1
|
Tian H, Chen Y, Dong X, Fan X, Jia R. The m6A hypermethylation-induced PIR overexpression regulates H3K4me3 and promotes tumorigenesis of uveal melanoma. Cancer Lett 2025; 623:217729. [PMID: 40252822 DOI: 10.1016/j.canlet.2025.217729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Uveal melanoma (UM) is the most common primary ocular malignancy in adults, characterized by high mortality, strong metastatic potential, and limited treatment options, necessitating the identification of novel therapeutic targets. Here, we identified Pirin (PIR) as a key oncogenic factor in UM through comprehensive multi-omics analyses, revealing that PIR is significantly upregulated and correlates with poor prognosis. Functional assays indicated that inhibiting PIR markedly suppressed UM progression, highlighting its critical role in tumorigenesis behavior. Mechanistically, PIR expression is driven by aberrant N6-methyladenosine (m6A) modifications mediated by METTL3 and IGF2BP3. Meanwhile, the high expressed PIR acts as a transcriptional co-regulator by interacting with WDR5, resulting in the regulation of H3K4me3 modifications at the ANAPC10 promoter region and subsequent promotion of ANAPC10 expression. Overall, our study uncovered the METTL3/IGF2BP3 (m6A)-PIR-WDR5 (H3K4me3)-ANAPC10 axis, bridging RNA methylation and histone methylation in UM pathogenesis. By unmasking these intricate epigenetic interactions, we provided novel insights into UM biology and identified potential therapeutic targets for tumor treatment, offering the theoretical support for future drug development and clinical applications.
Collapse
Affiliation(s)
- Hao Tian
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Ying Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Xiaokang Dong
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| | - Ruobing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, PR China.
| |
Collapse
|
2
|
Zhang X, Xie G, Rao L, Tian C. Citrullination in health and disease: From physiological function to gene regulation. Genes Dis 2025; 12:101355. [PMID: 40271192 PMCID: PMC12017988 DOI: 10.1016/j.gendis.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 04/25/2025] Open
Abstract
Protein citrullination involves the deimination of arginine or methylarginine residues in peptide chains to form citrulline by peptidyl arginine deiminases. This process is an important protein post-translational modification that affects molecular structure and function of various proteins, including histones. In recent years, protein citrullination has attracted widespread attention for its influence on gene transcription. Studies on the impact of protein citrullination modification on chromatin structure remodeling and the establishment of gene regulatory networks have made rapid progress. In this review, we briefly summarize the physiological functions of protein citrullination modification. Specifically, we comprehensively outline the latest progress in the study of the role of protein citrullination modification in gene transcription regulation, focusing on the interaction of protein citrullination with other post-translational modifications.
Collapse
Affiliation(s)
- Xiaoya Zhang
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Pharmacy, Jilin University, Changchun 130012, China
| | - Guiqiu Xie
- School of Pharmacy, Jilin University, Changchun 130012, China
| | - Lang Rao
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chaoguang Tian
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
3
|
García-Vílchez R, Guallar D. Interplay of transposable elements and ageing: epigenetic regulation and potential epitranscriptomic influence. Curr Opin Genet Dev 2025; 92:102331. [PMID: 40101544 DOI: 10.1016/j.gde.2025.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Transposable elements (TEs) are mobile elements, which have been crucial for mammalian genome evolution and function. Their activity, which influences genomic stability, gene expression and chromatin state, is tightly regulated by complex mechanisms. This review examines recent findings on TE regulation and the dynamics and connection during the ageing process. Here, we explore the interplay between chromatin state, DNA, RNA, and histone modifications in controlling TE activity, with a special emphasis in elucidating the emerging role of epitranscriptomic modifications in TE regulation. Additionally, we analyse the connection between TE activation and ageing, with the perspective for future research that could reveal novel targets for alleviating physiological and pathological ageing and age-related diseases.
Collapse
Affiliation(s)
- Raquel García-Vílchez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Barcelona Avenue s/n, Santiago de Compostela, A Coruña 15782, Spain. https://twitter.com/@raquelgarcv
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Barcelona Avenue s/n, Santiago de Compostela, A Coruña 15782, Spain.
| |
Collapse
|
4
|
Lin HY, Jeon AJ, Chen K, Lee CJM, Wu L, Chong SL, Anene-Nzelu CG, Foo RSY, Chow PKH. The epigenetic basis of hepatocellular carcinoma - mechanisms and potential directions for biomarkers and therapeutics. Br J Cancer 2025; 132:869-887. [PMID: 40057667 DOI: 10.1038/s41416-025-02969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 05/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth leading cancer worldwide and has complex pathogenesis due to its heterogeneity, along with poor prognoses. Diagnosis is often late as current screening methods have limited sensitivity for early HCC. Moreover, current treatment regimens for intermediate-to-advanced HCC have high resistance rates, no robust predictive biomarkers, and limited survival benefits. A deeper understanding of the molecular biology of HCC may enhance tumor characterization and targeting of key carcinogenic signatures. The epigenetic landscape of HCC includes complex hallmarks of 1) global DNA hypomethylation of oncogenes and hypermethylation of tumor suppressors; 2) histone modifications, altering chromatin accessibility to upregulate oncogene expression, and/or suppress tumor suppressor gene expression; 3) genome-wide rearrangement of chromatin loops facilitating distal enhancer-promoter oncogenic interactions; and 4) RNA regulation via translational repression by microRNAs (miRNAs) and RNA modifications. Additionally, it is useful to consider etiology-specific epigenetic aberrancies, especially in viral hepatitis and metabolic dysfunction-associated steatotic liver disease (MASLD), which are the main risk factors of HCC. This article comprehensively explores the epigenetic signatures in HCC, highlighting their potential as biomarkers and therapeutic targets. Additionally, we examine how etiology-specific epigenetic patterns and the integration of epigenetic therapies with immunotherapy could advance personalized HCC treatment strategies.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ah-Jung Jeon
- Department of Research and Development, Mirxes, Singapore, Singapore
| | - Kaina Chen
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chang Jie Mick Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
| | - Lingyan Wu
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | - Shay-Lee Chong
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Roger Sik-Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore.
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
5
|
Li C, Chen K, Li X, Xiong X. Epitranscriptome-epigenome interactions in development and disease mechanisms. Trends Genet 2025:S0168-9525(25)00097-6. [PMID: 40374434 DOI: 10.1016/j.tig.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 05/17/2025]
Abstract
Crosstalk between epitranscriptomic modifications to RNA and epigenomic modifications to DNA and histones plays fundamental roles in development and disease. Here, we summarize two major regulatory modes of the crosstalk between the epigenome and epitranscriptome. In the 'cis mode', the crosstalk occurs co-transcriptionally, with direct interactions observed between epigenetic modifications mediated by their regulators. In the 'trans mode', the modification of an epigenetic layer regulates the expression of another epigenetic layer's writers/erasers and subsequently induces downstream epigenetic alteration. Additionally, we focus on the functional roles of the crosstalk mechanism in physiological and pathological contexts, including development, differentiation, cancer, and complex genetic diseases. Lastly, we discuss the potential future directions for a systematic understanding of epigenetic crosstalk in development and disease.
Collapse
Affiliation(s)
- Chengyu Li
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Kexuan Chen
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Xiaoyu Li
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China.
| |
Collapse
|
6
|
Dong N, Du M, Wu Q. Molecular insights into the corin function at the uteroplacental interface. Placenta 2025:S0143-4004(25)00159-6. [PMID: 40360315 DOI: 10.1016/j.placenta.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
In pregnancy, cell-cell interactions and tissue remodeling are important physiological processes at the uteroplacental interface. To date, molecular mechanisms governing cell activities at the uteroplacental interface are not fully understood. Corin is a proteolytic enzyme responsible for activating atrial natriuretic peptide (ANP), a multifunctional hormone essential for cardiovascular and metabolic homeostasis. Upon progesterone stimulation, corin expression is induced in the uterus via a specific set of transcription factors. Uterine corin activates ANP to enhance decidualization and cell-cell interactions within the vasculature, leading to sequential vascular smooth muscle and endothelial cell death in spiral arteries. These events are crucial for uterine vascular remodeling and trophoblast invasion. Corin also functions in the decidua to regulate macrophage distribution and function in response to placental ischemia. In mice, Corin knockout impairs endometrial decidualization, vascular remodeling, and macrophage function at the uteroplacental interface, causing a preeclampsia (PE)-like phenotype. In humans, deleterious variants and impaired epigenetic modifications in the CORIN gene have been reported in women with PE, indicating that corin deficiency may be a contributing factor in the pathogenesis of PE. In this review, we describe the corin function at the uteroplacental interface and underlying molecular mechanisms. We also discuss potential implications of corin deficiency in pregnancy-associated diseases.
Collapse
Affiliation(s)
- Ningzheng Dong
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Meirong Du
- Laboratory of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai Medical College, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Peng Q, Zhang H, Li Z. Methyltransferase-like 16 drives diabetic nephropathy progression via epigenetic suppression of V-set pre-B cell surrogate light chain 3. Life Sci 2025; 374:123694. [PMID: 40348175 DOI: 10.1016/j.lfs.2025.123694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
AIMS This study aims to elucidate how Methyltransferase-like 16 (METTL16), as a key m6A methyltransferase, contributes to the pathogenesis of diabetic nephropathy by regulating oxidative stress and gene expression through epigenetic mRNA methylation. MATERIALS AND METHODS In the present study, in vivo and in vitro DN models were established to investigate the role of METTL16 in disease progression. RNA-seq and m6A-seq were employed to identify downstream targets of METTL16 and validate its regulatory mechanisms. Intervention experiments were conducted to further elucidate the impact of this axis on DN progression. KEY FINDINGS In DN models, METTL16 expression was significantly upregulated, accompanied by an increase in m6A modification levels and enhanced YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)-mediated recognition activity. Transcriptomic analysis identified v-set pre-B cell surrogate light chain (Vpreb3) as a downstream target of METTL16. In the DN model, Vpreb3 expression was suppressed through METTL16-mediated m6A modification and YTHDF2-mediated m6A-dependent mRNA degradation. Silencing METTL16 restored Vpreb3 expression and alleviated oxidative stress-induced kidney injury. The results of the present study indicated that METTL16 epigenetically suppresses Vpreb3 expression, exacerbating the progression of DN. SIGNIFICANCE This suggests that targeting this pathway could serve as a potential therapeutic strategy to mitigate oxidative stress and alleviate DN-associated renal injury.
