1
|
Newton-Vesty MC, Currie MJ, Davies JS, Panjikar S, Sethi A, Whitten AE, Tillett ZD, Wood DM, Wright JD, Love MJ, Allison TM, Jamieson SA, Mace PD, North RA, Dobson RCJ. On the function of TRAP substrate-binding proteins: the isethionate-specific binding protein IseP. Biochem J 2024; 481:1901-1920. [PMID: 39560287 DOI: 10.1042/bcj20240540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Bacteria evolve mechanisms to compete for limited resources and survive in new niches. Here we study the mechanism of isethionate import from the sulfate-reducing bacterium Oleidesulfovibrio alaskensis. The catabolism of isethionate by Desulfovibrio species has been implicated in human disease, due to hydrogen sulfide production, and has potential for industrial applications. O. alaskensis employs a tripartite ATP-independent periplasmic (TRAP) transporter (OaIsePQM) to import isethionate, which relies on the substrate-binding protein (OaIseP) to scavenge isethionate and deliver it to the membrane transporter component (OaIseQM) for import into the cell. We determined the binding affinity of isethionate to OaIseP by isothermal titration calorimetry, KD = 0.95 µM (68% CI = 0.6-1.4 µM), which is weaker compared with other TRAP substrate-binding proteins. The X-ray crystal structures of OaIseP in the ligand-free and isethionate-bound forms were obtained and showed that in the presence of isethionate, OaIseP adopts a closed conformation whereby two domains of the protein fold over the substrate. We serendipitously discovered two crystal forms with sulfonate-containing buffers (HEPES and MES) bound in the isethionate-binding site. However, these do not evoke domain closure, presumably because of the larger ligand size. Together, our data elucidate the molecular details of how a TRAP substrate-binding protein binds a sulfonate-containing substrate, rather than a typical carboxylate-containing substrate. These results may inform future antibiotic development to target TRAP transporters and provide insights into protein engineering of TRAP transporter substrate-binding proteins.
Collapse
Affiliation(s)
- Michael C Newton-Vesty
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
- Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michael J Currie
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Ashish Sethi
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering (ACNS), ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Zachary D Tillett
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - David M Wood
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - Joshua D Wright
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - Michael J Love
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rachel A North
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch 8140, New Zealand
- Australian Research Council Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
Davies JF, Daab A, Massouh N, Kirkland C, Strongitharm B, Leech A, Farré M, Thomas GH, Mulligan C. Structure and selectivity of a glutamate-specific TAXI TRAP binding protein from Vibrio cholerae. J Gen Physiol 2024; 156:e202413584. [PMID: 39556531 PMCID: PMC11574862 DOI: 10.1085/jgp.202413584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in prokaryotes and are responsible for the transport of a variety of different ligands, primarily organic acids. TRAP transporters can be divided into two subclasses; DctP-type and TAXI type, which share the same overall architecture and substrate-binding protein requirement. DctP-type transporters are very well studied and have been shown to transport a range of compounds including dicarboxylates, keto acids, and sugar acids. However, TAXI-type transporters are relatively poorly understood. To address this gap in our understanding, we have structurally and biochemically characterized VC0430 from Vibrio cholerae. We show it is a monomeric, high affinity glutamate-binding protein, which we thus rename VcGluP. VcGluP is stereoselective, binding the L-isomer preferentially, and can also bind L-glutamine and L-pyroglutamate with lower affinity. Structural characterization of ligand-bound VcGluP revealed details of its binding site and biophysical characterization of binding site mutants revealed the substrate binding determinants, which differ substantially from those of DctP-type TRAPs. Finally, we have analyzed the interaction between VcGluP and its cognate membrane component, VcGluQM (formerly VC0429) in silico, revealing an architecture hitherto unseen. To our knowledge, this is the first transporter in V. cholerae to be identified as specific to glutamate, which plays a key role in the osmoadaptation of V. cholerae, making this transporter a potential therapeutic target.
Collapse
Affiliation(s)
- Joseph F.S. Davies
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Andrew Daab
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Nicholas Massouh
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Corey Kirkland
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | | | - Andrew Leech
- Technology Facility, Department of Biology, University of York, York, UK
| | - Marta Farré
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Gavin H. Thomas
- Department of Biology and York Biomedical Research Institute (YBRI), University of York, York, UK
| | - Christopher Mulligan
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| |
Collapse
|
3
|
King-Hudson TRJ, Davies JS, Quan S, Currie MJ, Tillett ZD, Copping J, Panjikar S, Friemann R, Allison JR, North RA, Dobson RCJ. On the function of TRAP substrate-binding proteins: Conformational variation of the sialic acid binding protein SiaP. J Biol Chem 2024; 300:107851. [PMID: 39357825 PMCID: PMC11550005 DOI: 10.1016/j.jbc.2024.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are analogous to ABC transporters in that they use a substrate-binding protein to scavenge metabolites (e.g., N-acetylneuraminate) and deliver them to the membrane components for import. TRAP substrate-binding proteins are thought to bind the substrate using a two-state (open and closed) induced-fit mechanism. We solved the structure of the TRAP N-acetylneuraminate substrate-binding protein from Aggregatibacter actinomycetemcomitans (AaSiaP) in both the open ligand-free and closed liganded conformations. Surprisingly, we also observed an intermediate conformation, where AaSiaP is mostly closed and is bound to a non-cognate ligand, acetate, which hints at how N-acetylneuraminate binding stabilizes a fully closed state. AaSiaP preferentially binds N-acetylneuraminate (KD = 0.4 μM) compared to N-glycolylneuraminate (KD = 4.4 μM), which is explained by the closed-N-acetylneuraminate bound structure. Small-angle X-ray scattering data alongside molecular dynamics simulations suggest the AaSiaP adopts a more open state in solution than in a crystal. However, the open unliganded conformation can also sample closed conformations. Molecular dynamics simulations also demonstrate the importance of water molecules for stabilizing the closed conformation. Although our data is consistent with an induced fit model of binding, we suggest that the open unliganded conformation may sample multiple states capable of binding substrate. The mechanism by which the ligand is released for import remains to be determined.
Collapse
Affiliation(s)
- Te-Rina J King-Hudson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Computational and Structural Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
| | - Senwei Quan
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Zachary D Tillett
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jack Copping
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Victoria, Australia; Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Victoria, Australia
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Jane R Allison
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rachel A North
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Kienlein M, Zacharias M. How arginine inhibits substrate-binding domain 2 elucidated using molecular dynamics simulations. Protein Sci 2024; 33:e5077. [PMID: 38888275 PMCID: PMC11184577 DOI: 10.1002/pro.5077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The substrate-binding domain 2 (SBD2) is an important part of the bacterial glutamine (GLN) transporter and mediates binding and delivery of GLN to the transporter translocation subunit. The SBD2 consists of two domains, D1 and D2, that bind GLN in the space between domains in a closed structure. In the absence of ligand, the SBD2 adopts an open conformation with larger space between domains. The GLN binding and closing are essential for the subsequent transport into the cell. Arginine (ARG) can also bind to SBD2 but does not induce closing and inhibits GLN transport. We use atomistic molecular dynamics (MD) simulations in explicit solvent to study ARG binding in the presence of the open SBD2 structure and observed reversible binding to the native GLN binding site with similar contacts but no transition to a closed SBD2 state. Absolute binding free energy simulations predict a considerable binding affinity of ARG and GLN to the binding site on the D1 domain. Free energy simulations to induce subsequent closing revealed a strong free energy penalty in case of ARG binding in contrast to GLN binding that favors the closed SBD2 state but still retains a free energy barrier for closing. The simulations allowed the identification of the molecular origin of the closing penalty in case of bound ARG and suggested a mutation of lysine at position 373 to alanine that strongly reduced the penalty and allowed closing even in the presence of bound ARG. The study offers an explanation of the molecular mechanism of how ARG competitively inhibits GLN from binding to SBD2 and from triggering the transition to a closed conformation. The proposed Lys373Ala mutation shows promise as a potential tool to validate whether a conformational mismatch between open SBD2 and the translocator is responsible for preventing ARG uptake to the cell.
Collapse
Affiliation(s)
- Maximilian Kienlein
- Center for Functional Protein Assemblies (CPA)Technical University of MunichGarchingGermany
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA)Technical University of MunichGarchingGermany
| |
Collapse
|
5
|
Jiang W. Studying the Collective Functional Response of a Receptor in Alchemical Ligand Binding Free Energy Simulations with Accelerated Solvation Layer Dynamics. J Chem Theory Comput 2024; 20:3085-3095. [PMID: 38568961 DOI: 10.1021/acs.jctc.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Ligand binding free energy simulations (LB-FES) that involve sampling of protein functional conformations have been longstanding challenges in research on molecular recognition. Particularly, modeling of the conformational transition pathway and design of the heuristic biasing mechanism are severe bottlenecks for the existing enhanced configurational sampling (ECS) methods. Inspired by the key role of hydration in regulating conformational dynamics of macromolecules, this report proposes a novel ECS approach that facilitates binding-associated structural dynamics by accelerated hydration transitions in combination with the λ-exchange of free energy perturbation (FEP). Two challenging protein-ligand binding processes involving large configurational transitions of the receptor are studied, with hydration transitions at binding sites accelerated by Hamiltonian-simulated annealing of the hydration layer. Without the need for pathway analysis or ad hoc barrier flattening potential, LB-FES were performed with FEP/λ-exchange molecular dynamics simulation at a minor overhead for annealing of the hydration layer. The LB-FES studies showed that the accelerated rehydration significantly enhances the collective conformational transitions of the receptor, and convergence of binding affinity calculations is obtained at a sweet-spot simulation time scale. Alchemical LB-FES with the proposed ECS strategy is free from the effort of trial and error for the setup and realizes efficient on-the-fly sampling for the collective functional response of the receptor and bound water and therefore presents a practical approach to high-throughput screening in drug discovery.
