1
|
Arenas VR, Rugeles MT, Perdomo-Celis F, Taborda N. Recent advances in CD8 + T cell-based immune therapies for HIV cure. Heliyon 2023; 9:e17481. [PMID: 37441388 PMCID: PMC10333625 DOI: 10.1016/j.heliyon.2023.e17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.
Collapse
Affiliation(s)
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| |
Collapse
|
2
|
Tang W, Yuan Z, Wang Z, Ren L, Li D, Wang S, Hao Y, Li J, Shen X, Ruan Y, Shao Y, Liu Y. Neutralization Sensitivity and Evolution of Virus in a Chronic HIV-1 Clade B Infected Patient with Neutralizing Activity against Membrane-Proximal External Region. Pathogens 2023; 12:pathogens12030497. [PMID: 36986419 PMCID: PMC10052815 DOI: 10.3390/pathogens12030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The membrane-proximal external region (MPER) is a promising HIV-1 vaccine target owing to its linear neutralizing epitopes and highly conserved amino acids. Here, we explored the neutralization sensitivity and investigated the MPER sequences in a chronic HIV-1 infected patient with neutralizing activity against the MPER. Using single-genome amplification (SGA), 50 full-length HIV-1 envelope glycoprotein (env) genes were isolated from the patient's plasma at two time points (2006 and 2009). The neutralization sensitivity of 14 Env-pseudoviruses to autologous plasma and monoclonal antibodies (mAbs) was evaluated. Env gene sequencing revealed that the diversity of Env increased over time and four mutation positions (659D, 662K, 671S, and 677N/R) were identified in the MPER. The K677R mutation increased the IC50 values of pseudoviruses approximately twofold for 4E10 and 2F5, and E659D increased the IC50 up to ninefold for 4E10 and fourfold for 2F5. These two mutations also decreased the contact between gp41 and mAbs. Almost all mutant pseudoviruses were resistant to autologous plasma at both the earlier and concurrent time points. Mutations 659D and 677R in the MPER decreased the neutralization sensitivity of Env-pseudoviruses, providing a detailed understanding of MPER evolution which might facilitate advances in the design of HIV-1 vaccines.
Collapse
Affiliation(s)
- Wenqi Tang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhenzhen Yuan
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zheng Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Ren
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shuhui Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanling Hao
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiuli Shen
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhua Ruan
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiming Shao
- Changping National Laboratory, Beijing 102200, China
| | - Ying Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
3
|
Yuan X, Lai Y. Bibliometric and visualized analysis of elite controllers based on CiteSpace: landscapes, hotspots, and frontiers. Front Cell Infect Microbiol 2023; 13:1147265. [PMID: 37124043 PMCID: PMC10130382 DOI: 10.3389/fcimb.2023.1147265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background A unique subset of people living with HIV, known as elite controllers, possess spontaneous and consistent control over viral replication and disease progression in the absence of antiviral intervention. In-depth research on elite controllers is conducive to designing better treatment strategies for HIV. However, comprehensive and illuminating bibliometric reports on elite controllers are rare. Methods Articles on elite controllers were retrieved from the Web of Science Core Collection. A visualized analysis of this domain was conducted by CiteSpace software. Taking count, betweenness centrality, and burst value as criteria, we interpreted the visualization results and predicted future new directions and emerging trends. Results By December 31, 2022, 843 articles related to elite controllers had been published. The largest contributors in terms of country, institution, and author were the United States (485), Univ Calif San Francisco (87), and Walker B.D. (65), respectively. Migueles S.A. (325) and Journal of Virology (770) were the most cocited author and journal, respectively. Additionally, by summarizing the results of our CiteSpace software analysis on references and keywords, we considered that the research hotspots and frontiers on elite controllers mainly focus on three aspects: deciphering the mechanisms of durable control, delineating the implications for the development of treatments for HIV infection, and highlighting the clinical risks faced by elite controllers and coping strategies. Conclusion This study performed a bibliometric and visual analysis of elite controllers, identified the main characteristics and emerging trends, and provided insightful references for further development of this rapidly evolving and complex field.
