1
|
Benach JL. Moonlighting enzymes of Borrelia burgdorferi. mBio 2025; 16:e0027925. [PMID: 40172213 PMCID: PMC12077153 DOI: 10.1128/mbio.00279-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
Moonlighting enzymes are increasingly recognized in bacteria with dual functions depending on whether they are intracellular or expressed on the surface. Enzymes of the glycolytic pathway are among the most frequently associated with moonlighting functions and lack the signal sequences needed to deliver them to the cell surface. Once these enzymes are on the surface, they perform functions that are associated with pathogenesis and development of infection through interaction with host substrates. One such interaction is adhesion. Borrelia burgdorferi, the etiologic agent of Lyme disease, must encounter a wide number of different tissues and substrates from ticks to mammalian hosts to complete its life cycle and persist. The phosphomannose isomerase of this organism has a moonlighting function, interacting with collagen IV, a main component of the basal lamina. It is abundant in the skin, which is the site of the initial infection of B. burgdorferi.
Collapse
Affiliation(s)
- Jorge L. Benach
- Microbiology and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York, USA
| |
Collapse
|
2
|
Lewis J, Lloyd VK, Robichaud GA. Development, Optimization, and Validation of a Quantitative PCR Assay for Borrelia burgdorferi Detection in Tick, Wildlife, and Human Samples. Pathogens 2024; 13:1034. [PMID: 39770294 PMCID: PMC11679815 DOI: 10.3390/pathogens13121034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 01/30/2025] Open
Abstract
Tick-borne pathogens are growing in importance for human and veterinary research worldwide. We developed, optimized, and validated a reliable quantitative PCR (qPCR; real-time PCR) assay to assess Borrelia burgdorferi infection by targeting two B. burgdorferi genes, ospA and flaB. When assessing previously tested tick samples, its performance surpassed the nested PCR in efficiency, sensitivity, and specificity. Since the detection of Borrelia is more difficult in mammalian samples, the qPCR assay was also assessed using wildlife tissues. For wildlife samples, the sensitivity and specificity of ospA primers, with the incorporation of a pre-amplification step, was equivalent or superior to the nested PCR. For human samples, no primer set was successful with human tissue without culture, but we detected Borrelia with ospA and flaB primers in 50% of the Lyme culture samples, corresponding to 60% of the participants with a Lyme disease diagnosis or suspicion. The specificity of amplification was confirmed by Sanger sequencing. The healthy participant culture samples were negative. This PCR-based direct detection assay performs well for the detection of Borrelia in different biological samples. Advancements in detection methods lead to a better surveillance of Borrelia in vectors and hosts, and, ultimately, enhance human and animal health.
Collapse
Affiliation(s)
- Julie Lewis
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada
| | - Gilles A. Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
3
|
Bashchobanov DH, Stamatova E, Andonova R, Dragusheva E, Gadzhovska V, Popov G. Lyme Neuroborreliosis in the Context of Dementia Syndromes. Cureus 2024; 16:e67057. [PMID: 39286695 PMCID: PMC11403646 DOI: 10.7759/cureus.67057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Lyme disease (LD) can affect the skin, joints, heart, and nervous system as a multisystemic condition. The cause of the illness is the spirochete of the genus Borrelia. These pathogens can affect the skin, joints, heart, and nervous system. Lyme neuroborreliosis (LNB) is the term for the disease, which occurs when the nervous system gets involved. Regarding geographical distribution, LNB is more prevalent in Europe than in North America. The most significant change in pathogenesis is inflammation of the central nervous system (CNS) and peripheral nervous system (PNS). Furthermore, clinically, it can represent a variety of neurological manifestations, such as meningitis, encephalitis, radiculopathies, and cranial neuritis. However, dementia-like syndrome is an infrequent manifestation of Lyme disease. Our review article aims to summarize the similarities and differences between dementia-like syndrome in LNB and that in primary neurodegenerative diseases, as well as to look for a correlation between the pathogenesis of the disease and the possibility of developing dementia-like syndrome. The world literature lacks sufficiently convincing data on the relationship between spirochete infection and primary dementia syndromes. However, cases of secondary dementia syndrome due to nervous system involvement as well as post-treatment have been described. A thorough examination, medical history, laboratory and imaging studies, cerebrospinal fluid (CSF) examination, MRI, and fludeoxyglucose-18-positron emission tomography (FGD-PET) are required to differentiate between these syndromes.
Collapse
|
4
|
Holly KJ, Kataria A, Flaherty DP, Groshong AM. Unguarded liabilities: Borrelia burgdorferi's complex amino acid dependence exposes unique avenues of inhibition. FRONTIERS IN ANTIBIOTICS 2024; 3:1395425. [PMID: 39816271 PMCID: PMC11732028 DOI: 10.3389/frabi.2024.1395425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 01/18/2025]
Abstract
Recent reports from the Centers for Disease Control and Prevention approximate 500,000 cases of Lyme disease in the United States yearly, a significant economic burden on the healthcare system. The standard treatment for Lyme disease includes broad-spectrum antibiotics, which may be administered for extensive periods of time and result in significant impacts to the patient. Recently, we demonstrated that Borrelia burgdorferi, the causative agent of Lyme disease, is uniquely dependent upon peptide acquisition via an oligopeptide transport (Opp) system. This dependence appears unique to the spirochete; thus, the Opp system may constitute a novel and specific target for the inhibition of B. burgdorferi. For proof of concept, we conducted a pilot screen to determine if the Opp system constitutes a viable inhibitor target. OppA2 was utilized as our target protein as it is the most prolific peptide-binding protein throughout the enzootic cycle. We validated a thermal shift assay (TSA) to detect ligand binding against OppA2 and performed a high-throughput screen of 2,240 molecules from a diversity set library. The TSA results identified eight compounds (C1-8) demonstrating potential binding to OppA2, and growth assays identified C2 and C7 as inhibitors of B. burgdorferi growth. We confirmed by TSA that these two compounds interact with additional B. burgdorferi OppAs, potentially resulting in a cumulative inhibitory effect. Additionally, we showed that these compounds have no effect on Escherichia coli, a bacterium that encodes a dispensable Opp system which serves only as an ancillary nutrient transporter. These data demonstrate that the Opp system of B. burgdorferi acts as a viable drug target, with the potential for targeting multiple OppAs with a single compound. Moreover, the lack of inhibition against E. coli suggests that selective targeting of B. burgdorferi via the Opp system may be possible.
Collapse
Affiliation(s)
- Katrina J. Holly
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Arti Kataria
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Daniel P. Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Ashley M. Groshong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
5
|
Bransfield RC, Mao C, Greenberg R. Microbes and Mental Illness: Past, Present, and Future. Healthcare (Basel) 2023; 12:83. [PMID: 38200989 PMCID: PMC10779437 DOI: 10.3390/healthcare12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
A review of the association between microbes and mental illness is performed, including the history, relevant definitions, infectious agents associated with mental illnesses, complex interactive infections, total load theory, pathophysiology, psychoimmunology, psychoneuroimmunology, clinical presentations, early-life infections, clinical assessment, and treatment. Perspectives on the etiology of mental illness have evolved from demonic possession toward multisystem biologically based models that include gene expression, environmental triggers, immune mediators, and infectious diseases. Microbes are associated with a number of mental disorders, including autism, schizophrenia, bipolar disorder, depressive disorders, and anxiety disorders, as well as suicidality and aggressive or violent behaviors. Specific microbes that have been associated or potentially associated with at least one of these conditions include Aspergillus, Babesia, Bartonella, Borna disease virus, Borrelia burgdorferi (Lyme disease), Candida, Chlamydia, coronaviruses (e.g., SARS-CoV-2), Cryptococcus neoformans, cytomegalovirus, enteroviruses, Epstein-Barr virus, hepatitis C, herpes simplex virus, human endogenous retroviruses, human immunodeficiency virus, human herpesvirus-6 (HHV-6), human T-cell lymphotropic virus type 1, influenza viruses, measles virus, Mycoplasma, Plasmodium, rubella virus, Group A Streptococcus (PANDAS), Taenia solium, Toxoplasma gondii, Treponema pallidum (syphilis), Trypanosoma, and West Nile virus. Recognition of the microbe and mental illness association with the development of greater interdisciplinary research, education, and treatment options may prevent and reduce mental illness morbidity, disability, and mortality.