Collapse
Affiliation(s)
- Wei Jiang
- Computational Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Building 240, Argonne, Illinois 60439, United States
| |
Collapse
|
6
|
Espada‐Hinojosa S, Karthäuser C, Srivastava A, Schuster L, Winter T, de Oliveira AL, Schulz F, Horn M, Sievert S, Bright M. Comparative genomics of a vertically transmitted thiotrophic bacterial ectosymbiont and its close free-living relative. Mol Ecol Resour 2024; 24:e13889. [PMID: 38010882 PMCID: PMC10952691 DOI: 10.1111/1755-0998.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.
Collapse
Affiliation(s)
| | - Clarissa Karthäuser
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Abhishek Srivastava
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - Lukas Schuster
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Deakin UniversityBurwoodAustralia
| | - Teresa Winter
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| | - André Luiz de Oliveira
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
- Present address:
Max Planck Institute for Marine MicrobiologyBremenGermany
| | - Frederik Schulz
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
- Present address:
DOE Joint Genome InstituteBerkeleyCaliforniaUSA
| | - Matthias Horn
- Center for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Stefan Sievert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Monika Bright
- Department of Functional and Evolutionary EcologyUniversity of ViennaViennaAustria
| |
Collapse
|
7
|
McDonald ND, Rosenberger JR, Almagro-Moreno S, Boyd EF. The Role of Nutrients and Nutritional Signals in the Pathogenesis of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:195-211. [PMID: 36792877 DOI: 10.1007/978-3-031-22997-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio cholerae, the agent of cholera, is a natural inhabitant of aquatic environments. Over the past decades, the importance of specific nutrients and micronutrients in the environmental survival, host colonization, and pathogenesis of this species has become increasingly clear. For instance, V. cholerae has evolved ingenious mechanisms that allow the bacterium to colonize and establish a niche in the intestine of human hosts, where it competes with commensals (gut microbiota) and other pathogenic bacteria for available nutrients. Here, we discuss the carbon and energy sources utilized by V. cholerae and what is known about the role of nutrition in V. cholerae colonization. We examine how nutritional signals affect virulence gene regulation and how interactions with intestinal commensal species can affect intestinal colonization.
Collapse
Affiliation(s)
- N D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - J R Rosenberger
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
8
|
Liang B, Zhang X, Meng C, Wang L, Yang J. Directed evolution of tripartite ATP-independent periplasmic transporter for 3-Hydroxypropionate biosynthesis. Appl Microbiol Biotechnol 2023; 107:663-676. [PMID: 36525041 DOI: 10.1007/s00253-022-12330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Our previous study's introduction of the malonic acid assimilation pathway into Escherichia coli enabled biosynthesis of 3-Hydroxypropionate (3-HP) from malonate. However, the relatively low uptake activity of tripartite ATP-independent periplasmic (TRAP) malonic acid transporter (MatPQM) is considered rate-limiting in malonate utilization. Here, to improve the transport performance of this importer, MatP variants were obtained via directed evolution and a novel developed enzyme-inhibition-based high throughput screening approach. This plate chromogenic screening method is based on the fact that malonic acid inhibits both of succinate dehydrogenase activity and further the capability of the reduction of methylene-blue to methylene-white. The best mutant E103G/S194G/Y218H/L235P/N272S showed twofold increased transport efficiency compared to the wild-type. ITC assay and structural analysis revealed that increased binding affinity of the mutant to the ligand was the reason for improved uptake activity of MatPQM. Finally, the engineered strain harboring the evolved mutant produced 20.08 g/L 3-HP with the yield of 0.87 mol/mol malonate in a bioreactor. Therefore, the well-established directed evolution strategy can be regarded as the reference work for other TRAP-type transporters engineering. And, this transporter mutant with enhanced malonic acid uptake activity has broad applications in the microbial biosynthesis of malonyl-CoA-derived valuable compounds in bacteria. KEY POINTS: • We reported directed evolution of a TRAP-type malonic acid transporter. • We found the enhanced malonate uptake activity of mutant lies in improved affinity. • We enhanced 3-HP bioproduction with high yield by employing the best mutant.
Collapse
Affiliation(s)
- Bo Liang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chenfei Meng
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lu Wang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianming Yang
- College of Food Science & Engineering, Qingdao Special Food Research Institute, Qingdao Agricultural University, Qingdao, China.
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
9
|
Bisson C, Salmon RC, West L, Rafferty JB, Hitchcock A, Thomas GH, Kelly DJ. The structural basis for high-affinity uptake of lignin-derived aromatic compounds by proteobacterial TRAP transporters. FEBS J 2021; 289:436-456. [PMID: 34375507 DOI: 10.1111/febs.16156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
The organic polymer lignin is a component of plant cell walls, which like (hemi)-cellulose is highly abundant in nature and relatively resistant to degradation. However, extracellular enzymes released by natural microbial consortia can cleave the β-aryl ether linkages in lignin, releasing monoaromatic phenylpropanoids that can be further catabolised by diverse species of bacteria. Biodegradation of lignin is therefore important in global carbon cycling, and its natural abundance also makes it an attractive biotechnological feedstock for the industrial production of commodity chemicals. Whilst the pathways for degradation of lignin-derived aromatics have been extensively characterised, much less is understood about how they are recognised and taken up from the environment. The purple phototrophic bacterium Rhodopseudomonas palustris can grow on a range of phenylpropanoid monomers and is a model organism for studying their uptake and breakdown. R. palustris encodes a tripartite ATP-independent periplasmic (TRAP) transporter (TarPQM) linked to genes encoding phenylpropanoid-degrading enzymes. The periplasmic solute-binding protein component of this transporter, TarP, has previously been shown to bind aromatic substrates. Here, we determine the high-resolution crystal structure of TarP from R. palustris as well as the structures of homologous proteins from the salt marsh bacterium Sagittula stellata and the halophile Chromohalobacter salexigens, which also grow on lignin-derived aromatics. In combination with tryptophan fluorescence ligand-binding assays, our ligand-bound co-crystal structures reveal the molecular basis for high-affinity recognition of phenylpropanoids by these TRAP transporters, which have potential for improving uptake of these compounds for biotechnological transformations of lignin.
Collapse
Affiliation(s)
- Claudine Bisson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Robert C Salmon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Laura West
- Department of Biology, University of York, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | | | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| |
Collapse
|
10
|
Davies JS, Currie MJ, Wright JD, Newton-Vesty MC, North RA, Mace PD, Allison JR, Dobson RCJ. Selective Nutrient Transport in Bacteria: Multicomponent Transporter Systems Reign Supreme. Front Mol Biosci 2021; 8:699222. [PMID: 34268334 PMCID: PMC8276074 DOI: 10.3389/fmolb.2021.699222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Multicomponent transporters are used by bacteria to transport a wide range of nutrients. These systems use a substrate-binding protein to bind the nutrient with high affinity and then deliver it to a membrane-bound transporter for uptake. Nutrient uptake pathways are linked to the colonisation potential and pathogenicity of bacteria in humans and may be candidates for antimicrobial targeting. Here we review current research into bacterial multicomponent transport systems, with an emphasis on the interaction at the membrane, as well as new perspectives on the role of lipids and higher oligomers in these complex systems.
Collapse
Affiliation(s)
- James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael J Currie
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Joshua D Wright
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Moons SJ, Rossing E, Heming JJA, Janssen MAC, van Scherpenzeel M, Lefeber DJ, de Jonge MI, Langereis JD, Boltje TJ. Structure-Activity Relationship of Fluorinated Sialic Acid Inhibitors for Bacterial Sialylation. Bioconjug Chem 2021; 32:1047-1051. [PMID: 34043338 PMCID: PMC8382218 DOI: 10.1021/acs.bioconjchem.1c00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Bacterial pathogens such as Nontypeable Haemophilus influenzae (NTHi) can evade the immune system by taking up and presenting host-derived sialic acids. Herein, we report a detailed structure-activity relationship of sialic acid-based inhibitors that prevent the transfer of host sialic acids to NTHi. We report the synthesis and biological evaluation of C-5, C-8, and C-9 derivatives of the parent compound 3-fluorosialic acid (SiaNFAc). Small modifications are tolerated at the C-5 and C-9 positions, while the C-8 position does not allow for modification. These structure-activity relationships define the chemical space available to develop selective bacterial sialylation inhibitors.
Collapse
Affiliation(s)
- Sam J. Moons
- Cluster
of Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Emiel Rossing
- Cluster
of Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Jurriaan J. A. Heming
- Cluster
of Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Mathilde A. C.
