1
|
Young EJ, Kirst H, Dwyer ME, Vermaas JV, Kerfeld CA. Quantitative Measurement of Molecular Permeability to a Synthetic Bacterial Microcompartment Shell System. ACS Synth Biol 2025; 14:1405-1413. [PMID: 39808735 PMCID: PMC12090211 DOI: 10.1021/acssynbio.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025]
Abstract
Naturally evolved and synthetically designed forms of compartmentalization benefit encapsulated function by increasing local concentrations of substrates and protecting cargo from destabilizing environments and inhibitors. Crucial to understanding the fundamental principles of compartmentalization are experimental systems enabling the measurement of the permeability rates of small molecules. Here, we report the experimental measurement of the small-molecule permeability of a 40 nm icosahedral bacterial microcompartment shell. This was accomplished by heterologous loading of light-producing luciferase enzymes and kinetic measurement of luminescence using stopped-flow spectrophotometry. Compared to free enzyme, the luminescence signal kinetics was slower when the luciferase was encapsulated in bacterial microcompartment shells. The results indicate that substrates and products can still exchange across the shell, and modeling of the experimental data suggest that a 50× permeability rate increase occurs when shell vertices were vacant. Overall, our results suggest design considerations for the construction of heterologous bacterial microcompartment shell systems and compartmentalized function at the nanoscale.
Collapse
Affiliation(s)
- Eric J. Young
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94702, United States
| | - Henning Kirst
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94702, United States
- Departamento
de Genética, Campus de Excelencia Internacional Agroalimentario
ceiA3, Universidad de Córdoba, Córdoba 14071, Spain
- Instituto
Maimónides de Investigación Biomédica de Córdoba
(IMIBIC), Córdoba 14004, Spain
| | - Matthew E. Dwyer
- MSU-DOE Plant
Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Josh V. Vermaas
- MSU-DOE Plant
Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Biochemistry
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Cheryl A. Kerfeld
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94702, United States
- MSU-DOE Plant
Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Biochemistry
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94702, United States
| |
Collapse
|
2
|
Johnson ER, Kennedy NW, Mills CE, Liang S, Chandrasekar S, Nichols TM, Rybnicky GA, Tullman-Ercek D. Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation. mSphere 2025:e0096224. [PMID: 40237445 DOI: 10.1128/msphere.00962-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitute the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased the MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full-length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.IMPORTANCESpatially organizing biosynthetic pathway enzymes is a promising strategy to increase pathway throughput and yield. Bacterial microcompartments (MCPs) are proteinaceous organelles that many bacteria natively use as a spatial organization strategy to encapsulate niche metabolic pathways, providing significant metabolic benefits. Encapsulating heterologous pathways of interest in MCPs could confer these benefits to industrially relevant pathways. Here, we investigate the role of signal sequences, short domains that target proteins for encapsulation in MCPs, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterize two novel signal sequences on structural proteins, constituting the first Pdu signal sequences found on structural proteins rather than enzymes, and perform knockout studies to compare the impacts of enzymatic and structural signal sequences on MCP assembly. Our results demonstrate that enzymatic and structural signal sequences play critical but distinct roles in Pdu MCP assembly and provide design rules for engineering MCPs while minimizing disruption to MCP assembly.
Collapse
Affiliation(s)
- Elizabeth R Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Nolan W Kennedy
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Shiqi Liang
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Swetha Chandrasekar
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Taylor M Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Grant A Rybnicky
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
3
|
Berger C, Lewis C, Gao Y, Knoops K, López-Iglesias C, Peters PJ, Ravelli RBG. In situ and in vitro cryo-EM reveal structures of mycobacterial encapsulin assembly intermediates. Commun Biol 2025; 8:245. [PMID: 39955411 PMCID: PMC11830004 DOI: 10.1038/s42003-025-07660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Prokaryotes rely on proteinaceous compartments such as encapsulin to isolate harmful reactions. Encapsulin are widely expressed by bacteria, including the Mycobacteriaceae, which include the human pathogens Mycobacterium tuberculosis and Mycobacterium leprae. Structures of fully assembled encapsulin shells have been determined for several species, but encapsulin assembly and cargo encapsulation are still poorly characterised, because of the absence of encapsulin structures in intermediate assembly states. We combine in situ and in vitro structural electron microscopy to show that encapsulins are dynamic assemblies with intermediate states of cargo encapsulation and shell assembly. Using cryo-focused ion beam (FIB) lamella preparation and cryo-electron tomography (CET), we directly visualise encapsulins in Mycobacterium marinum, and observed ribbon-like attachments to the shell, encapsulin shells with and without cargoes, and encapsulin shells in partially assembled states. In vitro cryo-electron microscopy (EM) single-particle analysis of the Mycobacterium tuberculosis encapsulin was used to obtain three structures of the encapsulin shell in intermediate states, as well as a 2.3 Å structure of the fully assembled shell. Based on the analysis of the intermediate encapsulin shell structures, we propose a model of encapsulin self-assembly via the pairwise addition of monomers.
Collapse
Affiliation(s)
- Casper Berger
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands.
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, United Kingdom.
| | - Chris Lewis
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
- Microscopy CORE Lab, FHML, Maastricht University, Maastricht, The Netherlands
| | - Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Kèvin Knoops
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
- Microscopy CORE Lab, FHML, Maastricht University, Maastricht, The Netherlands
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
- Microscopy CORE Lab, FHML, Maastricht University, Maastricht, The Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Sun Y, Sheng Y, Ni T, Ge X, Sarsby J, Brownridge PJ, Li K, Hardenbrook N, Dykes GF, Rockliffe N, Eyers CE, Zhang P, Liu LN. Rubisco packaging and stoichiometric composition of the native β-carboxysome in Synechococcus elongatus PCC7942. PLANT PHYSIOLOGY 2024; 197:kiae665. [PMID: 39680612 PMCID: PMC11973430 DOI: 10.1093/plphys/kiae665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Carboxysomes are anabolic bacterial microcompartments that play an essential role in CO2 fixation in cyanobacteria. This self-assembling proteinaceous organelle uses a polyhedral shell constructed by hundreds of shell protein paralogs to encapsulate the key CO2-fixing enzymes Rubisco and carbonic anhydrase. Deciphering the precise arrangement and structural organization of Rubisco enzymes within carboxysomes is crucial for understanding carboxysome formation and overall functionality. Here, we employed cryoelectron tomography and subtomogram averaging to delineate the 3D packaging of Rubiscos within β-carboxysomes in the freshwater cyanobacterium Synechococcus elongatus PCC7942 grown under low light. Our results revealed that Rubiscos are arranged in multiple concentric layers parallel to the shell within the β-carboxysome lumen. We also detected Rubisco binding with the scaffolding protein CcmM in β-carboxysomes, which is instrumental for Rubisco encapsulation and β-carboxysome assembly. Using Quantification conCATamer-based quantitative MS, we determined the absolute stoichiometric composition of the entire β-carboxysome. This study provides insights into the assembly principles and structural variation of β-carboxysomes, which will aid in the rational design and repurposing of carboxysome nanostructures for diverse bioengineering applications.
Collapse
Affiliation(s)
- Yaqi Sun
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Xingwu Ge
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Joscelyn Sarsby
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Philip J Brownridge
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Kang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Gregory F Dykes
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Nichola Rockliffe
- Faculty of Health & Life Sciences, GeneMill, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Lu-Ning Liu
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Sutter M, Utschig LM, Niklas J, Paul S, Kahan DN, Gupta S, Poluektov OG, Ferlez BH, Tefft NM, TerAvest MA, Hickey DP, Vermaas JV, Ralston CY, Kerfeld CA. Electrochemical cofactor recycling of bacterial microcompartments. Proc Natl Acad Sci U S A 2024; 121:e2414220121. [PMID: 39585991 PMCID: PMC11626177 DOI: 10.1073/pnas.2414220121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose Nicotinamide adenine dinucleotide (NAD+) regeneration as the function of this enzyme and name it Metabolosome Nicotinamide Adenine Dinucleotide Hydrogen (NADH) dehydrogenase (MNdh). Its partner shell protein BMC-TSE (tandem domain BMC shell protein of the single layer type for electron transfer) assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, Electron Paramagnetic Resonance spectroscopy, protein voltammetry, and structural modeling verified with X-ray footprinting. This finding represents a paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.