Collapse
Affiliation(s)
- Qunyong Peng
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanyong Zhang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial first-class applied discipline (pharmacy), Changsha 410000, China
| | - Zhenyu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
8
|
Shi P, Liu Y, Sha Y, Wang J, Zhou J, Liu K, Cao Y, Zhang Q, Wang X, Sun H. Wireless, battery-free vagal electrical stimulation: A novel approach to inhibit cardiac hypertrophy via H3K18 lactylation mediated mitophagy. Pharmacol Res 2025; 216:107760. [PMID: 40320225 DOI: 10.1016/j.phrs.2025.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Electrical stimulation (ES) has been established as a reliable and beneficial approach in therapeutic rehabilitation, exhibiting negligible side effects. Nevertheless, research focusing on the application of ES for cardiac hypertrophy remains limited, as it fails to provide an enduring remedy for chronic diseases. In this investigation, vagal ES, characterized by its wireless, battery-free, and fully implantable nature, was utilized to treat cardiac hypertrophy. The vagus nerve at the stimulation site was carefully embedded within an envelope, sealed securely using multiple bioabsorbable sutures. Subsequently, a cardiac hypertrophy model was induced in rats via abdominal aortic coarctation for four weeks. The findings of this investigation demonstrated that ES markedly attenuated cardiac hypertrophy. Metabolomic analysis revealed a notable reduction in lactate levels within myocardial tissue following ES. Proteomic analysis of myocardial tissues indicated a substantial decrease in the expression of autophagy and mitophagy-related proteins after ES. Additionally, ChIP-seq result revealed a specific binding interaction between H3K18 lactylation (H3K18la) and BCL2 interacting protein 3 (Bnip3), while luciferase reporter assays demonstrated that H3K18la directly governed Bnip3 transcriptional activation, exploring its role in modulating mitophagy. Mechanistically, it was shown that ES reduced lactate accumulation through the upregulation of monocarboxylate transporter 4 (MCT4) by decreasing norepinephrine (NE) levels. Furthermore, ES reversed cardiac hypertrophy by diminishing H3K18la levels, thus inhibiting Bnip3 protein expression. This pathway assists in diminishing cardiac hypertrophy, emphasizing the critical involvement of the afferent vagal pathway in regulating cardiac hypertrophy.
Collapse
Affiliation(s)
- Pilong Shi
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Yang Liu
- Department of Basic Nursing, Harbin Medical University, Heilongjiang 163319, China
| | - Yuetong Sha
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Jiaxin Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Jiajun Zhou
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Kai Liu
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Qianhui Zhang
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Xinran Wang
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University, Heilongjiang 163319, China.
| |
Collapse
|
9
|
Wei S, Tao HY, Duan Z, Wang Y. Environmental Exposure, Epitranscriptomic Perturbations, and Human Diseases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6387-6399. [PMID: 40126397 PMCID: PMC11978485 DOI: 10.1021/acs.est.5c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Epitranscriptomics is a rapidly evolving field, and it examines how chemical modifications on RNA regulate gene expression. Increasing lines of evidence support that exposure to various environmental agents can change substantially chemical modifications on RNA, thereby perturbing gene expression and contributing to disease development in humans. However, the molecular mechanisms through which environmental exposure impairs RNA modification-associated proteins ("reader", "writer", and "eraser" or RWE proteins) and alters the landscape of RNA modifications remain poorly understood. Here, we provide our perspectives on the current knowledge about how environmental exposure alters the epitranscriptome, where we focus on dynamic changes in RNA modifications and their regulatory proteins elicited by exposure to environmental agents. We discuss how these epitranscriptomic alterations may contribute to the development of human diseases, especially neurodegeneration and cancer. We also discuss the potential and technical challenges of harnessing RNA modifications as biomarkers for monitoring environmental exposure. Finally, we emphasize the need to integrate multiomics approaches to decipher the complex interplay between environmental exposure and the epitranscriptome and offer a forward-looking viewpoint on future research priorities that may inform public health interventions and environmental regulations.
Collapse
Affiliation(s)
- Songbo Wei
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Huan-Yu Tao
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Zheng Duan
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
10
|
Yang H, Sun W, Li J, Zhang X. Epigenetics factors in schizophrenia: future directions for etiologic and therapeutic study approaches. Ann Gen Psychiatry 2025; 24:21. [PMID: 40186258 PMCID: PMC11969811 DOI: 10.1186/s12991-025-00557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
Schizophrenia is a complex, heterogeneous, and highly disabling severe mental disorder whose pathogenesis has not yet been fully elucidated. Epigenetics, as a bridge between genetic and environmental factors, plays an important role in the pathophysiology of schizophrenia. Over the past decade, epigenetic-wide association studies have rapidly become an important branch of psychiatric research, especially in deciphering the molecular mechanisms of schizophrenia. This review systematically analyzes recent advances in epigenome-wide association studies (EWAS) of schizophrenia, focusing on technological developments. We synthesize findings from large-scale EWAS alongside emerging evidence on DNA methylation patterns, histone modifications, and regulatory networks, emphasizing their roles in disease mechanisms and treatment responses. In addition, this review provides a prospective outlook, evaluating the impact that technological developments may have on future studies of schizophrenia. With the continuous advancement of high-throughput sequencing technology and the increasing maturity of big data analysis methods, epigenetics is expected to have a significant impact on the early diagnosis, prognosis assessment and even personalized treatment of schizophrenia.
Collapse
Affiliation(s)
- Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, People's Republic of China
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China
| | - Wenxi Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China
| | - Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, People's Republic of China.
| |
Collapse
|
11
|
Iozzo M, Pardella E, Giannoni E, Chiarugi P. The role of protein lactylation: A kaleidoscopic post-translational modification in cancer. Mol Cell 2025; 85:1263-1279. [PMID: 40073861 DOI: 10.1016/j.molcel.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/18/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
The recently discovered lysine lactylation represents a critical post-translational modification with widespread implications in epigenetics and cancer biology. Initially identified on histones, lysine lactylation has been also described on non-histone proteins, playing a pivotal role in transcriptional activation, protein function, and cellular processes. Two major sources of the lactyl moiety have been currently distinguished: L-lactyl-CoA (precursor of the L-lactyl moiety) and S-D-lactylglutathione (precursor of the D-lactyl moiety), which enable enzymatic and non-enzymatic mechanisms of lysine lactylation, respectively. Although the specific writers, erasers, and readers of this modification are still unclear, acetyltransferases and deacetylases have been proposed as crucial mediators of lysine lactylation. Remarkably, lactylation exerts significant influence on critical cancer-related pathways, thereby shaping cellular behavior during malignant transformation and the metastatic cascade. Hence, as recent insights into lysine lactylation underscore its growing potential in tumor biology, targeting this modification is emerging as a significant opportunity for cancer treatment.
Collapse
Affiliation(s)
- Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
12
|
Luo X, He C, Yang B, Yin S, Li K. WTAP Promotes Atherosclerosis by Inducing Macrophage Pyroptosis and M1 Polarization through Upregulating NLRP3. Appl Biochem Biotechnol 2025; 197:2397-2416. [PMID: 39747738 DOI: 10.1007/s12010-024-05106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
The study was designed to investigate the impact of N6-methyladenosine (m6A) writer Wilms tumor 1-associated protein (WTAP) on the progression of atherosclerosis (AS) and to further elucidate its possible regulatory mechanism. The m6A levels and WTAP expressions were initially assessed through RIP, qRT-PCR, and western blotting. An in vitro model of AS was constructed by ox-LDL treatment in RAW264.7 cells. Next, the impact of WTAP on macrophage pyroptosis and M1 polarization was evaluated. The relationship between WTAP and NLRP3 was then investigated using m6A modification quantification and RIP-qPCR assay. To investigate the effect of WTAP on AS development in vivo, we created an ApoE-/-mouse model of AS by feeding high-fat diet (HFD). Furthermore, the influence of WTAP on macrophage pyroptosis and M1 polarization through NLRP3 was explored by NLRP3 overexpression AAV injection. Here, we found that WTAP was significantly upregulated in peripheral blood mononuclear cells (PBMCs) from AS patients, accompanied by increased total m6A methylation levels. The silencing of WTAP suppressed macrophage pyroptosis and M1 polarization induced by ox-LDL and also ameliorated aortic root lesion damage in AS mice. Mechanistically, m6A modification mediated by WTAP enhanced NLRP3 mRNA stabilization, thereby upregulating NLRP3 expression. Overexpression of NLRP3 was found to enhance macrophage pyroptosis and M1 polarization, contributing to the progression of AS. In conclusion, our findings suggest that WTAP knockdown mitigated AS progression by modulating NLRP3 in an m6A-dependent manner. Our study proposes that targeting WTAP could be a potential preventive and therapeutic strategy for AS patients.
Collapse
Affiliation(s)
- Xing Luo
- Department of Neurology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Chaogui He
- Department of Vascular Surgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha), Changsha, Hunan, China
| | - Bo Yang
- Department of Vascular Surgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University (The First Hospital of Changsha), Changsha, Hunan, China
| | - Shuheng Yin
- University of South China, Hengyang, Hunan, China
| | - Ke Li
- University of South China, Hengyang, Hunan, China.
| |
Collapse
|
13
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
14
|
Luo S, Zhou X. Post-transcriptional regulation of behavior plasticity in social insects. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101329. [PMID: 39708917 DOI: 10.1016/j.cois.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Social insects often show remarkable behavioral plasticity, which is closely associated with their respective castes. The underpinnings of this plasticity are complex, involving genetic differences among individuals within a colony and regulation of gene expression at multiple levels. Post-transcriptional regulation, which increases the complexity of the transcriptome, plays a crucial role in the multilayer regulatory network that influences social insect behavior. We provide an overview of the impact of three post-transcriptional regulatory processes on the reproductive division of labor and worker division of labor in social insects: alternative splicing, RNA modifications, and noncoding RNAs. We also discuss the relationship between post-transcriptional regulation and chromatin modification.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
15
|
Ping X, Liang X, Xing W, Wang S, Gong F, Cheng Y, Duan S, Lv X, Li X, Zhang T, Chen C, Zhang Y, Yuan C, Liu S, Liu G, Sun B. Deciphering single-cell landscape unravels cell-type-specific functional roles of RNA m 6A modification in atherosclerosis. Theranostics 2025; 15:4785-4807. [PMID: 40225569 PMCID: PMC11984397 DOI: 10.7150/thno.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Atherosclerosis is a chronic inflammatory disease that is the major cause of mortality worldwide. Although several studies have assessed the function of m6A (N6-methyladenosine) modification in atherosclerosis, its regulatory mechanism at the single-cell level remains unclear. This study provides a comprehensive single-cell atlas of m6A modification regulating cell-type-specific functions in atherosclerosis. Methods: We analyzed single-cell sequencing data derived from atherosclerosis patients to elucidate the influence of m6A modification on diverse cell types. We demonstrated the potential regulatory functions of m6A regulators across various cell types and key transcription factors involved. Furthermore, we discovered m6A regulators mediated intercellular communication in important biological processes. In vitro experiments were conducted to further investigate the effects of ALKBH5, WTAP and METTL3 on atherosclerosis. Results: ALKBH5 upregulated in endothelial cells induced cell proliferation and migration involved in sprouting angiogenesis. In smooth muscle cells, upregulation of WTAP enhanced proliferation, migration and phenotypic transformation. Upregulation of METTL3 and YTHDF2 promoted macrophage activation and differentiation. Furthermore, we identified abnormally activated transcription factors could regulate m6A regulators in a cell-type-specific manner. Moreover, we revealed that m6A regulators were implicated in dysregulated intercellular communication in atherosclerosis. And a series of experimental validations supported the conclusion that m6A regulators exert cell-type-specific regulatory functions. Conclusion: Our study provided evidence for the roles of ALKBH5, WTAP and METTL3 in orchestrating atherosclerotic cell-type-specific functions, representing promising targets for precision medicine.