Collapse
Affiliation(s)
- Xingyue Yuan
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yu Lai,
| |
Collapse
|
4
|
Navarrete-Muñoz MA, Restrepo C, Benito JM, Rallón N. Elite controllers: A heterogeneous group of HIV-infected patients. Virulence 2021; 11:889-897. [PMID: 32698654 PMCID: PMC7549999 DOI: 10.1080/21505594.2020.1788887] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The exceptional group of ECs has been of great help, and will continue to provide invaluable insight with regard to reach a potential functional cure of HIV. However, there is no consensus on the immune correlates associated to this EC phenotype which preclude reaching a potential functional cure of HIV. The existing literature studying this population of individuals has indeed revealed that they are a very heterogeneous group regarding virological, immunological, and even clinical characteristics, and that among ECs only a very small proportion are homogeneous in terms of maintaining virological and immunological control in the long term (the so-called long-term elite controllers, LTECs). Thus, it is of pivotal relevance to identify the LTECs subjects and use them as the right model to redefine immune correlates of a truly functional cure. This review summarizes the evidence of the heterogeneity of HIV elite controllers (ECs) subjects in terms of virological, immunological and clinical outcomes, and the implications of this phenomenon to adequately consider this EC phenotype as the right model of a functional cure.
Collapse
Affiliation(s)
- María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma De Madrid (IIS-FJD, UAM) , Madrid, Spain.,Hospital Universitario Rey Juan Carlos , Móstoles, Spain.,Biotechvana, Scientific Park , Madrid, Spain
| | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma De Madrid (IIS-FJD, UAM) , Madrid, Spain.,Hospital Universitario Rey Juan Carlos , Móstoles, Spain
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma De Madrid (IIS-FJD, UAM) , Madrid, Spain.,Hospital Universitario Rey Juan Carlos , Móstoles, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto De Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma De Madrid (IIS-FJD, UAM) , Madrid, Spain.,Hospital Universitario Rey Juan Carlos , Móstoles, Spain
| |
Collapse
|
5
|
Kalidasan V, Theva Das K. Lessons Learned From Failures and Success Stories of HIV Breakthroughs: Are We Getting Closer to an HIV Cure? Front Microbiol 2020; 11:46. [PMID: 32082282 PMCID: PMC7005723 DOI: 10.3389/fmicb.2020.00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
There is a continuous search for an HIV cure as the success of ART in blocking HIV replication and the role of CD4+ T cells in HIV pathogenesis and immunity do not entirely eradicate HIV. The Berlin patient, who is virus-free, serves as the best model for a 'sterilizing cure' and many experts are trying to mimic this approach in other patients. Although failures were reported among Boston and Essen patients, the setbacks have provided valuable lessons to strengthen cure strategies. Following the Berlin patient, two more patients known as London and Düsseldorf patients might be the second and third person to be cured of HIV. In all the cases, the patients underwent chemotherapy regimen due to malignancy and hematopoietic stem cell transplantation (HSCT) which required matching donors for CCR5Δ32 mutation - an approach that may not always be feasible. The emergence of newer technologies, such as long-acting slow-effective release ART (LASER ART) and CRISPR/Cas9 could potentially overcome the barriers due to HIV latency and persistency and eliminate the need for CCR5Δ32 mutation donor. Appreciating the failure and success stories learned from these HIV breakthroughs would provide some insight for future HIV eradication and cure strategies.
Collapse
Affiliation(s)
| | - Kumitaa Theva Das
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
6
|
Chougui G, Margottin-Goguet F. HUSH, a Link Between Intrinsic Immunity and HIV Latency. Front Microbiol 2019; 10:224. [PMID: 30809215 PMCID: PMC6379475 DOI: 10.3389/fmicb.2019.00224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
A prominent obstacle to HIV eradication in seropositive individuals is the viral persistence in latent reservoir cells, which constitute an HIV sanctuary out of reach of highly active antiretroviral therapies. Thus, the study of molecular mechanisms governing latency is a very active field that aims at providing solutions to face the reservoirs issue. Since the past 15 years, another major field in HIV biology focused on the discovery and study of restriction factors that shape intrinsic immunity, while engaging in a molecular battle against HIV. Some of these restrictions factors act at early stages of the virus life cycle, alike SAMHD1 antagonized by the viral protein Vpx, while others are late actors. Until recently, no such factor was identified in the nucleus and found active at the level of provirus expression, a crucial step where latency may take place. Today, two studies highlight Human Silencing Hub (HUSH) as a potential restriction factor that controls viral expression and is antagonized by Vpx. This Review discusses HUSH restriction in the light of the actual knowledge of intrinsic immunity and HIV latency.