Collapse
Affiliation(s)
- Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Sathi Paul
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Darren N. Kahan
- Biophysics Graduate Program, University of California, Berkeley, CA94720
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
| | - Nicholas M. Tefft
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - David P. Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI48824
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
6
|
Wang P, Li J, Li T, Li K, Ng PC, Wang S, Chriscoli V, Basle A, Marles-Wright J, Zhang YZ, Liu LN. Molecular principles of the assembly and construction of a carboxysome shell. SCIENCE ADVANCES 2024; 10:eadr4227. [PMID: 39612341 PMCID: PMC11606499 DOI: 10.1126/sciadv.adr4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Intracellular compartmentalization enhances biological reactions, crucial for cellular function and survival. An example is the carboxysome, a bacterial microcompartment for CO2 fixation. The carboxysome uses a polyhedral protein shell made of hexamers, pentamers, and trimers to encapsulate Rubisco, increasing CO2 levels near Rubisco to enhance carboxylation. Despite their role in the global carbon cycle, the molecular mechanisms behind carboxysome shell assembly remain unclear. Here, we present a structural characterization of α-carboxysome shells generated from recombinant systems, which contain all shell proteins and the scaffolding protein CsoS2. Atomic-resolution cryo-electron microscopy of the shell assemblies, with a maximal size of 54 nm, unveil diverse assembly interfaces between shell proteins, detailed interactions of CsoS2 with shell proteins to drive shell assembly, and the formation of heterohexamers and heteropentamers by different shell protein paralogs, facilitating the assembly of larger empty shells. Our findings provide mechanistic insights into the construction principles of α-carboxysome shells and the role of CsoS2 in governing α-carboxysome assembly and functionality.
Collapse
Affiliation(s)
- Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jianxun Li
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Tianpei Li
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Kang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Pei Cing Ng
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Saimeng Wang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Vincent Chriscoli
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Arnaud Basle
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Jon Marles-Wright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
7
|
Dwyer ME, Sutter M, Kerfeld CA. Characterization of a widespread sugar phosphate-processing bacterial microcompartment. Commun Biol 2024; 7:1562. [PMID: 39580597 PMCID: PMC11585597 DOI: 10.1038/s42003-024-07287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Many prokaryotes form Bacterial Microcompartments (BMCs) that encapsulate segments of specialized metabolic pathways to enhance catalysis. The various functions of metabolosomes, catabolic BMCs, are dictated by the signature enzyme that processes initial substrates of the confined pathway. The components and native functions of several metabolosomes have been experimentally characterized; however one of the most prevalent across all bacteria has yet to be studied. Sugar Phosphate Utilizing (SPU) BMC loci encode enzymes predicted to be involved in sugar phosphate metabolism. The SPU genetic loci are found in organisms occupying habitats ranging from soils to hot springs, highlighting the ubiquity of the SPU BMC. We bioinformatically characterized seven SPU subtypes, all which contain an enzyme unique to SPU BMCs, a deoxyribose 5-phosphate aldolase (DERA). Here, we define the fundamental characteristics of SPU BMCs and have expressed, purified, and characterized a set of SPU core enzymes. These include a protein-protein complex formed between a SPU BMC DERA and a predicted ribose 5-phosphate isomerase. Further, we show that the SPU BMC DERA is catalytically active and propose that it acts as the universal signature enzyme for the SPU BMC, with implications for fundamental understanding and biotechnological applications of SPU BMCs.
Collapse
Affiliation(s)
- Matthew E Dwyer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
8
|
Johnson ER, Kennedy NW, Mills CE, Liang S, Chandrasekar S, Nichols TM, Rybnicky GA, Tullman-Ercek D. Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615066. [PMID: 39386669 PMCID: PMC11463388 DOI: 10.1101/2024.09.25.615066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitutes the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Nolan W. Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Carolyn. E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Shiqi Liang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Swetha Chandrasekar
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Taylor M. Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Grant A Rybnicky
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
9
|
Sun Y, Sheng Y, Ni T, Ge X, Sarsby J, Brownridge PJ, Li K, Hardenbrook N, Dykes GF, Rockliffe N, Eyers CE, Zhang P, Liu LN. Rubisco packaging and stoichiometric composition of a native β-carboxysome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614183. [PMID: 39345498 PMCID: PMC11430013 DOI: 10.1101/2024.09.20.614183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Carboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation in cyanobacteria. This self-assembling proteinaceous organelle encapsulates the key CO2-fixing enzymes, Rubisco and carbonic anhydrase, using a polyhedral shell constructed by hundreds of shell protein paralogs. Deciphering the precise arrangement and structural organization of Rubisco enzymes within carboxysomes is crucial for understanding the formation process and overall functionality of carboxysomes. Here, we employed cryo-electron tomography and subtomogram averaging to delineate the three-dimensional packaging of Rubiscos within β-carboxysomes in the freshwater cyanobacterium Synechococcus elongatus PCC7942 that were grown under low light. Our results revealed that Rubiscos are arranged in multiple concentric layers parallel to the shell within the β-carboxysome lumen. We also identified the binding of Rubisco with the scaffolding protein CcmM in β-carboxysomes, which is instrumental for Rubisco encapsulation and β-carboxysome assembly. Using QconCAT-based quantitative mass spectrometry, we further determined the absolute stoichiometric composition of the entire β-carboxysome. This study and recent findings on the β-carboxysome structure provide insights into the assembly principles and structural variation of β-carboxysomes, which will aid in the rational design and repurposing of carboxysome nanostructures for diverse bioengineering applications.
Collapse
Affiliation(s)
- Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Xingwu Ge
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Joscelyn Sarsby
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB, Liverpool, United Kingdom
| | - Philip J. Brownridge
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB, Liverpool, United Kingdom
| | - Kang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Nathan Hardenbrook
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Gregory F. Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Nichola Rockliffe
- GeneMill, University of Liverpool, Faculty of Health & Life Sciences, University of Liverpool, Crown Street, L69 7ZB, Liverpool, United Kingdom
| | - Claire E. Eyers
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB, Liverpool, United Kingdom
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Dank A, Liu Y, Wen X, Lin F, Wiersma A, Boeren S, Smid EJ, Notebaart RA, Abee T. Ethylene glycol is metabolized to ethanol and acetate and induces expression of bacterial microcompartments in Propionibacterium freudenreichii. Heliyon 2024; 10:e33444. [PMID: 39027605 PMCID: PMC11255663 DOI: 10.1016/j.heliyon.2024.e33444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ethylene glycol (EG, 1,2-ethanediol) is a two-carbon dihydroxy alcohol that can be derived from fermentation of plant-derived xylose and arabinose and which can be formed during food fermentations. Here we show that Propionibacterium freudenreichii DSM 20271 is able to convert EG in anaerobic conditions to ethanol and acetate in almost equimolar amounts. The metabolism of EG led to a moderate increase of biomass, indicating its metabolism is energetically favourable. A proteomic analysis revealed EG induced expression of the pdu-cluster, which encodes a functional bacterial microcompartment (BMC) involved in the degradation of 1,2-propanediol, with the presence of BMCs confirmed using transmission electron microscopy. Cross-examination of the proteomes of 1,2-propanediol and EG grown cells revealed PDU BMC-expressing cells have elevated levels of DNA repair proteins and cysteine biosynthesis proteins. Cells grown in 1,2-propanediol and EG also showed enhanced resistance against acid and bile salt-induced stresses compared to lactate-grown cells. Our analysis of whole genome sequences of selected genomes of BMC-encoding microorganisms able to metabolize EG with acetaldehyde as intermediate indicate a potentially broad-distributed role of the pdu operon in metabolism of EG. Based on our results we conclude EG is metabolized to acetate and ethanol with acetaldehyde as intermediate within BMCs in P. freudenreichii.
Collapse
Affiliation(s)
- Alexander Dank
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Xin Wen
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Fan Lin
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Anne Wiersma
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J. Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
11
|
Sutter M, Utschig LM, Niklas J, Paul S, Kahan DN, Gupta S, Poluektov OG, Ferlez BH, Tefft NM, TerAvest MA, Hickey DP, Vermaas JV, Ralston CY, Kerfeld CA. Electrochemical cofactor recycling of bacterial microcompartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603600. [PMID: 39071365 PMCID: PMC11275729 DOI: 10.1101/2024.07.15.603600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose NAD+ regeneration as a new function of this enzyme and name it MNdh, for Metabolosome NADH dehydrogenase. Its partner shell protein BMC-TSE assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, EPR spectroscopy, protein voltammetry and structural modeling verified with X-ray footprinting. This discovery represents a new paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.