Collapse
Affiliation(s)
- Xiaorui Ping
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyun Liang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei 050031, China
- Hebei Engineering Research Center of Intelligent Medical Clinical Application, Shijiazhuang, Hebei 050031, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei 050031, China
| | - Wenlu Xing
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Saiqi Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fengcongzhe Gong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaqi Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songqi Duan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
- College of Food Science, Sichuan Agricultural University, Sichuan University, Chengdu 610000, China
| | - Xueqi Lv
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueying Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tianli Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunxiao Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chengzhu Yuan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shangyu Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei 050031, China
- Hebei Engineering Research Center of Intelligent Medical Clinical Application, Shijiazhuang, Hebei 050031, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei 050031, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, China
- Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, Hebei 050031, China
- Hebei Engineering Research Center of Intelligent Medical Clinical Application, Shijiazhuang, Hebei 050031, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei 050031, China
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Leitner M, Murigneux V, Etebari K, Asgari S. Wolbachia elevates host methyltransferase expression and alters the m 6A methylation landscape in Aedes aegypti mosquito cells. BMC Microbiol 2025; 25:164. [PMID: 40128692 PMCID: PMC11934717 DOI: 10.1186/s12866-025-03898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Wolbachia pipientis is an intracellular endosymbiotic bacterium that blocks the replication of several arboviruses in transinfected Aedes aegypti mosquitoes, yet its antiviral mechanism remains unknown. For the first time, we employed Nanopore direct RNA sequencing technology to investigate the impact of wAlbB strain of Wolbachia on the host's N6-methyladenosine (m6A) machinery and post-transcriptional modification landscape. Our study revealed that Wolbachia infection elevates the expression of genes involved in the mosquito's m6A methyltransferase complex. However, knocking down these m6A-related genes did not affect Wolbachia density. Nanopore sequencing identified 1,392 differentially modified m6A DRACH motifs on mosquito transcripts, with 776 showing increased and 616 showing decreased m6A levels due to Wolbachia. These m6A sites were predominantly enriched in coding sequences and 3'-untranslated regions. Gene Ontology analysis revealed that genes with reduced m6A levels were over-represented in functional GO terms associated with purine nucleotide binding functions critical in the post-transcriptional modification process of m6A. Differential gene expression analysis of the Nanopore data uncovered that a total of 643 protein-coding genes were significantly differentially expressed, 427 were downregulated, and 216 were upregulated. Several classical and non-classical immune-related genes were amongst the downregulated DEGs. Notably, it revealed a critical host factor, transmembrane protein 41B (TMEM41B), which is required for flavivirus infection, was upregulated and methylated in the presence of Wolbachia. Indeed, there is a strong correlation between gene expression being upregulated in genes with both increased and decreased levels of m6A modification, respectively. Our findings underscore Wolbachia's ability to modulate many intracellular aspects of its mosquito host by influencing post-transcriptional m6A modifications and gene expression, and it unveils a potential link behind its antiviral properties.
Collapse
Affiliation(s)
- Michael Leitner
- School of the Environment, The University of Queensland, Brisbane, Australia
| | - Valentine Murigneux
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- School of the Environment, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
17
|
Xu L, Shen T, Li Y, Wu X. The Role of M 6A Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications. Clin Rev Allergy Immunol 2025; 68:29. [PMID: 40085180 DOI: 10.1007/s12016-025-09041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
N6-methyladenosine (m6A), a prevalent and essential RNA modification, serves a key function in driving autoimmune disease pathogenesis. By modulating immune cell development, activation, migration, and polarization, as well as inflammatory pathways, m6A is crucial in forming innate defenses and adaptive immunity. This article provides a comprehensive overview of m6A modification features and reveals how its dysregulation affects the intensity and persistence of immune responses, disrupts immune tolerance, exacerbates tissue damage, and promotes the development of autoimmunity. Specific examples include its contributions to systemic autoimmune disorders like lupus and rheumatoid arthritis, as well as conditions that targeting specific organs like multiple sclerosis and type 1 diabetes. Furthermore, this review explores the therapeutic promise of target m6A-related enzymes ("writers," "erasers," and "readers") and summarizes recent advances in intervention strategies. By focusing on the mechanistic and therapeutic implications of m6A modification, this review sheds light on its role as a promising tool for both diagnosis and treatment in autoimmune disorders, laying the foundation for advancements in customized medicine.
Collapse
Affiliation(s)
- Liyun Xu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Shen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
18
|
Zhang Z, Su V, Wiese CB, Cheng L, Wang D, Cui Y, Kallapur A, Kim J, Wu X, Tran PH, Zhou Z, Casero D, Li W, Hevener AL, Reue K, Sallam T. A genome-wide ATLAS of liver chromatin accessibility reveals that sex dictates diet-induced nucleosome dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.623052. [PMID: 40161732 PMCID: PMC11952359 DOI: 10.1101/2024.11.13.623052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The three-dimensional organization of the genome plays an important role in cellular function. Alterations between open and closed chromatin states contributes to DNA binding, collaborative transcriptional activities and informs post-transcriptional processing. The liver orchestrates systemic metabolic control and has the ability to mount a rapid adaptive response to environmental challenges. We interrogated the chromatin architecture in liver under different dietary cues. Using ATAC-seq, we mapped over 120,000 nucleosome peaks, revealing a remarkably preserved hepatic chromatin landscape across feeding conditions. Stringent analysis of nucleosome rearrangements in response to diet revealed that sex is the dominant factor segregating changes in chromatin accessibility. A lipid-rich diet led to a more accessible chromatin confirmation at promoter regions in female mice along with enrichment of promoter binding CCAAT-binding domain proteins. Male liver exhibited stronger binding for nutrient sensing nuclear receptors. Integrative analysis with gene expression corroborated a role for chromatin states in informing functional differences in metabolic traits. We distinguished the impact of gonadal sex and chromosomal sex as determinants of chromatin modulation by diet using the Four Core Genotypes mouse model. Our data provide mechanistic evidence underlying the regulation for the critical sex-dimorphic GWAS gene, Pnpla3 . In summary, we provide a comprehensive epigenetic resource in murine liver that uncovers the complexity of chromatin dynamics in response to diet and sex. Highlights ATAC-Seq, RNA-Seq, and FCG model-integrated analysis unravel sex differences in chromatin accessibility and transcriptome responses to dietary challenges.Lipid-rich diet led to sex-biased chromatin confirmation at promoter regions.Gonadal sex emerged as the most prevalent determinant of the sex bias hepatic chromatin modulation by lipid-rich diets. The critical sex-dimorphic GWAS gene Pnpla3 is suppressed by testosterone, which underlies hepatic differences in expression between the sexes.
Collapse
|
19
|
Shao Y, Ma J, Zhang S, Xu Y, Yu H. NERD-dependent m 6A modification of the nascent FLC transcript regulates flowering time in Arabidopsis. NATURE PLANTS 2025; 11:468-482. [PMID: 40087542 DOI: 10.1038/s41477-025-01945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification on messenger RNA. Although recent studies have shown m6A effects on determining the fate of mRNA through modulating various aspects of plant mRNA metabolism, whether and how m6A affects gene transcription in plants remains elusive. Here we show that NEEDED FOR RDR2-INDEPENDENT DNA METHYLATION (NERD), a plant-specific protein, is an essential component of the m6A methyltransferase complex required for regulating the transcription of a central floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis. NERD interacts with and stabilizes the two core methyltransferases, mRNA adenosine methylases A and B, to promote m6A modification of nascent RNA, conferring an overall negative effect on gene transcription. At the FLC locus, NERD-mediated m6A modification on the nascent transcript negatively affects H3K36me3 deposition and FLC transcription through NERD interaction with the H3K36me3 methyltransferase SET DOMAIN GROUP 8. Collectively, our findings reveal that NERD mediates the crosstalk between epitranscriptomic and epigenetic regulation of FLC to modulate flowering in Arabidopsis.
Collapse
Affiliation(s)
- Yanlin Shao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jinqi Ma
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yifeng Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Wang SW, Li P, Liu SY, Huang DL, Zhang SJ, Zeng XX, Lan T, Mao KL, Gao Y, Cheng YF, Shen Q, Ruan YP, Mao ZJ. Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated m 6A methylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156408. [PMID: 39848020 DOI: 10.1016/j.phymed.2025.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified. PURPOSE This study aimed to explore the impacts of Ast on RPE cell senescence and to uncover the molecular mechanisms involved. METHODS The therapeutic efficacy of Ast was assessed using sodium iodate (NaIO3)-induced adult retinal pigment epithelial cell line 19 (ARPE-19) cell models and an AMD mouse model. To investigate the mechanisms by which Ast mitigated RPE cell senescence, RNA sequencing (RNA-seq), drug affinity responsive target stability-mass spectrometry (DARTS-MS), cellular thermal shift assay (CETSA), reverse transcription quantitative PCR (RT-qPCR), as well as western blotting were conducted. RESULTS Ast significantly inhibited NaIO3-treated ARPE-19 cell senescence and protected against NaIO3-induced AMD in mice. RNA-seq analysis revealed that Ast significantly attenuated inflammation-related signaling pathways and reduced the mRNA levels of interleukin-1 beta (IL-1β). Specifically, Ast decreased the stability of IL-1β mRNA while enhancing its N6-methyladenosine (m6A) methylation. Furthermore, Ast directly interacted with fat mass and obesity-associated protein (FTO). Knockdown or pharmacological inhibition of FTO mitigated the senescence and IL-1β expression in NaIO3-treated ARPE-19 cells. FTO was essential for Ast to inhibit cellular senescence and IL-1β expression. Additionally, inhibition or knockdown of FTO conferred also provided resistance to AMD in the murine model. CONCLUSION Our results indicated that Ast significantly attenuated RPE cell senescence and showed anti-AMD properties. FTO was demonstrated to be a promising therapeutic target for AMD treatment. These findings may provide a deeper understanding of the molecular mechanisms underlying RPE cell senescence in AMD and offer potential strategies for its prevention and management.