Collapse
Affiliation(s)
- Robert C. Bransfield
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Hackensack Meridian School of Medicine, Nutey, NJ 07110, USA
| | | | | |
Collapse
|
6
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
7
|
Golovchenko M, Opelka J, Vancova M, Sehadova H, Kralikova V, Dobias M, Raska M, Krupka M, Sloupenska K, Rudenko N. Concurrent Infection of the Human Brain with Multiple Borrelia Species. Int J Mol Sci 2023; 24:16906. [PMID: 38069228 PMCID: PMC10707132 DOI: 10.3390/ijms242316906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.
Collapse
Affiliation(s)
- Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| | - Jakub Opelka
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Hana Sehadova
- Biology Centre Czech Academy of Sciences, Institute of Entomology, 37005 Ceske Budejovice, Czech Republic; (J.O.); (H.S.)
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Veronika Kralikova
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Martin Dobias
- Institute of Forensic Medicine and Medical Law, University Hospital Olomouc, 77900 Olomouc, Czech Republic; (V.K.); (M.D.)
| | - Milan Raska
- Department of Immunology, University Hospital Olomouc, 77900 Olomouc, Czech Republic;
| | - Michal Krupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Kristyna Sloupenska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic; (M.K.); (K.S.)
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic;
| |
Collapse
|
8
|
Reply to Luger, "Why Is It So Hard to Find Persistent Borreliella burgdorferi?". mBio 2022; 13:e0216922. [PMID: 35993732 PMCID: PMC9600376 DOI: 10.1128/mbio.02169-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Athanasiou LV, Spanou VM, Katsogiannou EG, Katsoulos PD. Hematological Features in Sheep with IgG and IgM Antibodies against Borrelia burgdorferi sensu lato. Pathogens 2021; 10:pathogens10020164. [PMID: 33557024 PMCID: PMC7913760 DOI: 10.3390/pathogens10020164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure of sheep to Borreliaburgdorferi sensulato (s.I.) complex, the causative agent of Lyme borreliosis (LB), has been reported in tick-abundant areas worldwide, while no data have been reported in Greece. The aim of the study was to identify the hematological alterations in sheep with seropositivity against Borrelia burgdorferi (s.I.). Blood samples were obtained from 318 tick infested sheep for blood analysis and serological determination of IgG and IgM antibodies against B. burgdorferi by indirect immunofluorescence antibody (IFA) assay after exclusion of endo-ectoparasites and other tick-borne infections. A total number of 162 sheep met the inclusion criteria, allocated in four groups based on the presence or absence of IgG and/or IgM; sheep found negative for IgM and IgG (Group A), positive for IgM (Group B), positive for both IgM and IgG (Group C) and positive for IgG (Group D). Anemia, thrombocytopenia and normal or decreased leukocyte count, mainly due to lymphopenia were the main hematological features observed in seropositive sheep. The presence of these features raises the suspicion of Borrelia infection in tick infested sheep. The seropositivity of 23.58% in sheep raises concerns of Borrelia circulation, especially in rural areas and potential risk of transmission to humans.
Collapse
Affiliation(s)
- Labrini V. Athanasiou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.M.S.); (E.G.K.)
- Correspondence: ; Tel.: +30-2441066009; Fax: +30-2441066053
| | - Victoria M. Spanou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.M.S.); (E.G.K.)
| | - Eleni G. Katsogiannou
- Department of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece; (V.M.S.); (E.G.K.)
| | - Panagiotis D. Katsoulos
- Clinic of Farm Animals, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| |
Collapse
|
10
|
Dulipati V, Meri S, Panelius J. Complement evasion strategies of Borrelia burgdorferi sensu lato. FEBS Lett 2020; 594:2645-2656. [PMID: 32748966 DOI: 10.1002/1873-3468.13894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023]
Abstract
Borreliosis (Lyme disease) is a spirochetal disease caused by the species complex of Borrelia burgdorferi transmitted by Ixodes spp. ticks. Recorded to be the most common tick-borne disease in the world, the last two decades have seen an increase in disease incidence and distribution, exceeding 360 000 cases in Europe alone. If untreated, infection may cause skin symptoms, arthritis, and neurological or cardiac complications. Borrelia spirochetes have developed strategies to evade the mammalian host immune system. These include the complement system, which is an important first-line defense mechanism against invading microbes. To evade the complement, spirochetes bind soluble complement regulators factor H (FH), factor H-like protein, and C4bp to their outer surfaces. B. burgdorferi spirochetes can inhibit the classical pathway of complement by the outer surface protein (Osp) BBK32, which blocks the activation of the C1 complex, composed of C1q, C1r, and C1s. The FH-binding proteins of borreliae include Osps OspE, CspA, and CspZ. Following repeated infections, antibodies against these proteins develop and may provide functional immunity against borreliosis. This review discusses critical immune evasion strategies, focusing on complement evasion by borreliae.
Collapse
Affiliation(s)
- Vinaya Dulipati
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Panelius
- Department of Dermatology and Allergology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Hirsh J, Kositangool P, Shah A, Radwan Y, Padilla D, Barragan J, Cervantes J. IL-26 mediated human cell activation and antimicrobial activity against Borrelia burgdorferi. CURRENT RESEARCH IN MICROBIAL SCIENCES 2020; 1:30-36. [PMID: 34841299 PMCID: PMC8610320 DOI: 10.1016/j.crmicr.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
Lyme disease is an inflammatory disease caused by infection with Borrelia burgdorferi (Bb). Inflammatory sequelae of Bb infection appear to be refractory to antibiotics. An antimicrobial peptide with the ability to bind the DNA in the tissue could serve as a viable option of treatment for chronic complications of Lyme borreliosis. DNA of Bb can remain in tissues causing a prolonged inflammatory response that lead to chronic joint pain. Here we examined the effect of IL-26, a newly reported antimicrobial protein, against Bb DNA. An antimicrobial effect of IL-26 on the spirochete was observed. In human macrophages, IL-26 treated cells showed an increase in IRF activation upon Bb stimulation. Moreover, IL-26 treated macrophages showed an increased in phagocytic activity compared to untreated cells. Although no Bb DNA degradation was observed using a TUNEL assay run in an agarose gel, a Comet assay on whole bacteria showed cellular and Bb DNA degradation by IL-26. Our results showed that IL-26 (monomer and dimer) has not only the potential to control Bb growth in vitro, but it also enhances the anti-borrelial response of human macrophages. Further research aiming to characterize the role of IL-26 in controlling other aspects of the inflammatory response that could provide insight of its potential therapeutic applications are needed.
Collapse
Affiliation(s)
- Joshua Hirsh
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A
| | - Piya Kositangool
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A
| | - Aayush Shah
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A
| | - Yousf Radwan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A
| | - Diana Padilla
- Laboratory for Education in Molecular Medicine, Texas Tech University Health Sciences Center at El Paso, TX, U.S.A
| | - Jose Barragan
- Laboratory for Education in Molecular Medicine, Texas Tech University Health Sciences Center at El Paso, TX, U.S.A
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, Texas, U.S.A.,Laboratory for Education in Molecular Medicine, Texas Tech University Health Sciences Center at El Paso, TX, U.S.A
| |
Collapse
|
12
|
Szymanska A, Platek AE, Dluzniewski M, Szymanski FM. History of Lyme Disease as a Predictor of Atrial Fibrillation. Am J Cardiol 2020; 125:1651-1654. [PMID: 32279835 DOI: 10.1016/j.amjcard.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/25/2022]
Abstract
In many cases, atrial fibrillation (AF) is associated with a history of cardiac inflammation. One of the potential pathogens responsible for atrial inflammation might be Borrelia burgdorferi - a pathogen involved in Lyme carditis. This study aimed to assess whether the serological history of Borrelia infection was associated with the risk of AF. The study included 113 AF patients and 109 patients in sinus rhythm. All patients underwent a clinical evaluation, echocardiography and had their blood taken for the assessment of anti-Borrelia IgG antibodies. Patients with AF compared with the non-AF group had more often serological signs of Borrelia infection (34.5% vs 6.4%; p <0.0001). The multivariate analysis showed that positive results for anti-Borrelia IgG antibodies were a strong independent predictor of AF (odds ratio 8.21; 95% confidence interval 3.08 to 21.88; p < 0.0001). In conclusion, presented data show that exposure to Borrelia spp. infection is associated with an increased risk of AF. Whether the early treatment of Lyme disease lowers the risk of AF development remains to be explored.
