1
|
Yaikhan T, Wonglapsuwan M, Pahumunto N, Nokchan N, Teanpaisan R, Surachat K. Probiogenomic analysis of Limosilactobacillus fermentum SD7, a probiotic candidate with remarkable aggregation abilities. Heliyon 2025; 11:e42451. [PMID: 40007772 PMCID: PMC11850171 DOI: 10.1016/j.heliyon.2025.e42451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Limosilactobacillus fermentum has gained recognition as a probiotic due to its immunomodulatory properties. In this study, we characterized L. fermentum SD7, which was isolated from the human oral cavity. The genome of L. fermentum SD7 was approximately 2.27 Mb in size, with a 51.1 % GC content. Using comprehensive genome analysis, we compared the genome of L. fermentum SD7 with 153 available genome sequences of L. fermentum strains and categorized the 154 strains into six distinct clades based on core gene single nucleotide polymorphisms. Among the 12,598 orthologous proteins, we identified 910 core genes and 10,169 accessory genes. Our analysis revealed a close similarity between L. fermentum SD7, FS-10, and L13. In addition, L. fermentum SD7 genome contains four strain-specific putative CRISPR-associated genes and lacks antimicrobial resistance and virulence genes. Importantly, we identified 27 genes in L. fermentum SD7 genome that are linked to aggregation ability, which is supported by our probiogenomic analysis. This aggregation ability is considered crucial for the probiotic efficacy of L. fermentum SD7. These findings provide a comprehensive understanding of the genetic composition of L. fermentum and its potential probiotic properties, identifying L. fermentum SD7 as a promising probiotic candidate for use in the food and healthcare industries.
Collapse
Affiliation(s)
- Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntiya Pahumunto
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Rawee Teanpaisan
- Research Center of Excellence for Oral Health, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Medical Science Research and Innovation Institute, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
2
|
Dong Y, Ronholm J, Fliss I, Karboune S. Screening of Lactic Acid Bacteria Strains for Potential Sourdough and Bread Applications: Enzyme Expression and Exopolysaccharide Production. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10270-y. [PMID: 38733464 DOI: 10.1007/s12602-024-10270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Twenty-eight strains of lactic acid bacteria (LAB) were characterized for the ability to express enzymes of interest (including protease, xylanase, α-amylase, laccase, and glucose oxidase) as well as the ability to produce exopolysaccharide (EPS). The screening of enzyme capability for all LAB strains proceeded in a progressive 3-stage manner that helps to profile the efficiency of LAB strains in expressing chosen enzymes (Stage 1), highlights the strains with affinity for flour as the substrate (Stage 2), and discerns strains that can adapt well in a simulated starter environment (Stage 3). The theoretical ability of LAB to express these enzymes was also assessed using Basic Local Alignment Search Tool (BLAST) analysis to identify the underlying genes in the whole genome sequence. By consolidating both experimental data and information obtained from BLAST, three LAB strains were deemed optimal in expressing enzymes, namely, Lb. delbrueckii subsp. bulgaricus (RBL 52), Lb. rhamnosus (RBL 102), and Lb. plantarum (ATCC 10241). Meanwhile, EPS-producing capabilities were observed for 10 out of 28 LAB strains, among which, Lactococcus lactis subsp. diacetylactis (RBL 37) had the highest total EPS yield (274.15 mg polysaccharide/L culture) and produced 46.2% polysaccharide with a molecular mass of more than 100 kDa.
Collapse
Affiliation(s)
- YiNing Dong
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Ismail Fliss
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Roselli GE, Kerruish DWM, Crow M, Smart KA, Powell CD. The two faces of microorganisms in traditional brewing and the implications for no- and low-alcohol beers. Front Microbiol 2024; 15:1346724. [PMID: 38440137 PMCID: PMC10910910 DOI: 10.3389/fmicb.2024.1346724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
The production of alcoholic beverages is intrinsically linked to microbial activity. This is because microbes such as yeast are associated with the production of ethanol and key sensorial compounds that produce desirable qualities in fermented products. However, the brewing industry and other related sectors face a step-change in practice, primarily due to the growth in sales of no- and low-alcohol (NoLo) alternatives to traditional alcoholic products. Here we review the involvement of microbes across the brewing process, including both their positive contributions and their negative (spoilage) effects. We also discuss the opportunities for exploiting microbes for NoLo beer production, as well as the spoilage risks associated with these products. For the latter, we highlight differences in composition and process conditions between traditional and NoLo beers and discuss how these may impact the microbial ecosystem of each product stream in relation to microbiological stability and final beer quality.
Collapse
Affiliation(s)
- Giulia E. Roselli
- Division of Microbiology, Biotechnology and Brewing Science, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | | | - Matthew Crow
- Diageo International Technical Centre, Menstrie, Scotland, United Kingdom
| | - Katherine A. Smart
- Diageo International Technical Centre, Menstrie, Scotland, United Kingdom
| | - Chris D. Powell
- Division of Microbiology, Biotechnology and Brewing Science, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
4
|
Zhang D, Shin H, Wang T, Zhao Y, Lee S, Lim C, Zhang S. Whole Genome Sequence of Lactiplantibacillus plantarum HOM3204 and Its Antioxidant Effect on D-Galactose-Induced Aging in Mice. J Microbiol Biotechnol 2023; 33:1030-1038. [PMID: 37311704 PMCID: PMC10468677 DOI: 10.4014/jmb.2209.09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/03/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Lactiplantibacillus plantarum, previously named Lactobacillus plantarum, is a facultative, homofermentative lactic acid bacterium widely distributed in nature. Several Lpb. plantarum strains have been demonstrated to possess good probiotic properties, and Lpb. plantarum HOM3204 is a potential probiotic strain isolated from homemade pickled cabbage plants. In this study, whole-genome sequencing was performed to acquire genetic information and predict the function of HOM3204, which has a circular chromosome of 3,232,697 bp and two plasmids of 48,573 and 17,060 bp, respectively. Moreover, various oxidative stress-related genes were identified in the strain, and its antioxidant activity was evaluated in vitro and in vivo. Compared to reference strains, the intracellular cell-free extracts of Lpb. plantarum HOM3204 at a dose of 1010 colony-forming units (CFU)/ml in vitro exhibited stronger antioxidant properties, such as total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging rate, superoxide dismutase activity, and glutathione (GSH) content. Daily administration of 109 CFU Lpb. plantarum HOM3204 for 45 days significantly improved the antioxidant function by increasing the glutathione peroxidase activity in the whole blood and GSH concentration in the livers of D-galactose-induced aging mice. These results suggest that Lpb. plantarum HOM3204 can potentially be used as a food ingredient with good antioxidant properties.