Collapse
Affiliation(s)
- Si-Wei Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Ping Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shi-Yu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - De-Lian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Si-Jia Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Tian Lan
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Kai-Li Mao
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Yuan Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi-Fan Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qing Shen
- Panvascular Diseases Research Center, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Ye-Ping Ruan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhu-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
21
|
Shan Y, Liu Y, Zhang M, Pang L, Ji G, Ju X, Tu Y, Shu J. The m6A modification regulates the composition of myofiber types in chicken skeletal muscle. Poult Sci 2025; 104:104811. [PMID: 39919566 PMCID: PMC11848472 DOI: 10.1016/j.psj.2025.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 02/09/2025] Open
Abstract
As a widespread epigenetic RNA modification, N6-methyladenosine (m6A) plays essential regulatory roles in multiple biological processes. However, its function in maintaining and modulating myofiber-type properties remains largely unknown. To investigate the post-transcriptional modification underlying the myofiber type diversity in chicken skeletal muscle, we evaluated the m6A methylation levels of chicken skeletal muscles with different phenotypic traits, and profiled a transcriptome-wide m6A map in the oxidative and glycolytic skeletal muscles by methylated RNA immunoprecipitation sequencing (MeRIP-seq). Our results showed that the levels of m6A methylation in chicken skeletal muscles were closely related to the composition of myofiber types. The m6A methylation level of anterior latissimus dorsi (ALD, typical oxidative skeletal muscle) was the highest among the three muscles and significantly higher than that of the pectoralis major (PM, typical glycolytic skeletal muscle) (P<0.05). We found that about 24.77 % and 33.50 % of genes were modified by m6A methylation in the PM and ALD, respectively, and identified 6,530 and 9,965 m6A peaks, which were mainly located in the coding sequence (CDS) and stop codon. About 3.14 % of m6A modified genes showed significantly differential methylation levels between these two muscles. Intriguingly, the myofiber type-related genes, such as MYOT, TPM3, TPM1, PDK1, MBNL1, and MYH1G, showed differences in m6A methylation and mRNA expression. Further analysis revealed that the m6A methylation was positively correlated with gene expression homeostasis. It is exciting we found that the expression level of ALKBH5 mRNA and protein, was closely related to the composition of myofiber types. ALKBH5 over-expression could regulate the expression levels of genes related to muscle contraction and metabolism, including MYH1E, MYH1G, MYH7B, PDK1, and TPM1, suggesting the effect of ALKBH5 on the formation of myofiber-type properties in chicken skeletal muscle. Our results contribute to a better understanding of epigenetic factors involved in forming chicken myofiber-type properties and provide new targets for further investigation into chicken's growth development and meat quality.
Collapse
Affiliation(s)
- Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Lichuan Pang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou 225125, PR China.
| |
Collapse
|
22
|
Chen X, Yuan Y, Zhou F, Li L, Pu J, Jiang X. m6A RNA methylation: a pivotal regulator of tumor immunity and a promising target for cancer immunotherapy. J Transl Med 2025; 23:245. [PMID: 40022120 PMCID: PMC11871626 DOI: 10.1186/s12967-025-06221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/11/2025] [Indexed: 03/03/2025] Open
Abstract
M6A modification is one of the most common regulatory mechanisms of gene expression in eukaryotic cells, influencing processes such as RNA splicing, degradation, stability, and protein translation. Studies have shown that m6A methylation is closely associated with tumorigenesis and progression, and it plays a key regulatory role in tumor immune responses. m6A modification participates in regulating the differentiation and maturation of immune cells, as well as related anti-tumor immune responses. In the tumor microenvironment, m6A modification can also affect immune cell recruitment, activation, and polarization, thereby promoting or inhibiting tumor cell proliferation and metastasis, and reshaping the tumor immune microenvironment. In recent years, immunotherapies for tumors, such as immune checkpoint inhibitors and adoptive cell immunotherapy, have been increasingly applied in clinical settings, achieving favorable outcomes. Targeting m6A modifications to modulate the immune system, such as using small-molecule inhibitors to target dysregulated m6A regulatory factors or inducing immune cell reprogramming, can enhance anti-tumor immune responses and strengthen immune cell recognition and cytotoxicity against tumor cells. m6A modification represents a new direction in tumor immunotherapy with promising clinical potential. This review discusses the regulatory role of m6A methylation on immune cells and tumor immune responses and explores new strategies for immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yixiao Yuan
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Fan Zhou
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Jun Pu
- Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650223, China.
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xiulin Jiang
- Department of Medicine, UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
23
|
Zhang L, Yang L, Chen X, Huang Q, Ouyang Z, Wang R, Xiang B, Lu H, Ren W, Wang P. Construction and validation of a prognostic model of lncRNAs associated with RNA methylation in lung adenocarcinoma. Transl Cancer Res 2025; 14:761-777. [PMID: 40104741 PMCID: PMC11912078 DOI: 10.21037/tcr-24-1085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/09/2025] [Indexed: 03/20/2025]
Abstract
Background Lung adenocarcinoma (LUAD) is a common type of lung cancer and one of the leading causes of cancer death worldwide. Long non-coding RNAs (lncRNAs) play a crucial role in tumors. The purpose of this study was to explore the expression of lncRNAs associated with RNA methylation modification and their prognostic value in LUAD. Methods The RNA sequencing and clinical data were downloaded from The Cancer Genome Atlas dataset, and the messenger RNA and lncRNAs were annotated by Ensemble. The lncRNAs related to RNA methylation regulators (RMlncRNAs) were filtered by Pearson correlation analysis between differentially expressed lncRNAs and RNA methylation regulators. Univariate Cox regression analysis, multivariate Cox regression analysis, and least absolute shrinkage and selection operator regression analysis were used to construct a prognostic model. The receiver operating characteristic curve (ROC) was plotted to validate the predictive value of the prognostic model. Then, tumor mutational burden (TMB) and microsatellite instability were used to compare the immunotherapy response. Finally, to perform a drug sensitivity analysis, the half-maximal inhibitory concentration (IC50) of targeted drugs was calculated using pRRophetic package. Results In total, 18 RMlncRNAs associated with the prognosis of LUAD patients were identified. Then, six feature lncRNAs (NFYC-AS1, OGFRP1, MIR4435-2HG, TDRKH-AS1, DANCR, and TMPO-AS1) were used to construct a prognostic model. The ROC curves for training, testing, and validation sets showed that the prognosis model was effective. The subindex based on the prognostic model had a high correlation with TMB. The high-risk group might be subject to greater immune resistance according to the comparison of Tumor Immune Dysfunction and Exclusion scores. Finally, the IC50 of 11 drugs had differences between high- and low-risk group, and only three of the drug's target genes (ERBB4, CASP8, and CD86) were differentially expressed. Conclusions In conclusion, a prognostic model based on six feature lncRNAs (NFYC-AS1, OGFRP1, MIR4435-2HG, TDRKH-AS1, DANCR, and TMPO-AS1) was constructed by bioinformatics analysis, which might provide a new insight into the evaluation and treatment of LUAD.
Collapse
Affiliation(s)
- Liren Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Yang
- Department of Traditional Chinese Medicine Rehabilitation Medicine, The Affiliated Calmette Hospital of Kunming Medical University, The First People's Hospital of Kunming, Kunming, China
| | - Xiaobo Chen
- First Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Qiubo Huang
- First Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Zhiqiang Ouyang
- Department of Radiology, Kunming Yan'an Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ran Wang
- Department of Epidemiology and Biostatistics, University of California Irvine, Irvine, USA
| | - Bingquan Xiang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| | - Hong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenjun Ren
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
24
|
Quarto G, Li Greci A, Bizet M, Penning A, Primac I, Murisier F, Garcia-Martinez L, Borges RL, Gao Q, Cingaram PKR, Calonne E, Hassabi B, Hubert C, Herpoel A, Putmans P, Mies F, Martin J, Van der Linden L, Dube G, Kumar P, Soin R, Kumar A, Misra A, Lan J, Paque M, Gupta YK, Blomme A, Close P, Estève PO, Caine EA, Riching KM, Gueydan C, Daniels DL, Pradhan S, Shiekhattar R, David Y, Morey L, Jeschke J, Deplus R, Collignon E, Fuks F. Fine-tuning of gene expression through the Mettl3-Mettl14-Dnmt1 axis controls ESC differentiation. Cell 2025; 188:998-1018.e26. [PMID: 39826545 DOI: 10.1016/j.cell.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The marking of DNA, histones, and RNA is central to gene expression regulation in development and disease. Recent evidence links N6-methyladenosine (m6A), installed on RNA by the METTL3-METTL14 methyltransferase complex, to histone modifications, but the link between m6A and DNA methylation remains scarcely explored. This study shows that METTL3-METTL14 recruits the DNA methyltransferase DNMT1 to chromatin for gene-body methylation. We identify a set of genes whose expression is fine-tuned by both gene-body 5mC, which promotes transcription, and m6A, which destabilizes transcripts. We demonstrate that METTL3-METTL14-dependent 5mC and m6A are both essential for the differentiation of embryonic stem cells into embryoid bodies and that the upregulation of key differentiation genes during early differentiation depends on the dynamic balance between increased 5mC and decreased m6A. Our findings add a surprising dimension to our understanding of how epigenetics and epitranscriptomics combine to regulate gene expression and impact development and likely other biological processes.
