Hôpital Armand-Trousseau, Paris, F-75012, France
- Génétique moléculaire, AP-HP, Hôpital Armand-Trousseau, Paris, F-75012, Paris
| |
Collapse
|
3
|
Valledor M, Byron M, Dumas B, Carone DM, Hall LL, Lawrence JB. Early chromosome condensation by XIST builds A-repeat RNA density that facilitates gene silencing. Cell Rep 2023; 42:112686. [PMID: 37384527 PMCID: PMC10461597 DOI: 10.1016/j.celrep.2023.112686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
XIST RNA triggers chromosome-wide gene silencing and condenses an active chromosome into a Barr body. Here, we use inducible human XIST to examine early steps in the process, showing that XIST modifies cytoarchitecture before widespread gene silencing. In just 2-4 h, barely visible transcripts populate the large "sparse zone" surrounding the smaller "dense zone"; importantly, density zones exhibit different chromatin impacts. Sparse transcripts immediately trigger immunofluorescence for H2AK119ub and CIZ1, a matrix protein. H3K27me3 appears hours later in the dense zone, which enlarges with chromosome condensation. Genes examined are silenced after compaction of the RNA/DNA territory. Insights into this come from the findings that the A-repeat alone can silence genes and rapidly, but only where dense RNA supports sustained histone deacetylation. We propose that sparse XIST RNA quickly impacts architectural elements to condense the largely non-coding chromosome, coalescing RNA density that facilitates an unstable, A-repeat-dependent step required for gene silencing.
Collapse
Affiliation(s)
- Melvys Valledor
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brett Dumas
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Lisa L Hall
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
4
|
González-Rodríguez MTA, Brukman-Jiménez SA, Cuero-Quezada I, Corona-Rivera JR, Corona-Rivera A, Serafín-Saucedo G, Aguirre-Salas LM, Bobadilla-Morales L. Identification of a Small Supernumerary Marker Chromosome in a Turner Syndrome Patient with Karyotype mos 46,X,+mar/45,X. Genes (Basel) 2023; 14:genes14020253. [PMID: 36833181 PMCID: PMC9957150 DOI: 10.3390/genes14020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Turner Syndrome is characterized by a normal X chromosome and the partial or complete absence of a second sexual chromosome. Small supernumerary marker chromosomes are present in 6.6% of these patients. Because of the wide range of Turner syndrome karyotypes, it is difficult to establish a relationship with the phenotype of the patients. We present the case of a female patient with Turner syndrome, insulin resistance, type 2 diabetes, and intellectual disability. The karyotype revealed the presence of mosaicism with a monosomy X cell line and a second line with a small marker chromosome. FISH of two different tissues was used to identify the marker chromosome with probes for X and Y centromeres. Both tissues presented mosaicism for a two X chromosome signal, differing in the percentage of the monosomy X cell percentage. Comparative genomic hybridization with the CytoScanTMHD assay was performed in genomic DNA from peripheral blood, allowing us to determine the size and breakage points of the small marker chromosome. The patient presents a phenotype that combines classic Turner syndrome features and unlikely ones as intellectual disability. The size, implicated genes, and degree of inactivation of the X chromosome influence the broad spectrum of phenotypes resulting from these chromosomes.