Collapse
Affiliation(s)
- Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Sathi Paul
- Molecular Foundry Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Darren N. Kahan
- Biophysics Graduate Program, University of California; Berkeley, CA, 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
| | - Nicholas M. Tefft
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - David P. Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing, MI 48824, USA
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Foundry Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Feng J, Han Y, Xu S, Liao Y, Wang Y, Xu S, Li H, Wang X, Chen K. Engineering RuBisCO-based shunt for improved cadaverine production in Escherichia coli. BIORESOURCE TECHNOLOGY 2024; 398:130529. [PMID: 38437969 DOI: 10.1016/j.biortech.2024.130529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The process of biological fermentation is often accompanied by the release of CO2, resulting in low yield and environmental pollution. Refixing CO2 to the product synthesis pathway is an attractive approach to improve the product yield. Cadaverine is an important diamine used for the synthesis of bio-based polyurethane or polyamide. Here, aiming to increase its final production, a RuBisCO-based shunt consisting of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulate kinase (PRK) was expressed in cadaverine-producing E. coli. This shunt was calculated capable of increasing the maximum theoretical cadaverine yield based on flux model analysis. When a functional RuBisCO-based shunt was established and optimized in E. coli, the cadaverine production and yield of the final engineered strain reached the highest level, which were 84.1 g/L and 0.37 g/g Glucose, respectively. Thus, the design of in situ CO2 fixation provides a green and efficient industrial production process.
Collapse
Affiliation(s)
- Jia Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Ye Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shuang Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yang Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yongtao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Hui Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| |
Collapse
|
13
|
Wei WS, Trubiano A, Sigl C, Paquay S, Dietz H, Hagan MF, Fraden S. Hierarchical assembly is more robust than egalitarian assembly in synthetic capsids. Proc Natl Acad Sci U S A 2024; 121:e2312775121. [PMID: 38324570 PMCID: PMC10873614 DOI: 10.1073/pnas.2312775121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024] Open
Abstract
Self-assembly of complex and functional materials remains a grand challenge in soft material science. Efficient assembly depends on a delicate balance between thermodynamic and kinetic effects, requiring fine-tuning affinities and concentrations of subunits. By contrast, we introduce an assembly paradigm that allows large error-tolerance in the subunit affinity and helps avoid kinetic traps. Our combined experimental and computational approach uses a model system of triangular subunits programmed to assemble into T = 3 icosahedral capsids comprising 60 units. The experimental platform uses DNA origami to create monodisperse colloids whose three-dimensional geometry is controlled to nanometer precision, with two distinct bonds whose affinities are controlled to kBT precision, quantified in situ by static light scattering. The computational model uses a coarse-grained representation of subunits, short-ranged potentials, and Langevin dynamics. Experimental observations and modeling reveal that when the bond affinities are unequal, two distinct hierarchical assembly pathways occur, in which the subunits first form dimers in one case and pentamers in another. These hierarchical pathways produce complete capsids faster and are more robust against affinity variation than egalitarian pathways, in which all binding sites have equal strengths. This finding suggests that hierarchical assembly may be a general engineering principle for optimizing self-assembly of complex target structures.
Collapse
Affiliation(s)
- Wei-Shao Wei
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
- Materials Research Science and Engineering Center, Brandeis University, Waltham, MA02453
| | - Anthony Trubiano
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
- Materials Research Science and Engineering Center, Brandeis University, Waltham, MA02453
| | - Christian Sigl
- Laboratory for Biomolecular Nanotechnology, Department of Physics, Technical University of Munich, Garching85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching85748, Germany
| | - Stefan Paquay
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
- Materials Research Science and Engineering Center, Brandeis University, Waltham, MA02453
| | - Hendrik Dietz
- Laboratory for Biomolecular Nanotechnology, Department of Physics, Technical University of Munich, Garching85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching85748, Germany
| | - Michael F. Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
- Materials Research Science and Engineering Center, Brandeis University, Waltham, MA02453
| | - Seth Fraden
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
- Materials Research Science and Engineering Center, Brandeis University, Waltham, MA02453
| |
Collapse
|
14
|
Kalnins G, Bertins M, Viksna A, Tars K. Functionalization of bacterial microcompartment shell interior with cysteine containing peptides enhances the iron and cobalt loading capacity. Biometals 2024; 37:267-274. [PMID: 37728832 DOI: 10.1007/s10534-023-00538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles involved in several biochemical processes in bacterial cells. These cellular substructures consist of an icosahedral shell and an encapsulated enzymatic core. The outer shells of BMCs have been proposed as an attractive platform for the creation of novel nanomaterials, nanocages, and nanoreactors. In this study, we present a method for functionalizing recombinant GRM2-type BMC shell lumens with short cysteine-containing sequences and demonstrate that the iron and cobalt loading capacity of such modified shells is markedly increased. These results also imply that a passive flow of cobalt and iron atoms across the BMC shell could be possible.
Collapse
Affiliation(s)
- Gints Kalnins
- Latvian Biomedical Research and Study Centre, Ratsupites street 1, Riga, 1067, Latvia.
| | - Maris Bertins
- University of Latvia, Jelgavas street 1, Riga, 1004, Latvia
| | - Arturs Viksna
- University of Latvia, Jelgavas street 1, Riga, 1004, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites street 1, Riga, 1067, Latvia
- University of Latvia, Jelgavas street 1, Riga, 1004, Latvia
| |
Collapse
|
15
|
Chen Z, Wu T, Yu S, Li M, Fan X, Huo YX. Self-assembly systems to troubleshoot metabolic engineering challenges. Trends Biotechnol 2024; 42:43-60. [PMID: 37451946 DOI: 10.1016/j.tibtech.2023.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Enzyme self-assembly is a technology in which enzyme units can aggregate into ordered macromolecules, assisted by scaffolds. In metabolic engineering, self-assembly strategies have been explored for aggregating multiple enzymes in the same pathway to improve sequential catalytic efficiency, which in turn enables high-level production. The performance of the scaffolds is critical to the formation of an efficient and stable assembly system. This review comprehensively analyzes these scaffolds by exploring how they assemble, and it illustrates how to apply self-assembly strategies for different modules in metabolic engineering. Functional modifications to scaffolds will further promote efficient strategies for production.
Collapse
Affiliation(s)
- Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Tong Wu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Min Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Xuanhe Fan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China.
| |
Collapse
|
16
|
Česle EEL, Ta Rs K, Jansons J, Kalniņš G. Modulation of Hybrid GRM2-type Bacterial Microcompartment Shells through BMC-H Shell Protein Fusion and Incorporation of Non-native BMC-T Shell Proteins. ACS Synth Biol 2023; 12:3275-3286. [PMID: 37937366 DOI: 10.1021/acssynbio.3c00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Bacterial microcompartments (BMCs) are organelle-like structures in bacteria that facilitate a wide range of enzymatic reactions. The microcompartment shell contains an encapsulated enzymatic core and, in contrast to phospholipid-based eukaryotic organelle membranes, has a pseudoicosahedral shape composed of BMC-H, BMC-T, and BMC-P proteins with conserved structures. This semipermeable microcompartment shell delineates the enzymatic core assemblies and the intermediates from the rest of the cell. It is also thought to function as a barrier against toxic intermediates as well as to increase the reaction rate. These properties of BMCs have made them intriguing candidates for biotechnological applications, for which it is important to explore the potential scope of the BMC shell modulation possibilities. In this work, we explore two BMC shell modulation mechanisms: first, confirming the incorporation of three trimeric BMC-T shell proteins and two truncated BMC-T shell proteins into Klebsiella pneumoniae GRM2-type BMC protein shells containing no representatives of this group, and second, producing BMC particles from double- and triple-fused hexameric BMC-H shell proteins. These results reveal the potential for "mix and match" synthetic BMC shell formation to ensure shell properties specifically suited to the encapsulated cargo and show for the first time the involvement of an essentially dimeric pseudohexameric shell protein in BMC shell formation.