Collapse
Affiliation(s)
- Ghina Chougui
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
7
|
CD8+ T cells: mechanistic target of rapamycin and eukaryotic initiation factor 2 in elite HIV-1 control. AIDS 2018; 32:2835-2838. [PMID: 30407253 DOI: 10.1097/qad.0000000000002008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Loucif H, Gouard S, Dagenais-Lussier X, Murira A, Stäger S, Tremblay C, Van Grevenynghe J. Deciphering natural control of HIV-1: A valuable strategy to achieve antiretroviral therapy termination. Cytokine Growth Factor Rev 2018; 40:90-98. [PMID: 29778137 DOI: 10.1016/j.cytogfr.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Antiretroviral therapy (ART) has dramatically reduced HIV-1-associated morbidity and mortality, and has transformed HIV-1 infection into a manageable chronic condition by suppressing viral replication. However, despite recent patient care improvements, ART still fails to cure HIV-1 infection due to the inability to counteract immune defects and metabolic disturbances that are associated with residual inflammation alongside viral persistence. Life-long drug administration also results in multiple side-effects in patients including lipodystrophy and insulin resistance. Thus, it is critical to find new ways to reduce the length of treatment and facilitate the termination of ART, for example by boosting protective immunity. The rare ability of some individuals to naturally control HIV-1 infection despite residual inflammation could be exploited to identify molecular mechanisms involved in host protection that may function as potential therapeutic targets. In this review, we highlight evidence illustrating the molecular and metabolic advantages of HIV-1 controllers over ART treated patients that contribute to the maintenance of effective antiviral immunity.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Steven Gouard
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Armstrong Murira
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche de l'Université de Montréal, Montréal, QC, Canada
| | - Julien Van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada.
| |
Collapse
|
9
|
Benito JM, Ortiz MC, León A, Sarabia LA, Ligos JM, Montoya M, Garcia M, Ruiz-Mateos E, Palacios R, Cabello A, Restrepo C, Rodriguez C, Del Romero J, Leal M, Muñoz-Fernández MA, Alcamí J, García F, Górgolas M, Rallón N. Class-modeling analysis reveals T-cell homeostasis disturbances involved in loss of immune control in elite controllers. BMC Med 2018; 16:30. [PMID: 29490663 PMCID: PMC5830067 DOI: 10.1186/s12916-018-1026-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite long-lasting HIV replication control, a significant proportion of elite controller (EC) patients may experience CD4 T-cell loss. Discovering perturbations in immunological parameters could help our understanding of the mechanisms that may be operating in those patients experiencing loss of immunological control. METHODS A case-control study was performed to evaluate if alterations in different T-cell homeostatic parameters can predict CD4 T-cell loss in ECs by comparing data from EC patients showing significant CD4 decline (cases) and EC patients showing stable CD4 counts (controls). The partial least-squares-class modeling (PLS-CM) statistical methodology was employed to discriminate between the two groups of patients, and as a predictive model. RESULTS Herein, we show that among T-cell homeostatic alterations, lower levels of naïve and recent thymic emigrant subsets of CD8 cells and higher levels of effector and senescent subsets of CD8 cells as well as higher levels of exhaustion of CD4 cells, measured prior to CD4 T-cell loss, predict the loss of immunological control. CONCLUSIONS These data indicate that the parameters of T-cell homeostasis may identify those EC patients with a higher proclivity to CD4 T-cell loss. Our results may open new avenues for understanding the mechanisms underlying immunological progression despite HIV replication control, and eventually, for finding a functional cure through immune-based clinical trials.
Collapse
Affiliation(s)
- José M Benito
- IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain.
| | | | - Agathe León
- Hospital Clinic-IDIBAPS, HIVACAT, Universidad de Barcelona, Barcelona, Spain
| | | | - José M Ligos
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - María Montoya
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Marcial Garcia
- IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain
| | | | - Rosario Palacios
- Unidad de E. Infecciosas. Hospital Virgen de la Victoria e IBIMA, Málaga, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Clara Restrepo
- IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Carmen Rodriguez
- Centro Sanitario Sandoval, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jorge Del Romero
- Centro Sanitario Sandoval, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | | | - María A Muñoz-Fernández
- Laboratory of Molecular Immuno-Biology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Felipe García
- Hospital Clinic-IDIBAPS, HIVACAT, Universidad de Barcelona, Barcelona, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Norma Rallón
- IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Madrid, Spain.