H. Janssen
- Cluster
of Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| | - Monique van Scherpenzeel
- Translational
Metabolic Laboratory, Department of Neurology, Donders Center for
Brain Cognition and Behavior, Radboud University
Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Dirk J. Lefeber
- Translational
Metabolic Laboratory, Department of Neurology, Donders Center for
Brain Cognition and Behavior, Radboud University
Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Marien I. de Jonge
- Laboratory
of Medical Immunology, Radboud Center for Infectious Diseases, Radboud
Institute for Molecular Sciences, Radboud
University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Jeroen D. Langereis
- Laboratory
of Medical Immunology, Radboud Center for Infectious Diseases, Radboud
Institute for Molecular Sciences, Radboud
University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Thomas J. Boltje
- Cluster
of Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
12
|
Schäfer L, Meinert-Berning C, Kobus S, Höppner A, Smits SHJ, Steinbüchel A. Crystal structure of the sugar acid-binding protein CxaP from a TRAP transporter in Advenella mimigardefordensis strain DPN7 T. FEBS J 2021; 288:4905-4917. [PMID: 33630388 DOI: 10.1111/febs.15789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/01/2022]
Abstract
Recently, CxaP, a sugar acid substrate binding protein (SBP) from Advenella mimigardefordensis strain DPN7T , was identified as part of a novel sugar uptake strategy. In the present study, the protein was successfully crystallized. Although several SBP structures of tripartite ATP-independent periplasmic transporters have already been solved, this is the first structure of an SBP accepting multiple sugar acid ligands. Protein crystals were obtained with bound d-xylonic acid, d-fuconic acid d-galactonic and d-gluconic acid, respectively. The protein shows the typical structure of an SBP of a tripartite ATP-independent periplasmic transporter consisting of two domains linked by a hinge and spanned by a long α-helix. By analysis of the structure, the substrate binding site of the protein was identified. The carboxylic group of the sugar acids interacts with Arg175, whereas the coordination of the hydroxylic groups at positions C2 and C3 is most probably realized by Arg154 and Asn151. Furthermore, it was observed that 2-keto-3-deoxy-d-gluconic acid is bound in protein crystals that were crystallized without the addition of any ligand, indicating that this molecule is prebound to the protein and is displaced by the other ligands if they are available. DATABASE: Structural data of CxaP complexes are available in the worldwide Protein Data Bank (https://www.rcsb.org) under the accession codes 7BBR (2-keto-3-deoxy-d-gluconic acid), 7BCR (d-galactonic acid), 7BCN (d-xylonic acid), 7BCO (d-fuconic acid) and 7BCP (d-gluconic acid).
Collapse
Affiliation(s)
- Lukas Schäfer
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany
| | - Christina Meinert-Berning
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany
| | - Stefanie Kobus
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Steinbüchel
- Institute of Molecular Microbiology and Biotechnology, Westfälische Wilhelms University Münster, Münster, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Peter MF, Gebhardt C, Glaenzer J, Schneberger N, de Boer M, Thomas GH, Cordes T, Hagelueken G. Triggering Closure of a Sialic Acid TRAP Transporter Substrate Binding Protein through Binding of Natural or Artificial Substrates. J Mol Biol 2021; 433:166756. [PMID: 33316271 DOI: 10.1016/j.jmb.2020.166756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
The pathogens Vibrio cholerae and Haemophilus influenzae use tripartite ATP-independent periplasmic transporters (TRAPs) to scavenge sialic acid from host tissues. They use it as a nutrient or to evade the innate immune system by sialylating surface lipopolysaccharides. An essential component of TRAP transporters is a periplasmic substrate binding protein (SBP). Without substrate, the SBP has been proposed to rest in an open-state, which is not recognised by the transporter. Substrate binding induces a conformational change of the SBP and it is thought that this closed state is recognised by the transporter, triggering substrate translocation. Here we use real time single molecule FRET experiments and crystallography to investigate the open- to closed-state transition of VcSiaP, the SBP of the sialic acid TRAP transporter from V. cholerae. We show that the conformational switching of VcSiaP is strictly substrate induced, confirming an important aspect of the proposed transport mechanism. Two new crystal structures of VcSiaP provide insights into the closing mechanism. While the first structure contains the natural ligand, sialic acid, the second structure contains an artificial peptide in the sialic acid binding site. Together, the two structures suggest that the ligand itself stabilises the closed state and that SBP closure is triggered by physically bridging the gap between the two lobes of the SBP. Finally, we demonstrate that the affinity for the artificial peptide substrate can be substantially increased by varying its amino acid sequence and by this, serve as a starting point for the development of peptide-based inhibitors of TRAP transporters.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Janin Glaenzer
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
14
|
Herman R, Bennett-Ness C, Maqbool A, Afzal A, Leech A, Thomas GH. The Salmonella enterica serovar Typhimurium virulence factor STM3169 is a hexuronic acid binding protein component of a TRAP transporter. MICROBIOLOGY-SGM 2020; 166:981-987. [PMID: 32894213 PMCID: PMC7660916 DOI: 10.1099/mic.0.000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The intracellular pathogen S. Typhimurium is a leading cause of foodborne illness across the world and is known to rely on a range of virulence factors to colonize the human host and cause disease. The gene coding for one such factor, stm3169, was determined to be upregulated upon macrophage entry and its disruption reduces survival in the macrophage. In this study we characterize the STM3169 protein, which forms the substrate binding protein (SBP) of an uncharacterized tripartite ATP-independent periplasmic (TRAP) transporter. Genome context analysis of the genes encoding this system in related bacteria suggests a function in sugar acid transport. We demonstrate that purified STM3169 binds d-glucuronic acid with high affinity and specificity. S. Typhimurium LT2 can use this sugar acid as a sole carbon source and the genes for a probable catabolic pathway are present in the genome. As this gene was previously implicated in macrophage survival, it suggests a role for d-glucuronate as an important carbon source for S. Typhimurium in this environment.
Collapse
Affiliation(s)
- Reyme Herman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Cavan Bennett-Ness
- Present address: Institute of Genetics and Molecular Medicine, University of Edinburgh WGH, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Abbas Maqbool
- Present address: The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Amna Afzal
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Andrew Leech
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- *Correspondence: Gavin H. Thomas,
| |
Collapse
|
15
|
Darby JF, Hopkins AP, Shimizu S, Roberts SM, Brannigan JA, Turkenburg JP, Thomas GH, Hubbard RE, Fischer M. Water Networks Can Determine the Affinity of Ligand Binding to Proteins. J Am Chem Soc 2019; 141:15818-15826. [DOI: 10.1021/jacs.9b06275] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Adam P. Hopkins
- Demuris Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, United Kingdom
| | | | | | | | | | | | - Roderick E. Hubbard
- Vernalis (R&D) Ltd., Granta Park, Abington, Cambridge CB21 6GB, United Kingdom
| | - Marcus Fischer
- Department of Chemical Biology & Therapeutics, and Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
16
|
Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, Rychlik I. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics 2018; 19:561. [PMID: 30064352 PMCID: PMC6069880 DOI: 10.1186/s12864-018-4959-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Background In order to start to understand the function of individual members of gut microbiota, we cultured, sequenced and analysed bacterial anaerobes from chicken caecum. Results Altogether 204 isolates from chicken caecum were obtained in pure cultures using Wilkins-Chalgren anaerobe agar and anaerobic growth conditions. Genomes of all the isolates were determined using the NextSeq platform and subjected to bioinformatic analysis. Among 204 sequenced isolates we identified 133 different strains belonging to seven different phyla - Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, Elusimicrobia and Synergistetes. Genome sizes ranged from 1.51 Mb in Elusimicrobium minutum to 6.70 Mb in Bacteroides ovatus. Clustering based on the presence of protein coding genes showed that isolates from phyla Proteobacteria, Verrucomicrobia, Elusimicrobia and Synergistetes did not cluster with the remaining isolates. Firmicutes split into families Lactobacillaceae, Enterococcaceae, Veillonellaceae and order Clostridiales from which the Clostridium perfringens isolates formed a distinct sub-cluster. All Bacteroidetes isolates formed a separate cluster showing similar genetic composition in all isolates but distinct from the rest of the gut anaerobes. The majority of Actinobacteria clustered closely together except for the representatives of genus Gordonibacter showing that the genome of this genus differs from the rest of Actinobacteria sequenced in this study. Representatives of Bacteroidetes commonly encoded proteins (collagenase, hemagglutinin, hemolysin, hyaluronidase, heparinases, chondroitinase, mucin-desulfating sulfatase or glutamate decarboxylase) that may enable them to interact with their host. Aerotolerance was recorded in Akkermansia and Cloacibacillus and was also common among representatives of Bacteroidetes. On the other hand, Elusimicrobium and the majority of Clostridiales were highly sensitive to air exposure despite their potential for spore formation. Conclusions Major gut microbiota members utilise different strategies for gut colonisation. High oxygen sensitivity of Firmicutes may explain their commonly reported decrease after oxidative burst during gut inflammation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4959-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matej Medvecky
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Darina Cejkova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Ondrej Polansky
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Daniela Karasova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Tereza Kubasova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Alois Cizek
- Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
17
|
Rosa LT, Bianconi ME, Thomas GH, Kelly DJ. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity. Front Cell Infect Microbiol 2018; 8:33. [PMID: 29479520 PMCID: PMC5812351 DOI: 10.3389/fcimb.2018.00033] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 11/18/2022] Open
Abstract
The ability to efficiently scavenge nutrients in the host is essential for the viability of any pathogen. All catabolic pathways must begin with the transport of substrate from the environment through the cytoplasmic membrane, a role executed by membrane transporters. Although several classes of cytoplasmic membrane transporters are described, high-affinity uptake of substrates occurs through Solute Binding-Protein (SBP) dependent systems. Three families of SBP dependant transporters are known; the primary ATP-binding cassette (ABC) transporters, and the secondary Tripartite ATP-independent periplasmic (TRAP) transporters and Tripartite Tricarboxylate Transporters (TTT). Far less well understood than the ABC family, the TRAP transporters are found to be abundant among bacteria from marine environments, and the TTT transporters are the most abundant family of proteins in many species of β-proteobacteria. In this review, recent knowledge about these families is covered, with emphasis on their physiological and structural mechanisms, relating to several examples of relevant uptake systems in pathogenicity and colonization, using the SiaPQM sialic acid uptake system from Haemophilus influenzae and the TctCBA citrate uptake system of Salmonella typhimurium as the prototypes for the TRAP and TTT transporters, respectively. High-throughput analysis of SBPs has recently expanded considerably the range of putative substrates known for TRAP transporters, while the repertoire for the TTT family has yet to be fully explored but both types of systems most commonly transport carboxylates. Specialized spectroscopic techniques and site-directed mutagenesis have enriched our knowledge of the way TRAP binding proteins capture their substrate, while structural comparisons show conserved regions for substrate coordination in both families. Genomic and protein sequence analyses show TTT SBP genes are strikingly overrepresented in some bacteria, especially in the β-proteobacteria and some α-proteobacteria. The reasons for this are not clear but might be related to a role for these proteins in signaling rather than transport.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Matheus E Bianconi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Gavin H Thomas
- Department of Biology, University of York, York, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, Jensen ON, Herndl GJ. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci U S A 2018; 115:E400-E408. [PMID: 29255014 PMCID: PMC5776962 DOI: 10.1073/pnas.1708779115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean. By identifying which compounds of the organic matter pool are absorbed, transported, and incorporated into microbial cells, intriguing insights into organic matter transformation in the deep ocean emerged. On average, solute transporters accounted for 23% of identified protein sequences in the lower euphotic and ∼39% in the bathypelagic layer, indicating the central role of heterotrophy in the dark ocean. In the bathypelagic layer, substrate affinities of expressed transporters suggest that, in addition to amino acids, peptides and carbohydrates, carboxylic acids and compatible solutes may be essential substrates for the microbial community. Key players with highest expression of solute transporters were Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria, accounting for 40%, 11%, and 10%, respectively, of relative protein abundances. The in situ expression of solute transporters indicates that the heterotrophic prokaryotic community is geared toward the utilization of similar organic compounds throughout the water column, with yet higher abundances of transporters targeting aromatic compounds in the bathypelagic realm.