Collapse
Affiliation(s)
- Eva Emi Lija Česle
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Kaspars Ta Rs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
- University of Latvia, Jelgavas 1, Riga 1004, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
17
|
Doron L, Sutter M, Kerfeld CA. Characterization of a novel aromatic substrate-processing microcompartment in Actinobacteria. mBio 2023; 14:e0121623. [PMID: 37462359 PMCID: PMC10470539 DOI: 10.1128/mbio.01216-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 09/02/2023] Open
Abstract
We have discovered a new cluster of genes that is found exclusively in the Actinobacteria phylum. This locus includes genes for the 2-aminophenol meta-cleavage pathway and the shell proteins of a bacterial microcompartment (BMC) and has been named aromatics (ARO) for its putative role in the breakdown of aromatic compounds. In this study, we provide details about the distribution and composition of the ARO BMC locus and conduct phylogenetic, structural, and functional analyses of the first two enzymes in the catabolic pathway: a unique 2-aminophenol dioxygenase, which is exclusively found alongside BMC shell genes in Actinobacteria, and a semialdehyde dehydrogenase, which works downstream of the dioxygenase. Genomic analysis reveals variations in the complexity of the ARO loci across different orders. Some loci are simple, containing shell proteins and enzymes for the initial steps of the catabolic pathway, while others are extensive, encompassing all the necessary genes for the complete breakdown of 2-aminophenol into pyruvate and acetyl-CoA. Furthermore, our analysis uncovers two subtypes of ARO BMC that likely degrade either 2-aminophenol or catechol, depending on the presence of a pathway-specific gene within the ARO locus. The precise precursor of 2-aminophenol, which serves as the initial substrate and/or inducer for the ARO pathway, remains unknown, as our model organism Micromonospora rosaria cannot utilize 2-aminophenol as its sole energy source. However, using enzymatic assays, we demonstrate the dioxygenase's ability to cleave both 2-aminophenol and catechol in vitro, in collaboration with the aldehyde dehydrogenase, to facilitate the rapid conversion of these unstable and toxic intermediates. IMPORTANCE Bacterial microcompartments (BMCs) are proteinaceous organelles that are widespread among bacteria and provide a competitive advantage in specific environmental niches. Studies have shown that the genetic information necessary to form functional BMCs is encoded in loci that contain genes encoding shell proteins and the enzymatic core. This allows the bioinformatic discovery of BMCs with novel functions and expands our understanding of the metabolic diversity of BMCs. ARO loci, found only in Actinobacteria, contain genes encoding for phylogenetically remote shell proteins and homologs of the meta-cleavage degradation pathway enzymes that were shown to convert central aromatic intermediates into pyruvate and acetyl-CoA in gamma Proteobacteria. By analyzing the gene composition of ARO BMC loci and characterizing two core enzymes phylogenetically, structurally, and functionally, we provide an initial functional characterization of the ARO BMC, the most unusual BMC identified to date, distinctive among the repertoire of studied BMCs.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
18
|
Hu L, Wang Y, Wang L, Xiao S, Zheng Y, Yin G, Du G, Chen J, Kang Z. Construction of Osmotic Pressure Responsive Vacuole-like Bacterial Organelles with Capsular Polysaccharides as Building Blocks. ACS Synth Biol 2023; 12:750-760. [PMID: 36872621 DOI: 10.1021/acssynbio.2c00546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Many artificial organelles or subcellular compartments have been developed to tune gene expression, regulate metabolic pathways, or endow new cell functions. Most of these organelles or compartments were built using proteins or nucleic acids as building blocks. In this study, we demonstrated that capsular polysaccharide (CPS) retained inside bacteria cytosol assembled into mechanically stable CPS compartments. The CPS compartments were able to accommodate and release protein molecules but not lipids or nucleic acids. Intriguingly, we found that the CPS compartment size responds to osmotic stress and this compartment improves cell survival under high osmotic pressures, which was similar to the vacuole functionalities. By fine-tuning the synthesis and degradation of CPS with osmotic stress-responsive promoters, we achieved dynamic regulation of the size of CPS compartments and the host cells in response to external osmotic stress. Our results shed new light on developing prokaryotic artificial organelles with carbohydrate macromolecules.
Collapse
Affiliation(s)
- Litao Hu
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lingling Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Sen Xiao
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yilin Zheng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Cryo-electron structures of the extreme thermostable enzymes Sulfur Oxygenase Reductase and Lumazine Synthase. PLoS One 2022; 17:e0275487. [PMID: 36191023 PMCID: PMC9529111 DOI: 10.1371/journal.pone.0275487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
Abstract
Thermostable enzymes have the potential for use in a wide variety of biotechnological applications. Cryo-electron microscopy (cryo-EM) enables the imaging of biomolecules in their native aqueous environment. Here, we present high resolution cryo-EM structures of two thermostable enzymes that exhibit multimeric cage-like structures arranged into two different point-group symmetries. First, we determined the structure of the Sulfur Oxygenase Reductase (SOR) enzyme that catalyzes both the oxygenation and disproportionation of elemental sulfur in Archea and is composed of 24 homomeric units each of MW ≃ 35 kDa arranged in octahedral symmetry. The structure of SOR from Acidianus ambivalens (7X9W) was determined at 2.78 Å resolution. The active site of each subunit inside the central nanocompartment is composed of Fe3+ coordinated to two water molecules and the three amino acids (H86, H90 and E114). Second, we determined the structure of Lumazine Synthase (LS) from Aquifex aeolicus (7X7M) at 2.33 Å resolution. LS forms a cage-like structure consisting of 60 identical subunits each of MW ≃ 15 kDa arranged in a strict icosahedral symmetry. The LS subunits are interconnected by ion-pair network. Due to their thermostability and relatively easy purification scheme, both SOR and LS can serve as a model for the catalytic and structural characterization of biocatalysts as well as a benchmark for cryo-EM sample preparation, optimization of the acquisition parameters and 3D reconstruction.
Collapse
|
20
|
Raba DA, Kerfeld CA. The potential of bacterial microcompartment architectures for phytonanotechnology. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:700-710. [PMID: 35855583 DOI: 10.1111/1758-2229.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The application of nanotechnology to plants, termed phytonanotechnology, has the potential to revolutionize plant research and agricultural production. Advancements in phytonanotechnology will allow for the time-controlled and target-specific release of bioactive compounds and agrochemicals to alter and optimize conventional plant production systems. A diverse range of engineered nanoparticles with unique physiochemical properties is currently being investigated to determine their suitability for plants. Improvements in crop yield, disease resistance and nutrient and pesticide management are all possible using designed nanocarriers. However, despite these prospective benefits, research to thoroughly understand the precise activity, localization and potential phytotoxicity of these nanoparticles within plant systems is required. Protein-based bacterial microcompartment shell proteins that self-assemble into spherical shells, nanotubes and sheets could be of immense value for phytonanotechnology due to their ease of manipulation, multifunctionality, rapid and efficient producibility and biodegradability. In this review, we explore bacterial microcompartment-based architectures within the scope of phytonanotechnology.
Collapse
Affiliation(s)
- Daniel A Raba
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
21
|
Lacroix E, Audas TE. Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles. Front Mol Biosci 2022; 9:998363. [PMID: 36203874 PMCID: PMC9530788 DOI: 10.3389/fmolb.2022.998363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
In recent decades, a growing number of biomolecular condensates have been identified in eukaryotic cells. These structures form through phase separation and have been linked to a diverse array of cellular processes. While a checklist of established membrane-bound organelles is present across the eukaryotic domain, less is known about the conservation of membrane-less subcellular structures. Many of these structures can be seen throughout eukaryotes, while others are only thought to be present in metazoans or a limited subset of species. In particular, the nucleus is a hub of biomolecular condensates. Some of these subnuclear domains have been found in a broad range of organisms, which is a characteristic often attributed to essential functionality. However, this does not always appear to be the case. For example, the nucleolus is critical for ribosomal biogenesis and is present throughout the eukaryotic domain, while the Cajal bodies are believed to be similarly conserved, yet these structures are dispensable for organismal survival. Likewise, depletion of the Drosophila melanogaster omega speckles reduces viability, despite the apparent absence of this domain in higher eukaryotes. By reviewing primary research that has analyzed the presence of specific condensates (nucleoli, Cajal bodies, amyloid bodies, nucleolar aggresomes, nuclear speckles, nuclear paraspeckles, nuclear stress bodies, PML bodies, omega speckles, NUN bodies, mei2 dots) in a cross-section of organisms (e.g., human, mouse, D. melanogaster, Caenorhabditis elegans, yeast), we adopt a human-centric view to explore the emergence, retention, and absence of a subset of nuclear biomolecular condensates. This overview is particularly important as numerous biomolecular condensates have been linked to human disease, and their presence in additional species could unlock new and well characterized model systems for health research.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E. Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Timothy E. Audas,
| |
Collapse
|
22
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
23
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
24
|
Huang Z, Sun L, Lu G, Liu H, Zhai Z, Feng S, Gao J, Chen C, Qing C, Fang M, Chen B, Fu J, Wang X, Chen G. Rapid regulations of metabolic reactions in
Escherichia coli
via light‐responsive enzyme redistribution. Biotechnol J 2022; 17:e2200129. [DOI: 10.1002/biot.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/14/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zikang Huang
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Lize Sun
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Genzhe Lu
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Hongrui Liu
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
- Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| | - Zihan Zhai
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Site Feng
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Ji Gao
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Chunyu Chen
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Chuheng Qing
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Meng Fang
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Bowen Chen
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Jiale Fu
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
| | - Xuan Wang
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
- Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
- Tsinghua‐Peking Center for Life Sciences Beijing 100084 China
| | - Guo‐Qiang Chen
- School of Life Sciences Tsinghua University Beijing 100084 China
- Tsinghua iGEM Team 2019 Beijing 100084 China
- Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
- Tsinghua‐Peking Center for Life Sciences Beijing 100084 China
- MOE Key Lab of Industrial Biocatalysts Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
25
|
Yang M, Wenner N, Dykes GF, Li Y, Zhu X, Sun Y, Huang F, Hinton JCD, Liu LN. Biogenesis of a bacterial metabolosome for propanediol utilization. Nat Commun 2022; 13:2920. [PMID: 35614058 PMCID: PMC9132943 DOI: 10.1038/s41467-022-30608-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes. Our results demonstrate that the Pdu metabolosome undertakes both "Shell first" and "Cargo first" assembly pathways, unlike the β-carboxysome structural analog which only involves the "Cargo first" strategy. Shell and cargo assemblies occur independently at the cell poles. The internal cargo core is formed through the ordered assembly of multiple enzyme complexes, and exhibits liquid-like properties within the metabolosome architecture. Our findings provide mechanistic insight into the molecular principles driving bacterial metabolosome assembly and expand our understanding of liquid-like organelle biogenesis.