| | | |
Collapse
|
10
|
Richer gut microbiota with distinct metabolic profile in HIV infected Elite Controllers. Sci Rep 2017; 7:6269. [PMID: 28740260 PMCID: PMC5524949 DOI: 10.1038/s41598-017-06675-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota dysbiosis features progressive HIV infection and is a potential target for intervention. Herein, we explored the microbiome of 16 elite controllers (EC), 32 antiretroviral therapy naive progressors and 16 HIV negative controls. We found that the number of observed genera and richness indices in fecal microbiota were significantly higher in EC versus naive. Genera Succinivibrio, Sutterella, Rhizobium, Delftia, Anaerofilum and Oscillospira were more abundant in EC, whereas Blautia and Anaerostipes were depleted. Additionally, carbohydrate metabolism and secondary bile acid synthesis pathway related genes were less represented in EC. Conversely, fatty acid metabolism, PPAR-signalling and lipid biosynthesis proteins pathways were enriched in EC vs naive. The kynurenine pathway of tryptophan metabolism was altered during progressive HIV infection, and inversely associated with microbiota richness. In conclusion, EC have richer gut microbiota than untreated HIV patients, with unique bacterial signatures and a distinct metabolic profile which may contribute to control of HIV.
Collapse
|
11
|
Schwartz C, Bouchat S, Marban C, Gautier V, Van Lint C, Rohr O, Le Douce V. On the way to find a cure: Purging latent HIV-1 reservoirs. Biochem Pharmacol 2017; 146:10-22. [PMID: 28687465 DOI: 10.1016/j.bcp.2017.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
Introduction of cART in 1996 has drastically increased the life expectancy of people living with HIV-1. However, this treatment has not allowed cure as cessation of cART is associated with a rapid viral rebound. The main barrier to the eradication of the virus is related to the persistence of latent HIV reservoirs. Evidence is now accumulating that purging the HIV-1 reservoir might lead to a cure or a remission. The most studied strategy is the so called "shock and kill" therapy. This strategy is based on reactivation of dormant viruses from the latently-infected reservoirs (the shock) followed by the eradication of the reservoirs (the kill). This review focuses mainly on the recent advances made in the "shock and kill" therapy. We believe that a cure or a remission will come from combinatorial approaches i.e. combination of drugs to reactivate the dormant virus from all the reservoirs including the one located in sanctuaries, and combination of strategies boosting the immune system. Alternative strategies based on cell and gene therapy or based in inducing deep latency, which are evoked in this review reinforce the idea that at least a remission is attainable.
Collapse
Affiliation(s)
- Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.
| | - Sophie Bouchat
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Céline Marban
- University of Strasbourg, Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Virginie Gautier
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| | - Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institute of Parasitology and Tropical Pathology, Strasbourg, France; University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| | - Valentin Le Douce
- UCD, Centre for Research in Infectious Diseases (CRID), School of Medicine University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
12
|
Advancements in Developing Strategies for Sterilizing and Functional HIV Cures. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6096134. [PMID: 28529952 PMCID: PMC5424177 DOI: 10.1155/2017/6096134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/04/2017] [Indexed: 12/14/2022]
Abstract
Combined antiretroviral therapy (cART) has been successful in prolonging lifespan and reducing mortality of patients infected with human immunodeficiency virus (HIV). However, the eradication of latent HIV reservoirs remains a challenge for curing HIV infection (HIV cure) because of HIV latency in primary memory CD4+ T cells. Currently, two types of HIV cures are in development: a “sterilizing cure” and a “functional cure.” A sterilizing cure refers to the complete elimination of replication-competent proviruses in the body, while a functional cure refers to the long-term control of HIV replication without treatment. Based on these concepts, significant progress has been made in different areas. This review focuses on recent advancements and future prospects for HIV cures.
Collapse
|
13
|
Zhang W, Morshed MM, Noyan K, Russom A, Sönnerborg A, Neogi U. Quantitative humoral profiling of the HIV-1 proteome in elite controllers and patients with very long-term efficient antiretroviral therapy. Sci Rep 2017; 7:666. [PMID: 28386076 PMCID: PMC5429677 DOI: 10.1038/s41598-017-00759-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
A major challenge in evaluating the success of HIV eradication approaches is the need for accurate measurement of persistent HIV during effective antiretroviral therapy (ART). Previous studies have reported that the anti-HIV antibody assay “luciferase immuno-precipitation systems (LIPS)” can distinguish HIV-infected individuals harboring different sizes of the viral reservoirs. We performed antibody profiling of HIV-1 proteomes using LIPS in viremic progressors (n = 38), elite controllers (ECs; n = 19) and patients with fully suppressive long-term antiretroviral therapy (ART) (n = 19) (mean 17 years). IgG was quantified against six HIV-1 fusion proteins: p24, gp41, RT, Tat, integrase and protease. Lower antibody levels to all six-fusion proteins were observed in long-term ART patients compared to viremics (p < 0.05). In contrast ECs had lower antibody levels only against Tat and Integrase (p < 0.05). Principal component analysis and cluster-network analysis identified that 68% (13/19) of the long-term ART patients clustered together with 26% (5/19) ECs. The remaining ECs clustered together with the viremics indicating non-homogeneity among the ECs. The low anti-HIV levels in the long-term treated patients may indicate a restricted remaining viral replication. In contrast, the higher levels in ECs suggest a continuous viral expression with a limited concomitant release of extracellular virus.