Collapse
Affiliation(s)
- Kristin Bergauer
- Department of Limnology and Bio-Oceanography, University of Vienna, A-1090 Vienna, Austria;
| | - Antonio Fernandez-Guerra
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany
- Oxford e-Research Centre, University of Oxford, Oxford OX1 3QG, United Kingdom
| | - Juan A L Garcia
- Department of Limnology and Bio-Oceanography, University of Vienna, A-1090 Vienna, Austria
| | - Richard R Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gerhard J Herndl
- Department of Limnology and Bio-Oceanography, University of Vienna, A-1090 Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, The Netherlands
- Vienna Metabolomics Center, University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
19
|
Rosa LT, Dix SR, Rafferty JB, Kelly DJ. Structural basis for high-affinity adipate binding to AdpC (RPA4515), an orphan periplasmic-binding protein from the tripartite tricarboxylate transporter (TTT) family in Rhodopseudomonas palustris. FEBS J 2017; 284:4262-4277. [PMID: 29082669 DOI: 10.1111/febs.14304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/27/2017] [Accepted: 10/19/2017] [Indexed: 01/24/2023]
Abstract
The tripartite tricarboxylate transporter (TTT) family is a poorly characterised group of prokaryotic secondary solute transport systems, which employ a periplasmic substrate-binding protein (SBP) for initial ligand recognition. The substrates of only a small number of TTT systems are known and very few SBP structures have been solved, so the mechanisms of SBP-ligand interactions in this family are not well understood. The SBP RPA4515 (AdpC) from Rhodopseudomonas palustris was found by differential scanning fluorescence and isothermal titration calorimetry to bind aliphatic dicarboxylates of a chain length of six to nine carbons, with KD values in the μm range. The highest affinity was found for the C6-dicarboxylate adipate (1,6-hexanedioate). Crystal structures of AdpC, either adipate or 2-oxoadipate bound, revealed a lack of positively charged amino acids in the binding pocket and showed that water molecules are involved in bridging hydrogen bonds to the substrate, a conserved feature in the TTT SBP family that is distinct from other types of SBP. In AdpC, both of the ligand carboxylate groups and a linear chain conformation are needed for coordination in the binding pocket. RT-PCR showed that adpC expression is upregulated by low environmental adipate concentrations, suggesting adipate is a physiologically relevant substrate but as adpC is not genetically linked to any TTT membrane transport genes, the role of AdpC may be in signalling rather than transport. Our data expand the known ligands for TTT systems and identify a novel high-affinity binding protein for adipate, an important industrial chemical intermediate and food additive. DATABASES Protein structure co-ordinates are available in the PDB under the accession numbers 5OEI and 5OKU.
Collapse
Affiliation(s)
- Leonardo T Rosa
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - Samuel R Dix
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
Crystallisation and Preliminary Crystallographic Analysis of Helicobacter pylori Periplasmic Binding Protein YckK. CRYSTALS 2017. [DOI: 10.3390/cryst7110330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Bartling P, Brinkmann H, Bunk B, Overmann J, Göker M, Petersen J. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316 T-A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae. Front Microbiol 2017; 8:1787. [PMID: 28983283 PMCID: PMC5613091 DOI: 10.3389/fmicb.2017.01787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316T. PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia.
Collapse
Affiliation(s)
- Pascal Bartling
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Henner Brinkmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Markus Göker
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweig, Germany
| |
Collapse
|
22
|
Sialic acid acquisition in bacteria-one substrate, many transporters. Biochem Soc Trans 2017; 44:760-5. [PMID: 27284039 DOI: 10.1042/bst20160056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/17/2022]
Abstract
The sialic acids are a family of 9-carbon sugar acids found predominantly on the cell-surface glycans of humans and other animals within the Deuterostomes and are also used in the biology of a wide range of bacteria that often live in association with these animals. For many bacteria sialic acids are simply a convenient source of food, whereas for some pathogens they are also used in immune evasion strategies. Many bacteria that use sialic acids derive them from the environment and so are dependent on sialic acid uptake. In this mini-review I will describe the discovery and characterization of bacterial sialic acids transporters, revealing that they have evolved multiple times across multiple diverse families of transporters, including the ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), major facilitator superfamily (MFS) and sodium solute symporter (SSS) transporter families. In addition there is evidence for protein-mediated transport of sialic acids across the outer membrane of Gram negative bacteria, which can be coupled to periplasmic processing of different sialic acids to the most common form, β-D-N-acetylneuraminic acid (Neu5Ac) that is most frequently taken up into the cell.
Collapse
|
23
|
Glaenzer J, Peter MF, Thomas GH, Hagelueken G. PELDOR Spectroscopy Reveals Two Defined States of a Sialic Acid TRAP Transporter SBP in Solution. Biophys J 2017; 112:109-120. [PMID: 28076802 DOI: 10.1016/j.bpj.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/29/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are a widespread class of membrane transporters in bacteria and archaea. Typical substrates for TRAP transporters are organic acids including the sialic acid N-acetylneuraminic acid. The substrate binding proteins (SBP) of TRAP transporters are the best studied component and are responsible for initial high-affinity substrate binding. To better understand the dynamics of the ligand binding process, pulsed electron-electron double resonance (PELDOR, also known as DEER) spectroscopy was applied to study the conformational changes in the N-acetylneuraminic acid-specific SBP VcSiaP. The protein is the SBP of VcSiaPQM, a sialic acid TRAP transporter from Vibrio cholerae. Spin-labeled double-cysteine mutants of VcSiaP were analyzed in the substrate-bound and -free state and the measured distances were compared to available crystal structures. The data were compatible with two clear states only, which are consistent with the open and closed forms seen in TRAP SBP crystal structures. Substrate titration experiments demonstrated the transition of the population from one state to the other with no other observed forms. Mutants of key residues involved in ligand binding and/or proposed to be involved in domain closure were produced and the corresponding PELDOR experiments reveal important insights into the open-closed transition. The results are in excellent agreement with previous in vivo sialylation experiments. The structure of the spin-labeled Q54R1/L173R1 R125A mutant was solved at 2.1 Å resolution, revealing no significant changes in the protein structure. Thus, the loss of domain closure appears to be solely due to loss of binding. In conclusion, these data are consistent with TRAP SBPs undergoing a simple two-state transition from an open-unliganded to closed-liganded state during the transport cycle.
Collapse
Affiliation(s)
- Janin Glaenzer
- Institute for Physical & Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Martin F Peter
- Institute for Physical & Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | - Gregor Hagelueken
- Institute for Physical & Theoretical Chemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
24
|
Thomas GH. On the pull: periplasmic trapping of sugars before transport. Mol Microbiol 2017; 104:883-888. [PMID: 28407314 DOI: 10.1111/mmi.13691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
Bacteria have evolved many routes for taking up nutrients, demonstrating great versatility in the types and mechanism of uptake used in different physiological conditions. The discovery of a single transporter in the bacterium Advenella mimigardefordensis for the uptake of five different sugars, including L-glucose and D-xylose, is described in this issue (Meinert et al., ), providing yet another example of the surprising adaptability of bacterial transport strategies. The transporter identified is a tripartite ATP-independent (TRAP) transporter, not previously associated with sugar transport, and in fact does not transport the sugars directly at all, rather requiring them to be converted in the periplasm to their respective sugar acid forms before transport through what appears to be a novel general sugar acid transporter. In this commentary, I describe how this process is consistent with the known mechanisms of TRAP transporters and consider how the role of sugar oxidation, or oxidative fermentation, operates with multiple hexose and pentose sugars. Finally I suggest that the periplasmic conversion of nutrients acquired across the outer membrane, before transport across the inner membrane, could have potentially useful biological functions in Gram negative bacteria.