Collapse
Affiliation(s)
- María Teresa Alejandra González-Rodríguez
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Sinhue Alejandro Brukman-Jiménez
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cytogenetics Unit, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico
| | - Idalid Cuero-Quezada
- Human Genetics PhD Program, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jorge Román Corona-Rivera
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics, Pediatrics Division, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico
| | - Alfredo Corona-Rivera
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cytogenetics Unit, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico
| | - Graciela Serafín-Saucedo
- Cytogenetics Unit, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico
| | - Liuba M. Aguirre-Salas
- Service of Pediatric Endocrinology, Pediatrics Division, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico
| | - Lucina Bobadilla-Morales
- Human Genetics Institute “Dr. Enrique Corona Rivera”, Department of Molecular Biology and Genomics, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Cytogenetics Unit, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico
- Center for Registry and Research in Congenital Anomalies (CRIAC), Service of Genetics, Pediatrics Division, Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Guadalajara 44340, Mexico
- Correspondence: ; Tel.: +52-1-3336189326 or +52-1-3336180362
| |
Collapse
|
5
|
An Intron c.103-3T>C Variant of the AMELX Gene Causes Combined Hypomineralized and Hypoplastic Type of Amelogenesis Imperfecta: Case Series and Review of the Literature. Genes (Basel) 2022; 13:genes13071272. [PMID: 35886055 PMCID: PMC9321068 DOI: 10.3390/genes13071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders of dental enamel. X-linked AI results from disease-causing variants in the AMELX gene. In this paper, we characterise the genetic aetiology and enamel histology of female AI patients from two unrelated families with similar clinical and radiographic findings. All three probands were carefully selected from 40 patients with AI. In probands from both families, scanning electron microscopy confirmed hypoplastic and hypomineralised enamel. A neonatal line separated prenatally and postnatally formed enamel of distinctly different mineralisation qualities. In both families, whole exome analysis revealed the intron variant NM_182680.1: c.103-3T>C, located three nucleotides before exon 4 of the AMELX gene. In family I, an additional variant, c.2363G>A, was found in exon 5 of the FAM83H gene. This report illustrates a variant in the AMELX gene that was not previously reported to be causative for AI as well as an additional variant in the FAM83H gene with probably limited clinical significance.
Collapse
|
6
|
Fan X, Moustakas I, Torrens-Juaneda V, Lei Q, Hamer G, Louwe LA, Pilgram GSK, Szuhai K, Matorras R, Eguizabal C, van der Westerlaken L, Mei H, Chuva de Sousa Lopes SM. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet 2021; 17:e1009773. [PMID: 34499650 PMCID: PMC8428764 DOI: 10.1371/journal.pgen.1009773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain; Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain; Department of Obstetrics and Gynecology, Basque Country University, Spain; Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, Barakaldo, Spain
| | | | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
7
|
Migeon BR. Stochastic gene expression and chromosome interactions in protecting the human active X from silencing by XIST. Nucleus 2021; 12:1-5. [PMID: 33211621 PMCID: PMC7833733 DOI: 10.1080/19491034.2020.1850981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Mammals use X chromosome inactivation to compensate for the sex difference in numbers of X chromosomes. A relatively unexplored question is how the active X is protected from inactivation by its own XIST gene, the long non-coding RNA, which initiates silence of the inactive X. Previous studies of autosomal duplications show that human chromosome 19 plays a critical role in protecting the active X. I proposed that it genetically interacts with the X chromosome to repress XIST function on the future active X. Here, I show that the type of chromosome 19 duplication influences the outcome of the interaction: the presence of three chromosome 19s is tolerated whereas duplications affecting only one chromosome 19 are not. The different outcomes have mechanistic implications for how chromosome 19 interacts with the future active X, pointing to a role for stochastic gene expression and possibly physical interaction.
Collapse
Affiliation(s)
- Barbara R Migeon
- Departments of Genetic Medicine and Pediatrics, The Johns Hopkins University , Baltimore, MD, USA
| |
Collapse
|
8
|
Lobato R. A quantum mechanical approach to random X chromosome inactivation. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>The X chromosome inactivation is an essential mechanism in mammals' development, that despite having been investigated for 60 years, many questions about its choice process have yet to be fully answered. Therefore, a theoretical model was proposed here for the first time in an attempt to explain this puzzling phenomenon through a quantum mechanical approach. Based on previous data, this work theoretically demonstrates how a shared delocalized proton at a key base pair position could explain the random, instantaneous, and mutually exclusive nature of the choice process in X chromosome inactivation. The main purpose of this work is to contribute to a comprehensive understanding of the X inactivation mechanism with a model proposal that can complement the existent ones, along with introducing a quantum mechanical approach that could be applied to other cell differentiation mechanisms.</p>
</abstract>
Collapse
|
9
|
Hagen SH, Henseling F, Hennesen J, Savel H, Delahaye S, Richert L, Ziegler SM, Altfeld M. Heterogeneous Escape from X Chromosome Inactivation Results in Sex Differences in Type I IFN Responses at the Single Human pDC Level. Cell Rep 2020; 33:108485. [PMID: 33296655 PMCID: PMC7833293 DOI: 10.1016/j.celrep.2020.108485] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 12/28/2022] Open
Abstract
Immune responses differ between women and men, and type I interferon (IFN) responses following Toll-like receptor 7 (TLR7) stimulation are higher in women. The precise mechanisms driving these sex differences in immunity are unknown. To investigate possible genetic factors, we quantify escape from X chromosome inactivation (XCI) for TLR7 and four other genes (RPS6KA3, CYBB, BTK, and IL13RA1) at the single plasmacytoid dendritic cell (pDC) level. We observe escape from XCI for all investigated genes, leading to biallelic expression patterns. pDCs with biallelic gene expression have significantly higher mRNA levels of the respective genes. Unstimulated pDCs with biallelic TLR7 expression exhibit significantly higher IFNα/β mRNA levels, and IFNα exposure results in significantly increased IFNα/β protein production by pDCs. These results identify unanticipated heterogeneity in escape from XCI of several genes in pDCs and highlight the important contribution of X chromosome factors to sex differences in type I IFN responses, which might explain observed sex differences in human diseases.