Collapse
Affiliation(s)
- Wang Zhang
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden
| | - Mohammed M Morshed
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Aman Russom
- Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.
| |
Collapse
|
14
|
Dominguez-Molina B, Tarancon-Diez L, Hua S, Abad-Molina C, Rodriguez-Gallego E, Machmach K, Vidal F, Tural C, Moreno S, Goñi JM, Ramírez de Arellano E, Del Val M, Gonzalez-Escribano MF, Del Romero J, Rodriguez C, Capa L, Viciana P, Alcamí J, Yu XG, Walker BD, Leal M, Lichterfeld M, Ruiz-Mateos E. HLA-B*57 and IFNL4-related polymorphisms are associated with protection against HIV-1 disease progression in controllers. Clin Infect Dis 2016; 64:621-628. [PMID: 27986689 DOI: 10.1093/cid/ciw833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 12/23/2022] Open
Abstract
Background HIV-1-controllers maintain HIV-1 viremia at low levels (normally <2000 HIV-RNA copies/mL) without antiretroviral treatment. However, some HIV-1-controllers have evidence of immunologic progression with marked CD4+T-cell decline. We investigated host genetic factors associated with protection against CD4+T-cell loss in HIV-1-controllers. Methods We analysed the association of interferon lambda 4 (IFNL4)-related polymorphisms and HLA-B haplotypes within Long Term Non-Progressor HIV-1-controllers ((LTNP-C), defined by maintaining CD4+T-cells counts >500 cells/mm3 for more than 7 years after HIV-1 diagnosis) versus non-LTNP-C, who developed CD4+T-cells counts <500 cells/mm3 Both a Spanish study cohort (n=140) and an international validation cohort (n=914) were examined. Additionally, in a subgroup of individuals HIV-1-specific T-cell responses and soluble cytokines were analysed RESULTS: HLA-B*57 was independently associated with the LTNP-C phenotype (OR=3.056 (1.029-9.069) p=0.044 and OR=1.924 (1.252-2.957) p=0.003) while IFNL4 genotypes represented independent factors for becoming non-LTNP-C (TT/TT, ss469415590, OR=0.401 (0.171-0.942) p=0.036 or A/A, rs12980275, OR=0.637 (0.434-0.934) p=0.021) in the Spanish and validation cohort, respectively, after adjusting for sex, age at HIV-1 diagnosis, IFNL4-related polymorphisms and different HLA-B haplotypes. LTNP-C showed lower plasma IP-10 (p=0.019) and higher IFN-γ (p=0.02) levels than the HIV-1-controllers with diminished CD4+T-cell numbers. Moreover, LTNP-C exhibited higher quantities of IL2+CD57- and IFN-γ+CD57- HIV-1-specific CD8+T-cells (p=0.002 and 0.041, respectively) than non-LTNP-C. Conclusions We have defined genetic markers able to segregate stable HIV-1-controllers from those who experience CD4+T-cell decline. These findings allow for identification of HIV-1-controllers at risk for immunologic progression, and provide avenues for personalized therapeutic interventions and precision medicine for optimizing clinical care of these individuals.