Collapse
Affiliation(s)
- Gavin H Thomas
- Department of Biology, Wentworth Way, University of York, York, UK, YO10 5DD
| |
Collapse
|
25
|
Meinert C, Senger J, Witthohn M, Wübbeler JH, Steinbüchel A. Carbohydrate uptake in Advenella mimigardefordensis strain DPN7 T is mediated by periplasmic sugar oxidation and a TRAP-transport system. Mol Microbiol 2017; 104:916-930. [PMID: 28407382 DOI: 10.1111/mmi.13692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
In this study, we investigated an SBP (DctPAm ) of a tripartite ATP-independent periplasmic transport system (TRAP) in Advenella mimigardefordensis strain DPN7T . Deletion of dctPAm as well as of the two transmembrane compounds of the tripartite transporter, dctQ and dctM, impaired growth of A. mimigardefordensis strain DPN7T , if cultivated on mineral salt medium supplemented with d-glucose, d-galactose, l-arabinose, d-fucose, d-xylose or d-gluconic acid, respectively. The wild type phenotype was restored during complementation studies of A. mimigardefordensis ΔdctPAm using the broad host vector pBBR1MCS-5::dctPAm . Furthermore, an uptake assay with radiolabeled [14 C(U)]-d-glucose clearly showed that the deletion of dctPAm , dctQ and dctM, respectively, disabled the uptake of this aldoses in cells of either mutant strain. Determination of KD performing thermal shift assays showed a shift in the melting temperature of DctPAm in the presence of d-gluconic acid (KD 11.76 ± 1.3 µM) and the corresponding aldonic acids to the above-mentioned carbohydrates d-galactonate (KD 10.72 ± 1.4 µM), d-fuconic acid (KD 13.50 ± 1.6 µM) and d-xylonic acid (KD 8.44 ± 1.0 µM). The sugar (glucose) dehydrogenase activity (E.C.1.1.5.2) in the membrane fraction was shown for all relevant sugars, proving oxidation of the molecules in the periplasm, prior to transport.
Collapse
Affiliation(s)
- Christina Meinert
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Jana Senger
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Marco Witthohn
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, D-48149, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Scheepers GH, Lycklama A Nijeholt JA, Poolman B. An updated structural classification of substrate-binding proteins. FEBS Lett 2016; 590:4393-4401. [PMID: 27714801 DOI: 10.1002/1873-3468.12445] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/02/2016] [Accepted: 09/25/2016] [Indexed: 01/29/2023]
Abstract
Substrate-binding proteins (SBPs) play an important role in solute uptake and signal transduction. In 2010, Berntsson et al. classified the 114 organism-specific SBP structures available at that time and defined six protein clusters, based on their structural similarity. Since then, the number of unique SBP structures has increased almost fivefold, whereas the number of protein entries in the Protein Data Bank (PDB) nearly doubled. On the basis of the much larger dataset, we now subclassify the SBPs within the original clusters. Moreover, we propose a 7th cluster based on a small group of SBPs with structural features significantly different from those observed in the other proteins.
Collapse
Affiliation(s)
- Giel H Scheepers
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Jelger A Lycklama A Nijeholt
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands
| |
Collapse
|
27
|
Maimanakos J, Chow J, Gaßmeyer SK, Güllert S, Busch F, Kourist R, Streit WR. Sequence-Based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families. Front Microbiol 2016; 7:1332. [PMID: 27610105 PMCID: PMC4996985 DOI: 10.3389/fmicb.2016.01332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes.
Collapse
Affiliation(s)
- Janine Maimanakos
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Sarah K Gaßmeyer
- Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Simon Güllert
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| | - Florian Busch
- Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum Bochum, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, Biocenter Klein Flottbek, University of Hamburg Hamburg, Germany
| |
Collapse
|
28
|
Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo. mBio 2016; 7:e02237-15. [PMID: 27073099 PMCID: PMC4959520 DOI: 10.1128/mbio.02237-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota. Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces), Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella), Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus), and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species), mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others. Sialic acids are nine carbon amino sugars that are abundant on all mucous surfaces. The deadly human pathogen Vibrio cholerae contains the genes required for scavenging, transport, and catabolism of sialic acid. We determined that the V. cholerae SiaPQM transporter is essential for sialic acid transport and that this trait allows the bacterium to outcompete noncatabolizers in vivo. We also showed that the ability to take up and catabolize sialic acid is prevalent among both commensals and pathogens that colonize the oral cavity and the respiratory, intestinal, and urogenital tracts. Phylogenetic analysis determined that the sialic acid catabolism phenotype is ancestral in some genera such as Yersinia, Streptococcus, and Staphylococcus and is acquired by horizontal gene transfer in others such as Vibrio, Aeromonas, and Klebsiella. The data demonstrate that this trait has evolved multiple times in different lineages, indicating the importance of specialized metabolism to niche expansion.
Collapse
|
29
|
Involvement of Agrobacterium tumefaciens Galacturonate Tripartite ATP-Independent Periplasmic (TRAP) Transporter GaaPQM in Virulence Gene Expression. Appl Environ Microbiol 2015; 82:1136-1146. [PMID: 26637603 DOI: 10.1128/aem.02891-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
Monosaccharides capable of serving as nutrients for the soil bacterium Agrobacterium tumefaciens are also inducers of the vir regulon present in the tumor-inducing (Ti) plasmid of this plant pathogen. One such monosaccharide is galacturonate, the predominant monomer of pectin found in plant cell walls. This ligand is recognized by the periplasmic sugar binding protein ChvE, which interacts with the VirA histidine kinase that controls vir gene expression. Although ChvE is also a member of the ChvE-MmsAB ABC transporter involved in the utilization of many neutral sugars, it is not involved in galacturonate utilization. In this study, a putative tripartite ATP-independent periplasmic (TRAP) transporter, GaaPQM, is shown to be essential for the utilization of galacturonic acid; we show that residue R169 in the predicted sugar binding site of the GaaP is required for activity. The gene upstream of gaaPQM (gaaR) encodes a member of the GntR family of regulators. GaaR is shown to repress the expression of gaaPQM, and the repression is relieved in the presence of the substrate for GaaPQM. Moreover, GaaR is shown to bind putative promoter regions in the sequences required for galacturonic acid utilization. Finally, A. tumefaciens strains carrying a deletion of gaaPQM are more sensitive to galacturonate as an inducer of vir gene expression, while the overexpression of gaaPQM results in strains being less sensitive to this vir inducer. This supports a model in which transporter activity is crucial in ensuring that vir gene expression occurs only at sites of high ligand concentration, such as those at a plant wound site.
Collapse
|
30
|
Fischer M, Hopkins AP, Severi E, Hawkhead J, Bawdon D, Watts AG, Hubbard RE, Thomas GH. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding. J Biol Chem 2015; 290:27113-27123. [PMID: 26342690 PMCID: PMC4646407 DOI: 10.1074/jbc.m115.656603] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 11/21/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates.
Collapse
Affiliation(s)
- Marcus Fischer
- York Structural Biology Laboratory, Departments of Chemistry, University of York, P. O. Box 373, York YO10 5YW
| | - Adam P Hopkins
- York Structural Biology Laboratory, Departments of Biology (Area 10), University of York, P. O. Box 373, York YO10 5YW
| | - Emmanuele Severi
- York Structural Biology Laboratory, Departments of Chemistry, University of York, P. O. Box 373, York YO10 5YW
| | - Judith Hawkhead
- York Structural Biology Laboratory, Departments of Biology (Area 10), University of York, P. O. Box 373, York YO10 5YW
| | - Daniel Bawdon
- York Structural Biology Laboratory, Departments of Biology (Area 10), University of York, P. O. Box 373, York YO10 5YW
| | - Andrew G Watts
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Roderick E Hubbard
- York Structural Biology Laboratory, Departments of Chemistry, University of York, P. O. Box 373, York YO10 5YW
| | - Gavin H Thomas
- York Structural Biology Laboratory, Departments of Biology (Area 10), University of York, P. O. Box 373, York YO10 5YW.
| |
Collapse
|
31
|
Breen CJ, Martin DS, Ma H, McQuaid K, O'Kennedy R, Findlay JBC. Production of functional human vitamin A transporter/RBP receptor (STRA6) for structure determination. PLoS One 2015; 10:e0122293. [PMID: 25816144 PMCID: PMC4376794 DOI: 10.1371/journal.pone.0122293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
STRA6 is a plasma membrane protein that mediates the transport of vitamin A, or retinol, from plasma retinol binding protein (RBP) into the cell. Mutations in human STRA6 are associated with Matthew-Wood syndrome, which is characterized by severe developmental defects. Despite the obvious importance of this protein to human health, little is known about its structure and mechanism of action. To overcome the difficulties frequently encountered with the production of membrane proteins for structural determination, STRA6 has been expressed in Pichia pastoris as a fusion to green fluorescent protein (GFP), a strategy which has been a critical first step in solving the crystal structures of several membrane proteins. STRA6-GFP was correctly targeted to the cell surface where it bound RBP. Here we report the large-scale expression, purification and characterisation of STRA6-GFP. One litre of culture, corresponding to 175 g cells, yielded about 1.5 mg of pure protein. The interaction between purified STRA6 and its ligand RBP was studied by surface plasmon resonance-based binding analysis. The interaction between STRA6 and RBP was not retinol-dependent and the binding data were consistent with a transient interaction of 1 mole RBP/mole STRA6.