Collapse
Affiliation(s)
- Di Zhang
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
| | | | - Tingting Wang
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
| | - Yaxin Zhao
- Health Food Function Testing Center, College of Applied Arts and Science, Beijing Union University, Beijing 100101, P.R. China
| | - Suwon Lee
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
- Dx&Vx Co., Ltd., Seoul 13201, Republic of Korea
| | - Chongyoon Lim
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
- Dx&Vx Co., Ltd., Seoul 13201, Republic of Korea
| | - Shiqi Zhang
- Coree Beijing Co., Ltd., No. A-7 Tianzhu West Rd., Tianzhu Airport Industrial Zone A, Shunyi District, Beijing 101312, P.R. China
| |
Collapse
|
5
|
Wahlen BD, Wendt LM, St Germain CC, Traynor SM, Barboza C, Dempster T, Gerken H, McGowen J, You Y. Effect of nitrogen management in cultivation on the stability and microbial community of post-harvest Monoraphidium sp. algae biomass. J Ind Microbiol Biotechnol 2023; 50:kuad004. [PMID: 36928716 PMCID: PMC10548854 DOI: 10.1093/jimb/kuad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Long-term storage is necessary to mitigate for seasonal variation in algae productivity, to preserve biomass quality and to guarantee a constant biomass supply to a conversion facility. While ensiling has shown promise as a solution, biomass attributes for successful storage are poorly understood. Storage studies of Monoraphidium sp. biomass indicate a strong correlation between nitrogen management in algae cultivation and stability of post-harvest algae biomass. Algae cultivated with periodic nitrogen addition were stored poorly (>20% loss, dry basis) compared to biomass from nitrogen depleted cultivation (8% loss, dry basis). A follow-up study compared the post-harvest stability of Monoraphidium biomass cultivated in nitrogen-deplete or nitrogen-replete conditions. Replete biomass experienced the largest degradation (24%, dry basis), while deplete biomass experienced the least (10%, dry basis). Dry matter loss experienced among blends of each correlated positively with nitrogen-replete biomass content. The composition of the post-storage algae microbial community was also affected by cultivation conditions, with Clostridia species being more prevalent in stored biomass obtained from nitrogen-replete cultivations. Nitrogen management has long been known to influence algae biomass productivity and biochemical composition; here, we demonstrate that it also strongly influences the stability of post-harvest algae biomass in anaerobic storage.
Collapse
Affiliation(s)
- Bradley D Wahlen
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Lynn M Wendt
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | | | - Sarah M Traynor
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Caitlin Barboza
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Thomas Dempster
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - Henri Gerken
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - John McGowen
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - Yaqi You
- SUNY College of Environmental Science and Forestry, State University of New York, Syracuse 13210, USA
| |
Collapse
|
6
|
Antimicrobial Activities and Biopreservation Potential of Lactic Acid Bacteria (LAB) from Raw Buffalo ( Bubalus bubalis) Milk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8475995. [PMID: 36798686 PMCID: PMC9928508 DOI: 10.1155/2023/8475995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
The aim of this study was to investigate the antimicrobial and biopreservation potential of lactic acid bacteria. The potential probiotic culture inhibited the growth of gram-positive and gram-negative foodborne pathogens in agar spot assay with inhibition zones ranging from 10 to 21 mm in diameter. The strains showed coaggregation capabilities ranging from 7 to 71% with tested food pathogens including Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica subsp. enterica serovar Typhimurium. The effect of cell-free supernatants on the release of 260 nm absorbing material, especially nucleic acids, was evaluated and indicated the antagonistic activity on foodborne pathogens, the highest being Lactobacillus paraplantarum against E. coli (3.77) and S. aureus (3.86) after 60 min. The effect of cell-free supernatant (CFS) on the growth of pathogens showed that Lactobacillus paraplantarum 11 and L. pentosus 93 had the highest inhibitory activity against tested strains. The biopreservation assay indicated that the potential probiotic strains Lactobacillus paraplantarum 11 (BT), Lactiplantibacillus plantarum 19, Lactobacillus pentosus 42, Limosilactobacillus fermentum 60, Lactobacillus pentosus 93, and Limosilactobacillus reuteri 112 were effective in reducing the Listeria monocytogenes population in raw buffalo milk. Complete Listeria monocytogenes inhibition was observed after 6-8 days. This study showed that probiotic LAB from buffalo milk have antimicrobial and biopreservation potential; these strains have the potential to be utilized as biopreservative agents in food products.
Collapse
|
7
|
The performance of lactic acid bacteria in silage production: a review of modern biotechnology for silage improvement. Microbiol Res 2022; 266:127212. [DOI: 10.1016/j.micres.2022.127212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022]
|
8
|
Okoye CO, Dong K, Wang Y, Gao L, Li X, Wu Y, Jiang J. Comparative genomics reveals the organic acid biosynthesis metabolic pathways among five lactic acid bacterial species isolated from fermented vegetables. N Biotechnol 2022; 70:73-83. [PMID: 35525431 DOI: 10.1016/j.nbt.2022.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Lactic acid bacteria (LAB) comprise a widespread bacterial group, inhabiting the niches of fermented vegetables and capable of producing beneficial organic acids. In the present study, several bioinformatics approaches were used to perform whole-genome sequencing and comparative genomics of five LAB species, Lactobacillus plantarum PC1-1, Pediococcus pentosaceus PC2-1(F2), Weissella hellenica PC1A, Lactobacillus buchneri PC-C1, and Enterococcus sp. YC2-6, to enhance understanding of their different genetic functionalities and organic acid biosynthesis. The results revealed major carbohydrate-active enzymes, putative operons and unique mobile genetic elements, including plasmids, resistance genes, insertion sequences and composite transposons involved in organic acid biosynthesis. The metabolic pathways of organic acid biosynthesis emphasize the key genes encoding specific enzymes required for organic acid metabolism. The five genomes were found to contain various regions of secondary metabolite biosynthetic gene clusters, including the type III polyketide synthases (T3PKS) enriched with unique genes encoding a hydroxymethylglutaryl-CoA synthase, capable of exhibiting specific antimicrobial activity with biopreservative potential, and a cyclic AMP receptor protein (CPR) transcription factor acting as a glucose sensor in organic acid biosynthesis. This could enable the organisms to prevail in the fermentation process, suggesting potential industrial applications.
Collapse
Affiliation(s)
- Charles Obinwanne Okoye
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Ke Dong
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongli Wang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Gao
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Li
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanfang Wu
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, Jiangsu University, Zhenjiang 212013, China; School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Adesulu-Dahunsi AT, Dahunsi SO, Ajayeoba TA. Co-occurrence of Lactobacillus Species During Fermentation of African Indigenous Foods: Impact on Food Safety and Shelf-Life Extension. Front Microbiol 2022; 13:684730. [PMID: 35464919 PMCID: PMC9021961 DOI: 10.3389/fmicb.2022.684730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022] Open
Abstract
The benefits derived from fermented foods and beverages have placed great value on their acceptability worldwide. Food fermentation technologies have been employed for thousands of years and are considered essential processes for the production and preservation of foods, with the critical roles played by the autochthonous fermenting food-grade microorganisms in ensuring food security and safety, increased shelf life, and enhanced livelihoods of many people in Africa, particularly the marginalized and vulnerable groups. Many indigenous fermented foods and beverages of Africa are of plant origin. In this review, the predominance, fermentative activities, and biopreservative role of Lactobacillus spp. during production of indigenous foods and beverages, the potential health benefit of probiotics, and the impact of these food-grade microorganisms on food safety and prolonged shelf life are discussed. During production of African indigenous foods (with emphasis on cereals and cassava-based food products), fermentation occurs in succession; the first group of microorganisms to colonize the fermenting substrates are lactic acid bacteria (LAB) with the diversity and dominance of Lactobacillus spp. The Lactobacillus spp. multiply rapidly in the fermentation matrix, by taking up nutrients from the surrounding environments, and cause rapid acidification in the fermenting system via the production of organic compounds that convert fermentable sugars into mainly lactic acid. Production of these compounds in food systems inhibits spoilage microorganisms, which has a direct effect on food quality and safety. The knowledge of microbial interaction and succession during food fermentation will assist the food industry in producing functional foods and beverages with improved nutritional profiling and technological attributes, as Lactobacillus strains isolated during fermentation of several African indigenous foods have demonstrated desirable characteristics that make them safe for use as probiotic microorganisms and even as a starter culture in small- and large-scale/industrial food production processes.