Collapse
|
13
|
Tkáčová Z, Pulzová LB, Mochnáčová E, Jiménez-Munguía I, Bhide K, Mertinková P, Majerová P, Kulkarni A, Kováč A, Bhide M. Identification of the proteins of Borrelia garinii interacting with human brain microvascular endothelial cells. Ticks Tick Borne Dis 2020; 11:101451. [PMID: 32360026 DOI: 10.1016/j.ttbdis.2020.101451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Lyme borreliosis is one of the major tick-borne diseases in Europe. Events of the translocation of Borrelia across the blood-brain barrier (BBB) involve multiple interactions between borrelial surface proteins and receptors on the brain microvascular endothelial cells (hBMECs). In this study, we aimed to identify proteins of Borrelia that plausibly interact with hBMECs. The surface proteome of live Borrelia (a neuroinvasive strain of B. garinii) was crosslinked with biotin prior to its incubation with hBMECs. The interacting proteins were recovered by affinity purification, followed by SWATH-MS. Twenty-four interacting candidates were grouped into outer membrane proteins (n = 12) and inner membrane proteins (n = 12) based on the subcellular location as per the predictions of LocateP. Other algorithms like TMHMM 2.0 and LipoP, ontology search and literature review were subsequently applied to each of the identified protein candidates to shortlist the most probable interactors. Six proteins namely, LysM domain protein, BESBP-5, Antigen S1, CRASP-1 (Bg071), Erp23 protein and Mlp family Lipoprotein were selected to produce their recombinant forms and experimentally validate their interaction with hBMECs. All the recombinant proteins interacted with hBMECs, in ELISA and immunocytochemistry. We present here a high-throughput approach of generating a dataset of plausible borrelial ligands followed by a systematic bioinformatic pipeline to categorize the proteins for experimental validation.
Collapse
Affiliation(s)
- Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Lucia Borszéková Pulzová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Patrícia Mertinková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Košice, Komenskeho 73, 04001, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 84510, Bratislava, Slovakia.
| |
Collapse
|
14
|
Yeung C, Baranchuk A. Diagnosis and Treatment of Lyme Carditis: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 73:717-726. [PMID: 30765038 DOI: 10.1016/j.jacc.2018.11.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022]
Abstract
The incidence of Lyme disease, a tick-borne bacterial infection, is dramatically increasing in North America. The diagnosis of Lyme carditis (LC), an early disseminated manifestation of Lyme disease, has important implications for patient management and preventing further extracutaneous complications. High-degree atrioventricular block is the most common presentation of LC, and usually resolves with antibiotic therapy. A systematic approach to the diagnosis of LC in patients with high-degree atrioventricular block will facilitate the identification of this usually transient condition, thus preventing unnecessary implantation of permanent pacemakers in otherwise healthy young individuals.
Collapse
Affiliation(s)
- Cynthia Yeung
- Department of Cardiology, Queen's University, Kingston, Ontario, Canada. https://twitter.com/yeung2020
| | - Adrian Baranchuk
- Department of Cardiology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
15
|
Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics (Basel) 2019; 8:antibiotics8040269. [PMID: 31888310 PMCID: PMC6963229 DOI: 10.3390/antibiotics8040269] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Chronic Lyme disease has been a poorly defined term and often dismissed as a fictitious entity. In this paper, the International Lyme and Associated Diseases Society (ILADS) provides its evidence-based definition of chronic Lyme disease. Definition: ILADS defines chronic Lyme disease (CLD) as a multisystem illness with a wide range of symptoms and/or signs that are either continuously or intermittently present for a minimum of six months. The illness is the result of an active and ongoing infection by any of several pathogenic members of the Borrelia burgdorferi sensu lato complex (Bbsl). The infection has variable latency periods and signs and symptoms may wax, wane and migrate. CLD has two subcategories, CLD, untreated (CLD-U) and CLD, previously treated (CLD-PT). The latter requires that CLD manifestations persist or recur following treatment and are present continuously or in a relapsing/remitting pattern for a duration of six months or more. Methods: Systematic review of over 250 peer reviewed papers in the international literature to characterize the clinical spectrum of CLD-U and CLD-PT. Conclusion: This evidence-based definition of chronic Lyme disease clarifies the term's meaning and the literature review validates that chronic and ongoing Bbsl infections can result in chronic disease. Use of this CLD definition will promote a better understanding of the infection and facilitate future research of this infection.
Collapse
|
16
|
Rudenko N, Golovchenko M, Kybicova K, Vancova M. Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasit Vectors 2019; 12:237. [PMID: 31097026 PMCID: PMC6521364 DOI: 10.1186/s13071-019-3495-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The survival of spirochetes from the Borrelia burgdorferi (sensu lato) complex in a hostile environment is achieved by the regulation of differential gene expression in response to changes in temperature, salts, nutrient content, acidity fluctuation, multiple host or vector dependent factors, and leads to the formation of dormant subpopulations of cells. From the other side, alterations in the level of gene expression in response to antibiotic pressure leads to the establishment of a persisters subpopulation. Both subpopulations represent the cells in different physiological states. "Dormancy" and "persistence" do share some similarities, e.g. both represent cells with low metabolic activity that can exist for extended periods without replication, both constitute populations with different gene expression profiles and both differ significantly from replicating forms of spirochetes. Persisters are elusive, present in low numbers, morphologically heterogeneous, multi-drug-tolerant cells that can change with the environment. The definition of "persisters" substituted the originally-used term "survivors", referring to the small bacterial population of Staphylococcus that survived killing by penicillin. The phenomenon of persisters is present in almost all bacterial species; however, the reasons why Borrelia persisters form are poorly understood. Persisters can adopt varying sizes and shapes, changing from well-known forms to altered morphologies. They are capable of forming round bodies, L-form bacteria, microcolonies or biofilms-like aggregates, which remarkably change the response of Borrelia to hostile environments. Persisters remain viable despite aggressive antibiotic challenge and are able to reversibly convert into motile forms in a favorable growth environment. Persisters are present in significant numbers in biofilms, which has led to the explanation of biofilm tolerance to antibiotics. Considering that biofilms are associated with numerous chronic diseases through their resilient presence in the human body, it is not surprising that interest in persisting cells has consequently accelerated. Certain diseases caused by pathogenic bacteria (e.g. tuberculosis, syphilis or leprosy) are commonly chronic in nature and often recur despite antibiotic treatment. Three decades of basic and clinical research have not yet provided a definite answer to the question: is there a connection between persisting spirochetes and recurrence of Lyme disease in patients?