Collapse
Affiliation(s)
- Conor J Breen
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Darren S Martin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Hui Ma
- National Centre for Sensor Research, Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | - Kate McQuaid
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Richard O'Kennedy
- National Centre for Sensor Research, Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | - John B C Findlay
- Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
32
|
Vetting MW, Al-Obaidi N, Zhao S, San Francisco B, Kim J, Wichelecki DJ, Bouvier JT, Solbiati JO, Vu H, Zhang X, Rodionov DA, Love JD, Hillerich BS, Seidel RD, Quinn RJ, Osterman AL, Cronan JE, Jacobson MP, Gerlt JA, Almo SC. Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes. Biochemistry 2015; 54:909-31. [PMID: 25540822 PMCID: PMC4310620 DOI: 10.1021/bi501388y] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The
rate at which genome sequencing data is accruing demands enhanced
methods for functional annotation and metabolism discovery. Solute
binding proteins (SBPs) facilitate the transport of the first reactant
in a metabolic pathway, thereby constraining the regions of chemical
space and the chemistries that must be considered for pathway reconstruction.
We describe high-throughput protein production and differential scanning
fluorimetry platforms, which enabled the screening of 158 SBPs against
a 189 component library specifically tailored for this class of proteins.
Like all screening efforts, this approach is limited by the practical
constraints imposed by construction of the library, i.e., we can study
only those metabolites that are known to exist and which can be made
in sufficient quantities for experimentation. To move beyond these
inherent limitations, we illustrate the promise of crystallographic-
and mass spectrometric-based approaches for the unbiased use of entire
metabolomes as screening libraries. Together, our approaches identified
40 new SBP ligands, generated experiment-based annotations for 2084
SBPs in 71 isofunctional clusters, and defined numerous metabolic
pathways, including novel catabolic pathways for the utilization of
ethanolamine as sole nitrogen source and the use of d-Ala-d-Ala as sole carbon source. These efforts begin to define an
integrated strategy for realizing the full value of amassing genome
sequence data.
Collapse
Affiliation(s)
- Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Draft Genome Sequence of Bacillus alcalophilus AV1934, a Classic Alkaliphile Isolated from Human Feces in 1934. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01175-14. [PMID: 25395643 PMCID: PMC4241669 DOI: 10.1128/genomea.01175-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacillus alcalophilus AV1934, isolated from human feces, was described in 1934 before microbiome studies and recent indications of novel potassium ion coupling to motility in this extremophile. Here, we report draft sequences that will facilitate an examination of whether that coupling is part of a larger cycle of potassium ion-coupled transporters.
Collapse
|
34
|
Gangi Setty T, Cho C, Govindappa S, Apicella MA, Ramaswamy S. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1801-11. [PMID: 25004958 PMCID: PMC4089482 DOI: 10.1107/s139900471400830x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/12/2014] [Indexed: 11/10/2022]
Abstract
Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.
Collapse
Affiliation(s)
- Thanuja Gangi Setty
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065, India
| | - Christine Cho
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Sowmya Govindappa
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065, India
| | - Michael A. Apicella
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | - S. Ramaswamy
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065, India
| |
Collapse
|
35
|
Rhie MN, Yoon HE, Oh HY, Zedler S, Unden G, Kim OB. A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates. MICROBIOLOGY-SGM 2014; 160:1533-1544. [PMID: 24742960 DOI: 10.1099/mic.0.076786-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Actinobacillus succinogenes, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C4-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C4-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of A. succinogenes encodes six proteins with similarity to secondary C4-dicarboxylate transporters, including transporters of the Dcu (C4-dicarboxylate uptake), DcuC (C4-dicarboxylate uptake C), DASS (divalent anion : sodium symporter) and TDT (tellurite resistance dicarboxylate transporter) family. From the cloned genes, Asuc_0304 of the DASS family protein was able to restore aerobic growth on C4-dicarboxylates in a C4-dicarboxylate-transport-negative Escherichia coli strain. The strain regained succinate or fumarate uptake, which was dependent on the electrochemical proton potential and the presence of Na(+). The transport had an optimum pH ~7, indicating transport of the dianionic C4-dicarboxylates. Transport competition experiments suggested substrate specificity for fumarate and succinate. The transport characteristics for C4-dicarboxylate uptake by cells of aerobically grown A. succinogenes were similar to those of Asuc_0304 expressed in E. coli, suggesting that Asuc_0304 has an important role in aerobic fumarate uptake in A. succinogenes. Asuc_0304 has sequence similarity to bacterial Na(+)-dicarboxylate cotransporters and contains the carboxylate-binding signature. Asuc_0304 was named SdcA (sodium-coupled C4-dicarboxylate transporter from A. succinogenes).
Collapse
Affiliation(s)
- Mi Na Rhie
- Department of Life Sciences, Division of EcoCreative, Ewha Womans University, 120-750 Seoul, Korea
| | - Hyo Eun Yoon
- Department of Life Sciences, Division of EcoCreative, Ewha Womans University, 120-750 Seoul, Korea
| | - Hye Yun Oh
- Department of Life Sciences, Division of EcoCreative, Ewha Womans University, 120-750 Seoul, Korea
| | - Sandra Zedler
- Institute for Microbiology and Wine Research, Johannes Gutenberg University Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, Johannes Gutenberg University Mainz, Becherweg 15, 55099 Mainz, Germany
| | - Ok Bin Kim
- Department of Life Sciences, Division of EcoCreative, Ewha Womans University, 120-750 Seoul, Korea
| |
Collapse
|
36
|
The sensor kinase DctS forms a tripartite sensor unit with DctB and DctA for sensing C4-dicarboxylates in Bacillus subtilis. J Bacteriol 2013; 196:1084-93. [PMID: 24375102 DOI: 10.1128/jb.01154-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The DctSR two-component system of Bacillus subtilis controls the expression of the aerobic C4-dicarboxylate transporter DctA. Deletion of DctA leads to an increased dctA expression. The inactivation of DctB, an extracellular binding protein, is known to inhibit the expression of dctA. Here, interaction between the sensor kinase DctS and the transporter DctA as well as the binding protein DctB was demonstrated in vivo using streptavidin (Strep) or His protein interaction experiments (mSPINE or mHPINE), and the data suggest that DctA and DctB act as cosensors for DctS. The interaction between DctS and DctB was also confirmed by the bacterial two-hybrid system (BACTH). In contrast, no indication was obtained for a direct interaction between the transporter DctA and the binding protein DctB. Activity levels of uptake of [(14)C]succinate by bacteria that expressed DctA from a plasmid were similar in the absence and the presence of DctB, demonstrating that the binding protein DctB is not required for transport. Thus, DctB is involved not in transport but in cosensing with DctS, highlighting DctB as the first example of a TRAP-type binding protein that acts as a cosensor. The simultaneous presence of DctS/DctB and DctS/DctA sensor pairs and the lack of direct interaction between the cosensors DctA and DctB indicate the formation of a tripartite complex via DctS. It is suggested that the DctS/DctA/DctB complex forms the functional unit for C4-dicarboxylate sensing in B. subtilis.
Collapse
|
37
|
Dong Y, Kumar CG, Chia N, Kim PJ, Miller PA, Price ND, Cann IKO, Flynn TM, Sanford RA, Krapac IG, Locke RA, Hong PY, Tamaki H, Liu WT, Mackie RI, Hernandez AG, Wright CL, Mikel MA, Walker JL, Sivaguru M, Fried G, Yannarell AC, Fouke BW. Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environ Microbiol 2013; 16:1695-708. [PMID: 24238218 DOI: 10.1111/1462-2920.12325] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 10/31/2013] [Indexed: 01/12/2023]
Abstract
A low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure). These highly porous and permeable quartz arenite sandstones are directly analogous to reservoirs around the world targeted for large-scale hydrocarbon extraction, as well as subsurface gas and carbon storage. A new downhole low-contamination subsurface sampling probe was used to collect in situ formation water samples for microbial environmental metagenomic analyses. Multiple lines of evidence suggest that this H. sulfidaeris-dominated subsurface microbial community is indigenous and not derived from drilling mud microbial contamination. Data to support this includes V1-V3 pyrosequencing of formation water and drilling mud, as well as comparison with previously published microbial analyses of drilling muds in other sites. Metabolic pathway reconstruction, constrained by the geology, geochemistry and present-day environmental conditions of the Mt. Simon Sandstone, implies that H. sulfidaeris-dominated subsurface microbial community may utilize iron and nitrogen metabolisms and extensively recycle indigenous nutrients and substrates. The presence of aromatic compound metabolic pathways suggests this microbial community can readily adapt to and survive subsurface hydrocarbon migration.