Collapse
Affiliation(s)
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Nigeria
| | | |
Collapse
|
10
|
Genomic characteristics of a novel strain Lactiplantibacillus plantarum X7021 isolated from the brine of stinky tofu for the application in food fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Xiao Y, Zhao J, Zhang H, Zhai Q, Chen W. Mining genome traits that determine the different gut colonization potential of Lactobacillus and Bifidobacterium species. Microb Genom 2021; 7:000581. [PMID: 34100697 PMCID: PMC8461469 DOI: 10.1099/mgen.0.000581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Although the beneficial effects of probiotics are likely to be associated with their ability to colonize the gut, little is known about the characteristics of good colonizers. In a systematic analysis of the comparative genomics, we tried to elucidate the genomic contents that account for the distinct host adaptability patterns of Lactobacillus and Bifidobacterium species. The Bifidobacterium species, with species-level phylogenetic structures affected by recombination among strains, broad mucin-foraging activity, and dietary-fibre-degrading ability, represented niche conservatism and tended to be host-adapted. The Lactobacillus species stretched across three lifestyles, namely free-living, nomadic and host-adapted, as characterized by the variations of bacterial occurrence time, guanine-cytosine (GC) content and genome size, evolution event frequency, and the presence of human-adapted bacterial genes. The numbers and activity of host-adapted factors, such as bile salt hydrolase and intestinal tissue-anchored elements, were distinctly distributed among the three lifestyles. The strains of the three lifestyles could be separated with such a collection of colonization-related genomic content (genes, genome size and GC content). Thus, our work provided valuable information for rational selection and gut engraftment prediction of probiotics. Here, we have found many interesting predictive results for bacterial gut fitness, which will be validated in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- Yangzhou Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu 225004, PR China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
12
|
Jiang X, Lu N, Zhao H, Yuan H, Xia D, Lei H. The Microbiome-Metabolome Response in the Colon of Piglets Under the Status of Weaning Stress. Front Microbiol 2020; 11:2055. [PMID: 32983040 PMCID: PMC7483555 DOI: 10.3389/fmicb.2020.02055] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Weaning is stressful for piglets involving nutritional, physiological, and psychological challenges, leading to an increase in the secretion of cortisol, changes in gut microbiome and metabolites, whereas the underlying relationships remain unclear. To elucidate this, 14 Meishan female piglets were divided into the weaning group and the suckling group at the age of 21 days paired by litter and body weight. After 48 h of experiment, weaned piglets had lower body weight, but higher salivary cortisol level than that of their suckling litter mates (P < 0.05). The composition of the colonic bacterial community and metabolites were different between the two groups, and the first predominant genus of the suckling and weaned piglets colonic microbiome were Bacteroides and Prevotellaceae-NK3B31 group respectively. The suckling piglets had higher proportions of phylum Bacteroidetes and Lentisphaerae, and genus Bacteroides and Lactobacillus in the colonic microbial community, but lower abundance of genus Prevotellaceae-NK3B31 group than that of the weaned piglets (P < 0.05). Accordingly, there were 15 colonic metabolites differed between the two groups, in which 2 metabolites (phenylacetic acid and phenol) negatively related to the abundant of Lactobacillus genus (P < 0.05), while 9 metabolites (acetic acid, arabitol, benzoic acid, caprylic acid, cholesterol, dihydrocholesterol, galactinol, glucose phenol, phenylacetic acid, and oxamic acid, glycerol, propionic acid) positively associated with the proportion of Prevotellaceae-NK3B31 group genus (P < 0.05). Furthermore, the salivary cortisol level negatively associated with the abundance of phylum Lentisphaerae, but positively associated with the phylum Bacteroidetes and the genus Prevotellaceae-NK3B31 group (P < 0.05) respectively. These results provide us with new insights into the cause of the gut microbiome and stress, and the contributions of gut microbiome in metabolic and physiological regulation in response to weaning stress.
Collapse
Affiliation(s)
- Xueyuan Jiang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Naisheng Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haichao Zhao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Department of Pharmaceutical Microbiology, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Hao Yuan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dong Xia
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hulong Lei
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
13
|
Brandt K, Nethery MA, O'Flaherty S, Barrangou R. Genomic characterization of Lactobacillus fermentum DSM 20052. BMC Genomics 2020; 21:328. [PMID: 32349666 PMCID: PMC7191730 DOI: 10.1186/s12864-020-6740-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background Lactobacillus fermentum, a member of the lactic acid bacteria complex, has recently garnered increased attention due to documented antagonistic properties and interest in assessing the probiotic potential of select strains that may provide human health benefits. Here, we genomically characterize L. fermentum using the type strain DSM 20052 as a canonical representative of this species. Results We determined the polished whole genome sequence of this type strain and compared it to 37 available genome sequences within this species. Results reveal genetic diversity across nine clades, with variable content encompassing mobile genetic elements, CRISPR-Cas immune systems and genomic islands, as well as numerous genome rearrangements. Interestingly, we determined a high frequency of occurrence of diverse Type I, II, and III CRISPR-Cas systems in 72% of the genomes, with a high level of strain hypervariability. Conclusions These findings provide a basis for the genetic characterization of L. fermentum strains of scientific and commercial interest. Furthermore, our study enables genomic-informed selection of strains with specific traits for commercial product formulation, and establishes a framework for the functional characterization of features of interest.
Collapse
Affiliation(s)
- Katelyn Brandt
- Functional Genomics Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Matthew A Nethery
- Functional Genomics Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rodolphe Barrangou
- Functional Genomics Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Titze I, Krömker V. Antimicrobial Activity of a Phage Mixture and a Lactic Acid Bacterium against Staphylococcus aureus from Bovine Mastitis. Vet Sci 2020; 7:E31. [PMID: 32155751 PMCID: PMC7157551 DOI: 10.3390/vetsci7010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
The antimicrobial activity of a phage mixture and a lactic acid bacterium against Staphylococcus aureus isolates from bovine origin was investigated in vitro with regard to possible applications in the therapy of udder inflammation (mastitis) caused by bacterial infections. The S. aureus isolates used for inoculation derived from quarter foremilk samples of mastitis cases. For the examination of the antimicrobial activity, the reduction of the S. aureus germ density was determined [log10 cfu/mL]. The phage mixture consisted of the three obligatory lytic and S. aureus-specific phages STA1.ST29, EB1.ST11 and EB1.ST27 (1:1:1). The selected Lactobacillus plantarum strain with proven antimicrobial properties and the phage mixture were tested against S. aureus in milk, both alone and in combination. The application of the lactic acid bacterium showed only a low reduction ability for a 24 h incubation period. The bacteriophage mixture as well as its combination with the lactic acid bacterium showed high antimicrobial activity against S. aureus for a 24 h incubation period at 37 °C, with only the phage mixture showing significance.