Collapse
Affiliation(s)
- Sven Hendrik Hagen
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Florian Henseling
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Jana Hennesen
- Technology Platform Flow Cytometry/FACS, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Hélène Savel
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR1219 and Inria, team SISTM, Bordeaux, France
| | - Solenne Delahaye
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR1219 and Inria, team SISTM, Bordeaux, France
| | - Laura Richert
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR1219 and Inria, team SISTM, Bordeaux, France
| | - Susanne Maria Ziegler
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg 20251, Germany.
| |
Collapse
|
10
|
Tricarico R, Nicolas E, Hall MJ, Golemis EA. X- and Y-Linked Chromatin-Modifying Genes as Regulators of Sex-Specific Cancer Incidence and Prognosis. Clin Cancer Res 2020; 26:5567-5578. [PMID: 32732223 DOI: 10.1158/1078-0432.ccr-20-1741] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Biological sex profoundly conditions organismal development and physiology, imposing wide-ranging effects on cell signaling, metabolism, and immune response. These effects arise from sex-specified differences in hormonal exposure, and from intrinsic genetic and epigenetic differences associated with the presence of an XX versus XY chromosomal complement. In addition, biological sex is now recognized to be a determinant of the incidence, presentation, and therapeutic response of multiple forms of cancer, including cancers not specifically associated with male or female anatomy. Although multiple factors contribute to sex-based differences in cancer, a growing body of research emphasizes a role for differential activity of X- and Y-linked tumor-suppressor genes in males and females. Among these, the X-linked KDM6A/UTX and KDM5C/JARID1C/SMCX, and their Y-linked paralogs UTY/KDM6C and KDM5D/JARID1D/SMCY encode lysine demethylases. These epigenetic modulators profoundly influence gene expression, based on enzymatic activity in demethylating H3K27me3 and H3K4me3, and nonenzymatic scaffolding roles for large complexes that open and close chromatin for transcription. In a growing number of cases, mutations affecting these proteins have been recognized to strongly influence cancer risk, prognosis, and response to specific therapies. However, sex-specific patterns of mutation, expression, and activity of these genes, coupled with tissue-specific requirement for their function as tumor suppressors, together exemplify the complex relationship between sex and cancer vulnerabilities. In this review, we summarize and discuss the current state of the literature on the roles of these proteins in contributing to sex bias in cancer, and the status of clinical agents relevant to their function.