Collapse
Affiliation(s)
- Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Maryna Golovchenko
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Katerina Kybicova
- National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic
| | - Marie Vancova
- Biology Centre CAS, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
17
|
Melenotte C, Drancourt M, Gorvel JP, Mège JL, Raoult D. Post-bacterial infection chronic fatigue syndrome is not a latent infection. Med Mal Infect 2019; 49:140-149. [DOI: 10.1016/j.medmal.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/15/2019] [Indexed: 01/20/2023]
|
18
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
19
|
Cabello FC, Godfrey HP, Bugrysheva J, Newman SA. Sleeper cells: the stringent response and persistence in the Borreliella (Borrelia) burgdorferi enzootic cycle. Environ Microbiol 2017; 19:3846-3862. [PMID: 28836724 PMCID: PMC5794220 DOI: 10.1111/1462-2920.13897] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/12/2017] [Accepted: 08/17/2017] [Indexed: 12/27/2022]
Abstract
Infections with tick-transmitted Borreliella (Borrelia) burgdorferi, the cause of Lyme disease, represent an increasingly large public health problem in North America and Europe. The ability of these spirochetes to maintain themselves for extended periods of time in their tick vectors and vertebrate reservoirs is crucial for continuance of the enzootic cycle as well as for the increasing exposure of humans to them. The stringent response mediated by the alarmone (p)ppGpp has been determined to be a master regulator in B. burgdorferi. It modulates the expression of identified and unidentified open reading frames needed to deal with and overcome the many nutritional stresses and other challenges faced by the spirochete in ticks and animal reservoirs. The metabolic and morphologic changes resulting from activation of the stringent response in B. burgdorferi may also be involved in the recently described non-genetic phenotypic phenomenon of tolerance to otherwise lethal doses of antimicrobials and to other antimicrobial activities. It may thus constitute a linchpin in multiple aspects of infections with Lyme disease borrelia, providing a link between the micro-ecological challenges of its enzootic life-cycle and long-term residence in the tissues of its animal reservoirs, with the evolutionary side effect of potential persistence in incidental human hosts.
Collapse
Affiliation(s)
- Felipe C. Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Henry P. Godfrey
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Julia Bugrysheva
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stuart A. Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
20
|
Cervantes J. Doctor says you are cured, but you still feel the pain. Borrelia DNA persistence in Lyme disease. Microbes Infect 2017. [DOI: 10.1016/j.micinf.2017.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Abstract
This review summarizes the literature on scleratrophic skin lesions as a manifestation of aBorreliainfection. An association of morphea with Lyme borreliosis was mainly reported from Middle-European Countries, Japan and South America.B. afzeliihas been identified predominantly from the chronic skin lesions of acrodermatitis chronica atrophicans (ACA) and has been cultivated from morphea lesions in isolated cases. Scleratrophic skin lesions like morphea, lichen sclerosus et atrophicus (LSA) and anetoderma have been observed in coexistence with ACA. Since all these diseases show clinical and histological similarities, they might have a common origin. The laboratory results that point to a borrelial origin of these diseases, however, are contradictory. Antibodies againstB. burgdorferiwere detected in up to 50% of patients.BorreliaDNA was shown in up to 33% of morphea and 50% of LSA patients.Borreliawere visualized on histological slides by polyclonal antibodies in up to 69% of morphea and 63% of LSA patients. In other reports no evidence ofBorrelia– associated morphea or LSA has been reported. For anetoderma, single case reports showed positiveBorreliaserology and/or PCR and a response to antibiotic treatment. The response of scleratrophic skin lesions to antibiotic treatment varies and can be seen in patients with or without a proven association to aBorreliainfection. This suggests that scleratrophic diseases might be of heterogeneous origin, but aBorreliainfection could be one cause of these dermatoses.
Collapse
|
22
|
Sarksyan DS, Maleev VV, Platonov AE, Platonova OV, Karan LS. [Relapsing (recurrent) disease caused by Borrelia miyamotoi]. TERAPEVT ARKH 2016; 87:18-25. [PMID: 26821411 DOI: 10.17116/terarkh2015871118-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To clarify the clinical, laboratory, and epidemiological characteristics of relapsing Ixodes tick-borne borreliosis (ITB) caused by Borrelia miyamotoi. SUBJECTS AND METHODS Retrospective clinical observation was made in 79 inpatients of the Republican Infectious Diseases Hospital (Udmurt Republic), who had been diagnosed with B. miyamotoi-caused disease verified by real-time polymerase chain reaction. The latter and enzyme immunoassay ruled out possible vector-borne coinfections (ITB caused by B. burgdorferi sensu lato; tick-borne encephalitis; anaplasmosis; and ehrlichiosis). RESULTS The recurrent course of the disease was observed in 8 (10%) of the 79 patients. The relapsing fever curve was noted in 6 of the 8 patients; 4 patients had 2 episodes of fever and 2 patients had 3 episodes; the wave-like continuous type of fever cannot enable one to estimate the specific number of episodes in 2 more cases. Relapses occurred in all the 8 patients before antibiotic treatment. Febrile syndrome (weakness, headache, chill, fever, sweating, dizziness, nausea, vomiting, myalgia, and arthralgia) was leading in patients with relapses. These patients were less frequently observed to have signs of organ dysfunctions than those with one episode of fever. The values of clinical and biochemical blood tests and urinalyses were normal and near-normal in the majority of patients on hospital admission. CONCLUSION Relapsing B. miyamotoi infection cases detected in the directed study proved to be unrecognized by practical health authorities during the first and sometimes second episodes of fever. This indicates that the prevalence of this disease is essentially underestimated and there is a need to increase physicians' alertness and awareness and to introduce adequate diagnostic methods.
Collapse
Affiliation(s)
- D S Sarksyan
- Izhevsk State Medical Academy, Ministry of Health of Russia, Izhevsk, Republic of Udmurtia, Russia
| | - V V Maleev
- Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Moscow, Russia
| | - A E Platonov
- Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Moscow, Russia
| | - O V Platonova
- Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Moscow, Russia
| | - L S Karan
- Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Moscow, Russia
| |
Collapse
|
23
|
Abstract
Chronic Lyme disease is a poorly defined diagnosis that is usually given to patients with prolonged, unexplained symptoms or with alternative medical diagnoses. Data do not support the proposition that chronic, treatment-refractory infection with Borrelia burgdorferi is responsible for the many conditions that get labeled as chronic Lyme disease. Prolonged symptoms after successful treatment of Lyme disease are uncommon, but in rare cases may be severe. Prolonged courses of antibiotics neither prevent nor ameliorate these symptoms and are associated with considerable harm.
Collapse
Affiliation(s)
- Paul M Lantos
- Divisions of Pediatric Infectious Diseases and General Internal Medicine, Duke University School of Medicine, DUMC 100800, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Abstract
Lyme disease is a common disease that uncommonly affects the heart. Because of the rarity of this diagnosis and the frequent absence of other concurrent clinical manifestations of early Lyme disease, consideration of Lyme carditis demands a high level of suspicion when patients in endemic areas come to attention with cardiovascular symptoms and evidence of higher-order heart block. A majority of cases manifest as atrioventricular block. A minority of Lyme carditis cases are associated with myopericarditis. Like other manifestations of Lyme disease, carditis can readily be managed with antibiotic therapy and supportive care measures, such that affected patients almost always completely recover.
Collapse
Affiliation(s)
- Matthew L Robinson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, 1830 East Monument Street, Room 448, Baltimore, MD 21287, USA
| | - Takaaki Kobayashi
- The Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, 725 North Wolfe Street, PTCB - Room 231, Baltimore, MD 21287, USA
| | - Yvonne Higgins
- The Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, 725 North Wolfe Street, PTCB - Room 231, Baltimore, MD 21287, USA
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Sheikh Zayed Tower, Room 7125R, Baltimore, MD 21287, USA
| | - Michael T Melia
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, 1830 East Monument Street, Room 448, Baltimore, MD 21287, USA.