Collapse
Affiliation(s)
- Isabel Titze
- Department of Bioprocess Engineering and Microbiology, Hannover University of Applied Sciences and Arts, D-30453 Hannover, Germany
| | - Volker Krömker
- Department of Bioprocess Engineering and Microbiology, Hannover University of Applied Sciences and Arts, D-30453 Hannover, Germany
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, Gronnegardsvej 2, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
15
|
Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103838] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
Huang T, Xiong T, Peng Z, Xiao YS, Liu ZG, Hu M, Xie MY. Genomic analysis revealed adaptive mechanism to plant-related fermentation of Lactobacillus plantarum NCU116 and Lactobacillus spp. Genomics 2020; 112:703-711. [DOI: 10.1016/j.ygeno.2019.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/23/2019] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
|
17
|
Todorov S, Cavicchioli V, Ananieva M, Bivolarski V, Vasileva T, Hinkov A, Todorov D, Shishkov S, Haertlé T, Iliev I, Nero L, Ivanova I. Expression of coagulin A with low cytotoxic activity by
Pediococcus pentosaceus
ST65ACC isolated from raw milk cheese. J Appl Microbiol 2019; 128:458-472. [DOI: 10.1111/jam.14492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
Affiliation(s)
- S.D. Todorov
- Faculdade de Ciências Farmacêuticas Universidade de São Paulo São Paulo Brazil
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - V.Q. Cavicchioli
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - M. Ananieva
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - V.P. Bivolarski
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - T.A. Vasileva
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - A.V. Hinkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - D.G. Todorov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - S. Shishkov
- Laboratory of Virology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| | - T. Haertlé
- Institut National de la Recherche Agronomique UR 1268 Biopolymeres Interactions Assemblages Nantes cedex 3 France
| | - I.N. Iliev
- Department of Biochemistry and Microbiology Faculty of Biology Plovdiv University Paisii Hilendarski Plovdiv Bulgaria
| | - L.A. Nero
- Departamento de Veterinária Universidade Federal de Viçosa Viçosa Brazil
| | - I.V. Ivanova
- Department of General and Applied Microbiology Faculty of Biology Sofia University St. Kliment Ohridski Sofia Bulgaria
| |
Collapse
|
18
|
Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Jiang X, Lu N, Xue Y, Liu S, Lei H, Tu W, Lu Y, Xia D. Crude fiber modulates the fecal microbiome and steroid hormones in pregnant Meishan sows. Gen Comp Endocrinol 2019; 277:141-147. [PMID: 30951727 DOI: 10.1016/j.ygcen.2019.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023]
Abstract
The beneficial effects of dietary fiber on the reproductive performance and welfare of sows have been discussed broadly, but few researches examined the causal changes and the association of gut microbiota and the steroid hormones, the main regulators of reproductive function. To shed light on this, thirty-six Meishan sows were allocated into 2.5% crude fiber (CF) group and 7.5% CF group respectively for an entire farrowing interval. On the 90th day of gestation, the saliva and fresh stool of sows were individually collected in the morning (06:00-07:00) for steroid hormones, short-chain fatty acids (SCFAs) and microbiome analysis. In addition, the parameter of pregnant behavioral and farrowing performance was recorded and evaluated. We observed that, as compared with the 2.5% CF treatment, 7.5% CF significantly increased the litter size (p = 0.01), reduced the stereotypic behaviors including sham chewing, rolling tongue and licking ground (p = 0.02, 0.04, 0.01) at later gestation stage, but increased lying time (p = 0.00). In coincide with this, 7.5% CF diet increased the salivary progesterone (p = 0.00), fecal estradiol and progesterone (p = 0.01, 0.02) level, fecal water and SCFAs content (p = 0.02, 0.03), decreased the salivary and fecal cortisol (p = 0.01, 0.00) level. Further, 7.5% CF diet increased the fecal microbiota richness (ACE, p = 0.04; Chao, p = 0.07) and diversity (Shannon, p = 0.01; Simpson, p = 0.04), the proportion of genus Ruminococcus, Butyrivibrio, Lactobacillus and Fibrobacter (p = 0.02, 0.05, 0.04, 0.00), whereas reduced the proportion of genus Clostridium, Streptococcus, Bacteroides and Escherichia-Shigella (p = 0.00, 0.00, 0.04, 0.04). These results indicate that, fibrous diet can regulate the steroid hormones secretion and modulate the gut with more cellulose-degrading and probiotic bacterium, but less opportunistic pathogens, and this may contribute to the improvement of reproductive performance and welfare in sows.
Collapse
Affiliation(s)
- Xueyuan Jiang
- Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Naisheng Lu
- Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Yun Xue
- Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, PR China; Shanghai Animal Disease Control Center, Shanghai, PR China
| | - Suli Liu
- Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Hulong Lei
- Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Weilong Tu
- Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Yang Lu
- Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Dong Xia
- Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| |
Collapse
|
20
|
Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clin Nutr 2019; 39:1315-1323. [PMID: 31174942 DOI: 10.1016/j.clnu.2019.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022]
Abstract
Probiotics administered orally endure one of two fates: some merely pass through, but others colonize the gut permanently. Although probiotics that can stably engraft in the gut are believed to exert beneficial effects on the host in terms of increasing the efficiency of metabolic activity and enabling durable modulation of the indigenous microbiota, the strains of long-term gut colonizers are poorly delineated. This review summarizes the gut colonization modes of Lactobacillus and Bifidobacterium in the context of their natural niches and engraftment metadata in an attempt to identify organisms with long-term gut colonization potential. Advances in colonization evaluation methods are identified, and the effects of dietary components and metabolic interactions among ingested strains on bacterial colonization are discussed.
Collapse
|
21
|
Glycerol metabolism and its regulation in lactic acid bacteria. Appl Microbiol Biotechnol 2019; 103:5079-5093. [DOI: 10.1007/s00253-019-09830-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/09/2023]
|
22
|
In vitro and in vivo evaluation of Lactobacillus strains and comparative genomic analysis of Lactobacillus plantarum CGMCC12436 reveal candidates of colonise-related genes. Food Res Int 2019; 119:813-821. [DOI: 10.1016/j.foodres.2018.10.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 01/16/2023]
|
23
|
Comparative Genomic Analysis of Lactobacillus plantarum: An Overview. Int J Genomics 2019; 2019:4973214. [PMID: 31093491 PMCID: PMC6481158 DOI: 10.1155/2019/4973214] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023] Open
Abstract
Background Lactobacillus plantarum is widely used in the manufacture of dairy products, fermented foods, and bacteriocins. The genomes of the strains contain multiple genes which may have been acquired by horizontal gene transfer. Many of these genes are important for the regulation, metabolism, and transport of various sugars; however, other genes may carry and spread virulence and antibiotic resistance determinants. In this way, monitoring these genomes is essential to the manufacture of food. In this study, we aim to provide an overview of the genomic properties of L. plantarum based on approaches of comparative genomics. Results The finding of the current study indicates that the core genome of L. plantarum presents 1425 protein-coding genes and is mostly related to the metabolic process. The accessory genome has on average 1320 genes that encodes protein involved in processes as the formation of bacteriocins, degradation of halogen, arsenic detoxification, and nisin resistance. Most of the strains show an ancestral synteny, similar to the one described in the genomes of L. pentosus KCA1 and L. plantarum WCFS1. The lifestyle island analyses did not show a pattern of arrangement or gene content according to habitat. Conclusions Our results suggest that there is a high rate of transfer of genetic material between the strains. We did not identify any virulence factors and antibiotic resistance genes on the genomes. Thus, the strains may be useful for the biotechnology, bioremediation, and production of bacteriocins. The potential applications are, however, restricted to particular strains.