Collapse
Affiliation(s)
- Rossella Tricarico
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania. .,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Michael J Hall
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
11
|
Xiong F, Sun Q, Li GG, Chen PL, Yao ZH, Wan CY, Zhong HX, Zeng Y. Initial serum HCG levels are higher in pregnant women with a male fetus after fresh or frozen single blastocyst transfer: A retrospective cohort study. Taiwan J Obstet Gynecol 2020; 58:833-839. [PMID: 31759537 DOI: 10.1016/j.tjog.2019.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Substantial previous studies have almost reached an agreement on the gender effect on maternal serum human chorionic gonadotropin (MsHCG) in and after the late first trimester of pregnancy. However, there is little knowledge of the sex-related difference in MsHCG level at the preliminary stage of pregnancy. The purpose of this study is to reveal this difference in women after fresh or frozen single blastocyst transfer (SBT). MATERIALS AND METHODS A total of 252 fresh SBT cycles and 1486 frozen-thawed SBT cycles collected between June 1, 2014 and May 30, 2017 were retrospectively analyzed in our center. Patients with MsHCG level ≥5 IU/L on day 11 after transfer, achieving a singleton intrauterine pregnancy and subsequent live birth were included. We compared MsHCG levels between women gave birth to a male neonate and those gave birth to a female one in fresh or frozen SBT cycles, respectively. RESULTS A total of 136 neonates including 57 females and 79 males were born following fresh SBT. The male-female ratio was 1.39:1. The average MsHCG level of male fetuses was higher than that of female fetuses on day 11 after transfer (549.82 ± 253.24 IU/L versus 439.03 ± 198.41 IU/L, P < 0.05). Correspondingly, a total of 431 infants was born after frozen SBT, containing 188 females and 243 males. The male-female ratio was 1.29:1. Initial MsHCG level remained higher in women with a male neonate than the counterparts with a female neonate (894.43 ± 622.17 IU/L versus 758.05 ± 624.33 IU/L, P < 0.05). It was also found the pregnant women following frozen-thawed SBT exhibited higher initial MsHCG level than those following fresh SBT in whether male-bearing or female-bearing gestations. CONCLUSIONS MsHCG levels are higher in pregnant women with a male fetus than those with a female one on day 11 after fresh or frozen SBT. A sex-specific response to the stress in the process of in vitro embryo culture was suggested.
Collapse
Affiliation(s)
- Feng Xiong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Qing Sun
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Guan-Gui Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Pei-Lin Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Zhi-Hong Yao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Cai-Yun Wan
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Hui-Xian Zhong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Urology Hospital Fertility Center, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Meester I, Manilla-Muñoz E, León-Cachón RBR, Paniagua-Frausto GA, Carrión-Alvarez D, Ruiz-Rodríguez CO, Rodríguez-Rangel X, García-Martínez JM. SeXY chromosomes and the immune system: reflections after a comparative study. Biol Sex Differ 2020; 11:3. [PMID: 31937374 PMCID: PMC6958619 DOI: 10.1186/s13293-019-0278-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023] Open
Abstract
Background Sex bias in immune function has been contributed in part to a preponderance of immune system-related genes (ISRG) on the X-chromosome. We verified whether ISRG are more abundant on the X chromosome as compared to autosomal chromosomes and reflected on the impact of our findings. Methods Consulting freely accessible databases, we performed a comparative study consisting of three complementary strategies. First, among coding X/Y-linked genes, the abundance of ISRG was compared to the abundance of genes dedicated to other systems. Genes were assigned considering three criteria: disease, tissue expression, and function (DEF approach). In addition, we carried out two genome-wide approaches to compare the contribution of sex and autosomal chromosomes to immune genes defined by an elevated expression in lymphatic tissues (LTEEG approach) or annotation to an immune system process, GO:0002376 (GO approach). Results The X chromosome had less immune genes than the median of the autosomal chromosomes. Among X-linked genes, ISRG ranked fourth after the reproductive and nervous systems and genes dedicated to development, proliferation and apoptosis. On the Y chromosome, ISRG ranked second, and at the pseudoautosomal region (PAR) first. According to studies on the expression of X-linked genes in a variety of (mostly non-lymphatic) tissues, almost two-thirds of ISRG are expressed without sex bias, and the remaining ISRG presented female and male bias with similar frequency. Various epigenetic controllers, X-linked MSL3 and Y-linked KDM5D and UTY, were preferentially expressed in leukocytes and deserve further attention for a possible role in sex biased expression or its neutralisation. Conclusions The X chromosome is not enriched for ISRG, though particular X-linked genes may be responsible for sex differences in certain immune responses. So far, there is insufficient information on sex-biased expression of X/Y-linked ISRG in leukocytes to draw general conclusions on the impact of X/Y-linked ISRG in immune function. More research on the regulation of the expression X-linked genes is required with attention to 1) female and male mechanisms that may either augment or diminish sex biased expression and 2) tissue-specific expression studies.