Collapse
Affiliation(s)
- Giuseppe Quarto
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Andrea Li Greci
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Audrey Penning
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Irina Primac
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Frédéric Murisier
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodrigo L Borges
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Qingzeng Gao
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Pradeep K R Cingaram
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Bouchra Hassabi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Céline Hubert
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Adèle Herpoel
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Pascale Putmans
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Frédérique Mies
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Jérôme Martin
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Louis Van der Linden
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Gaurav Dube
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Pankaj Kumar
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Romuald Soin
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Abhay Kumar
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anurag Misra
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jie Lan
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Morgane Paque
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yogesh K Gupta
- Greehey Children's Cancer Research Institute and Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Pierre Close
- Laboratory of Cancer Signaling, GIGA-Institute, University of Liège, Liège, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| | | | | | | | - Cyril Gueydan
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université libre de Bruxelles (ULB), Gosselies, Belgium
| | | | | | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jana Jeschke
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Center (U-CRC), Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium.
| |
Collapse
|
25
|
Li P, Fang X, Huang D. Exploring m6A modifications in gastric cancer: from molecular mechanisms to clinical applications. Eur J Med Res 2025; 30:98. [PMID: 39940056 PMCID: PMC11823136 DOI: 10.1186/s40001-025-02353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
The significance of m6A modifications in several biological processes has been increasingly recognized, particularly in the context of cancer. For instance, m6A modifications in gastric cancer (GC) have been significantly implicated in tumor progression, metastasis, and treatment resistance. GC is characterized by the differential expression of m6A regulators. High expression writers such as METTL3 and WTAP are associated with poor prognosis and aggressive clinical features. Conversely, low expression of METTL14 is linked to worse clinical outcomes, whereas elevated levels of demethylases, such as FTO and ALKBH5, correlate with better survival rates. These m6A regulators influence several cellular biological functions, including proliferation, invasion, migration, glycolysis, and chemotherapy resistance, thereby affecting tumor growth and therapeutic outcomes. The assessment of m6A modification patterns and the expression profiles of m6A-related genes hold substantial potential for improving the clinical diagnosis and treatment of GC. In this review, we provide an updated and comprehensive summary of the role of m6A modifications in GC, emphasizing their molecular mechanisms, clinical significance, and translational applications in developing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiangjie Fang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
26
|
Li C, Yuan Y, Jia Y, Zhou Q, Wang Q, Jiang X. Cellular senescence: from homeostasis to pathological implications and therapeutic strategies. Front Immunol 2025; 16:1534263. [PMID: 39963130 PMCID: PMC11830604 DOI: 10.3389/fimmu.2025.1534263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Cellular aging is a multifactorial and intricately regulated physiological process with profound implications. The interaction between cellular senescence and cancer is complex and multifaceted, senescence can both promote and inhibit tumor progression through various mechanisms. M6A methylation modification regulates the aging process of cells and tissues by modulating senescence-related genes. In this review, we comprehensively discuss the characteristics of cellular senescence, the signaling pathways regulating senescence, the biomarkers of senescence, and the mechanisms of anti-senescence drugs. Notably, this review also delves into the complex interactions between senescence and cancer, emphasizing the dual role of the senescent microenvironment in tumor initiation, progression, and treatment. Finally, we thoroughly explore the function and mechanism of m6A methylation modification in cellular senescence, revealing its critical role in regulating gene expression and maintaining cellular homeostasis. In conclusion, this review provides a comprehensive perspective on the molecular mechanisms and biological significance of cellular senescence and offers new insights for the development of anti-senescence strategies.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Yixiao Yuan
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - YingDong Jia
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Zhou
- Department of Oncology, Suining Central Hospital, Suining, Sichuan, China
| | - Qiang Wang
- Gastrointestinal Surgical Unit, Suining Central Hospital, Suining, Sichuan, China
| | - Xiulin Jiang
- Department of Medicine, Health Cancer Center, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Su Z, Lan J, Wang Y, Ma N, Yang J, Liang D, Zeng H, Yang M. Lactylation-driven ALKBH5 diminishes macrophage NLRP3 inflammasome activation in patients with G6PT deficiency. J Allergy Clin Immunol 2025:S0091-6749(25)00117-4. [PMID: 39900266 DOI: 10.1016/j.jaci.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Neutropenia represents an important clinical problem in patients with glycogen storage disease type Ib, characterized by genetic deficiency in glucose-6-phosphate translocase (G6PT/SLC37A4). However, the role of G6PT in macrophages has not been elucidated. OBJECTIVE We sought to investigate the function of G6PT in macrophage inflammation. METHODS Functional assays (including immunoblotting, real-time quantitative PCR, flow cytometry, immunofluorescence staining, and enzyme-linked immunosorbent assay) and RNA sequencing were performed. RESULTS We find that macrophages from patients deficient in G6PT exhibited diminished NLRP3 inflammasome activation. Mechanistically, deficiency of G6PT promotes glycolysis and lactate production in macrophages. Lactate accumulation potently induces ALKBH5 upregulation via H3K18 lactylation. ALKBH5 decreases m6A modification on NLRP3 messenger RNA, attenuating its transcript stability and thus inhibiting inflammasome activation. Further, treating G6PT-deficient macrophages with an inhibitor of the lactate dehydrogenase to lower their lactate levels restores NLRP3 inflammasome activation and rescues bacterial handling defect. CONCLUSION These findings reveal a previously unknown pathogenic mechanism of lactylation-driven defective NLRP3 inflammasome signaling and subsequent impaired antimicrobial activity as driving factors in these inflammatory disorders, indicating that glycolysis/lactate/histone lactylation cascade may be a potential therapeutic target for glycogen storage disease type Ib.
Collapse
Affiliation(s)
- Zexiong Su
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiaoli Lan
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ni Ma
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Yang
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Danxia Liang
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hanshi Zeng
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Min Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Wu S, Liu M, Wang X, Wang S. The histone lactylation of AIM2 influences the suppression of ferroptosis by ACSL4 through STAT5B and promotes the progression of lung cancer. FASEB J 2025; 39:e70308. [PMID: 39792364 DOI: 10.1096/fj.202402139r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Lung cancer progression is characterized by intricate epigenetic changes that impact critical metabolic processes and cell death pathways. In this study, we investigate the role of histone lactylation at the AIM2 locus and its downstream effects on ferroptosis regulation and lung cancer progression. We utilized a combination of biochemical assays, including chromatin immunoprecipitation (ChIP), quantitative real-time PCR (qRT-PCR), and western blotting to assess histone lactylation levels and gene expression. To evaluate the functional consequences, we employed gain- and loss-of-function approaches using shikonin treatment and siRNA knockdowns in lung cancer cell lines. Additionally, we assessed the impact of these interventions on ferroptosis markers and lung cancer cell viability. Our results reveal that increased histone lactylation at the AIM2 locus correlates with enhanced transcriptional activity of AIM2, leading to reduced ferroptosis through modulation of ACSL4 and STAT5B. Furthermore, we demonstrate that shikonin, a natural naphthoquinone derivative, effectively downregulates PKM2 and AIM2 expression, thereby inhibiting lung cancer progression by counteracting the effects of histone lactylation on AIM2 expression. These findings highlight the importance of histone lactylation in regulating AIM2 expression and ferroptosis in lung cancer cells. They also suggest that targeting PKM2 and AIM2, particularly through the use of shikonin, could be a promising strategy for developing novel therapies against lung cancer.
Collapse
Affiliation(s)
- Songze Wu
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Man Liu
- Department of Cardiology, CCU, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Wang
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Hepatobiliary Surgery, Chinese Academy of Science Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shan Wang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Cardiovascular Ultrasound & Noninvasive Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Xie X, Li H, Luo B, Fan X, Li Y, Zhang Y, Cui X, Yin W, Liu B, Xu H, Cheng H, Li W, Yu H, Wu F. ALKBH5 controlled autophagy of peripheral blood mononuclear cells by regulating NRG1 mRNA stability in ankylosing spondylitis. Int Immunopharmacol 2025; 144:113670. [PMID: 39580857 DOI: 10.1016/j.intimp.2024.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease which is characterized by pathological osteogenesis. N6-methyladenosine (m6A) RNA modification is pivotal in immunity and inflammation. In this study, the peripheral blood mononuclear cells (PBMCs) were isolated from healthy or AS patients blood samples in Fuyang People's Hospital, which was utilized to clarify the role of m6A modification in AS pathogenesis. The results showed that the autophagy levels showed a decreasing trend; meanwhile, the m6A demethylase ALKBH5 expression was downregulation in AS-PBMCs. The RNA-seq analysis identified 201 significantly altered genes including NRG1, FOS, CAMKK2, NLRC4, and DAPK1; and NRG1 mRNA expression levels showed significant improvement in AS. After ALKBH5 knockdown, the autophagy levels significantly decreased through increasing NRG1 m6A modification and enhancing its mRNA stability, while ALKBH5 overexpression promoted autophagy by reduceing NRG1 mRNA stability. Additionally, the results found that the "reader" IGF2BP3 substantially enhanced NRG1 expression and mRNA stability in AS patients PBMCs. Silencing ALKBH5 increased IGF2BP3 binding to the m6A-enriched NRG1 transcript, and enhancing NRG1 mRNA stability and protein expression. However, ALKBH5 modification site mutation may increase IGF2BP3 binding to NRG1 mRNA. These finding suggested that ALKBH5 downregulation inhibited AS-PBMCs autophagy leves through regulating post-transcriptional m6A modification to upregulate NRG1 protein expression, which provided novel and effective approaches for AS clinical therapy.
Collapse
Affiliation(s)
- Xin Xie
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Haili Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Bin Luo
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Xiaolong Fan
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Yuanyuan Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Yadi Zhang
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Xilong Cui
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Wen Yin
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China
| | - Bo Liu
- Department of Orthopedics, No. 2 Pepople's Hospital of Fuyang City, 1088 Yinghe West Road, Fuyang, Anhui 236015, PR China
| | - Haiyan Xu
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Huimin Cheng
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China
| | - Wenyong Li
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China.
| | - Haiyang Yu
- Department of Orthopedics, Fuyang People's Hospital, 501 Sanqing Road, Fuyang, Anhui, 236012, PR China.
| | - Fengrui Wu
- Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui 236041, PR China.
| |
Collapse
|
30
|
Shi L, Li S, Zhu R, Lu C, Xu X, Li C, Huang X, Zhao X, Mao F, Li K. CRISPRepi: a multi-omic atlas for CRISPR-based epigenome editing. Nucleic Acids Res 2025; 53:D901-D913. [PMID: 39530233 PMCID: PMC11701627 DOI: 10.1093/nar/gkae1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
CRISPR-based epigenome editing integrates the precision of CRISPR with the capability of epigenetic mark rewriting, offering a tunable and reversible gene regulation strategy without altering the DNA sequences. Various epigenome editing systems have been developed and applied in different organisms and cell types; however, the detailed information is discrete, making it challenging to evaluate the precision of different editing systems and design the optimal sgRNAs for further functional studies. Herein, we developed CRISPRepi (http://crisprepi.maolab.org/ or http://crisprepi.lilab-pkuhsc.org/), a pioneering platform that consolidates extensive sequencing data from 671 meticulously curated RNA-seq, ChIP-seq, Bisulfite-seq and ATAC-seq datasets in 87 cell types manipulated by 74 epigenome editing systems. In total, we have curated 5962 sgRNAs associated with 283 target genes from 2277 samples across six species. CRISPRepi incorporates tools for analyzing editing outcomes and assessing off-target effects by analyzing gene expression changes pre- and post-editing, along with the details of multi-omic epigenetic landscapes. Moreover, CRISPRepi supports the investigation of editing potentials for newly designed sgRNA sequences in a cell/tissue-specific context. By providing a user-friendly interface for searching and selecting optimal editing designs across multiple organisms, CRISPRepi serves as an integrated resource for researchers to evaluate editing efficiency and off-target effects among diverse CRISPR-based epigenome editing systems.