| |
Collapse
|
25
|
Application of Nanotrap technology for high sensitivity measurement of urinary outer surface protein A carboxyl-terminus domain in early stage Lyme borreliosis. J Transl Med 2015; 13:346. [PMID: 26537892 PMCID: PMC4634744 DOI: 10.1186/s12967-015-0701-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Prompt antibiotic treatment of early stage Lyme borreliosis (LB) prevents progression to severe multisystem disease. There is a clinical need to improve the diagnostic specificity of early stage Lyme assays in the period prior to the mounting of a robust serology response. Using a novel analyte harvesting nanotechnology, Nanotrap particles, we evaluated urinary Borrelia Outer surface protein A (OspA) C-terminus peptide in early stage LB before and after treatment, and in patients suspected of late stage disseminated LB. METHOD We employed Nanotrap particles to concentrate urinary OspA and used a highly specific anti-OspA monoclonal antibody (mAb) as a detector of the C-terminus peptides. We mapped the mAb epitope to a narrow specific OspA C-terminal domain OspA236-239 conserved across infectious Borrelia species but with no homology to human proteins and no cross-reactivity with relevant viral and non-Borrelia bacterial proteins. 268 urine samples from patients being evaluated for all categories of LB were collected in a LB endemic area. The urinary OspA assay, blinded to outcome, utilized Nanotrap particle pre-processing, western blotting to evaluate the OspA molecular size, and OspA peptide competition for confirmation. RESULTS OspA test characteristics: sensitivity 1.7 pg/mL (lowest limit of detection), % coefficient of variation (CV) = 8 %, dynamic range 1.7-30 pg/mL. Pre-treatment, 24/24 newly diagnosed patients with an erythema migrans (EM) rash were positive for urinary OspA while false positives for asymptomatic patients were 0/117 (Chi squared p < 10(-6)). For 10 patients who exhibited persistence of the EM rash during the course of antibiotic therapy, 10/10 were positive for urinary OspA. Urinary OspA of 8/8 patients switched from detectable to undetectable following symptom resolution post-treatment. Specificity of the urinary OspA test for the clinical symptoms was 40/40. Specificity of the urinary OspA antigen test for later serology outcome was 87.5 % (21 urinary OspA positive/24 serology positive, Chi squared p = 4.072e(-15)). 41 of 100 patients under surveillance for persistent LB in an endemic area were positive for urinary OspA protein. CONCLUSIONS OspA urinary shedding was strongly linked to concurrent active symptoms (e.g. EM rash and arthritis), while resolution of these symptoms after therapy correlated with urinary conversion to OspA negative.
Collapse
|
26
|
Dyer A, Brown G, Stejskal L, Laity PR, Bingham RJ. The Borrelia afzelii outer membrane protein BAPKO_0422 binds human factor-H and is predicted to form a membrane-spanning β-barrel. Biosci Rep 2015; 35:e00240. [PMID: 26181365 PMCID: PMC4613713 DOI: 10.1042/bsr20150095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value.
Collapse
Affiliation(s)
- Adam Dyer
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Gemma Brown
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Lenka Stejskal
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Peter R Laity
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K. Present Address: Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, University of Sheffield, Sheffield S1 3JD, U.K
| | - Richard J Bingham
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.
| |
Collapse
|
27
|
Hodzic E. Lyme Borreliosis: Is there a preexisting (natural) variation in antimicrobial susceptibility among Borrelia burgdorferi strains? Bosn J Basic Med Sci 2015; 15:1-13. [PMID: 26295288 DOI: 10.17305/bjbms.2015.594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
The development of antibiotics changed the world of medicine and has saved countless human and animal lives. Bacterial resistance/tolerance to antibiotics have spread silently across the world and has emerged as a major public health concern. The recent emergence of pan-resistant bacteria can overcome virtually any antibiotic and poses a major problem for their successful control. Selection for antibiotic resistance may take place where an antibiotic is present: in the skin, gut, and other tissues of humans and animals and in the environment. Borrelia burgdorferi, the etiological agents of Lyme borreliosis, evades host immunity and establishes persistent infections in its mammalian hosts. The persistent infection poses a challenge to the effective antibiotic treatment, as demonstrated in various animal models. An increasingly heterogeneous subpopulation of replicatively attenuated spirochetes arises following treatment, and these persistent antimicrobial tolerant/resistant spirochetes are non-cultivable. The non-cultivable spirochetes resurge in multiple tissues at 12 months after treatment, with B. burgdorferi-specific DNA copy levels nearly equivalent to those found in shame-treated experimental animals. These attenuated spirochetes remain viable, but divide slowly, thereby being tolerant to antibiotics. Despite the continued non-cultivable state, RNA transcription of multiple B. burgdorferi genes was detected in host tissues, spirochetes were acquired by xenodiagnostic ticks, and spirochetal forms could be visualized within ticks and mouse tissues. A number of host cytokines were up- or down-regulated in tissues of both shame- and antibiotic-treated mice in the absence of histopathology, indicating a lack of host response to the presence of antimicrobial tolerant/resistant spirochetes.
Collapse
Affiliation(s)
- Emir Hodzic
- Real-Time PCR Research & Diagnostics Core Facility, School of Veterinary Medicine, University of California, Davis.
| |
Collapse
|
28
|
Borrelia burgdorferi RevA Significantly Affects Pathogenicity and Host Response in the Mouse Model of Lyme Disease. Infect Immun 2015; 83:3675-83. [PMID: 26150536 DOI: 10.1128/iai.00530-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/28/2015] [Indexed: 12/28/2022] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, expresses RevA and numerous outer surface lipoproteins during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA is poised to interact with the extracellular matrix of the host. To further define the role(s) of RevA during mammalian infection, we created a mutant that is unable to produce RevA. The mutant was still infectious to mice, although it was significantly less well able to infect cardiac tissues. Complementation of the mutant with a wild-type revA gene restored heart infectivity to wild-type levels. Additionally, revA mutants led to increased evidence of arthritis, with increased fibrotic collagen deposition in tibiotarsal joints. The mutants also induced increased levels of the chemokine CCL2, a monocyte chemoattractant, in serum, and this increase was abolished in the complemented strain. Therefore, while revA is not absolutely essential for infection, deletion of revA had distinct effects on dissemination, arthritis severity, and host response.
Collapse
|
29
|
Wood S. Increased DNA Yield Following Enzymatic Release of Borrelia from a Collagen Matrix in Culture. ACTA ACUST UNITED AC 2015. [DOI: 10.15406/jmen.2015.02.00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Zhi H, Weening EH, Barbu EM, Hyde JA, Höök M, Skare JT. The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis. Mol Microbiol 2015; 96:68-83. [PMID: 25560615 DOI: 10.1111/mmi.12921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2015] [Indexed: 12/14/2022]
Abstract
Borrelia burgdorferi, the etiologic agent of Lyme disease, adapts to the mammalian hosts by differentially expressing several genes in the BosR and Rrp2-RpoN-RpoS dependent pathways, resulting in a distinct protein profile relative to that seen for survival in the Ixodes spp. tick. Previous studies indicate that a putative lipoprotein, BBA33, is produced in an RpoS-dependent manner under conditions that mimic the mammalian component of the borrelial lifecycle. However, the significance and function for BBA33 is not known. Given its linkage to the BosR/Rrp2-RpoN-RpoS regulatory cascade, we hypothesized that BBA33 facilitates B. burgdorferi infection in the mammalian host. The deletion of bba33 eliminated B. burgdorferi infectivity in C3H mice, which was rescued by genetic complementation with intact bba33. With regard to function, a combinatorial peptide approach, coupled with subsequent in vitro binding assays, indicated that BBA33 binds to collagen type VI and, to a lesser extent, collagen type IV. Whole cell binding assays demonstrated BBA33-dependent binding to human collagen type VI. Taken together, these results suggest that BBA33 interacts with collagenous structures and may function as an adhesin in a process that is required to prevent bacterial clearance.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | | | | | | | | | | |
Collapse
|
31
|
Cameron DJ, Johnson LB, Maloney EL. Evidence assessments and guideline recommendations in Lyme disease: the clinical management of known tick bites, erythema migrans rashes and persistent disease. Expert Rev Anti Infect Ther 2014; 12:1103-35. [PMID: 25077519 PMCID: PMC4196523 DOI: 10.1586/14787210.2014.940900] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evidence-based guidelines for the management of patients with Lyme disease were developed by the International Lyme and Associated Diseases Society (ILADS). The guidelines address three clinical questions - the usefulness of antibiotic prophylaxis for known tick bites, the effectiveness of erythema migrans treatment and the role of antibiotic retreatment in patients with persistent manifestations of Lyme disease. Healthcare providers who evaluate and manage patients with Lyme disease are the intended users of the new ILADS guidelines, which replace those issued in 2004 (Exp Rev Anti-infect Ther 2004;2:S1-13). These clinical practice guidelines are intended to assist clinicians by presenting evidence-based treatment recommendations, which follow the Grading of Recommendations Assessment, Development and Evaluation system. ILADS guidelines are not intended to be the sole source of guidance in managing Lyme disease and they should not be viewed as a substitute for clinical judgment nor used to establish treatment protocols.