Collapse
Affiliation(s)
- Irene Meester
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México.
| | - Edgar Manilla-Muñoz
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Rafael B R León-Cachón
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Gustavo A Paniagua-Frausto
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Diego Carrión-Alvarez
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - C Orelli Ruiz-Rodríguez
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Ximena Rodríguez-Rangel
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| | - Joyce M García-Martínez
- Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, México
| |
Collapse
|
13
|
Pinti E, Lengyel A, Fekete G, Haltrich I. What should we consider in the case of combined Down- and 47,XY,+i(X)(q10) Klinefelter syndromes? The unique case of a male newborn and review of the literature. BMC Pediatr 2020; 20:17. [PMID: 31931754 PMCID: PMC6958764 DOI: 10.1186/s12887-019-1905-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Double aneuploidies - especially in combination with structural aberrations - are extremely rare among liveborns. The most frequent association is that of Down (DS) and Klinefelter syndromes (KS). We present the case of a male newborn with a unique 47,XY,+ 21[80%]/48,XY,+i(X)(q10),+ 21[20%] karyotype, hypothesize about his future phenotype, discuss the aspects of management and review the literature. Case presentation The additional association of isochromosome Xq (i(X)(q10)) could be the result of a threefold non-disjunction event. 47,XY,+i(X)(q10) KS is not common and its symptoms differ from the classical KS phenotype. In combined DS and i(X)(q10) KS, the anticipatory phenotype is not simply the sum of the individual syndromic characteristics. This genotype is associated with higher risk for several diseases and certain conditions with more pronounced appearance: emotional and behavioral disorders; poorer mental and physical quality of life; lower muscle mass/tone/strength; connective tissue weakness; muscle hypotonia and feeding difficulties; osteopenia/−porosis with earlier beginning and faster progression; different types of congenital heart diseases; more common occurrence of hypertension; increased susceptibility to infections and female predominant autoimmune diseases; higher risk for hematological malignancies and testicular tumors. Conclusions In multiple aneuploidies, the alterations have the potential to weaken or enhance each other, or they may not have modifying effects at all. Prenatal ultrasound signs are not obligatory symptoms of numerous chromosomal anomalies (specifically those involving supernumerary sex chromosomes), therefore combined prenatal screening has pertinence in uncomplicated pregnancies as well.
Collapse
Affiliation(s)
- Eva Pinti
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| | - Anna Lengyel
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gyorgy Fekete
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Iren Haltrich
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Ankush Jagtap PK, Müller M, Masiewicz P, von Bülow S, Hollmann NM, Chen PC, Simon B, Thomae AW, Becker PB, Hennig J. Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1,2 of Drosophila helicase Maleless. Nucleic Acids Res 2019; 47:4319-4333. [PMID: 30805612 PMCID: PMC6486548 DOI: 10.1093/nar/gkz125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Maleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR and SAXS data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAXK RNA binding motifs. NMR titrations combined with filter binding experiments and isothermal titration calorimetry (ITC) document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Marisa Müller
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Pawel Masiewicz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Sören von Bülow
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Nele Merret Hollmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.,Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Po-Chia Chen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Andreas W Thomae
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Peter B Becker
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
15
|
Morcillo P, Qin Y, Peña G, Mosenthal AC, Livingston DH, Spolarics Z. Directional X Chromosome Skewing of White Blood Cells from Subjects with Heterozygous Mosaicism for the Variant IRAK1 Haplotype. Inflammation 2019; 43:370-381. [PMID: 31748848 DOI: 10.1007/s10753-019-01127-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Random X chromosome (ChrX) inactivation and consequent cellular mosaicism for the active ChrXs in white blood cells (WBCs) is unique to females and may contribute to sex-biased modulation of the innate immune response. Polymorphic differences between the two parental ChrXs may result in ChrX skewing of circulating WBCs (ChrX inactivation-ratio (XCI) > 3) driven by differences in stem cell selection and activity in the bone marrow or WBC trafficking at the periphery. Independent of the mechanism, ChrX skewing may result in genotype-phenotype discrepancies. This study aimed to develop an allele-specific assay and test its applicability in clinical samples to determine the "direction" of ChrX skewing in the variant IRAK1 haplotype, a common X-linked polymorphism with major clinical impacts. Because alternative splice variants of IRAK1 are also produced in the region surrounding the critical single-nucleotide polymorphism (SNP, rs1059703), we also tested the abundance of alternative splice variant IRAK1 transcripts. The expression of splice variants IRAK1-B and IRAK1-C was about 30 and 50% of the full-length (IRAK1-A) in WBCs from healthy subjects (n = 53). IRAK1-A, B, and C showed about 30% lower expression level in males (n = 25) than females (n = 28). By contrast, the expression levels of IRAK1-A, B, and C were not affected by the variant IRAK1 haplotype in either sex. Allele-specific primers generated WT and variant-IRAK1 amplicons with high selectivity, and on average produced about half the expression levels of each transcript in heterozygous IRAK1-mosaic females. Because injury was shown to induce de novo ChrX skewing of WBCs, we tested the directional XCI ratio changes in WBC in a sample of trauma patients heterozygous for the variant IRAK1 haplotype (n = 18). Using the allele-specific assay in combination with the DNA methylation status at the polymorphic HUMARA locus, we found that at admission, about 60% the patients presented XCI ratios skewed toward WBCs with active ChrXs carrying the variant-IRAK1 similar to healthy controls. De novo, trauma-induced XCI ratio changes showed increased extravasation of the more abundant mosaic WBC subset without reversal in the direction of ChrX skewing during the injury course.