Collapse
Affiliation(s)
- Mengru Yang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Nicolas Wenner
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yan Li
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Xiaojun Zhu
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Fang Huang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Jay C D Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
26
|
Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB. J Bacteriol 2022; 204:e0057621. [PMID: 35575582 DOI: 10.1128/jb.00576-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here, we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is critical for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy, we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and system-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis. IMPORTANCE MCPs are unique, genetically encoded organelles used by many bacteria to survive in resource-limited environments. There is significant interest in understanding the biogenesis and function of these organelles, both as potential antibiotic targets in enteric pathogens and also as useful tools for overcoming metabolic engineering bottlenecks. However, the mechanism by which these organelles are formed natively is still not completely understood. Here, we provide evidence of a potential mechanism in S. enterica by which a single protein, PduB, links the MCP shell and metabolic core. This finding is critical for those seeking to disrupt MCPs during pathogenic infections or for those seeking to harness MCPs as nanobioreactors in industrial settings.
Collapse
|
27
|
Sutter M, Kerfeld CA. BMC Caller: a webtool to identify and analyze bacterial microcompartment types in sequence data. Biol Direct 2022; 17:9. [PMID: 35484563 PMCID: PMC9052549 DOI: 10.1186/s13062-022-00323-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial microcompartments (BMCs) are protein-based organelles found across the bacterial tree of life. They consist of a shell, made of proteins that oligomerize into hexagonally and pentagonally shaped building blocks, that surrounds enzymes constituting a segment of a metabolic pathway. The proteins of the shell are unique to BMCs. They also provide selective permeability; this selectivity is dictated by the requirements of their cargo enzymes. We have recently surveyed the wealth of different BMC types and their occurrence in all available genome sequence data by analyzing and categorizing their components found in chromosomal loci using HMM (Hidden Markov Model) protein profiles. To make this a “do-it yourself” analysis for the public we have devised a webserver, BMC Caller (https://bmc-caller.prl.msu.edu), that compares user input sequences to our HMM profiles, creates a BMC locus visualization, and defines the functional type of BMC, if known. Shell proteins in the input sequence data are also classified according to our function-agnostic naming system and there are links to similar proteins in our database as well as an external link to a structure prediction website to easily generate structural models of the shell proteins, which facilitates understanding permeability properties of the shell. Additionally, the BMC Caller website contains a wealth of information on previously analyzed BMC loci with links to detailed data for each BMC protein and phylogenetic information on the BMC shell proteins. Our tools greatly facilitate BMC type identification to provide the user information about the associated organism’s metabolism and enable discovery of new BMC types by providing a reference database of all currently known examples.
Collapse
Affiliation(s)
- Markus Sutter
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
28
|
de Lima LA, Ingelman H, Brahmbhatt K, Reinmets K, Barry C, Harris A, Marcellin E, Köpke M, Valgepea K. Faster Growth Enhances Low Carbon Fuel and Chemical Production Through Gas Fermentation. Front Bioeng Biotechnol 2022; 10:879578. [PMID: 35497340 PMCID: PMC9039284 DOI: 10.3389/fbioe.2022.879578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Gas fermentation offers both fossil carbon-free sustainable production of fuels and chemicals and recycling of gaseous and solid waste using gas-fermenting microbes. Bioprocess development, systems-level analysis of biocatalyst metabolism, and engineering of cell factories are advancing the widespread deployment of the commercialised technology. Acetogens are particularly attractive biocatalysts but effects of the key physiological parameter–specific growth rate (μ)—on acetogen metabolism and the gas fermentation bioprocess have not been established yet. Here, we investigate the μ-dependent bioprocess performance of the model-acetogen Clostridium autoethanogenum in CO and syngas (CO + CO2+H2) grown chemostat cultures and assess systems-level metabolic responses using gas analysis, metabolomics, transcriptomics, and metabolic modelling. We were able to obtain steady-states up to μ ∼2.8 day−1 (∼0.12 h−1) and show that faster growth supports both higher yields and productivities for reduced by-products ethanol and 2,3-butanediol. Transcriptomics data revealed differential expression of 1,337 genes with increasing μ and suggest that C. autoethanogenum uses transcriptional regulation to a large extent for facilitating faster growth. Metabolic modelling showed significantly increased fluxes for faster growing cells that were, however, not accompanied by gene expression changes in key catabolic pathways for CO and H2 metabolism. Cells thus seem to maintain sufficient “baseline” gene expression to rapidly respond to CO and H2 availability without delays to kick-start metabolism. Our work advances understanding of transcriptional regulation in acetogens and shows that faster growth of the biocatalyst improves the gas fermentation bioprocess.
Collapse
Affiliation(s)
- Lorena Azevedo de Lima
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Henri Ingelman
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kush Brahmbhatt
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kristina Reinmets
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Craig Barry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, Australia
| | | | - Kaspar Valgepea
- ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
- *Correspondence: Kaspar Valgepea,
| |
Collapse
|
29
|
Jeffryes JG, Lerma-Ortiz C, Liu F, Golubev A, Niehaus TD, Elbadawi-Sidhu M, Fiehn O, Hanson AD, Tyo KE, Henry CS. Chemical-damage MINE: A database of curated and predicted spontaneous metabolic reactions. Metab Eng 2021; 69:302-312. [PMID: 34958914 DOI: 10.1016/j.ymben.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Spontaneous reactions between metabolites are often neglected in favor of emphasizing enzyme-catalyzed chemistry because spontaneous reaction rates are assumed to be insignificant under physiological conditions. However, synthetic biology and engineering efforts can raise natural metabolites' levels or introduce unnatural ones, so that previously innocuous or nonexistent spontaneous reactions become an issue. Problems arise when spontaneous reaction rates exceed the capacity of a platform organism to dispose of toxic or chemically active reaction products. While various reliable sources list competing or toxic enzymatic pathways' side-reactions, no corresponding compilation of spontaneous side-reactions exists, nor is it possible to predict their occurrence. We addressed this deficiency by creating the Chemical Damage (CD)-MINE resource. First, we used literature data to construct a comprehensive database of metabolite reactions that occur spontaneously in physiological conditions. We then leveraged this data to construct 148 reaction rules describing the known spontaneous chemistry in a substrate-generic way. We applied these rules to all compounds in the ModelSEED database, predicting 180,891 spontaneous reactions. The resulting (CD)-MINE is available at https://minedatabase.mcs.anl.gov/cdmine/#/home and through developer tools. We also demonstrate how damage-prone intermediates and end products are widely distributed among metabolic pathways, and how predicting spontaneous chemical damage helps rationalize toxicity and carbon loss using examples from published pathways to commercial products. We explain how analyzing damage-prone areas in metabolism helps design effective engineering strategies. Finally, we use the CD-MINE toolset to predict the formation of the novel damage product N-carbamoyl proline, and present mass spectrometric evidence for its presence in Escherichia coli.