Collapse
Affiliation(s)
- Yiran Dong
- Energy Biosciences Institute, University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA; Department of Geology, University of Illinois Urbana-Champaign, 1301 W. Green Street, Urbana, IL, 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Salmon RC, Cliff MJ, Rafferty JB, Kelly DJ. The CouPSTU and TarPQM transporters in Rhodopseudomonas palustris: redundant, promiscuous uptake systems for lignin-derived aromatic substrates. PLoS One 2013; 8:e59844. [PMID: 23555803 PMCID: PMC3610893 DOI: 10.1371/journal.pone.0059844] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
The biodegradation of lignin, one of the most abundant carbon compounds on Earth, has important biotechnological applications in the derivation of useful products from lignocellulosic wastes. The purple photosynthetic bacterium Rhodopseudomonas palustris is able to grow photoheterotrophically under anaerobic conditions on a range of phenylpropeneoid lignin monomers, including coumarate, ferulate, caffeate, and cinnamate. RPA1789 (CouP) is the periplasmic binding-protein component of an ABC system (CouPSTU; RPA1789, RPA1791–1793), which has previously been implicated in the active transport of this class of aromatic substrate. Here, we show using both intrinsic tryptophan fluorescence and isothermal titration calorimetry that CouP binds a range of phenylpropeneoid ligands with Kd values in the nanomolar range. The crystal structure of CouP with ferulate as the bound ligand shows H-bond interactions between the 4-OH group of the aromatic ring with His309 and Gln305. H-bonds are also made between the carboxyl group on the ferulate side chain and Arg197, Ser222, and Thr102. An additional transport system (TarPQM; RPA1782–1784), a member of the tripartite ATP-independent periplasmic (TRAP) transporter family, is encoded at the same locus as rpa1789 and several other genes involved in coumarate metabolism. We show that the periplasmic binding-protein of this system (TarP; RPA1782) also binds coumarate, ferulate, caffeate, and cinnamate with nanomolar Kd values. Thus, we conclude that R. palustris uses two redundant but energetically distinct primary and secondary transporters that both employ high-affinity periplasmic binding-proteins to maximise the uptake of lignin-derived aromatic substrates from the environment. Our data provide a detailed thermodynamic and structural basis for understanding the interaction of lignin-derived aromatic substrates with proteins and will be of use in the further exploitation of the flexible metabolism of R. palustris for anaerobic aromatic biotransformations.
Collapse
Affiliation(s)
- Robert C. Salmon
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - John B. Rafferty
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
- * E-mail: (JR); (DJK)
| | - David J. Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
- * E-mail: (JR); (DJK)
| |
Collapse
|
39
|
myo-inositol and D-ribose ligand discrimination in an ABC periplasmic binding protein. J Bacteriol 2013; 195:2379-88. [PMID: 23504019 DOI: 10.1128/jb.00116-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The periplasmic binding protein (PBP) IbpA mediates the uptake of myo-inositol by the IatP-IatA ATP-binding cassette transmembrane transporter. We report a crystal structure of Caulobacter crescentus IbpA bound to myo-inositol at 1.45 Å resolution. This constitutes the first structure of a PBP bound to inositol. IbpA adopts a type I PBP fold consisting of two α-β lobes that surround a central hinge. A pocket positioned between the lobes contains the myo-inositol ligand, which binds with submicromolar affinity (0.76 ± 0.08 μM). IbpA is homologous to ribose-binding proteins and binds D-ribose with low affinity (50.8 ± 3.4 μM). On the basis of IbpA and ribose-binding protein structures, we have designed variants of IbpA with inverted binding specificity for myo-inositol and D-ribose. Five mutations in the ligand-binding pocket are sufficient to increase the affinity of IbpA for D-ribose by 10-fold while completely abolishing binding to myo-inositol. Replacement of ibpA with these mutant alleles unable to bind myo-inositol abolishes C. crescentus growth in medium containing myo-inositol as the sole carbon source. Neither deletion of ibpA nor replacement of ibpA with the high-affinity ribose binding allele affected C. crescentus growth on D-ribose as a carbon source, providing evidence that the IatP-IatA transporter is specific for myo-inositol. This study outlines the evolutionary relationship between ribose- and inositol-binding proteins and provides insight into the molecular basis upon which these two related, but functionally distinct, classes of periplasmic proteins specifically bind carbohydrate ligands.
Collapse
|
40
|
Bourdès A, Rudder S, East AK, Poole PS. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols. PLoS One 2012; 7:e43578. [PMID: 23028462 PMCID: PMC3454389 DOI: 10.1371/journal.pone.0043578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Förster resonance energy transfer (FRET) biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens). To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors. METHODOLOGY/PRINCIPAL FINDINGS Two new vectors were developed for cloning genes for solute-binding proteins (SBPs) between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2) and red fluorescent protein (mKate2) FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose), D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate). To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP) transport systems. CONCLUSIONS/SIGNIFICANCE FRET based on orange (mOrange2) and red fluorescent protein (mKate2) partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i) cyclic polyols, (ii) L-deoxy sugars, (iii) β-linked disaccharides and (iv) C4-dicarboxylates could be developed to study metabolism in vivo.
Collapse
Affiliation(s)
- Alexandre Bourdès
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Steven Rudder
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Alison K. East
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Philip S. Poole
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Chowdhury N, Norris J, McAlister E, Lau SYK, Thomas GH, Boyd EF. The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. MICROBIOLOGY-SGM 2012; 158:2158-2167. [PMID: 22556361 DOI: 10.1099/mic.0.059659-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sialic acids are nine-carbon amino sugars that are present on all mucous membranes and are often used by bacteria as nutrients. In pathogenic Vibrio the genes for sialic acid catabolism (SAC) are known to be important for host colonization, yet the route for sialic acid uptake is not proven. Vibrio cholerae contains a tripartite ATP-independent periplasmic (TRAP) transporter, SiaPQM (VC1777-VC1779), encoded by genes within the Vibrio pathogenicity island-2 (VPI-2), which are adjacent to the SAC genes nanA, nanE and nanK. We demonstrate a correlation of the occurrence of VPI-2 and the ability of Vibrio to grow on the common sialic acid N-acetylneuraminic acid (Neu5Ac), and that a V. cholerae N16961 mutant defective in vc1777, encoding the large membrane protein component of the TRAP transporter, SiaM, is unable to grow on Neu5Ac as the sole carbon source. Using the genome context and known structures of the SiaP protein component of the TRAP transporter, we define a subfamily of Neu5Ac-specific TRAP transporters, of which the vc1777-vc1779 genes are the only representatives in V. cholerae. A recent report has suggested that an entirely different TRAP transporter (VC1927-VC1929) is the Neu5Ac transporter in V. cholerae. Bioinformatics and genomic analysis suggest strongly that this is a C(4)-dicarboxylate-specific TRAP transporter, and indeed disruption of vc1929 results in a defect in growth on C(4)-dicarboxylates but not Neu5Ac. Together these data demonstrate unequivocally that the siaPQM-encoded TRAP transporter within VPI-2 is the sole sialic acid transporter in V. cholerae.
Collapse
Affiliation(s)
- Nityananda Chowdhury
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica Norris
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - Erin McAlister
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - S Y Kathy Lau
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
42
|
Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus. Appl Environ Microbiol 2012; 78:3407-15. [PMID: 22344665 DOI: 10.1128/aem.07395-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sialic or nonulosonic acids are nine-carbon alpha ketosugars that are present in all vertebrate mucous membranes. Among bacteria, the ability to catabolize sialic acid as a carbon source is present mainly in pathogenic and commensal species of animals. Previously, it was shown that several Vibrio species carry homologues of the genes required for sialic acid transport and catabolism, which are genetically linked. In Vibrio cholerae on chromosome I, these genes are carried on the Vibrio pathogenicity island-2 region, which is confined to pathogenic isolates. We found that among the three sequenced Vibrio vulnificus clinical strains, these genes are present on chromosome II and are not associated with a pathogenicity island. To determine whether the sialic acid transport (SAT) and catabolism (SAC) region is universally present within V. vulnificus, we examined 67 natural isolates whose phylogenetic relationships are known. We found that the region was present predominantly among lineage I of V. vulnificus, which is comprised mainly of clinical isolates. We demonstrate that the isolates that contain this region can catabolize sialic acid as a sole carbon source. Two putative transporters are genetically linked to the region in V. vulnificus, the tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM and a component of an ATP-binding cassette (ABC) transporter. We constructed an in-frame deletion mutation in siaM, a component of the TRAP transporter, and demonstrate that this transporter is essential for sialic acid uptake in this species. Expression analysis of the SAT and SAC genes indicates that sialic acid is an inducer of expression. Overall, our study demonstrates that the ability to catabolize and transport sialic acid is predominately lineage specific in V. vulnificus and that the TRAP transporter is essential for sialic acid uptake.
Collapse
|
43
|
Stafford G, Roy S, Honma K, Sharma A. Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast! Mol Oral Microbiol 2012; 27:11-22. [PMID: 22230462 PMCID: PMC4049603 DOI: 10.1111/j.2041-1014.2011.00630.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Periodontal pathogens, like any other human commensal or pathogenic bacterium, must possess both the ability to acquire the necessary growth factors and the means to adhere to surfaces or reside and survive in their environmental niche. Recent evidence has suggested that sialic acid containing host molecules may provide both of these requirements in vivo for several periodontal pathogens but most notably for the red complex organism Tannerella forsythia. Several other periodontal pathogens also possess sialic acid scavenging enzymes - sialidases, which can also expose adhesive epitopes, but might also act as adhesins in their own right. In addition, recent experimental work coupled with the release of several genome sequences has revealed that periodontal bacteria have a range of sialic acid uptake and utilization systems while others may also use sialic acid as a cloaking device on their surface to mimic host and avoid immune recognition. This review will focus on these systems in a range of periodontal bacteria with a focus on Ta. forsythia.