Collapse
|
24
|
Iatsenko I, Boquete JP, Lemaitre B. Microbiota-Derived Lactate Activates Production of Reactive Oxygen Species by the Intestinal NADPH Oxidase Nox and Shortens Drosophila Lifespan. Immunity 2018; 49:929-942.e5. [DOI: 10.1016/j.immuni.2018.09.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
|
25
|
Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche. BMC Genomics 2018; 19:205. [PMID: 29554864 PMCID: PMC5859408 DOI: 10.1186/s12864-018-4586-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022] Open
Abstract
Background Strains of Lactobacillus paracasei are present in many diverse environments, including dairy and plant materials and the intestinal tracts of humans and animals. Their adaptation to various niches is correlated to intra-species diversity at the genomic and metabolic level. In this study, we compared the genome sequences of three L. paracasei strains isolated from mature Cheddar cheeses, two of which (DPC4206 and DPC4536) shared the same genomic fingerprint by PFGE, but demonstrated varying metabolic capabilities. Results Genome sizes varied from 2.9 Mbp for DPC2071, to 3.09 Mbp for DPC4206 and 3.08 Mpb for DPC4536. The presence of plasmids was a distinguishing feature between the strains with strain DPC2071 possessing an unusually high number of plasmids (up to 11), while DPC4206 had one plasmid and DPC4536 harboured no plasmids. Each of the strains possessed specific genes not present in the other two analysed strains. The three strains differed in their abundance of sugar-converting genes, and in the types of sugars that could be used as energy sources. Genes involved in the metabolism of sugars not usually connected with the dairy niche, such as myo-inositol and pullulan were also detected, but strains did not utilise these sugars. The genetic content of the three strains differed in regard to specific genes for arginine and sulfur-containing amino acid metabolism and genes contributing to resistance to heavy metal ions. In addition, variability in the presence of phage remnants and phage protection systems was evident. Conclusions The findings presented in this study confirm a considerable level of heterogeneity of Lactobacillus paracasei strains, even between strains isolated from the same niche.
Collapse
|
26
|
Xin Y, Guo T, Mu Y, Kong J. Coupling the recombineering to Cre-lox system enables simplified large-scale genome deletion in Lactobacillus casei. Microb Cell Fact 2018; 17:21. [PMID: 29433512 PMCID: PMC5808424 DOI: 10.1186/s12934-018-0872-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Background Lactobacillus casei is widely used in the dairy and pharmaceutical industries and a promising candidate for use as cell factories. Recently, genome sequencing and functional genomics provide the possibility for reducing L. casei genome. However, it was still limited by the inefficient and laborious genome deletion methods. Results Here, we proposed a genome minimization strategy based on LCABL_13040-50-60 recombineering and Cre-lox site-specific recombination system in L. casei. The LCABL_13040-50-60 recombineering system was used to introduce two lox sites (lox66 and lox71) into 5′ and 3′ ends of the targeted region. Subsequently, the targeted region was excised by Cre recombinase. The robustness of the strategy was demonstrated by single-deletion of a nonessential ~ 39.3 kb or an important ~ 12.8 kb region and simultaneous deletion of two non-continuous genome regions (5.2 and 6.6 kb) with 100% efficiency. Furthermore, a cyclical application of this strategy generated a double-deletion mutant of which 1.68% of the chromosome was sequentially excised. Moreover, biological features (including growth rate, electroporation efficiency, cell morphology or heterologous protein productivity) of these mutants were characterized. Conclusions To our knowledge, this strategy is the first instance of sequential deletion of large-scale genome regions in L. casei. We expected this efficient and inexpensive tool can help for rapid genome streamlining and generation restructured L. casei strains used as cell factories. Electronic supplementary material The online version of this article (10.1186/s12934-018-0872-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Yingli Mu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China.
| |
Collapse
|
27
|
Lim PY, Tan LL, Ow DSW, Wong FT. A propeptide toolbox for secretion optimization of Flavobacterium meningosepticum endopeptidase in Lactococcus lactis. Microb Cell Fact 2017; 16:221. [PMID: 29207979 PMCID: PMC5715515 DOI: 10.1186/s12934-017-0836-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Background Lactic acid bacteria are a family of “generally regarded as safe” organisms traditionally used for food fermentation. In recent years, they have started to emerge as potential chassis for heterologous protein production. And more recently, due to their beneficial properties in the gut, they have been examined as potential candidates for mucosal delivery vectors, especially for acid-sensitive enzymes. One such application would be the delivery of gluten-digesting endopeptidases for the treatment of celiac disease. To facilitate these applications, an efficient recombinant protein expression toolbox is required, especially for recombinant protein secretion. While current tools for enhancing protein secretion consist mainly of signal peptides, secretion propeptides have also been observed to play a crucial role for protein secretion and improved yields. Results To expand the propeptide library for secretion optimization, we have mined and characterized three naturally occurring propeptides from the sequenced genomes of 109 Lactococcus species. These newly-mined propeptides were introduced after the N-terminal USP45 secretion signal to characterize and compare their effects on the secretion of Escherichia coli thioredoxin (TRX) and Flavobacterium meningosepticum prolyl endopeptidase (Fm PEP) in Lactococcus lactis NZ9000. All three propeptides, along with the positive control LEISSTCDA, improved volumetric secretion yields by 1.4–2.3-folds. However, enhancement of secretion yield is dependent on protein of interest. For TRX, the optimal combination of USP45 signal peptide and LEISSTCDA produced a 2.3-fold increase in secretion yields. Whilst for Fm PEP, propeptide 1 with USP45 signal peptide improved volumetric secretion yields by 2.2-fold compared to a 1.4-fold increase by LEISSTCDA. Similar trends in Fm PEP activity and protein yield also demonstrated minimal effect of the negative charged propeptides on PEP activity and thus folding. Conclusions Overall, we have characterized three new propeptides for use in L. lactis secretion optimization. From success of these propeptides for improvement of secretion yields, we anticipate this collection to be valuable to heterologous protein secretion optimisation in lactic acid bacteria. We have also demonstrated for the first time, secretion of Fm PEP in L. lactis for potential use as a therapy agent in celiac disease. Electronic supplementary material The online version of this article (10.1186/s12934-017-0836-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei Yu Lim
- Microbial Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Lee Ling Tan
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Dave Siak-Wei Ow
- Microbial Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| | - Fong T Wong
- Molecular Engineering Lab, Biomedical Sciences Institutes, A*STAR, 61 Biopolis Drive, Singapore, 138673, Singapore.
| |
Collapse
|
28
|
Fugl A, Berhe T, Kiran A, Hussain S, Laursen MF, Bahl MI, Hailu Y, Sørensen KI, Guya ME, Ipsen R, Hansen EB. Characterisation of lactic acid bacteria in spontaneously fermented camel milk and selection of strains for fermentation of camel milk. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Mancha-Agresti P, de Castro CP, Dos Santos JSC, Araujo MA, Pereira VB, LeBlanc JG, Leclercq SY, Azevedo V. Recombinant Invasive Lactococcus lactis Carrying a DNA Vaccine Coding the Ag85A Antigen Increases INF-γ, IL-6, and TNF-α Cytokines after Intranasal Immunization. Front Microbiol 2017; 8:1263. [PMID: 28744263 PMCID: PMC5504179 DOI: 10.3389/fmicb.2017.01263] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/23/2017] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) remains a major threat throughout the world and in 2015 it caused the death of 1.4 million people. The Bacillus Calmette-Guérin is the only existing vaccine against this ancient disease; however, it does not provide complete protection in adults. New vaccines against TB are eminently a global priority. The use of bacteria as vehicles for delivery of vaccine plasmids is a promising vaccination strategy. In this study, we evaluated the use of, an engineered invasive Lactococcus lactis (expressing Fibronectin-Binding Protein A from Staphylococcus aureus) for the delivery of DNA plasmid to host cells, especially to the mucosal site as a new DNA vaccine against tuberculosis. One of the major antigens documented that offers protective responses against Mycobacterium tuberculosis is the Ag85A. L. lactis FnBPA+ (pValac:Ag85A) which was obtained and used for intranasal immunization of C57BL/6 mice and the immune response profile was evaluated. In this study we observed that this strain was able to produce significant increases in the amount of pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6) in the stimulated spleen cell supernatants, showing a systemic T helper 1 (Th1) cell response. Antibody production (IgG and sIgA anti-Ag85A) was also significantly increased in bronchoalveolar lavage, as well as in the serum of mice. In summary, these findings open new perspectives in the area of mucosal DNA vaccine, against specific pathogens using a Lactic Acid Bacteria such as L. lactis.