Collapse
Affiliation(s)
- Patrick Morcillo
- Department of Surgery, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-578, Newark, NJ, 07103, USA
| | - Yong Qin
- Department of Surgery, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-578, Newark, NJ, 07103, USA
| | - Geber Peña
- Department of Surgery, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-578, Newark, NJ, 07103, USA
| | - Anne C Mosenthal
- Department of Surgery, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-578, Newark, NJ, 07103, USA
| | - David H Livingston
- Department of Surgery, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-578, Newark, NJ, 07103, USA
| | - Zoltan Spolarics
- Department of Surgery, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-578, Newark, NJ, 07103, USA.
| |
Collapse
|
16
|
Nguyen HQ, Lee SD, Wu CT. Paircounting. Trends Genet 2019; 35:787-790. [PMID: 31521404 DOI: 10.1016/j.tig.2019.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
X inactivation presents two longstanding puzzles: the counting and choice of X chromosomes. Here, we consider counting and choice in the context of pairing, both of the X and of the autosomes.
Collapse
Affiliation(s)
- Huy Q Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - S Dean Lee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Murillo-Maldonado JM, Riesgo-Escovar JR. The various and shared roles of lncRNAs during development. Dev Dyn 2019; 248:1059-1069. [PMID: 31454122 DOI: 10.1002/dvdy.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/03/2023] Open
Abstract
lncRNAs, genes transcribed but not translated, longer than 200 nucleotides, are classified as a separate class of nonprotein coding genes. Since their discovery, largely from RNAseq data, a number of pioneer studies have begun to unravel its myriad functions, centered on gene expression regulation, suggesting developmental and evolutionary conservation. Since they do not code for proteins and have no open reading frames, their functional constraints likely differ from that of protein coding genes, or of genes where the majority of the nucleotide sequence is required for function, like tRNAs. This has complicated assessment of both developmental and evolutionary conservation, and the identification of homologs in different species. Here we argue that other characteristics: general synteny and particular chromosomal placement regardless of sequence, sequence micro-motifs, and secondary structure allow for "homologs" to be identified and compared, confirming developmental and evolutionary conservation of lncRNAs. We conclude exemplifying a case in point: that of the evolutionarily conserved lncRNA acal, characterized and required for embryogenesis in Drosophila.