Collapse
Affiliation(s)
- James G Jeffryes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Claudia Lerma-Ortiz
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA; Department of Data Science and Learning, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Filipe Liu
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Alexey Golubev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, 197758, Russia
| | - Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA; Plant and Microbial Biology Department, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Keith Ej Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
30
|
Egea PF. Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Front Cell Dev Biol 2021; 9:784367. [PMID: 34912813 PMCID: PMC8667587 DOI: 10.3389/fcell.2021.784367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis. One of the now well-acknowledged function of MCSs involves the non-vesicular trafficking of lipids; its characterization answered one long-standing question of eukaryotic cell biology revealing how some organelles receive and distribute their membrane lipids in absence of vesicular trafficking. The endoplasmic reticulum (ER) in synergy with the mitochondria, stands as the nexus for the biosynthesis and distribution of phospholipids (PLs) throughout the cell by contacting nearly all other organelle types. MCSs create and maintain lipid fluxes and gradients essential to the functional asymmetry and polarity of biological membranes throughout the cell. Membrane apposition is mediated by proteinaceous tethers some of which function as lipid transfer proteins (LTPs). We summarize here the current state of mechanistic knowledge of some of the major classes of LTPs and tethers based on the available atomic to near-atomic resolution structures of several "model" MCSs from yeast but also in Metazoans; we describe different models of lipid transfer at MCSs and analyze the determinants of their specificity and directionality. Each of these systems illustrate fundamental principles and mechanisms for the non-vesicular exchange of lipids between eukaryotic membrane-bound organelles essential to a wide range of cellular processes such as at PL biosynthesis and distribution, lipid storage, autophagy and organelle biogenesis.
Collapse
Affiliation(s)
- Pascal F. Egea
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
31
|
Liu LN. Advances in the bacterial organelles for CO 2 fixation. Trends Microbiol 2021; 30:567-580. [PMID: 34802870 DOI: 10.1016/j.tim.2021.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Carboxysomes are a family of bacterial microcompartments (BMCs), present in all cyanobacteria and some proteobacteria, which encapsulate the primary CO2-fixing enzyme, Rubisco, within a virus-like polyhedral protein shell. Carboxysomes provide significantly elevated levels of CO2 around Rubisco to maximize carboxylation and reduce wasteful photorespiration, thus functioning as the central CO2-fixation organelles of bacterial CO2-concentration mechanisms. Their intriguing architectural features allow carboxysomes to make a vast contribution to carbon assimilation on a global scale. In this review, we discuss recent research progress that provides new insights into the mechanisms of how carboxysomes are assembled and functionally maintained in bacteria and recent advances in synthetic biology to repurpose the metabolic module in diverse applications.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
32
|
Goel D, Sinha S. Naturally occurring protein nano compartments: basic structure, function, and genetic engineering. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac2c93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Abstract
Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.
Collapse
|
34
|
Ochoa JM, Mijares O, Acosta AA, Escoto X, Leon-Rivera N, Marshall JD, Sawaya MR, Yeates TO. Structural characterization of hexameric shell proteins from two types of choline-utilization bacterial microcompartments. Acta Crystallogr F Struct Biol Commun 2021; 77:275-285. [PMID: 34473104 PMCID: PMC8411931 DOI: 10.1107/s2053230x21007470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2023] Open
Abstract
Bacterial microcompartments are large supramolecular structures comprising an outer proteinaceous shell that encapsulates various enzymes in order to optimize metabolic processes. The outer shells of bacterial microcompartments are made of several thousand protein subunits, generally forming hexameric building blocks based on the canonical bacterial microcompartment (BMC) domain. Among the diverse metabolic types of bacterial microcompartments, the structures of those that use glycyl radical enzymes to metabolize choline have not been adequately characterized. Here, six structures of hexameric shell proteins from type I and type II choline-utilization microcompartments are reported. Sequence and structure analysis reveals electrostatic surface properties that are shared between the four types of shell proteins described here.
Collapse
Affiliation(s)
- Jessica M. Ochoa
- UCLA Molecular Biology Institute, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Oscar Mijares
- Whittier College, 13406 East Philadelphia Street, Whittier, CA 90602, USA
| | - Andrea A. Acosta
- Whittier College, 13406 East Philadelphia Street, Whittier, CA 90602, USA
| | - Xavier Escoto
- Department of Chemistry and Biochemistry, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Nancy Leon-Rivera
- Whittier College, 13406 East Philadelphia Street, Whittier, CA 90602, USA
| | - Joanna D. Marshall
- Department of Chemistry and Biochemistry, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- UCLA–DOE Institute of Genomics and Proteomics, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Todd O. Yeates
- UCLA Molecular Biology Institute, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- UCLA–DOE Institute of Genomics and Proteomics, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Liu LN, Yang M, Sun Y, Yang J. Protein stoichiometry, structural plasticity and regulation of bacterial microcompartments. Curr Opin Microbiol 2021; 63:133-141. [PMID: 34340100 DOI: 10.1016/j.mib.2021.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Bacterial microcompartments (BMCs) are self-assembling prokaryotic organelles consisting of a polyhedral proteinaceous shell and encapsulated enzymes that are involved in CO2 fixation or carbon catabolism. Addressing how the hundreds of building components self-assemble to form the metabolically functional organelles and how their structures and functions are modulated in the extremely dynamic bacterial cytoplasm is of importance for basic understanding of protein organelle formation and synthetic engineering of metabolic modules for biotechnological applications. Here, we highlight recent advances in understanding the protein composition and stoichiometry of BMCs, with a particular focus on carboxysomes and propanediol utilization microcompartments. We also discuss relevant research on the structural plasticity of native and engineered BMCs, and the physiological regulation of BMC assembly, function and positioning in native hosts.
Collapse
Affiliation(s)
- Lu-Ning Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 266003 Qingdao, China; Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Mengru Yang
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Yaqi Sun
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jing Yang
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom; Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, United Kingdom
| |
Collapse
|
36
|
Kirst H, Kerfeld CA. Clues to the function of bacterial microcompartments from ancillary genes. Biochem Soc Trans 2021; 49:1085-1098. [PMID: 34196367 PMCID: PMC8517908 DOI: 10.1042/bst20200632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles. Their bounding membrane is a selectively permeable protein shell, encapsulating enzymes of specialized metabolic pathways. While the function of a BMC is dictated by the encapsulated enzymes which vary with the type of the BMC, the shell is formed by conserved protein building blocks. The genes necessary to form a BMC are typically organized in a locus; they encode the shell proteins, encapsulated enzymes as well as ancillary proteins that integrate the BMC function into the cell's metabolism. Among these are transcriptional regulators which usually found at the beginning or end of a locus, and transmembrane proteins that presumably function to conduct the BMC substrate into the cell. Here, we describe the types of transcriptional regulators and permeases found in association with BMC loci, using a recently collected data set of more than 7000 BMC loci distributed over 45 bacterial phyla, including newly discovered BMC loci. We summarize the known BMC regulation mechanisms, and highlight how much remains to be uncovered. We also show how analysis of these ancillary proteins can inform hypotheses about BMC function; by examining the ligand-binding domain of the regulator and the transporter, we propose that nucleotides are the likely substrate for an enigmatic uncharacterized BMC of unknown function.
Collapse
Affiliation(s)
- Henning Kirst
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, U.S.A
- MSU-DOE Plant Research Laboratory, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI 48824, U.S.A
| |
Collapse
|
37
|
Sutter M, Melnicki MR, Schulz F, Woyke T, Kerfeld CA. A catalog of the diversity and ubiquity of bacterial microcompartments. Nat Commun 2021; 12:3809. [PMID: 34155212 PMCID: PMC8217296 DOI: 10.1038/s41467-021-24126-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Bacterial microcompartments (BMCs) are organelles that segregate segments of metabolic pathways which are incompatible with surrounding metabolism. BMCs consist of a selectively permeable shell, composed of three types of structurally conserved proteins, together with sequestered enzymes that vary among functionally distinct BMCs. Genes encoding shell proteins are typically clustered with those for the encapsulated enzymes. Here, we report that the number of identifiable BMC loci has increased twenty-fold since the last comprehensive census of 2014, and the number of distinct BMC types has doubled. The new BMC types expand the range of compartmentalized catalysis and suggest that there is more BMC biochemistry yet to be discovered. Our comprehensive catalog of BMCs provides a framework for their identification, correlation with bacterial niche adaptation, experimental characterization, and development of BMC-based nanoarchitectures for biomedical and bioengineering applications. Bacterial microcompartments (BMCs) are organelles consisting of a protein shell in which certain metabolic reactions take place separated from the cytoplasm. Here, Sutter et al. present a comprehensive catalog of BMC loci, substantially expanding the number of known BMCs and describing distinct types and compartmentalized reactions.