Collapse
Affiliation(s)
- Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Instituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Camila Prosperi de Castro
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Instituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Janete S C Dos Santos
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel DiasBelo Horizonte, Brazil
| | - Maíra A Araujo
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel DiasBelo Horizonte, Brazil
| | - Vanessa B Pereira
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Instituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Jean G LeBlanc
- Centro de Referencia para Lactobacilos - Consejo Nacional de Investigaciones Científicas y TécnicasSan Miguel de Tucumán, Argentina
| | - Sophie Y Leclercq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel DiasBelo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of General Biology, Instituto de Ciências Biológicas - Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| |
Collapse
|
30
|
Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E. Antifungal Microbial Agents for Food Biopreservation-A Review. Microorganisms 2017; 5:microorganisms5030037. [PMID: 28698479 PMCID: PMC5620628 DOI: 10.3390/microorganisms5030037] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 11/16/2022] Open
Abstract
Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments—including fungicides and chemical preservatives—are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for ‘clean label’ food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation.
Collapse
Affiliation(s)
- Marcia Leyva Salas
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Florence Valence
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Monika Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Anne Thierry
- UMR1253 Science et Technologie du Lait et de l'Œuf, INRA, Agrocampus Ouest, 65 rue de Saint Brieuc, 35000 Rennes, France.
| | - Emmanuel Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM EA3882), Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
31
|
Oliveira LC, Saraiva TDL, Silva WM, Pereira UP, Campos BC, Benevides LJ, Rocha FS, Figueiredo HCP, Azevedo V, Soares SC. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS One 2017; 12:e0175116. [PMID: 28384209 PMCID: PMC5383145 DOI: 10.1371/journal.pone.0175116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods.
Collapse
Affiliation(s)
- Letícia C. Oliveira
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Tessália D. L. Saraiva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Wanderson M. Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Ulisses P. Pereira
- Department of Preventive Veterinary Medicine, State University of Londrina, Londrina—PR, Brazil
| | - Bruno C. Campos
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Leandro J. Benevides
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Flávia S. Rocha
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Henrique C. P. Figueiredo
- Official Laboratory of Fisheries Ministry—Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
| | - Siomar C. Soares
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte—MG, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba—MG, Brazil
- * E-mail:
| |
Collapse
|
32
|
Milanowski M, Pomastowski P, Railean-Plugaru V, Rafińska K, Ligor T, Buszewski B. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products. PLoS One 2017; 12:e0174521. [PMID: 28362838 PMCID: PMC5375156 DOI: 10.1371/journal.pone.0174521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/10/2017] [Indexed: 01/20/2023] Open
Abstract
The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma–mass spectrometry (ICP-MS) was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs) extracted from bacterial cells was performed.
Collapse
Affiliation(s)
- Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- * E-mail:
| |
Collapse
|
33
|
Wu C, Huang J, Zhou R. Genomics of lactic acid bacteria: Current status and potential applications. Crit Rev Microbiol 2017; 43:393-404. [PMID: 28502225 DOI: 10.1080/1040841x.2016.1179623] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lactic acid bacteria (LAB) are widely used for the production of a variety of foods and feed raw materials where they contribute to flavor and texture of the fermented products. In addition, specific LAB strains are considered as probiotic due to their health-promoting effects in consumers. Recently, the genome sequencing of LAB is booming and the increased amount of published genomics data brings unprecedented opportunity for us to reveal the important traits of LAB. This review describes the recent progress on LAB genomics and special emphasis is placed on understanding the industry-related physiological features based on genomics analysis. Moreover, strategies to engineer metabolic capacity and stress tolerance of LAB with improved industrial performance are also discussed.
Collapse
Affiliation(s)
- Chongde Wu
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| | - Jun Huang
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| | - Rongqing Zhou
- a College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu , China.,b Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University , Chengdu , China
| |
Collapse
|
34
|
Stefanovic E, Fitzgerald G, McAuliffe O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol 2017; 61:33-49. [DOI: 10.1016/j.fm.2016.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
35
|
De Angelis M, Calasso M, Cavallo N, Di Cagno R, Gobbetti M. Functional proteomics within the genus Lactobacillus. Proteomics 2016; 16:946-62. [PMID: 27001126 DOI: 10.1002/pmic.201500117] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
36
|
Luo G, Li J, Li Y, Wang Z, Li WT, Li AM. Performance, kinetics behaviors and microbial community of internal circulation anaerobic reactor treating wastewater with high organic loading rate: Role of external hydraulic circulation. BIORESOURCE TECHNOLOGY 2016; 222:470-477. [PMID: 27764739 DOI: 10.1016/j.biortech.2016.10.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Performance of internal circulation anaerobic reactor (IC) treating wastewater at high organic loading rate (OLR) and role of external hydraulic circulation were evaluated. When the OLR was increased from 2.50 to 18.94kgCOD/m3/d, COD removal decreased to 85% slightly and methane production increased to 4.49L/L/d with the upflow velocity of 1.0m/h resulted from the additional hydraulic circulation. Withdrawal of external hydraulic circulation led to decrease of COD removal to lower than 60% drastically and methane production by 81%. Accumulation of volatile fatty acids caused decline of pH to below 6.0 and the shift of substrate metabolic pathway to the hybrid fermentation. In addition, both maximum methane production rate and maximum substrate degradation rate obtained from mathematical models decreased significantly. Hydrogenotrophic methanogens including Methanobacterium and Methanocorpusculum predominated in the anaerobic sludge and the shift of microbial community was also observed.
Collapse
Affiliation(s)
- Gan Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Zhu Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wen-Tao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Johnson BR, Klaenhammer TR. AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2016; 82:5687-5697. [PMID: 27422832 PMCID: PMC5007774 DOI: 10.1128/aem.02025-16%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 05/27/2025] Open
Abstract
UNLABELLED Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. IMPORTANCE Lactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of the mucosal immune system. However, there is still a dearth of information regarding the basic cellular and evolutionary function of S-layers. Here, we demonstrate that multiple autolysins, responsible for breaking down the cell wall during cell division, are associated with the S-layer. Deletion of the gene encoding one of these S-layer-associated autolysins confirmed its autolytic role and resulted in reduced binding capacity to mucin and intestinal extracellular matrices. These data suggest a functional association between the S-layer and autolytic activity through the extracellular presentation of autolysins.
Collapse
Affiliation(s)
- Brant R Johnson
- Graduate Program in Microbiology, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Todd R Klaenhammer
- Graduate Program in Microbiology, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
38
|
AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2016; 82:5687-97. [PMID: 27422832 PMCID: PMC5007774 DOI: 10.1128/aem.02025-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022] Open
Abstract
Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus. Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro. These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. IMPORTANCELactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of the mucosal immune system. However, there is still a dearth of information regarding the basic cellular and evolutionary function of S-layers. Here, we demonstrate that multiple autolysins, responsible for breaking down the cell wall during cell division, are associated with the S-layer. Deletion of the gene encoding one of these S-layer-associated autolysins confirmed its autolytic role and resulted in reduced binding capacity to mucin and intestinal extracellular matrices. These data suggest a functional association between the S-layer and autolytic activity through the extracellular presentation of autolysins.