Collapse
Affiliation(s)
- Leisheng Shi
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Cancer Center, Peking University Third Hospital, Beijing, 100191, China
| | - Shasha Li
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chenyang Lu
- Division of Rheumatology, Department of Internal Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xintian Xu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Changzhi Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xinyue Huang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital); Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
- Cancer Center, Peking University Third Hospital, Beijing, 100191, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
31
|
Yang Q, Falahati A, Khosh A, Vafaei S, Al-Hendy A. Targeting Bromodomain-Containing Protein 9 in Human Uterine Fibroid Cells. Reprod Sci 2025; 32:103-115. [PMID: 38858328 DOI: 10.1007/s43032-024-01608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Bromodomain (BRD)-containing proteins are evolutionarily conserved protein-protein interaction modules involved in many biological processes. BRDs selectively recognize and bind to acetylated lysine residues, particularly in histones, and thereby have a crucial role in the regulation of gene expression. BRD protein dysfunction has been linked to many diseases, including tumorigenesis. Previously, we reported the critical role of BRD-containing protein 9 (BRD9) in the pathogenesis of UFs. The present study aimed to extend our previous finding and further understand the role of the BRD9 in UFs. Our studies demonstrated that targeted inhibition of BRD9 with its potent inhibitor TP-472 inhibited the pathogenesis of UF through increased apoptosis and proliferation arrest and decreased extracellular matrix deposition in UF cells. High-throughput transcriptomic analysis further and extensively demonstrated that targeted inhibition of BRD9 by TP-472 impacted the biological pathways, including cell cycle progression, inflammatory response, E2F targets, ECM deposition, and m6A reprogramming. Compared with the previous study, we identified common enriched pathways induced by two BRD9 inhibitors, I-BRD9 and TP-472. Taken together, our studies further revealed the critical role of BRD9 in UF cells. We characterized the link between BRD9 and other vital pathways, as well as the connection between epigenetic and epitranscriptome involved in UF progression. Targeted inhibition of BRD proteins might provide a non-hormonal treatment strategy for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai, 505262, UAE
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
32
|
Liu T, Conesa A. Profiling the epigenome using long-read sequencing. Nat Genet 2025; 57:27-41. [PMID: 39779955 DOI: 10.1038/s41588-024-02038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
The advent of single-molecule, long-read sequencing (LRS) technologies by Oxford Nanopore Technologies and Pacific Biosciences has revolutionized genomics, transcriptomics and, more recently, epigenomics research. These technologies offer distinct advantages, including the direct detection of methylated DNA and simultaneous assessment of DNA sequences spanning multiple kilobases along with their modifications at the single-molecule level. This has enabled the development of new assays for analyzing chromatin states and made it possible to integrate data for DNA methylation, chromatin accessibility, transcription factor binding and histone modifications, thereby facilitating comprehensive epigenomic profiling. Owing to recent advancements, alternative, nascent and translating transcripts can be detected using LRS approaches. This Review discusses LRS-based experimental and computational strategies for characterizing chromatin states and highlights their advantages over short-read sequencing methods. Furthermore, we demonstrate how various long-read methods can be integrated to design multi-omics studies to investigate the relationship between chromatin states and transcriptional dynamics.
Collapse
Affiliation(s)
- Tianyuan Liu
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain.
| |
Collapse
|
33
|
Sood S, Tiwari A, Sangwan J, Vohra M, Sinha NR, Tripathi R, Sangwan VS, Mohan RR. Role of epigenetics in corneal health and disease. Prog Retin Eye Res 2025; 104:101318. [PMID: 39547455 PMCID: PMC11710990 DOI: 10.1016/j.preteyeres.2024.101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Epigenetics plays a vital role in corneal health and diseases. Epigenetic changes regulate the expression of genes by altering the accessibility of chromatin via histone modifications, DNA methylation and miRNAs without altering DNA sequence. Ocular trauma and infections are common causes of corneal damage, vision impairment, and mono/bilateral blindness worldwide. Mounting literature shows that epigenetic modifications can modulate corneal clarity, function, and pathogenesis including inflammation, wound healing, fibrosis, and neovascularization. Additionally, epigenetic modifications can be targeted to reverse corneal pathologies and develop interventional therapies. However, current understanding on how epigenetic modifications lead to corneal abnormalities and diseases is limited. This review provides in-depth knowledge and mechanistic understanding of epigenetics alterations in corneal pathogenesis, and information on potential epigenetic targets for treatment of corneal diseases.
Collapse
Affiliation(s)
- Swati Sood
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA
| | - Anil Tiwari
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Jyoti Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Nishant R Sinha
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Ratnakar Tripathi
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Virender S Sangwan
- Eicher-Shroff Centre for Stem Cells Research (ESC-SCR), Dr. Shroff Charity Eye Hospital, Delhi, India
| | - Rajiv R Mohan
- Departments of Veterinary Medicine & Surgery, College of Veterinary Medicine University of Missouri, Columbia, MO, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
34
|
Mitsuhashi H, Lin R, Chawla A, Mechawar N, Nagy C, Turecki G. Altered m6A RNA methylation profiles in depression implicate the dysregulation of discrete cellular functions in males and females. iScience 2024; 27:111316. [PMID: 39650737 PMCID: PMC11625292 DOI: 10.1016/j.isci.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Adverse environmental stress represents a significant risk factor for major depressive disorder (MDD), often resulting in disrupted synaptic connectivity which is known to be partly regulated by epigenetic mechanisms. N6-methyladenosine (m6A), an epitranscriptomic modification, has emerged as a crucial regulator of activity-dependent gene regulation. In this study, we characterized m6A profiles in the ventromedial prefrontal cortex (vmPFC) of individuals with MDD. Using m6A sequencing, we identified a total of 30,279 high-confidence m6A peaks, exhibiting significant enrichment in genes related to neuronal and synaptic function. The m6A peaks between males and females with MDD that passed the significance threshold showed opposite m6A patterns, while the threshold-free m6A patterns were concordant. Distinct m6A profiles were found in MDD for each sex, with dysregulation associated with microtubule movement in males and neuronal projection in females. Our results suggest the potential roles of m6A as part of the dysregulated molecular network in MDD.
Collapse
Affiliation(s)
- Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Rixing Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544 USA, USA
| | - Anjali Chawla
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
35
|
Gronkowska K, Robaszkiewicz A. Genetic dysregulation of EP300 in cancers in light of cancer epigenome control - targeting of p300-proficient and -deficient cancers. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200871. [PMID: 39351073 PMCID: PMC11440307 DOI: 10.1016/j.omton.2024.200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.
Collapse
Affiliation(s)
- Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
36
|
Chen X, Zhou B, Wang S, Jiang X, Ping Y, Xia J, Yu F, Li Y, Zhang M, Ding Y. Intestinal metaplasia key molecules and UPP1 activation via Helicobacter pylori /NF-kB: drivers of malignant progression in gastric cancer. Cancer Cell Int 2024; 24:399. [PMID: 39695769 DOI: 10.1186/s12935-024-03598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Gastric cancer (GC) remains a significant global health challenge due to its high morbidity and mortality rates. The development of GC is a multi-hit process and the exploration of precancerous lesions is crucial. To elucidate the molecular and cellular dynamics underlying gastric carcinogenesis, we conducted an integrative single-cell RNA sequencing analysis of 26,028 high-quality cells from gastric antral mucosa biopsies across various stages, including non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, and early gastric cancer. By constructing a detailed single-cell atlas, we identified distinct epithelial cell subpopulations and their corresponding molecular signatures. We focused on the biological link between gastric epithelial cells and cancer cells. Notably, we observed that gland mucous cells acquired an intestinal-like stem cell phenotype during metaplasia, with MUC6, MUC2 and OLFM4 emerging as the specific markers for unique endocrine cells in early malignant lesions. Additionally, our analysis highlighted UPP1 as a key oncogene, with its expression progressively increasing from normal epithelial cells to malignant cells. UPP1 upregulation was shown to promote GC cell proliferation and migration, implicating it in the oncogenic process. Further, we explored the impact of Helicobacter pylori infection on gene expression, revealing that Helicobacter pylori infection upregulates UPP1 via the NF-κB pathway. Our cell-cell communication analysis underscored the significant role of the Macrophage migration inhibitory factor pathway in the tumor microenvironment, contributing to GC progression. Various key molecules involved in intestinal metaplasia, along with UPP1 and the Macrophage migration inhibitory factor pathway, collectively illustrate the multifaceted nature and complexity of gastric cancer evolution, highlighting the cumulative impacts that drive tumorigenesis.
Collapse
Affiliation(s)
- Xuyu Chen
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bengang Zhou
- Dalian Medical University, Dalian, Liaoning, China
| | - Siying Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Jiang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yukun Ping
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jianlei Xia
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Feiyu Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaoyao Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Min Zhang
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Yanbing Ding
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
37
|
Yang Z, Tian C, He Z, Zhu X, He J, Pan H, Li Y, Ruan G, Wu X, Pan X. Mesenchymal stem cells reverse thymus aging by reprogramming the DNA methylation of thymic epithelial cells. Regen Ther 2024; 27:126-169. [PMID: 38571892 PMCID: PMC10988135 DOI: 10.1016/j.reth.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Background A decrease in the number and activity of thymic epithelial cells (TECs) is an important factor in thymic degeneration. Mesenchymal stem cells (MSCs) treating thymic ageing is a promising strategy, but the DNA methylation modification mechanism in TECs remains unclear. Methods Aged rhesus monkeys were treated with MSCs to establish a thymic senescence model, and hematoxylin-eosin (HE) staining, immunofluorescence staining, and ELISA were performed to observe the structure and function of the thymus. TEC aging model and MSCs co-culture system were established to detect DNA methylation modification and transcriptomic changes, correlation analysis between transcription factor methylation and mRNA expression, and q-PCR, immunofluorescence staining, and Western blot were used to identified key genes. Results MSCs improved the structure and function of thymus in elderly macaque monkeys; reduced the expression levels of β-Gal, P16, and P21; and increased the activity of aging TECs. There were 501 genes with increased methylation in the promoter region in the treated group compared with the untreated group, among which 23 genes were involved in the negative regulation of cell growth, proliferation and apoptosis, while 591 genes had decreased methylation, among which 37 genes were associated with promoting cell growth and proliferation and inhibiting apoptosis. Furthermore, 66 genes showed a negative correlation between promoter methylation levels and gene transcription; specifically, PDE5A, DUOX2, LAMP1 and SVIL were downregulated with increased methylation, inhibiting growth and development, while POLR3G, PGF, CHTF18, KRT17, FOXJ1, NGF, DYRK3, LRP8, CDT1, PRELID1, F2R, KNTC1 and TRIM3 were upregulated with decreased methylation, promoting cell growth. Conclusion MSCs improve the structure and function of aged thymus, which involves the regulation of DNA methylation profiles and a decrease in the methylation level of the transcription factor NGF to specifically upregulate KRT17 and FOXJ1 to promote the proliferation of TECs.