Collapse
Affiliation(s)
- Daniel J Cameron
- International Lyme and Associated Diseases Society,PO Box 341461, Bethesda MD, 20827-1461,USA
| | | | | |
Collapse
|
32
|
Identification of lysine residues in the Borrelia burgdorferi DbpA adhesin required for murine infection. Infect Immun 2014; 82:3186-98. [PMID: 24842928 DOI: 10.1128/iai.02036-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Decorin-binding protein A (DbpA) of Borrelia burgdorferi mediates bacterial adhesion to heparin and dermatan sulfate associated with decorin. Lysines K82, K163, and K170 of DbpA are known to be important for in vitro interaction with decorin, and the DbpA structure, initially solved by nuclear magnetic resonance (NMR) spectroscopy, suggests these lysine residues colocalize in a pocket near the C terminus of the protein. In the current study, we solved the structure of DbpA from B. burgdorferi strain 297 using X-ray crystallography and confirmed the existing NMR structural data. In vitro binding experiments confirmed that recombinant DbpA proteins with mutations in K82, K163, or K170 did not bind decorin, which was due to an inability to interact with dermatan sulfate. Most importantly, we determined that the in vitro binding defect observed upon mutation of K82, K163, or K170 in DbpA also led to a defect during infection. The infectivity of B. burgdorferi expressing individual dbpA lysine point mutants was assessed in mice challenged via needle inoculation. Murine infection studies showed that strains expressing dbpA with mutations in K82, K163, and K170 were significantly attenuated and could not be cultured from any tissue. Proper expression and cellular localization of the mutated DbpA proteins were examined, and NMR spectroscopy determined that the mutant DbpA proteins were structurally similar to wild-type DbpA. Taken together, these data showed that lysines K82, K163, and K170 potentiate the binding of DbpA to dermatan sulfate and that an interaction(s) mediated by these lysines is essential for B. burgdorferi murine infection.
Collapse
|
33
|
Brissette CA, Gaultney RA. That's my story, and I'm sticking to it--an update on B. burgdorferi adhesins. Front Cell Infect Microbiol 2014; 4:41. [PMID: 24772392 PMCID: PMC3982108 DOI: 10.3389/fcimb.2014.00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/18/2014] [Indexed: 11/25/2022] Open
Abstract
Adhesion is the initial event in the establishment of any infection. Borrelia burgdorferi, the etiological agent of Lyme disease, possesses myriad proteins termed adhesins that facilitate contact with its vertebrate hosts. B. burgdorferi adheres to host tissues through interactions with host cells and extracellular matrix, as well as other molecules present in serum and extracellular fluids. These interactions, both general and specific, are critical in the establishment of infection. Modulation of borrelial adhesion to host tissues affects the microorganisms's ability to colonize, disseminate, and persist. In this review, we update the current knowledge on structure, function, and role in pathogenesis of these “sticky” B. burgdorferi infection-associated proteins.
Collapse
Affiliation(s)
- Catherine A Brissette
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| | - Robert A Gaultney
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| |
Collapse
|
34
|
DNA persistence after treatment of Lyme borreliosis. Folia Microbiol (Praha) 2013; 59:115-25. [DOI: 10.1007/s12223-013-0272-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
|
35
|
Hodzic E, Feng S, Barthold SW. Assessment of transcriptional activity of Borrelia burgdorferi and host cytokine genes during early and late infection in a mouse model. Vector Borne Zoonotic Dis 2013; 13:694-711. [PMID: 23930938 DOI: 10.1089/vbz.2012.1189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differential gene expression by Borrelia burgdorferi spirochetes during mammalian infection facilitates their dissemination as well as immune evasion. Modulation of gene transcription in response to host immunity has been documented with the outer surface protein C, but the influence of transcription of other genes is largely unknown. A low-density array (LDA) was developed to study transcriptional activity of 43 B. burgdorferi genes and 19 host genes that may be involved in various host-agent interactions. Gene transcription in heart, joint, and muscle tissue was compared in immunocompetent C3H and immunodeficient C3H-scid mice during early (3 weeks) and late (2 months) B. burgdorferi infection. Among all tissue types, levels of relative transcription of over 80% of B. burgdorferi genes tested were one- to nine-fold less in C3H mice compared to C3H-scid mice. At the later time point, all genes were transcribed in C3H-scid mice, whereas transcription of 16 genes out of 43 tested was not detected in analyzed tissues of C3H mice. Our data suggest that during infection of immunocompetent mice, a majority of B. burgdorferi genes tested are downregulated in response to acquired host immunity. LDA revealed variable patterns of host gene expression in different tissues and at different intervals in infected mice. Higher levels of relative expression for IL-10 during both early and late infection were detected in heart base, and it was unchanged in the tibiotarsal joint. Comparative analysis of B. burgdorferi and host genes transcriptional activity revealed that increased flaB mRNA during early infection was followed by increases of CCL7, CCL8, interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α) in all assessed tissue types. LDA represents a valuable approach for sensitive and quantitative gene transcription profiling and for understanding Lyme borreliosis.
Collapse
Affiliation(s)
- Emir Hodzic
- 1 Center for Comparative Medicine, Schools of Veterinary Medicine and Medicine, University of California at Davis , Davis, California
| | | | | |
Collapse
|
36
|
Dynamics of connective-tissue localization during chronic Borrelia burgdorferi infection. J Transl Med 2013; 93:900-10. [PMID: 23797360 PMCID: PMC4139070 DOI: 10.1038/labinvest.2013.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022] Open
Abstract
The etiologic agent of Lyme disease, Borrelia burgdorferi, localizes preferentially in the extracellular matrix during persistence. In chronically infected laboratory mice, there is a direct association between B. burgdorferi and the proteoglycan decorin, which suggests that decorin has a role in defining protective niches for persistent spirochetes. In this study, the tissue colocalization of B. burgdorferi with decorin and the dynamics of borrelial decorin tropism were evaluated during chronic infection. Spirochetes were found to colocalize absolutely with decorin, but not collagen I in chronically infected immunocompetent C3H mice. Passive immunization of infected C3H-scid mice with B. burgdorferi-specific immune serum resulted in the localization of spirochetes in decorin-rich microenvironments, with clearance of spirochetes from decorin-poor microenvironments. In passively immunized C3H-scid mice, tissue spirochete burdens were initially reduced, but increased over time as the B. burgdorferi-specific antibody levels waned. Concurrent repopulation of the previously cleared decorin-poor microenvironments was observed with the rising tissue spirochete burden and declining antibody titer. These findings indicate that the specificity of B. burgdorferi tissue localization during chronic infection is determined by decorin, driven by the borrelia-specific antibody response, and fluctuates with the antibody response.
Collapse
|
37
|
Coburn J, Leong J, Chaconas G. Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol 2013; 21:372-9. [PMID: 23876218 DOI: 10.1016/j.tim.2013.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023]
Abstract
The Lyme disease spirochetes, Borrelia burgdorferi (sensu lato), must cause persistent, disseminated infection to be maintained in the natural enzootic cycle. In human Lyme disease, spirochetes spread from the site of a tick bite to colonize multiple tissue sites, causing multisystem clinical manifestations. The Lyme spirochetes produce many adhesive surface proteins that collectively recognize diverse host substrates and cell types and are likely to promote dissemination and chronic infection in a variety of tissues. Recent application of state-of-the-art in vivo imaging technologies is illuminating mechanisms of interaction of B. burgdorferi with the host and the importance of multiple adhesins during mammalian infection.
Collapse
Affiliation(s)
- Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
38
|
Abstract
Is chronic illness in patients with Lyme disease caused by persistent infection? Three decades of basic and clinical research have yet to produce a definitive answer to this question. This review describes known and suspected mechanisms by which spirochetes of the Borrelia genus evade host immune defenses and survive antibiotic challenge. Accumulating evidence indicates that Lyme disease spirochetes are adapted to persist in immune competent hosts, and that they are able to remain infective despite aggressive antibiotic challenge. Advancing understanding of the survival mechanisms of the Lyme disease spirochete carry noteworthy implications for ongoing research and clinical practice.