Collapse
Affiliation(s)
- Markus Sutter
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
38
|
Asija K, Sutter M, Kerfeld CA. A Survey of Bacterial Microcompartment Distribution in the Human Microbiome. Front Microbiol 2021; 12:669024. [PMID: 34054778 PMCID: PMC8156839 DOI: 10.3389/fmicb.2021.669024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial microcompartments (BMCs) are protein-based organelles that expand the metabolic potential of many bacteria by sequestering segments of enzymatic pathways in a selectively permeable protein shell. Sixty-eight different types/subtypes of BMCs have been bioinformatically identified based on the encapsulated enzymes and shell proteins encoded in genomic loci. BMCs are found across bacterial phyla. The organisms that contain them, rather than strictly correlating with specific lineages, tend to reflect the metabolic landscape of the environmental niches they occupy. From our recent comprehensive bioinformatic survey of BMCs found in genome sequence data, we find many in members of the human microbiome. Here we survey the distribution of BMCs in the different biotopes of the human body. Given their amenability to be horizontally transferred and bioengineered they hold promise as metabolic modules that could be used to probiotically alter microbiomes or treat dysbiosis.
Collapse
Affiliation(s)
- Kunica Asija
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Markus Sutter
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology Division, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
39
|
Cesle EE, Filimonenko A, Tars K, Kalnins G. Variety of size and form of GRM2 bacterial microcompartment particles. Protein Sci 2021; 30:1035-1043. [PMID: 33763934 PMCID: PMC8040866 DOI: 10.1002/pro.4069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Bacterial microcompartments (BMCs) are bacterial organelles involved in enzymatic processes, such as carbon fixation, choline, ethanolamine and propanediol degradation, and others. Formed of a semi-permeable protein shell and an enzymatic core, they can enhance enzyme performance and protect the cell from harmful intermediates. With the ability to encapsulate non-native enzymes, BMCs show high potential for applied use. For this goal, a detailed look into shell form variability is significant to predict shell adaptability. Here we present four novel 3D cryo-EM maps of recombinant Klebsiella pneumoniae GRM2 BMC shell particles with the resolution in range of 9 to 22 Å and nine novel 2D classes corresponding to discrete BMC shell forms. These structures reveal icosahedral, elongated, oblate, multi-layered and polyhedral traits of BMCs, indicating considerable variation in size and form as well as adaptability during shell formation processes.
Collapse
Affiliation(s)
- Eva Emilija Cesle
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
| | - Anatolij Filimonenko
- CEITEC‐Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Kaspars Tars
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
- Faculty of BiologyUniversity of LatviaRigaLatvia
| | - Gints Kalnins
- Structural Biology, Biotechnology and Virusology LaboratoryLatvian Biomedical Research and Study CentreRigaLatvia
| |
Collapse
|
40
|
Zhang Y, Zhou J, Zhang Y, Liu T, Lu X, Men D, Zhang XE. Auxiliary Module Promotes the Synthesis of Carboxysomes in E. coli to Achieve High-Efficiency CO 2 Assimilation. ACS Synth Biol 2021; 10:707-715. [PMID: 33723997 DOI: 10.1021/acssynbio.0c00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carboxysomes (CBs) are protein organelles in cyanobacteria, and they play a central role in assimilation of CO2. Heterologous synthesis of CBs in E. coli provides an opportunity for CO2-organic compound conversion under controlled conditions but remains challenging; specifically, the CO2 assimilation efficiency is insufficient. In this study, an auxiliary module was designed to assist self-assembly of CBs derived from a model species cyanobacteria Prochlorococcus marinus (P. marinus) MED4 for synthesizing in E. coli. The results indicated that the structural integrity of synthetic CBs is improved through the transmission electron microscope images and that the CBs have highly efficient CO2-concentrating ability as revealed by enzyme kinetic analysis. Furthermore, the bacterial growth curve and 13C-metabolic flux analysis not only consolidated the fact of CO2 assimilation by synthetic CBs in E. coli but also proved that the engineered strain could efficiently convert external CO2 to some metabolic intermediates (acetyl-CoA, malate, fumarate, tyrosine, etc.) of the central metabolic pathway. The synthesis of CBs of P. marinus MED4 in E. coli provides prospects for understanding their CO2 assimilation mechanism and realizing their modular application in synthetic biology.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Xiaoyun Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Ochoa JM, Bair K, Holton T, Bobik TA, Yeates TO. MCPdb: The bacterial microcompartment database. PLoS One 2021; 16:e0248269. [PMID: 33780471 PMCID: PMC8007038 DOI: 10.1371/journal.pone.0248269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Bacterial microcompartments are organelle-like structures composed entirely of proteins. They have evolved to carry out several distinct and specialized metabolic functions in a wide variety of bacteria. Their outer shell is constructed from thousands of tessellating protein subunits, encapsulating enzymes that carry out the internal metabolic reactions. The shell proteins are varied, with single, tandem and permuted versions of the PF00936 protein family domain comprising the primary structural component of their polyhedral architecture, which is reminiscent of a viral capsid. While considerable amounts of structural and biophysical data have been generated in the last 15 years, the existing functionalities of current resources have limited our ability to rapidly understand the functional and structural properties of microcompartments (MCPs) and their diversity. In order to make the remarkable structural features of bacterial microcompartments accessible to a broad community of scientists and non-specialists, we developed MCPdb: The Bacterial Microcompartment Database (https://mcpdb.mbi.ucla.edu/). MCPdb is a comprehensive resource that categorizes and organizes known microcompartment protein structures and their larger assemblies. To emphasize the critical roles symmetric assembly and architecture play in microcompartment function, each structure in the MCPdb is validated and annotated with respect to: (1) its predicted natural assembly state (2) tertiary structure and topology and (3) the metabolic compartment type from which it derives. The current database includes 163 structures and is available to the public with the anticipation that it will serve as a growing resource for scientists interested in understanding protein-based metabolic organelles in bacteria.
Collapse
Affiliation(s)
- Jessica M. Ochoa
- UCLA Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kaylie Bair
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas Holton
- UCLA Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Todd O. Yeates
- UCLA Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Waghwani HK, Douglas T. Cytochrome C with peroxidase-like activity encapsulated inside the small DPS protein nanocage. J Mater Chem B 2021; 9:3168-3179. [PMID: 33885621 DOI: 10.1039/d1tb00234a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus, is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3',5,5'-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 E Kirkwood Ave., Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
43
|
Groaz A, Moghimianavval H, Tavella F, Giessen TW, Vecchiarelli AG, Yang Q, Liu AP. Engineering spatiotemporal organization and dynamics in synthetic cells. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1685. [PMID: 33219745 DOI: 10.1002/wnan.1685] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Constructing synthetic cells has recently become an appealing area of research. Decades of research in biochemistry and cell biology have amassed detailed part lists of components involved in various cellular processes. Nevertheless, recreating any cellular process in vitro in cell-sized compartments remains ambitious and challenging. Two broad features or principles are key to the development of synthetic cells-compartmentalization and self-organization/spatiotemporal dynamics. In this review article, we discuss the current state of the art and research trends in the engineering of synthetic cell membranes, development of internal compartmentalization, reconstitution of self-organizing dynamics, and integration of activities across scales of space and time. We also identify some research areas that could play a major role in advancing the impact and utility of engineered synthetic cells. This article is categorized under: Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Yang
- University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Liang B, Zhao Y, Yang J. Recent Advances in Developing Artificial Autotrophic Microorganism for Reinforcing CO 2 Fixation. Front Microbiol 2020; 11:592631. [PMID: 33240247 PMCID: PMC7680860 DOI: 10.3389/fmicb.2020.592631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
With the goal of achieving carbon sequestration, emission reduction and cleaner production, biological methods have been employed to convert carbon dioxide (CO2) into fuels and chemicals. However, natural autotrophic organisms are not suitable cell factories due to their poor carbon fixation efficiency and poor growth rate. Heterotrophic microorganisms are promising candidates, since they have been proven to be efficient biofuel and chemical production chassis. This review first briefly summarizes six naturally occurring CO2 fixation pathways, and then focuses on recent advances in artificially designing efficient CO2 fixation pathways. Moreover, this review discusses the transformation of heterotrophic microorganisms into hemiautotrophic microorganisms and delves further into fully autotrophic microorganisms (artificial autotrophy) by use of synthetic biological tools and strategies. Rapid developments in artificial autotrophy have laid a solid foundation for the development of efficient carbon fixation cell factories. Finally, this review highlights future directions toward large-scale applications. Artificial autotrophic microbial cell factories need further improvements in terms of CO2 fixation pathways, reducing power supply, compartmentalization and host selection.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
45
|
Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nat Commun 2020; 11:5448. [PMID: 33116131 PMCID: PMC7595155 DOI: 10.1038/s41467-020-19280-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
Compartmentalization is a ubiquitous building principle in cells, which permits segregation of biological elements and reactions. The carboxysome is a specialized bacterial organelle that encapsulates enzymes into a virus-like protein shell and plays essential roles in photosynthetic carbon fixation. The naturally designed architecture, semi-permeability, and catalytic improvement of carboxysomes have inspired rational design and engineering of new nanomaterials to incorporate desired enzymes into the protein shell for enhanced catalytic performance. Here, we build large, intact carboxysome shells (over 90 nm in diameter) in the industrial microorganism Escherichia coli by expressing a set of carboxysome protein-encoding genes. We develop strategies for enzyme activation, shell self-assembly, and cargo encapsulation to construct a robust nanoreactor that incorporates catalytically active [FeFe]-hydrogenases and functional partners within the empty shell for the production of hydrogen. We show that shell encapsulation and the internal microenvironment of the new catalyst facilitate hydrogen production of the encapsulated oxygen-sensitive hydrogenases. The study provides insights into the assembly and formation of carboxysomes and paves the way for engineering carboxysome shell-based nanoreactors to recruit specific enzymes for diverse catalytic reactions. The extreme oxygen sensitive character of hydrogenases is a longstanding issue for hydrogen production in bacteria. Here, the authors build carboxysome shells in E. coli and incorporate catalytically active hydrogenases and functional partners within the empty shell for the production of hydrogen.