Collapse
Affiliation(s)
- Zailing Yang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
- The Second Peoples Hospital of Guiyang, Medical Laboratory, Guiyang 550023, Guizhou Province, China
| | - Chuan Tian
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiangqing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Jie He
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Hang Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Ye Li
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Guangping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - XiJun Wu
- The Second Peoples Hospital of Guiyang, Medical Laboratory, Guiyang 550023, Guizhou Province, China
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| |
Collapse
|
38
|
Wu O, Jin Y, Zhang Z, Zhou H, Xu W, Chen L, Jones M, Kwan KYH, Gao J, Zhang K, Cheng X, Chen Q, Wang X, Li YM, Guo Z, Sun J, Chen Z, Wang B, Wang X, Shen S, Wu A. KMT2A regulates the autophagy-GATA4 axis through METTL3-mediated m 6A modification of ATG4a to promote NPCs senescence and IVDD progression. Bone Res 2024; 12:67. [PMID: 39572532 PMCID: PMC11582572 DOI: 10.1038/s41413-024-00373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 11/24/2024] Open
Abstract
Intervertebral disc degeneration (IVDD), a disease associated with ageing, is characterised by a notable increase in senescent nucleus pulposus cells (NPCs) as IVDD progresses. However, the specific mechanisms that regulate the senescence of NPCs remain unknown. In this study, we observed impaired autophagy in IVDD-NPCs, which contributed to the upregulation of NPCs senescence and the senescence-associated secretory phenotype (SASP). The dysregulated SASP disrupted NPCs viability and initiated extracellular matrix degradation. Conversely, the restoration of autophagy reversed the senescence phenotype by inhibiting GATA binding protein 4 (GATA4). Moreover, we made the novel observation that a cross-talk between histone H3 lysine 4 trimethylation (H3K4me3) modification and N6-methyladenosine(m6A)-methylated modification regulates autophagy in IVDD-NPCs. Mechanistically, lysine methyltransferase 2A (KMT2A) promoted the expression of methyltransferase-like 3 (METTL3) through H3K4me3 modification, whereas METTL3-mediated m6A modification reduced the expression of autophagy-associated 4a (ATG4a) by attenuating its RNA stability, leading to autophagy damage in NPCs. Silencing KMT2A and METTL3 enhanced autophagic flux and suppressed SASP expression in IVDD-NPCs. Therefore, targeting the H3K4me3-regulated METTL3/ATG4a/GATA4 axis may represent a promising new therapeutic strategy for IVDD.
Collapse
Affiliation(s)
- Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiguang Zhang
- Department of Emergency Medicine Center, Jinhua Municipal Central Hospital, Zhejiang, China
| | - Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wenbin Xu
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, UK
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jianyuan Gao
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei Cheng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Michael Li
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihua Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
39
|
Yang J. Emerging roles of long non-coding RNA FOXP4-AS1 in human cancers: From molecular biology to clinical application. Heliyon 2024; 10:e39857. [PMID: 39539976 PMCID: PMC11558633 DOI: 10.1016/j.heliyon.2024.e39857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Forkhead box P4 antisense RNA 1 (FOXP4-AS1) is a long non-coding RNA (lncRNA) situated on the human chromosome 6p21.1 locus. Previous research has demonstrated that FOXP4-AS1 is dysregulated in various cancers and exhibits a dual purpose as a tumor suppressor or oncogene in specific types of cancer. The levels of FOXP4-AS1 are significantly correlated with clinical features of cancer as well as prognosis. Additionally, FOXP4-AS1 is stimulated by transcription factors ATF3, YY1, PAX5, and SP4. The molecular mechanisms of FOXP4-AS1 in cancer are quite complex. It competitively sponges multiple miRNAs, bidirectionally regulates the levels of host gene FOXP4, activates the PI3K/AKT, Wnt/β-catenin, and ERK/MAPK signaling pathways, and recruits chromatin-modifying enzymes or interacts with other proteins to regulate malignant phenotypes of tumors, including proliferation, invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In this review, we provide an overview of the latest developments in FOXP4-AS1 oncology research, outlines its molecular regulatory networks in cancer, and discusses its prospective relevance as a cancer therapeutic target as well as a biomarker for prognosis and diagnosis.
Collapse
Affiliation(s)
- Jingjie Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
40
|
Ge AY, Arab A, Dai R, Navickas A, Fish L, Garcia K, Asgharian H, Goudreau J, Lee S, Keenan K, Pappalardi MB, McCabe MT, Przybyla L, Goodarzi H, Gilbert LA. A multiomics approach reveals RNA dynamics promote cellular sensitivity to DNA hypomethylation. Sci Rep 2024; 14:25940. [PMID: 39472491 PMCID: PMC11522420 DOI: 10.1038/s41598-024-77314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The search for new approaches in cancer therapy requires a mechanistic understanding of cancer vulnerabilities and anti-cancer drug mechanisms of action. Problematically, some effective therapeutics target cancer vulnerabilities that have poorly defined mechanisms of anti-cancer activity. One such drug is decitabine, a frontline therapeutic approved for the treatment of high-risk acute myeloid leukemia (AML). Decitabine is thought to kill cancer cells selectively via inhibition of DNA methyltransferase enzymes, but the genes and mechanisms involved remain unclear. Here, we apply an integrated multiomics and CRISPR functional genomics approach to identify genes and processes associated with response to decitabine in AML cells. Our integrated multiomics approach reveals RNA dynamics are key regulators of DNA hypomethylation induced cell death. Specifically, regulation of RNA decapping, splicing and RNA methylation emerge as important regulators of cellular response to decitabine.
Collapse
Affiliation(s)
- Alex Y Ge
- School of Medicine, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Abolfazl Arab
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Raymond Dai
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Albertas Navickas
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Lisa Fish
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kristle Garcia
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Hosseinali Asgharian
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jackson Goudreau
- Arc Institute, Palo Alto, CA, 94304, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sean Lee
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Kathryn Keenan
- Tumor Cell Targeting Research Unit, Research, GSK, Collegeville, PA, 19426, USA
| | | | - Michael T McCabe
- Tumor Cell Targeting Research Unit, Research, GSK, Collegeville, PA, 19426, USA
| | - Laralynne Przybyla
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Laboratory for Genomics Research, San Francisco, CA, 94158, USA
| | - Hani Goodarzi
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Luke A Gilbert
- Arc Institute, Palo Alto, CA, 94304, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
41
|
Hu J, Xu T, Kang H. Crosstalk between RNA m 6A modification and epigenetic factors in plant gene regulation. PLANT COMMUNICATIONS 2024; 5:101037. [PMID: 38971972 PMCID: PMC11573915 DOI: 10.1016/j.xplc.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification observed in eukaryotic mRNAs. Advances in transcriptome-wide m6A mapping and sequencing technologies have enabled the identification of several conserved motifs in plants, including the RRACH (R = A/G and H = A/C/U) and UGUAW (W = U or A) motifs. However, the mechanisms underlying deposition of m6A marks at specific positions in the conserved motifs of individual transcripts remain to be clarified. Evidence from plant and animal studies suggests that m6A writer or eraser components are recruited to specific genomic loci through interactions with particular transcription factors, 5-methylcytosine DNA methylation marks, and histone marks. In addition, recent studies in animal cells have shown that microRNAs play a role in depositing m6A marks at specific sites in transcripts through a base-pairing mechanism. m6A also affects the biogenesis and function of chromatin-associated regulatory RNAs and long noncoding RNAs. Although we have less of an understanding of the link between m6A modification and epigenetic factors in plants than in animals, recent progress in identifying the proteins that interact with m6A writer or eraser components has provided insights into the crosstalk between m6A modification and epigenetic factors, which plays a crucial role in transcript-specific methylation and regulation of m6A in plants.
Collapse
Affiliation(s)
- Jianzhong Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Tao Xu
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Hunseung Kang
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
42
|
Ying Y, Zhang J, Ren D, Zhao P, Zhang W, Lu X. ERP29 regulates the proliferation of endometrial carcinoma via M6A modification. Life Sci 2024; 354:122976. [PMID: 39142507 DOI: 10.1016/j.lfs.2024.122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/10/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
AIMS Endoplasmic reticulum protein 29 (ERP29) is crucial for endoplasmic reticulum stress (ERS). M6A plays an important role in the progression of endometrial cancer (EC). The study investigated the role of ERS-related gene (ERP29) and m6A in EC. MATERIALS AND METHODS We screened ERS-related genes based on the GEO dataset, GSEA dataset and TCGA-UCEC database using WGCNA and two machine learning algorithms. The m6A-related GEO dataset was employed to identify the ERS-related hub genes with m6A. Expression of hub genes in different cell types were visualize through scRNA-seq data analyzing. Using qPCR, Western blot, and Immunohistochemical assays to detect the expression of ERP29, the effect of ERP29 on cancer cell proliferation was investigated through CCK8, EdU and clone formation experiments. M6A modifications were studied using m6A Dot blot and MeRIP-qPCR. Finally, we conducted rescue experiments. KEY FINDINGS Ten ERS-related hub genes with m6A were identified. ERP29 is highly expressed in EC. ERP29 knockdown inhibits EC cell proliferation. METTL3 overexpression increases the ERP29 mRNA m6A and decreases the expression of ERP29. Cycloleucine (Cyc), a nucleic acid methylation inhibitor, treatment reduces ERP29 mRNA m6A and increases the expression of ERP29. Cyc rescue the low expression of ERP29 caused by overexpression of METTL3 through m6A. ERP29 knockdown rescued the increased proliferation of EC cells caused by low m6A. SIGNIFICANCE ERP29 is highly expressed in EC. m6A regulates ERP29 expression and affects the proliferation of endometrial cancer cells. This represents the premise for applying ERP29 and m6A modifications in diagnosing and treating EC.