Collapse
|
39
|
Evaluation of RevA, a fibronectin-binding protein of Borrelia burgdorferi, as a potential vaccine candidate for lyme disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:892-9. [PMID: 23595502 DOI: 10.1128/cvi.00758-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies indicated that the Lyme disease spirochete Borrelia burgdorferi expresses the RevA outer surface protein during mammalian infection. As an adhesin that promotes bacterial interaction with fibronectin, RevA appears to be a good target for preventive therapies. RevA proteins are highly conserved across all Lyme borreliae, and antibodies against RevA protein are cross-reactive among RevA proteins from diverse strains. Mice infected with B. burgdorferi mounted a rapid IgM response to RevA, followed by a strong IgG response that generally remained elevated for more than 12 months, suggesting continued exposure of RevA protein to the immune system. RevA antibodies were bactericidal in vitro. To evaluate the RevA antigen as a potential vaccine, mice were vaccinated with recombinant RevA and challenged with B. burgdorferi by inoculation with a needle or by a tick bite. Cultured tissues from all treatment groups were positive for B. burgdorferi. Vaccinated animals also appeared to have similar levels of B. burgdorferi DNA compared to nonvaccinated controls. Despite its antigenicity, surface expression, and the production of bactericidal antibodies against it, RevA does not protect against Borrelia burgdorferi infection in a mouse model. However, passive immunization with anti-RevA antibodies did prevent infection, suggesting the possible utility of RevA-based immunotherapeutics or vaccine.
Collapse
|
40
|
The early dissemination defect attributed to disruption of decorin-binding proteins is abolished in chronic murine Lyme borreliosis. Infect Immun 2013; 81:1663-73. [PMID: 23460518 DOI: 10.1128/iai.01359-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The laboratory mouse model of Lyme disease has revealed that Borrelia burgdorferi differentially expresses numerous outer surface proteins that influence different stages of infection (tick-borne transmission, tissue colonization, dissemination, persistence, and tick acquisition). Deletion of two such outer surface proteins, decorin-binding proteins A and B (DbpA/B), has been documented to decrease infectivity, impede early dissemination, and, possibly, prevent persistence. In this study, DbpA/B-deficient spirochetes were confirmed to exhibit an early dissemination defect in immunocompetent, but not immunodeficient, mice, and the defect was found to resolve with chronicity. Development of disease (arthritis and carditis) was attenuated only in the early stage of infection with DbpA/B-deficient spirochetes in both types of mice. Persistence of the DbpA/B-deficient spirochetes occurred in both immunocompetent and immunodeficient mice in a manner indistinguishable from that of wild-type spirochetes. Dissemination through the lymphatic system was evaluated as an underlying mechanism for the early dissemination defect. At 12 h, 3 days, 7 days, and 14 days postinoculation, DbpA/B-deficient spirochetes were significantly less prevalent and in lower numbers in lymph nodes than wild-type spirochetes. However, in immunodeficient mice, deficiency of DbpA/B did not significantly decrease the prevalence or spirochete numbers in lymph nodes. Complementation of DbpA/B restored a wild-type phenotype. Thus, the results indicated that deficiency of DbpA/B allows the acquired immune response to restrict early dissemination of spirochetes, which appears to be at least partially mediated through the lymphatic system.
Collapse
|
41
|
Sapi E, Pabbati N, Datar A, Davies EM, Rattelle A, Kuo BA. Improved culture conditions for the growth and detection of Borrelia from human serum. Int J Med Sci 2013; 10:362-76. [PMID: 23470960 PMCID: PMC3590594 DOI: 10.7150/ijms.5698] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/11/2013] [Indexed: 12/30/2022] Open
Abstract
In this report we present a method to cultivate Borrelia spirochetes from human serum samples with high efficiency. This method incorporates improved sample collection, optimization of culture media and use of matrix protein. The method was first optimized utilizing Borrelia laboratory strains, and later by demonstrating growth of Borrelia from sera from fifty seropositive Lyme disease patients followed by another cohort of 72 Lyme disease patients, all of whom satisfied the strict CDC surveillance case definition for Lyme disease. The procedure resulted in positive cultures in 47% at 6 days and 94% at week 16. Negative controls included 48 cases. The positive identification of Borrelia was performed by immunostaining, PCR, and direct DNA sequencing.
Collapse
Affiliation(s)
- Eva Sapi
- Research Division of Advanced Laboratory Services Philadelphia PA, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Wormser GP, Nadelman RB, Schwartz I. The amber theory of Lyme arthritis: initial description and clinical implications. Clin Rheumatol 2012; 31:989-94. [PMID: 22411576 DOI: 10.1007/s10067-012-1964-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/24/2012] [Accepted: 02/18/2012] [Indexed: 01/12/2023]
Abstract
Lyme arthritis differs in many respects from other bacterial causes of arthritis. Based on an observation made for a patient with Lyme arthritis, we propose that the pathogenesis of joint swelling in Lyme arthritis is due to the introduction into the joint space of non-viable spirochetes or more likely spirochetal debris enmeshed in a host-derived fibrinous or collagenous matrix. This "amber" hypothesis can account for the clinical and laboratory features of Lyme arthritis and is amenable to experimental validation. Validation would directly impact the clinical management of patients with Lyme arthritis.
Collapse
Affiliation(s)
- Gary P Wormser
- Division of Infectious Diseases of the Department of Medicine, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
43
|
The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc Natl Acad Sci U S A 2012; 109:3059-64. [PMID: 22315410 DOI: 10.1073/pnas.1114362109] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Lyme disease spirochete Borrelia burgdorferi exists in nature in an enzootic cycle that involves the arthropod vector Ixodes scapularis and mammalian reservoirs. To disseminate within and between these hosts, spirochetes must migrate through complex, polymeric environments such as the basement membrane of the tick midgut and the dermis of the mammal. To date, most research on the motility of B. burgdorferi has been done in media that do not resemble the tissue milieus that B. burgdorferi encounter in vivo. Here we show that the motility of Borrelia in gelatin matrices in vitro resembles the pathogen's movements in the chronically infected mouse dermis imaged by intravital microscopy. More specifically, B. burgdorferi motility in mouse dermis and gelatin is heterogeneous, with the bacteria transitioning between at least three different motility states that depend on transient adhesions to the matrix. We also show that B. burgdorferi is able to penetrate matrices with pore sizes much smaller than the diameter of the bacterium. We find a complex relationship between the swimming behavior of B. burgdorferi and the rheological properties of the gelatin, which cannot be accounted for by recent theoretical predictions for microorganism swimming in gels. Our results also emphasize the importance of considering borrelial adhesion as a dynamic rather than a static process.
Collapse
|
44
|
Abstract
Lyme borreliosis (Lyme disease) is caused by spirochaetes of the Borrelia burgdorferi sensu lato species complex, which are transmitted by ticks. The most common clinical manifestation is erythema migrans, which eventually resolves, even without antibiotic treatment. However, the infecting pathogen can spread to other tissues and organs, causing more severe manifestations that can involve a patient's skin, nervous system, joints, or heart. The incidence of this disease is increasing in many countries. Laboratory evidence of infection, mainly serology, is essential for diagnosis, except in the case of typical erythema migrans. Diagnosed cases are usually treated with antibiotics for 2-4 weeks and most patients make an uneventful recovery. No convincing evidence exists to support the use of antibiotics for longer than 4 weeks, or for the persistence of spirochaetes in adequately treated patients. Prevention is mainly accomplished by protecting against tick bites. There is no vaccine available for human beings.