Collapse
Affiliation(s)
- Juan M Murillo-Maldonado
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobología, Campus UNAM Juriquilla, Universidad Nacional Autónoma de Mexico, Santiago de Querétaro, Querétaro, Mexico
| | - Juan R Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology, Instituto de Neurobología, Campus UNAM Juriquilla, Universidad Nacional Autónoma de Mexico, Santiago de Querétaro, Querétaro, Mexico
| |
Collapse
|
18
|
Zhou K, Yang J, Li X, Chen W. Long non-coding RNA XIST promotes cell proliferation and migration through targeting miR-133a in bladder cancer. Exp Ther Med 2019; 18:3475-3483. [PMID: 31602223 PMCID: PMC6777290 DOI: 10.3892/etm.2019.7960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/16/2019] [Indexed: 11/05/2022] Open
Abstract
The long non-coding RNA (lncRNA) X inactive specific transcript (XIST) has recently been reported to promote the malignant progression of bladder cancer through regulating several microRNAs (miRs), including miR-124, miR-139-5p and miR-200c. However, whether other miRs are also involved in this process has remained to be determined. The present study demonstrated that XIST was significantly upregulated in bladder cancer tissues compared with that in adjacent normal tissues. Furthermore, its expression was reduced in several common bladder cancer cell lines. High expression of XIST was significantly associated with tumour progression and poor prognosis of patients with bladder cancer. An in vitro experiment indicated that knockdown of XIST significantly reduced the proliferation and migration of bladder cancer cells. A luciferase assay suggested that XIST binds to its predicted binding site in miR-133a. In addition, it was identified that miR-133a was significantly downregulated in bladder cancer, and its expression levels were inversely correlated with those of XIST in bladder cancer tissues. Furthermore, loss- and gain-of-function experiments indicated that miR-133a acted as a downstream effector in XIST-mediated bladder cancer cell proliferation and migration. In conclusion, the present study demonstrates that XIST promotes bladder cancer cell proliferation and migration via targeting miR-133a and thus suggests that XIST may be used as a potential therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Keqin Zhou
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jinrui Yang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xurui Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wenjie Chen
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
19
|
Migeon BR. The Non-random Location of Autosomal Genes That Participate in X Inactivation. Front Cell Dev Biol 2019; 7:144. [PMID: 31555643 PMCID: PMC6691350 DOI: 10.3389/fcell.2019.00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Mammals compensate for sex differences in the number of X chromosomes by inactivating all but one X chromosome. Although they differ in the details of X inactivation, all mammals use long non-coding RNAs in the silencing process. By transcribing XIST RNA, the human inactive X chromosome has a prime role in X-dosage compensation. Yet, the autosomes also play an important role in the process. Multiple genes on human chromosome 1 interact with XIST RNA to silence the future inactive Xs. Also, it is likely that multiple genes on human chromosome 19 prevent the silencing of the single active X - a highly dosage sensitive process. Previous studies of the organization of chromosomes in the nucleus and their genomic interactions indicate that most contacts are intra-chromosomal. Co-ordinate transcription and dosage regulation can be achieved by clustering of genes and mingling of interacting chromosomes in 3D space. Unlike the genes on chromosome 1, those within the critical eight MB region of chromosome 19, have remained together in all mammals assayed, except rodents, indicating that their proximity in non-rodent mammals is evolutionarily conserved. I propose that the autosomal genes that play key roles in the process of X inactivation are non-randomly distributed in the genome and that this arrangement facilitates their coordinate regulation.
Collapse
Affiliation(s)
- Barbara R. Migeon
- Departments of Genetic Medicine and Pediatrics, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
20
|
X-Linked IRAK1 Polymorphism is Associated with Sex-Related Differences in Polymorphonuclear Granulocyte and Monocyte Activation and Response Variabilities. Shock 2019; 53:434-441. [PMID: 31306349 DOI: 10.1097/shk.0000000000001404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Common X-linked genetic polymorphisms are expected to alter cellular responses affecting males and females differently through sex-linked inheritance pattern as well as X chromosome (ChrX) mosaicism and associated ChrX skewing, which is unique to females. We tested this hypothesis in ex vivo lipopolysaccharide and phorbol ester-stimulated polymorphonuclear granulocytes (PMNs) and monocytes from healthy volunteers (n = 51). Observations were analyzed after stratification by sex alone or the presence of variant IRAK1 haplotype a common X-linked polymorphism with previously demonstrated major clinical impacts. Upon cell activation, CD11b, CD45, CD66b, CD63, and CD14 expression was markedly and similarly elevated in healthy males and females. By contrast, PMN and monocyte activation measured by CD11b, CD66b, and CD63 was increased in variant-IRAK1 subjects as compared with WT. Stratification by IRAK1 genotype and sex showed similar cell activation effect on variant-IRAK1 subjects and an intermediate degree of cell activation in heterozygous mosaic females. The increased membrane expression of these proteins in variant-IRAK1 subjects was associated with similar or increased intersubject but uniformly decreased intrasubject cell response variabilities as compared with WT. We also tested white blood cell ChrX skewing in the healthy cohort as well as in a sample of female trauma patients (n = 201). ChrX inactivation ratios were similar in IRAK1 WT, variant, and heterozygous healthy subjects. Trauma patients showed a trend of blunted ChrX skewing at admission in homozygous variant-IRAK1 and heterozygous mosaic-IRAK1 female subjects as compared with WT. Trauma-induced de novo ChrX skewing was also depressed in variant-IRAK1 and mosaic-IRAK1 female trauma patients as compared with WT. Our study indicates that augmented PMN and monocyte activation in variant-IRAK1 subjects is accompanied by decreased intrasubject cellular variability and blunted de novo ChrX skewing in response to trauma. A more pronounced cell activation of PMNs and monocytes accompanied by decreased response variabilities in variant-IRAK1 subjects may be a contributing mechanism affecting the course of sepsis and trauma and may also impact sex-based outcome differences due to its X-linked inheritance pattern and high prevalence.