Collapse
|
46
|
Molecular simulations unravel the molecular principles that mediate selective permeability of carboxysome shell protein. Sci Rep 2020; 10:17501. [PMID: 33060756 PMCID: PMC7562746 DOI: 10.1038/s41598-020-74536-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial microcompartments (BMCs) are nanoscale proteinaceous organelles that encapsulate enzymes from the cytoplasm using an icosahedral protein shell that resembles viral capsids. Of particular interest are the carboxysomes (CBs), which sequester the CO2-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to enhance carbon assimilation. The carboxysome shell serves as a semi-permeable barrier for passage of metabolites in and out of the carboxysome to enhance CO2 fixation. How the protein shell directs influx and efflux of molecules in an effective manner has remained elusive. Here we use molecular dynamics and umbrella sampling calculations to determine the free-energy profiles of the metabolic substrates, bicarbonate, CO2 and ribulose bisphosphate and the product 3-phosphoglycerate associated with their transition through the major carboxysome shell protein CcmK2. We elucidate the electrostatic charge-based permeability and key amino acid residues of CcmK2 functioning in mediating molecular transit through the central pore. Conformational changes of the loops forming the central pore may also be required for transit of specific metabolites. The importance of these in-silico findings is validated experimentally by site-directed mutagenesis of the key CcmK2 residue Serine 39. This study provides insight into the mechanism that mediates molecular transport through the shells of carboxysomes, applicable to other BMCs. It also offers a predictive approach to investigate and manipulate the shell permeability, with the intent of engineering BMC-based metabolic modules for new functions in synthetic biology.
Collapse
|
47
|
Abstract
How microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a 5 million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate phylum "Candidatus Atribacteria," which exhibited patterns of gene expression consistent with fermentative, and potentially acetogenic, metabolism. "Ca. Atribacteria" dominated throughout the 8 million-year-old cored sequence, despite the detection limit for gene expression being reached in 5 million-year-old sediments. The subseafloor reproducing "Ca. Atribacteria" also expressed genes encoding a bacterial microcompartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+ Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor "Ca Atribacteria," as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the "Ca Atribacteria" can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions-of-years-old anoxic sediments.IMPORTANCE The deep subseafloor sedimentary biosphere is one of the largest ecosystems on Earth, where microbes subsist under energy-limited conditions over long timescales. It remains poorly understood how mechanisms of microbial metabolism promote increased fitness in these settings. We discovered that the candidate bacterial phylum "Candidatus Atribacteria" dominated a deep-sea subseafloor ecosystem, where it exhibited increased transcription of genes associated with acetogenic fermentation and reproduction in million-year-old sediment. We attribute its improved fitness after burial in the seabed to its capabilities to derive energy from increasingly oxidized metabolites via a bacterial microcompartment and utilize a potentially reversible Wood-Ljungdahl pathway to help meet anabolic and catabolic requirements for growth. Our findings show that "Ca Atribacteria" can perform all the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in anoxic sediments that are millions of years old.
Collapse
|
48
|
Sun Y, Huang F, Dykes GF, Liu LN. Diurnal Regulation of In Vivo Localization and CO 2-Fixing Activity of Carboxysomes in Synechococcus elongatus PCC 7942. Life (Basel) 2020; 10:E169. [PMID: 32872408 PMCID: PMC7555275 DOI: 10.3390/life10090169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Carboxysomes are the specific CO2-fixing microcompartments in all cyanobacteria. Although it is known that the organization and subcellular localization of carboxysomes are dependent on external light conditions and are highly relevant to their functions, how carboxysome organization and function are actively orchestrated in natural diurnal cycles has remained elusive. Here, we explore the dynamic regulation of carboxysome positioning and carbon fixation in the model cyanobacterium Synechococcus elongatus PCC 7942 in response to diurnal light-dark cycles, using live-cell confocal imaging and Rubisco assays. We found that carboxysomes are prone to locate close to the central line along the short axis of the cell and exhibit a greater preference of polar distribution in the dark phase, coupled with a reduction in carbon fixation. Moreover, we show that deleting the gene encoding the circadian clock protein KaiA could lead to an increase in carboxysome numbers per cell and reduced portions of pole-located carboxysomes. Our study provides insight into the diurnal regulation of carbon fixation in cyanobacteria and the general cellular strategies of cyanobacteria living in natural habitat for environmental acclimation.
Collapse
Affiliation(s)
| | | | | | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (Y.S.); (F.H.); (G.F.D.)
| |
Collapse
|
49
|
Dinh H, Nakata E, Mutsuda-Zapater K, Saimura M, Kinoshita M, Morii T. Enhanced enzymatic activity exerted by a packed assembly of a single type of enzyme. Chem Sci 2020; 11:9088-9100. [PMID: 34094190 PMCID: PMC8161546 DOI: 10.1039/d0sc03498c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023] Open
Abstract
In contrast to the dilute conditions employed for in vitro biochemical studies, enzymes are spatially organized at high density in cellular micro-compartments. In spite of being crucial for cellular functions, enzymatic reactions in such highly packed states have not been fully addressed. Here, we applied a protein adaptor to assemble a single type of monomeric enzyme on a DNA scaffold in the packed or dispersed states for carbonic anhydrase. The enzymatic reactions proceeded faster in the packed than in the dispersed state. Acceleration of the reaction in the packed assembly was more prominent for substrates with higher hydrophobicity. In addition, carbonic anhydrase is more tolerant of inhibitors in the packed assembly. Such an acceleration of the reaction in the packed state over the dispersed state was also observed for xylose reductase. We propose that the entropic force of water increases local substrate or cofactor concentration within the domain confined between enzyme surfaces, thus accelerating the reaction. Our system provides a reasonable model of enzymes in a packed state; this would help in engineering artificial metabolic systems.
Collapse
Affiliation(s)
- Huyen Dinh
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | | | - Masayuki Saimura
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | | | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
50
|
Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol 2020; 18:677-689. [PMID: 32710089 DOI: 10.1038/s41579-020-0413-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Advances in imaging technologies have revealed that many bacteria possess organelles with a proteomically defined lumen and a macromolecular boundary. Some are bound by a lipid bilayer (such as thylakoids, magnetosomes and anammoxosomes), whereas others are defined by a lipid monolayer (such as lipid bodies), a proteinaceous coat (such as carboxysomes) or have a phase-defined boundary (such as nucleolus-like compartments). These diverse organelles have various metabolic and physiological functions, facilitating adaptation to different environments and driving the evolution of cellular complexity. This Review highlights that, despite the diversity of reported organelles, some unifying concepts underlie their formation, structure and function. Bacteria have fundamental mechanisms of organelle formation, through which conserved processes can form distinct organelles in different species depending on the proteins recruited to the luminal space and the boundary of the organelle. These complex subcellular compartments provide evolutionary advantages as well as enabling metabolic specialization, biogeochemical processes and biotechnological advances. Growing evidence suggests that the presence of organelles is the rule, rather than the exception, in bacterial cells.
Collapse
Affiliation(s)
- Chris Greening
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|