Collapse
|
39
|
Reis NA, Saraiva MAF, Duarte EAA, de Carvalho EA, Vieira BB, Evangelista-Barreto NS. Probiotic properties of lactic acid bacteria isolated from human milk. J Appl Microbiol 2016; 121:811-20. [PMID: 27159339 DOI: 10.1111/jam.13173] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 05/04/2016] [Indexed: 12/28/2022]
Abstract
AIM The objective of this study was to identify and characterize lactic acid bacteria isolated from human milk, with an emphasis on their probiotic properties. METHODS AND RESULTS The strains were tested for their ability to inhibit growth of Enterococcus faecalis, Salmonella enterica subsp. enterica serotype Enteritidis, Listeria monocytogenes, Staphylococcus aureus and Escherichia coli, as well as for susceptibility to antimicrobial agents and for acid pH and bile salt tolerance. Gram-positive and catalase-negative were selected and identified as Enterococcus (83·3%) after sequencing the 16S rDNA gene. All the isolates inhibited growth of Ent. faecalis and S. serotype Enteritidis, 97% inhibited growth of L. monocytogenes and Staph. aureus and 78·8% inhibited growth of E. coli. Most of the isolates were resistant to gentamicin (50%) and vancomycin (47%). Twelve isolates grew when subjected to pH 3·0 and 0·1% bile salts. At lower pH (2·5-2·0), Ent. faecalis F1 and Weissella confusa F8 were more efficient. CONCLUSION It was possible to isolate from human milk the lactic acid bacteria with potential for use as probiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Lactic acid bacteria isolated of nursing mothers have probiotic properties.
Collapse
Affiliation(s)
- N A Reis
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas, Brazil
| | - M A F Saraiva
- Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - E A A Duarte
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas, Brazil
| | - E A de Carvalho
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas, Brazil
| | - B B Vieira
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas, Brazil
| | - N S Evangelista-Barreto
- Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas, Brazil
| |
Collapse
|
40
|
Newton ILG, Clark ME, Kent BN, Bordenstein SR, Qu J, Richards S, Kelkar YD, Werren JH. Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts. Genome Biol Evol 2016; 8:1526-42. [PMID: 27189996 PMCID: PMC4898810 DOI: 10.1093/gbe/evw096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Wolbachia pipientis are obligate intracellular bacteria commonly found in many arthropods. They can induce various reproductive alterations in hosts, including cytoplasmic incompatibility, male-killing, feminization, and parthenogenetic development, and can provide host protection against some viruses and other pathogens. Wolbachia differ from many other primary endosymbionts in arthropods because they undergo frequent horizontal transmission between hosts and are well known for an abundance of mobile elements and relatively high recombination rates. Here, we compare the genomes of two closely related Wolbachia (with 0.57% genome-wide synonymous divergence) that differ in their reproductive effects on hosts. wVitA induces a sperm-egg incompatibility (also known as cytoplasmic incompatibility) in the parasitoid insect Nasonia vitripennis, whereas wUni causes parthenogenetic development in a different parasitoid, Muscidifurax uniraptor Although these bacteria are closely related, the genomic comparison reveals rampant rearrangements, protein truncations (particularly in proteins predicted to be secreted), and elevated substitution rates. These changes occur predominantly in the wUni lineage, and may be due in part to adaptations by wUni to a new host environment, or its phenotypic shift to parthenogenesis induction. However, we conclude that the approximately 8-fold elevated synonymous substitution rate in wUni is due to a either an elevated mutation rate or a greater number of generations per year in wUni, which occurs in semitropical host species. We identify a set of genes whose loss or pseudogenization in the wUni lineage implicates them in the phenotypic shift from cytoplasmic incompatibility to parthenogenesis induction. Finally, comparison of these closely related strains allows us to determine the fine-scale mutation patterns in Wolbachia Although Wolbachia are AT rich, mutation probabilities estimated from 4-fold degenerate sites are not AT biased, and predict an equilibrium AT content much less biased than observed (57-50% AT predicted vs. 76% current content at degenerate sites genome wide). The contrast suggests selection for increased AT content within Wolbachia genomes.
Collapse
Affiliation(s)
| | | | - Bethany N Kent
- Department of Biological Sciences, Vanderbilt University
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University Department of Pathology, Microbiology and Immunology, Vanderbilt University
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Yogeshwar D Kelkar
- Department of Biostatistics and Computational Biology, University of Rochester
| | | |
Collapse
|
41
|
Stefanis C, Mantzourani I, Plessas S, Alexopoulos A, Galanis A, Bezirtzoglou E, Kandylis P, Varzakas T. Reviewing Classical and Molecular Techniques Regarding Profiling of Probiotic Character of Microorganisms. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2016. [DOI: 10.12944/crnfsj.4.1.05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In recent years the roles of probiotics as functional ingredients in food has been highly adopted by the consumers and are under constant investigation by the scientific community. As a result, several probiotic-containing foods have been introduced in the market with an annual share of several billion dollars. Of particular interest in the probiotics research is the profiling of probiotic character of the microbes involving both in vitro and in vivo approaches. Initially traditional microbiological techniques were used; however they suffer by many limitations and therefore the development of new techniques, which are primarily based on the analysis of nucleic acids have been introduced. The scope of this review is to present current knowledge about the methodological approaches that are used to quantify and characterize the potential probiotic character of microorganisms. Moreover, it will focus on molecular and non-molecular tools and finally will report some new perspectives in the study of probiotics using omics techniques.
Collapse
Affiliation(s)
- Christos Stefanis
- Democritus University of Thrace, Department of Agricultural Development, Laboratory of Microbiology, Biotechnology and Hygiene, Pandazidou 193, GR68200, Orestiada, Greece
| | - Ioanna Mantzourani
- Democritus University of Thrace, Department of Agricultural Development, Laboratory of Microbiology, Biotechnology and Hygiene, Pandazidou 193, GR68200, Orestiada, Greece
| | - Stavros Plessas
- Democritus University of Thrace, Department of Agricultural Development, Laboratory of Microbiology, Biotechnology and Hygiene, Pandazidou 193, GR68200, Orestiada, Greece
| | - Athanasios Alexopoulos
- Democritus University of Thrace, Department of Agricultural Development, Laboratory of Microbiology, Biotechnology and Hygiene, Pandazidou 193, GR68200, Orestiada, Greece
| | - Alexis Galanis
- Democritus University of Thrace, Department of Molecular Biology and Genetics, Dragana University Campus, GR68100, Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Democritus University of Thrace, Department of Agricultural Development, Laboratory of Microbiology, Biotechnology and Hygiene, Pandazidou 193, GR68200, Orestiada, Greece
| | - Panagiotis Kandylis
- Department of Food Technology, Technological and Educational Institution of Peloponnese, Antikalamos, Kalamata, Greece
| | - Theodoros Varzakas
- Department of Food Technology, Technological and Educational Institution of Peloponnese, Antikalamos, Kalamata, Greece
| |
Collapse
|
42
|
Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar. Appl Microbiol Biotechnol 2016; 100:4395-411. [PMID: 26754813 DOI: 10.1007/s00253-016-7284-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 01/15/2023]
Abstract
Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.