Collapse
Affiliation(s)
- Yanqi Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Jingyan Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Dan Ren
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Panpan Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Wenyi Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China
| | - Xiaoqin Lu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, 2nd, Jingba Road, Zhengzhou 450053, Henan Province, China.
| |
Collapse
|
43
|
Deng Y, Zhou J, Li HB. The physiological and pathological roles of RNA modifications in T cells. Cell Chem Biol 2024; 31:1578-1592. [PMID: 38986618 DOI: 10.1016/j.chembiol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/20/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
RNA molecules undergo dynamic chemical modifications in response to various external or cellular stimuli. Some of those modifications have been demonstrated to post-transcriptionally modulate the RNA transcription, localization, stability, translation, and degradation, ultimately tuning the fate decisions and function of mammalian cells, particularly T cells. As a crucial part of adaptive immunity, T cells play fundamental roles in defending against infections and tumor cells. Recent findings have illuminated the importance of RNA modifications in modulating T cell survival, proliferation, differentiation, and functional activities. Therefore, understanding the epi-transcriptomic control of T cell biology enables a potential avenue for manipulating T cell immunity. This review aims to elucidate the physiological and pathological roles of internal RNA modifications in T cell development, differentiation, and functionality drawn from current literature, with the goal of inspiring new insights for future investigations and providing novel prospects for T cell-based immunotherapy.
Collapse
Affiliation(s)
- Yu Deng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Zhou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Chongqing International Institute for Immunology, Chongqing 401320, China.
| |
Collapse
|
44
|
Chai C, Gibson J, Li P, Pampari A, Patel A, Kundaje A, Wang B. Flexible use of conserved motif vocabularies constrains genome access in cell type evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611027. [PMID: 39282369 PMCID: PMC11398382 DOI: 10.1101/2024.09.03.611027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cell types evolve into a hierarchy with related types grouped into families. How cell type diversification is constrained by the stable separation between families over vast evolutionary times remains unknown. Here, integrating single-nucleus multiomic sequencing and deep learning, we show that hundreds of sequence features (motifs) divide into distinct sets associated with accessible genomes of specific cell type families. This division is conserved across highly divergent, early-branching animals including flatworms and cnidarians. While specific interactions between motifs delineate cell type relationships within families, surprisingly, these interactions are not conserved between species. Consistently, while deep learning models trained on one species can predict accessibility of other species' sequences, their predictions frequently rely on distinct, but synonymous, motif combinations. We propose that long-term stability of cell type families is maintained through genome access specified by conserved motif sets, or 'vocabularies', whereas cell types diversify through flexible use of motifs within each set.
Collapse
Affiliation(s)
- Chew Chai
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Jesse Gibson
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Pengyang Li
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, USA
| | - Aman Patel
- Department of Computer Science, Stanford University, Stanford, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, USA
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
45
|
Li C, Chen K, Fang Q, Shi S, Nan J, He J, Yin Y, Li X, Li J, Hou L, Hu X, Kellis M, Han X, Xiong X. Crosstalk between epitranscriptomic and epigenomic modifications and its implication in human diseases. CELL GENOMICS 2024; 4:100605. [PMID: 38981476 PMCID: PMC11406187 DOI: 10.1016/j.xgen.2024.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.
Collapse
Affiliation(s)
- Chengyu Li
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Kexuan Chen
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Qianchen Fang
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Shaohui Shi
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Jiuhong Nan
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Jialin He
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingyun Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Lei Hou
- Department of Medicine, Biomedical Genetics Section, Boston University, Boston, MA 02118, USA
| | - Xinyang Hu
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xikun Han
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China.
| |
Collapse
|
46
|
Lister NC, Milton AM, Patel HR, Waters SA, Hanrahan BJ, McIntyre KL, Livernois AM, Horspool WB, Wee LK, Ringel AR, Mundlos S, Robson MI, Shearwin-Whyatt L, Grützner F, Graves JAM, Ruiz-Herrera A, Waters PD. Incomplete transcriptional dosage compensation of chicken and platypus sex chromosomes is balanced by post-transcriptional compensation. Proc Natl Acad Sci U S A 2024; 121:e2322360121. [PMID: 39074288 PMCID: PMC11317591 DOI: 10.1073/pnas.2322360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.
Collapse
Affiliation(s)
- Nicholas C. Lister
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Ashley M. Milton
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Hardip R. Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT2600, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT2600, Australia
| | - Shafagh A. Waters
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW2052, Australia
| | - Benjamin J. Hanrahan
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Kim L. McIntyre
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | | | - William B. Horspool
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Lee Kian Wee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Alessa R. Ringel
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Charité-Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Berlin13353, Germany
| | - Michael I. Robson
- Max Planck Institute for Molecular Genetics, Berlin14195, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin10117, Germany
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, EdinburghEH8 9YL, United Kingdom
| | | | - Frank Grützner
- School of Biological Sciences, University of Adelaide, Adelaide, SA5000, Australia
| | - Jennifer A. Marshall Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, VIC3068, Australia
- Institute of Applied Ecology, University of Canberra, Canberra, ACT2601, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cellular, Fisiologia I Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès08193, Spain
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales Sydney, Sydney, NSW2052, Australia
| |
Collapse
|
47
|
Wu D, Spencer CB, Ortoga L, Zhang H, Miao C. Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol 2024; 74:103194. [PMID: 38852200 PMCID: PMC11219935 DOI: 10.1016/j.redox.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Elevated lactate levels are a significant biomarker of sepsis and are positively associated with sepsis-related mortality. Sepsis-associated lung injury (ALI) is a leading cause of poor prognosis in clinical patients. However, the underlying mechanisms of lactate's involvement in sepsis-associated ALI remain unclear. In this study, we demonstrate that lactate regulates N6-methyladenosine (m6A) modification levels by facilitating p300-mediated H3K18la binding to the METTL3 promoter site. The METTL3-mediated m6A modification is enriched in ACSL4, and its mRNA stability is regulated through a YTHDC1-dependent pathway. Furthermore, short-term lactate stimulation upregulates ACSL4, which promotes mitochondria-associated ferroptosis. Inhibition of METTL3 through knockdown or targeted inhibition effectively suppresses septic hyper-lactate-induced ferroptosis in alveolar epithelial cells and mitigates lung injury in septic mice. Our findings suggest that lactate induces ferroptosis via the GPR81/H3K18la/METTL3/ACSL4 axis in alveolar epithelial cells during sepsis-associated ALI. These results reveal a histone lactylation-driven mechanism inducing ferroptosis through METTL3-mediated m6A modification. Targeting METTL3 represents a promising therapeutic strategy for patients with sepsis-associated ALI.
Collapse
Affiliation(s)
- Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China; Department of Anesthesiology, Shanghai Medical College, Fudan University, China
| | - Charles B Spencer
- Department of Cardiac Surgery, The Ohio State University, Columbus, USA
| | - Lilibeth Ortoga
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China; Department of Anesthesiology, Shanghai Medical College, Fudan University, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China; Department of Anesthesiology, Shanghai Medical College, Fudan University, China.
| |
Collapse
|
48
|
Esmaeili N, Bakheet A, Tse W, Liu S, Han X. Interaction of the intestinal cytokines-JAKs-STAT3 and 5 axes with RNA N6-methyladenosine to promote chronic inflammation-induced colorectal cancer. Front Oncol 2024; 14:1352845. [PMID: 39136000 PMCID: PMC11317299 DOI: 10.3389/fonc.2024.1352845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with a high mortality rate worldwide. Mounting evidence indicates that mRNA modifications are crucial in RNA metabolism, transcription, processing, splicing, degradation, and translation. Studies show that N6-methyladenosine (m6A) is mammalians' most common epi-transcriptomic modification. It has been demonstrated that m6A is involved in cancer formation, progression, invasion, and metastasis, suggesting it could be a potential biomarker for CRC diagnosis and developing therapeutics. Cytokines, growth factors, and hormones function in JAK/STAT3/5 signaling pathway, and they could regulate the intestinal response to infection, inflammation, and tumorigenesis. Reports show that the JAK/STAT3/5 pathway is involved in CRC development. However, the underlying mechanism is still unclear. Signal Transducer and Activator of Transcription 3/5 (STAT3, STAT5) can act as oncogenes or tumor suppressors in the context of tissue types. Also, epigenetic modifications and mutations could alter the balance between pro-oncogenic and tumor suppressor activities of the STAT3/5 signaling pathway. Thus, exploring the interaction of cytokines-JAKs-STAT3 and/or STAT5 with mRNA m6A is of great interest. This review provides a comprehensive overview of the characteristics and functions of m6A and JAKs-STAT3/5 and their relationship with gastrointestinal (GI) cancers.
Collapse
Affiliation(s)
- Nardana Esmaeili
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Ahmed Bakheet
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - William Tse
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Shujun Liu
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
| | - Xiaonan Han
- Division of Hematology and Oncology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center (MHMC), Case Western Reserve University (CWRU) School of Medicine, Cleveland, OH, United States
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University (CWRU), Cleveland, OH, United States
| |
Collapse
|
49
|
Hu D, Zhao T, Xu C, Pan X, Zhou Z, Wang S. Epigenetic Modifiers in Cancer Metastasis. Biomolecules 2024; 14:916. [PMID: 39199304 PMCID: PMC11352731 DOI: 10.3390/biom14080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Metastasis is the primary cause of cancer-related death, with the dissemination and colonization of primary tumor cells at the metastatic site facilitated by various molecules and complex pathways. Understanding the biological mechanisms underlying the metastatic process is critical for the development of effective interventions. Several epigenetic modifications have been identified that play critical roles in regulating cancer metastasis. This review aims to provide a comprehensive summary of recent advances in understanding the role of epigenetic modifiers, including histone modifications, DNA methylation, non-coding RNAs, enhancer reprogramming, chromatin accessibility, and N6-methyladenosine, in metastasis-associated processes, such as epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. In particular, this review provides a detailed and in-depth description of the role of crosstalk between epigenetic regulators in tumor metastasis. Additionally, we explored the potential and limitations of epigenetics-related target molecules in the diagnosis, treatment, and prognosis of cancer metastasis.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Tianci Zhao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China;
| | - Chenxing Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Zhengyu Zhou
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
50
|
Farhana A, Yusuf N, Rasheed Z. Editorial: Cancer genetics and epigenetics: theranostic targets and mechanisms. Front Genet 2024; 15:1446474. [PMID: 39130752 PMCID: PMC11310138 DOI: 10.3389/fgene.2024.1446474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf Province, Saudi Arabia
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| |
Collapse
|