Collapse
|
21
|
Duan X, Yang S, Zhang H, Wu J, Zhang Y, Ji D, Tie L, Boerkoel C. A Novel AMELX Mutation, Its Phenotypic Features, and Skewed X Inactivation. J Dent Res 2019; 98:870-878. [DOI: 10.1177/0022034519854973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a group of genetic disorders of defective dental enamel. Mutation of AMELX encoding amelogenin on the X chromosome is a major cause of AI. Here we report a Chinese family with hypoplastic and hypomineralized AI. Whole exome analysis revealed a novel mutation c.185delC in exon 5 of AMELX causing the frame shift p.Pro62ArgfsTer47 (or p.Pro62Argfs*47). By sequencing of polymerase chain reaction products and T-vector clones, the mutation was confirmed as homozygous in the proband, hemizygous in her father, and heterozygous in her mother. The proband and her father had small and yellowish teeth with thin and rough enamel that was radiographically indistinguishable from the underlying dentin. Scanning electronic microscopy of 1 maternal tooth showed cracks and exposed loosely packed enamel prisms in affected areas. Consistent with a 25:75 skewing of X inactivation in the peripheral blood DNA as measured by androgen receptor allele methylation, the surface of the mother’s tooth had alternating vertical ridges of transparent normal and white chalky enamel in a 34:66 ratio. In summary, this study provides one of the few phenotypic comparisons of hemizygous and homozygous AMELX mutations and suggests that the skewing of X inactivation in AI contributes to the phenotypic variations in heterozygous carriers of X-linked AI.
Collapse
Affiliation(s)
- X. Duan
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - S. Yang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - H. Zhang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - J. Wu
- Department of Prosthodontic, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - Y. Zhang
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - D. Ji
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - L. Tie
- Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, Air Force Military Medical University (the Fourth Military Medical University), Xi’an, China
| | - C.F. Boerkoel
- Department of Medical Genetics, Children’s and Women’s Health Centre of BC, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
A hypothesis: Could telomere length and/or epigenetic alterations contribute to infertility in females with Turner syndrome? AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:108-116. [DOI: 10.1002/ajmg.c.31684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 11/07/2022]
|
23
|
Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics 2019; 13:2. [PMID: 30621780 PMCID: PMC6325731 DOI: 10.1186/s40246-018-0185-z] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
The X chromosome and X-linked variants have largely been ignored in genome-wide and candidate association studies of infectious diseases due to the complexity of statistical analysis of the X chromosome. This exclusion is significant, since the X chromosome contains a high density of immune-related genes and regulatory elements that are extensively involved in both the innate and adaptive immune responses. Many diseases present with a clear sex bias, and apart from the influence of sex hormones and socioeconomic and behavioural factors, the X chromosome, X-linked genes and X chromosome inactivation mechanisms contribute to this difference. Females are functional mosaics for X-linked genes due to X chromosome inactivation and this, combined with other X chromosome inactivation mechanisms such as genes that escape silencing and skewed inactivation, could contribute to an immunological advantage for females in many infections. In this review, we discuss the involvement of the X chromosome and X inactivation in immunity and address its role in sexual dimorphism of infectious diseases using tuberculosis susceptibility as an example, in which male sex bias is clear, yet not fully explored.
Collapse
Affiliation(s)
- Haiko Schurz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Muneeb Salie
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Gerard Tromp
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
24
|
Hesson LB, Pritchard AL. Genetics and Epigenetics: A Historical Overview. Clin Epigenetics 2019. [DOI: 10.1007/978-981-13-8958-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Deobagkar D. Epigenetics with special reference to the human X chromosome inactivation and the enigma of Drosophila DNA methylation. J Genet 2018. [DOI: 10.1007/s12041-018-0937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|