Collapse
|
43
|
Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Lactulose increases bacterial diversity and modulates the swine faecal microbiome as revealed by 454-pyrosequencing. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Illeghems K, De Vuyst L, Weckx S. Comparative genome analysis of the candidate functional starter culture strains Lactobacillus fermentum 222 and Lactobacillus plantarum 80 for controlled cocoa bean fermentation processes. BMC Genomics 2015; 16:766. [PMID: 26459565 PMCID: PMC4604094 DOI: 10.1186/s12864-015-1927-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/12/2015] [Indexed: 12/22/2022] Open
Abstract
Background Lactobacillus fermentum 222 and Lactobacillus plantarum 80, isolates from a spontaneous Ghanaian cocoa bean fermentation process, proved to be interesting functional starter culture strains for cocoa bean fermentations. Lactobacillus fermentum 222 is a thermotolerant strain, able to dominate the fermentation process, thereby converting citrate and producing mannitol. Lactobacillus plantarum 80 is an acid-tolerant and facultative heterofermentative strain that is competitive during cocoa bean fermentation processes. In this study, whole-genome sequencing and comparative genome analysis was used to investigate the mechanisms of these strains to dominate the cocoa bean fermentation process. Results Through functional annotation and analysis of the high-coverage contigs obtained through 454 pyrosequencing, plantaricin production was predicted for L. plantarum 80. For L. fermentum 222, genes encoding a complete arginine deiminase pathway were attributed. Further, in-depth functional analysis revealed the capacities of these strains associated with carbohydrate and amino acid metabolism, such as the ability to use alternative external electron acceptors, the presence of an extended pyruvate metabolism, and the occurrence of several amino acid conversion pathways. A comparative genome sequence analysis using publicly available genome sequences of strains of the species L. plantarum and L. fermentum revealed unique features of both strains studied. Indeed, L. fermentum 222 possessed genes encoding additional citrate transporters and enzymes involved in amino acid conversions, whereas L. plantarum 80 is the only member of this species that harboured a gene cluster involved in uptake and consumption of fructose and/or sorbose. Conclusions In-depth genome sequence analysis of the candidate functional starter culture strains L. fermentum 222 and L. plantarum 80 revealed their metabolic capacities, niche adaptations and functionalities that enable them to dominate the cocoa bean fermentation process. Further, these results offered insights into the cocoa bean fermentation ecosystem as a whole and will facilitate the selection of appropriate starter culture strains for controlled cocoa bean fermentation processes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1927-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koen Illeghems
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050, Brussels, Belgium.
| |
Collapse
|
46
|
Pariza MW, Gillies KO, Kraak-Ripple SF, Leyer G, Smith AB. Determining the safety of microbial cultures for consumption by humans and animals. Regul Toxicol Pharmacol 2015; 73:164-71. [PMID: 26165564 DOI: 10.1016/j.yrtph.2015.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 01/05/2023]
Abstract
Fermented foods and feeds have been consumed for millennia, and microorganisms isolated from traditional fermentations have been used as probiotics. There is interest in developing new microbial cultures for these uses, but to date safety evaluation procedures have only been discussed in general terms. We propose a comprehensive approach for determining the safety of microbial cultures that lack an established history of safe use for their intended new applications. Three scenarios are considered: (1) substantially increased exposure to a culture that has an established record of safety in a more limited application; (2) a new strain without a history of safe use that was isolated from a food or feed that has a history of safe use; and (3) a new strain isolated from a non-food or non-feed source. Our safety evaluation process is based on scientific procedures and is in the form of a decision tree composed of 13 questions. Our decision tree for determining the safety of microbial cultures for consumption by humans or animals is modeled on previous decision trees that are used worldwide to evaluate the safety of microbial enzymes for use in human food or animal feed.
Collapse
Affiliation(s)
- Michael W Pariza
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | - Amy B Smith
- DuPont Nutrition and Health, Madison, WI, USA
| |
Collapse
|
47
|
Costantini A, Rantsiou K, Majumder A, Jacobsen S, Pessione E, Svensson B, Garcia-Moruno E, Cocolin L. Complementing DIGE proteomics and DNA subarray analyses to shed light on Oenococcus oeni adaptation to ethanol in wine-simulated conditions. J Proteomics 2015; 123:114-27. [DOI: 10.1016/j.jprot.2015.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/27/2023]
|
48
|
Ferrer Valenzuela J, Pinuer LA, García Cancino A, Bórquez Yáñez R. Metabolic Fluxes in Lactic Acid Bacteria—A Review. FOOD BIOTECHNOL 2015. [DOI: 10.1080/08905436.2015.1027913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Complete genome sequence and transcriptomics analyses reveal pigment biosynthesis and regulatory mechanisms in an industrial strain, Monascus purpureus YY-1. Sci Rep 2015; 5:8331. [PMID: 25660389 PMCID: PMC4321180 DOI: 10.1038/srep08331] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022] Open
Abstract
Monascus has been used to produce natural colorants and food supplements for more than one thousand years, and approximately more than one billion people eat Monascus-fermented products during their daily life. In this study, using next-generation sequencing and optical mapping approaches, a 24.1-Mb complete genome of an industrial strain, Monascus purpureus YY-1, was obtained. This genome consists of eight chromosomes and 7,491 genes. Phylogenetic analysis at the genome level provides convincing evidence for the evolutionary position of M. purpureus. We provide the first comprehensive prediction of the biosynthetic pathway for Monascus pigment. Comparative genomic analyses show that the genome of M. purpureus is 13.6–40% smaller than those of closely related filamentous fungi and has undergone significant gene losses, most of which likely occurred during its specialized adaptation to starch-based foods. Comparative transcriptome analysis reveals that carbon starvation stress, resulting from the use of relatively low-quality carbon sources, contributes to the high yield of pigments by repressing central carbon metabolism and augmenting the acetyl-CoA pool. Our work provides important insights into the evolution of this economically important fungus and lays a foundation for future genetic manipulation and engineering of this strain.
Collapse
|
50
|
Menon R, Munjal N, Sturino JM. Characterization of amygdalin-degrading Lactobacillus species. J Appl Microbiol 2015; 118:443-53. [PMID: 25421573 DOI: 10.1111/jam.12704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/31/2014] [Accepted: 11/13/2014] [Indexed: 12/31/2022]
Abstract
AIMS Cyanogenic glycosides are phytotoxic secondary metabolites produced by some crop plants. The aim of this study was to identify lactic acid bacteria (LAB) capable of catabolizing amygdalin, a model cyanogenic glycoside, for use in the biodetoxification of amygdalin-containing foods and feeds. METHODS AND RESULTS Amygdalin-catabolizing lactobacilli were characterized using a combination of cultivation-dependent and molecular assays. Lactobacillus paraplantarum and Lactobacillus plantarum grew robustly on amygdalin (Amg(+)), while other LAB species typically failed to catabolize amygdalin (Amg(-)). Interestingly, high concentrations of amygdalin and two of its metabolic derivatives (mandelonitrile and benzaldehyde) inhibited the growth of Lact. plantarum RENO 0093. The differential regulation of genes tentatively involved in cyanohydrin metabolism illustrated that the metabolism of amygdalin- and glucose-grown cultures also differed significantly. CONCLUSIONS Amygdalin fermentation was a relatively uncommon phenotype among the LAB and generally limited to strains from the Lact. plantarum group. Phenotype microarrays (PM) enabled strain-level discrimination between closely related strains within a species and suggested that phenotypic differences might affect niche specialization. SIGNIFICANCE AND IMPACT OF THE STUDY Amygdalin-degrading lactobacilli with practical application in the biodetoxification of amygdalin were characterized. These strains show potential for use as starter cultures to improve the safety of foods and feeds.
Collapse
Affiliation(s)
- R Menon
- Nutrition and Food Science Department, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|