Collapse
Affiliation(s)
- G Stafford
- Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK.
| | | | | | | |
Collapse
|
44
|
Deka RK, Brautigam CA, Goldberg M, Schuck P, Tomchick DR, Norgard MV. Structural, bioinformatic, and in vivo analyses of two Treponema pallidum lipoproteins reveal a unique TRAP transporter. J Mol Biol 2012; 416:678-96. [PMID: 22306465 DOI: 10.1016/j.jmb.2012.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/15/2011] [Accepted: 01/11/2012] [Indexed: 01/22/2023]
Abstract
Treponema pallidum, the bacterial agent of syphilis, is predicted to encode one tripartite ATP-independent periplasmic transporter (TRAP-T). TRAP-Ts typically employ a periplasmic substrate-binding protein (SBP) to deliver the cognate ligand to the transmembrane symporter. Herein, we demonstrate that the genes encoding the putative TRAP-T components from T. pallidum, tp0957 (the SBP), and tp0958 (the symporter), are in an operon with an uncharacterized third gene, tp0956. We determined the crystal structure of recombinant Tp0956; the protein is trimeric and perforated by a pore. Part of Tp0956 forms an assembly similar to those of "tetratricopeptide repeat" (TPR) motifs. The crystal structure of recombinant Tp0957 was also determined; like the SBPs of other TRAP-Ts, there are two lobes separated by a cleft. In these other SBPs, the cleft binds a negatively charged ligand. However, the cleft of Tp0957 has a strikingly hydrophobic chemical composition, indicating that its ligand may be substantially different and likely hydrophobic. Analytical ultracentrifugation of the recombinant versions of Tp0956 and Tp0957 established that these proteins associate avidly. This unprecedented interaction was confirmed for the native molecules using in vivo cross-linking experiments. Finally, bioinformatic analyses suggested that this transporter exemplifies a new subfamily of TPATs (TPR-protein-associated TRAP-Ts) that require the action of a TPR-containing accessory protein for the periplasmic transport of a potentially hydrophobic ligand(s).
Collapse
Affiliation(s)
- Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
45
|
Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases. Appl Environ Microbiol 2012; 78:1978-86. [PMID: 22247137 DOI: 10.1128/aem.07069-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Four hyperthermophilic members of the bacterial genus Thermotoga (T. maritima, T. neapolitana, T. petrophila, and Thermotoga sp. strain RQ2) share a core genome of 1,470 open reading frames (ORFs), or about 75% of their genomes. Nonetheless, each species exhibited certain distinguishing features during growth on simple and complex carbohydrates that correlated with genomic inventories of specific ABC sugar transporters and glycoside hydrolases. These differences were consistent with transcriptomic analysis based on a multispecies cDNA microarray. Growth on a mixture of six pentoses and hexoses showed no significant utilization of galactose or mannose by any of the four species. T. maritima and T. neapolitana exhibited similar monosaccharide utilization profiles, with a strong preference for glucose and xylose over fructose and arabinose. Thermotoga sp. strain RQ2 also used glucose and xylose, but was the only species to utilize fructose to any extent, consistent with a phosphotransferase system (PTS) specific for this sugar encoded in its genome. T. petrophila used glucose to a significantly lesser extent than the other species. In fact, the XylR regulon was triggered by growth on glucose for T. petrophila, which was attributed to the absence of a glucose transporter (XylE2F2K2), otherwise present in the other Thermotoga species. This suggested that T. petrophila acquires glucose through the XylE1F1K1 transporter, which primarily serves to transport xylose in the other three Thermotoga species. The results here show that subtle differences exist among the hyperthermophilic Thermotogales with respect to carbohydrate utilization, which supports their designation as separate species.
Collapse
|
46
|
Mulligan C, Leech AP, Kelly DJ, Thomas GH. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J Biol Chem 2011; 287:3598-608. [PMID: 22167185 DOI: 10.1074/jbc.m111.281030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in bacteria but poorly characterized. They contain three subunits, a small membrane protein, a large membrane protein, and a substrate-binding protein (SBP). Although the function of the SBP is well established, the membrane components have only been studied in detail for the sialic acid TRAP transporter SiaPQM from Haemophilus influenzae, where the membrane proteins are genetically fused. Herein, we report the first in vitro characterization of a truly tripartite TRAP transporter, the SiaPQM system (VC1777-1779) from the human pathogen Vibrio cholerae. The active reconstituted transporter catalyzes unidirectional Na(+)-dependent sialic acid uptake having similar biochemical features to the orthologous system in H. influenzae. However, using this tripartite transporter, we demonstrate the tight association of the small, SiaQ, and large, SiaM, membrane proteins that form a 1:1 complex. Using reconstituted proteoliposomes containing particular combinations of the three subunits, we demonstrate biochemically that all three subunits are likely to be essential to form a functional TRAP transporter.
Collapse
Affiliation(s)
- Christopher Mulligan
- Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | | | | | | |
Collapse
|
47
|
Thomas GH, Boyd EF. On sialic acid transport and utilization by Vibrio cholerae. Microbiology (Reading) 2011; 157:3253-3254. [DOI: 10.1099/mic.0.054692-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gavin H. Thomas
- Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - E. Fidelma Boyd
- Department of Biological Sciences, Wolf Hall, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
48
|
Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins. Proc Natl Acad Sci U S A 2011; 108:E1285-92. [PMID: 22084072 DOI: 10.1073/pnas.1112534108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Numerous membrane importers rely on accessory water-soluble proteins to capture their substrates. These substrate-binding proteins (SBP) have a strong affinity for their ligands; yet, substrate release onto the low-affinity membrane transporter must occur for uptake to proceed. It is generally accepted that release is facilitated by the association of SBP and transporter, upon which the SBP adopts a conformation similar to the unliganded state, whose affinity is sufficiently reduced. Despite the appeal of this mechanism, however, direct supporting evidence is lacking. Here, we use experimental and theoretical methods to demonstrate that an allosteric mechanism of enhanced substrate release is indeed plausible. First, we report the atomic-resolution structure of apo TeaA, the SBP of the Na(+)-coupled ectoine TRAP transporter TeaBC from Halomonas elongata DSM2581(T), and compare it with the substrate-bound structure previously reported. Conformational free-energy landscape calculations based upon molecular dynamics simulations are then used to dissect the mechanism that couples ectoine binding to structural change in TeaA. These insights allow us to design a triple mutation that biases TeaA toward apo-like conformations without directly perturbing the binding cleft, thus mimicking the influence of the membrane transporter. Calorimetric measurements demonstrate that the ectoine affinity of the conformationally biased triple mutant is 100-fold weaker than that of the wild type. By contrast, a control mutant predicted to be conformationally unbiased displays wild-type affinity. This work thus demonstrates that substrate release from SBPs onto their membrane transporters can be facilitated by the latter through a mechanism of allosteric modulation of the former.
Collapse
|
49
|
Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, Cristina Souza de Oliveira T, Wagner Garcia J, Pellon de Miranda F, Henrique-Silva F. Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS One 2011; 6:e23785. [PMID: 21915244 PMCID: PMC3158796 DOI: 10.1371/journal.pone.0023785] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022] Open
Abstract
River water is a small percentage of the total freshwater on Earth but represents an essential resource for mankind. Microbes in rivers perform essential ecosystem roles including the mineralization of significant quantities of organic matter originating from terrestrial habitats. The Amazon river in particular is famous for its size and importance in the mobilization of both water and carbon out of its enormous basin. Here we present the first metagenomic study on the microbiota of this river. It presents many features in common with the other freshwater metagenome available (Lake Gatun in Panama) and much less similarity with marine samples. Among the microbial taxa found, the cosmopolitan freshwater acI lineage of the actinobacteria was clearly dominant. Group I Crenarchaea and the freshwater sister group of the marine SAR11 clade, LD12, were found alongside more exclusive and well known freshwater taxa such as Polynucleobacter. A metabolism-centric analysis revealed a disproportionate representation of pathways involved in heterotrophic carbon processing, as compared to those found in marine samples. In particular, these river microbes appear to be specialized in taking up and mineralizing allochthonous carbon derived from plant material.
Collapse
Affiliation(s)
- Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- * E-mail: (FRV); (FHS)
| | - Katherine D. McMahon
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiologia, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Danyelle Toyama
- Laboratory of Molecular Biology, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - Raquel Rinke
- Laboratory of Molecular Biology, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | | | | | - Fernando Pellon de Miranda
- Petróleo Brasileiro S.A. – Petrobras, Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Melo, Rio de Janeiro, RJ, Brasil
| | - Flavio Henrique-Silva
- Laboratory of Molecular Biology, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brasil
- * E-mail: (FRV); (FHS)
| |
Collapse
|
50
|
Lau SK, Fan RY, Wong GK, Teng JL, Sze KH, Tse H, Yuen KY, Woo PC. Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis. Cell Biosci 2011; 1:28. [PMID: 21849034 PMCID: PMC3180692 DOI: 10.1186/2045-3701-1-28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/17/2011] [Indexed: 01/27/2023] Open
Abstract
Background Laribacter hongkongensis is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of L. hongkongensis, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances. Results A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the L. hongkongensis genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. L. hongkongensis is unique among closely related members of Neisseriaceae family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C4-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the L. hongkongensis genome also contained two copies of qseB/qseC homologues of the AI-3 quorum sensing system. Conclusions The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to adapt to different environments. Structural modeling will provide useful insights on the transporters in L. hongkongensis.
Collapse
Affiliation(s)
- Susanna Kp Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rachel Yy Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Gilman Km Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Jade Ll Teng
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kong-Hung Sze
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Herman Tse
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Patrick Cy Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| |
Collapse
|