Collapse
Affiliation(s)
- Gerold Stanek
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Vienna, Austria.
| | | | | | | |
Collapse
|
45
|
ELISA-based measurement of antibody responses and PCR-based detection profiles can distinguish between active infection and early clearance of Borrelia burgdorferi. Clin Dev Immunol 2011; 2012:138069. [PMID: 22110528 PMCID: PMC3205739 DOI: 10.1155/2012/138069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/19/2011] [Indexed: 12/15/2022]
Abstract
Borrelia burgdorferi is a spirochetal bacterium that causes Lyme disease. These studies address whether current research methods using either ELISA to detect seroconversion to B. burgdorferi antigens or PCR quantification of bacterial DNA within tissues can accurately distinguish between a productive infection versus a B. burgdorferi exposure that is rapidly cleared by the innate responses. Mice receiving even minimal doses of live B. burgdorferi produced significantly more B. burgdorferi-specific IgM and IgG than groups receiving large inocula of heat-killed bacteria. Additionally, sera from mice injected with varied doses of killed B. burgdorferi recognized unique borrelial antigens compared to mice infected with live B. burgdorferi. Intradermal injection of killed B. burgdorferi resulted in rapid DNA clearance from skin, whereas DNA was consistently detected in skin inoculated with viable B. burgdorferi. These data indicate that both ELISA-based serological analyses and PCR-based methods of assessing B. burgdorferi infection clearly distinguish between an established infection with live bacteria and exposure to large numbers of bacteria that are promptly cleared by the innate responses.
Collapse
|
46
|
Prevention of Lyme Disease: Promising Research or Sisyphean Task? Arch Immunol Ther Exp (Warsz) 2011; 59:261-75. [DOI: 10.1007/s00005-011-0128-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 03/02/2011] [Indexed: 11/26/2022]
|
47
|
Tunev SS, Hastey CJ, Hodzic E, Feng S, Barthold SW, Baumgarth N. Lymphoadenopathy during lyme borreliosis is caused by spirochete migration-induced specific B cell activation. PLoS Pathog 2011; 7:e1002066. [PMID: 21637808 PMCID: PMC3102705 DOI: 10.1371/journal.ppat.1002066] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022] Open
Abstract
Lymphadenopathy is a hallmark of acute infection with Borrelia burgdorferi, a tick-borne spirochete and causative agent of Lyme borreliosis, but the underlying causes and the functional consequences of this lymph node enlargement have not been revealed. The present study demonstrates that extracellular, live spirochetes accumulate in the cortical areas of lymph nodes following infection of mice with either host-adapted, or tick-borne B. burgdorferi and that they, but not inactivated spirochetes, drive the lymphadenopathy. The ensuing lymph node response is characterized by strong, rapid extrafollicular B cell proliferation and differentiation to plasma cells, as assessed by immunohistochemistry, flow cytometry and ELISPOT analysis, while germinal center reactions were not consistently observed. The extrafollicular nature of this B cell response and its strongly IgM-skewed isotype profile bear the hallmarks of a T-independent response. The induced B cell response does appear, however, to be largely antigen-specific. Use of a cocktail of recombinant, in vivo-expressed B. burgdorferi-antigens revealed the robust induction of borrelia-specific antibody-secreting cells by ELISPOT. Furthermore, nearly a quarter of hybridomas generated from regional lymph nodes during acute infection showed reactivity against a small number of recombinant Borrelia-antigens. Finally, neither the quality nor the magnitude of the B cell responses was altered in mice lacking the Toll-like receptor adaptor molecule MyD88. Together, these findings suggest a novel evasion strategy for B. burgdorferi: subversion of the quality of a strongly induced, potentially protective borrelia-specific antibody response via B. burdorferi's accumulation in lymph nodes.
Collapse
Affiliation(s)
- Stefan S. Tunev
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Graduate Group in Comparative Pathology, University of California Davis, Davis, California, United States of America
| | - Christine J. Hastey
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Graduate Group in Microbiology, University of California Davis, Davis, California, United States of America
| | - Emir Hodzic
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Sunlian Feng
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Stephen W. Barthold
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Graduate Group in Comparative Pathology, University of California Davis, Davis, California, United States of America
- Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Graduate Group in Microbiology, University of California Davis, Davis, California, United States of America
| | - Nicole Baumgarth
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- Graduate Group in Comparative Pathology, University of California Davis, Davis, California, United States of America
- Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Graduate Group in Microbiology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Rupprecht TA, Fingerle V. Neuroborreliosis: pathogenesis, symptoms, diagnosis and treatment. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lyme disease is the most common human tick-borne disease in the northern hemisphere. This article describes the current knowledge of several aspects of Lyme neuroborreliosis. The epidemiology is reviewed first, with special respect to the difference between European and American disease. Then, the current knowledge about the pathogenesis of Lyme neuroborreliosis is presented, with emphasis on immune evasion strategies. Furthermore, the clinical picture of acute Lyme neuroborreliosis and the frequently discussed post-Lyme disease syndrome are critically discussed. The commonly used diagnostic strategies, as well as the relevance of the lymphocyte transformation test, CD57+/CD3- cell count and CXCL13, are presented. Finally, the therapeutic options are described to give a balanced overview of all aspects of this disease.
Collapse
Affiliation(s)
- Tobias A Rupprecht
- Abteilung für Neurologie, AmperKliniken AG Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, LGL Oberschleißheim, Germany
| |
Collapse
|
49
|
CsrA modulates levels of lipoproteins and key regulators of gene expression critical for pathogenic mechanisms of Borrelia burgdorferi. Infect Immun 2010; 79:732-44. [PMID: 21078860 DOI: 10.1128/iai.00882-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbon storage regulator A (CsrA) is an RNA binding protein that has been characterized in many bacterial species to play a central regulatory role by modulating several metabolic processes. We recently showed that a homolog of CsrA in Borrelia burgdorferi (CsrA(Bb), BB0184) was upregulated in response to propagation of B. burgdorferi under mammalian host-specific conditions. In order to further delineate the role of CsrA(Bb), we generated a deletion mutant designated ES10 in a linear plasmid 25-negative isolate of B. burgdorferi strain B31 (ML23). The deletion mutant was screened by PCR and Southern blot hybridization, and a lack of synthesis of CsrA(Bb) in ES10 was confirmed by immunoblot analysis. Analysis of ES10 propagated at pH 6.8/37°C revealed a significant reduction in the levels of OspC, DbpA, BBK32, and BBA64 compared to those for the parental wild-type strain propagated under these conditions, while there were no significant changes in the levels of either OspA or P66. Moreover, the levels of two regulatory proteins, RpoS and BosR, were also found to be lower in ES10 than in the control strain. Quantitative real-time reverse transcription-PCR analysis of total RNA extracted from the parental strain and csrA(Bb) mutant revealed significant differences in gene expression consistent with the changes at the protein level. Neither the csrA(Bb) mutant nor the trans-complemented strain was capable of infection following intradermal needle inoculation in C3H/HeN mice at either 10³ or 10⁵ spirochetes per mouse. The further characterization of molecular basis of regulation mediated by CsrA(Bb) will provide significant insights into the pathophysiology of B. burgdorferi.
Collapse
|
50
|
Yrjänäinen H, Hytönen J, Hartiala P, Oksi J, Viljanen MK. Persistence of borrelial DNA in the joints of Borrelia burgdorferi-infected mice after ceftriaxone treatment. APMIS 2010; 118:665-73. [PMID: 20718718 DOI: 10.1111/j.1600-0463.2010.02615.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have earlier shown that Borrelia burgdorferi-infected and ceftriaxone-treated mice have viable spirochetes in their body, since immunosuppressive treatment allows B. burgdorferi to be detected by culture. However, the niche of the persisting spirochetes remained unknown. In the present study, we analyzed the tissues of B. burgdorferi-infected and ceftriaxone-treated mice by culture and PCR to reveal the foci of persisting spirochetes. C3H/HeN mice were infected via intradermal needle injection with B. burgdorferi s.s. N40. The mice were treated as follows: (i) short (5 days) and (ii) long (18 days) course of ceftriaxone at 2 weeks of infection and killed after either 10 or 30 weeks, or (iii) the mice received ceftriaxone for 5 days at 18 weeks of infection and were killed 21 weeks after the treatment. All samples of ceftriaxone-treated mice were culture negative, whereas all untreated controls were culture positive. Importantly, B. burgdorferi DNA was detected in the joints of 30-100% of the treated mice. In conclusion, these results combined with earlier results suggest that the joint or a tissue adjacent to the joint is the niche of persisting B. burgdorferi in ceftriaxone-treated mice.
Collapse
Affiliation(s)
- Heta Yrjänäinen
- Department of Medical Microbiology and Immunology, University of Turku, Finland.
| | | | | | | | | |
Collapse
|