Collapse
Affiliation(s)
- B Dominguez-Molina
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - L Tarancon-Diez
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - S Hua
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - C Abad-Molina
- Laboratoy of Immunology, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - E Rodriguez-Gallego
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - K Machmach
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - F Vidal
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - C Tural
- Fundació Lluita Contra la Sida, Fundacio Irsicaixa, Hospital Universitari Germans Trias i Pujol, Badalona,Spain
| | - S Moreno
- Department of Infectious Diseases, Hospital Ramón y Cajal, Universidad de Alcalá de Henares, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - J M Goñi
- Department of Endocrinology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - E Ramírez de Arellano
- Unidad de Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - M Del Val
- Unidad de Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - M F Gonzalez-Escribano
- Laboratoy of Immunology, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - J Del Romero
- Centro Sanitario Sandoval, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - C Rodriguez
- Centro Sanitario Sandoval, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - L Capa
- AIDS Immunopathology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - P Viciana
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - J Alcamí
- AIDS Immunopathology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - X G Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - B D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Manuel Leal
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - M Lichterfeld
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA Harvard Medical School, Boston, Massachusetts, USA Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts, USA Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - E Ruiz-Mateos
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | | |
Collapse
|
15
|
[Human immunodeficiency virus: position of Blood Working Group of the Federal Ministry of Health]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 58:1351-70. [PMID: 26487384 DOI: 10.1007/s00103-015-2255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Human Immunodeficiency Virus (HIV). Transfus Med Hemother 2016; 43:203-22. [PMID: 27403093 PMCID: PMC4924471 DOI: 10.1159/000445852] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
|
17
|
Buckner CM, Kardava L, Zhang X, Gittens K, Justement JS, Kovacs C, McDermott AB, Li Y, Sajadi MM, Chun TW, Fauci AS, Moir S. Maintenance of HIV-Specific Memory B-Cell Responses in Elite Controllers Despite Low Viral Burdens. J Infect Dis 2016; 214:390-8. [PMID: 27122593 DOI: 10.1093/infdis/jiw163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-specific B-cell responses in infected individuals are maintained by active HIV replication. Suppression of viremia by antiretroviral therapy (ART) leads to quantitative and qualitative changes that remain unclear. Accordingly, B-cell responses were investigated in elite controllers (ECs), who maintain undetectable HIV levels without ART, and in individuals whose viremia was suppressed by ART. Despite a higher HIV burden in the ART group, compared with the EC group, frequencies of HIV-specific B cells were higher in the EC group, compared with those in the ART group. However, the initiation of ART in several ECs was associated with reduced frequencies of HIV-specific B cells, suggesting that responses are at least in part sustained by HIV replication. Furthermore, B-cell responses to tetanus toxin but not influenza hemagglutinin in the ART group were lower than those in the EC group. Thus, the superior HIV-specific humoral response in ECs versus ART-treated individuals is likely due to a more intact humoral immune response in ECs and/or distinct responses to residual HIV replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Kovacs
- Department of Medicine, University of Toronto Maple Leaf Medical Clinic, Toronto, Canada
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases
| | - Yuxing Li
- Institute for Bioscience and Biotechnology Research, Rockville
| | - Mohammad M Sajadi
- Institute of Human Virology, University of Maryland Department of Medicine, Baltimore VA Medical Center, Maryland
| | | | | | | |
Collapse
|
18
|
Dominguez-Molina B, Leon A, Rodriguez C, Benito JM, Lopez-Galindez C, Garcia F, Del Romero J, Gutierrez F, Viciana P, Alcami J, Leal M, Ruiz-Mateos E. Analysis of Non-AIDS-Defining Events in HIV Controllers. Clin Infect Dis 2016; 62:1304-1309. [PMID: 26936669 DOI: 10.1093/cid/ciw120] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) controllers have the striking ability to maintain viremia at extremely low or undetectable levels without antiretroviral treatment. Even though these patients have been widely studied, information about clinical outcomes, especially concerning to non-AIDS-defining events (nADEs), is scarce. We have analyzed the frequency and rate of nADEs and their associated factors in a large multicenter HIV controller cohort. METHODS Data on nADEs were recorded for 320 HIV controllers within the multicenter Spanish AIDS Research Network HIV Controllers Cohort (ECRIS). Percentages and crude incidence rates (CIRs) per 100 person-years of follow-up (PYFU) were calculated for the entire follow-up period and for 2 separate periods: the period under control and the period after loss of control. These rates were compared with those for 632 noncontrollers. Demographic and immunological data collected from the controllers were included in a multivariate model to assess factors that were independently associated with nADEs in HIV controllers. RESULTS HIV controllers experience nADEs, albeit at lower rates than patients who do not spontaneously control the virus (1.252 [95% confidence interval {CI}, .974-1.586] per 100 PYFU and 2.481 [95% CI, 2.153-2.845] per 100 PYFU, respectively; P < .001). Hepatitis C virus (HCV) coinfection was the main factor associated with nADEs in all of the studied periods. Although hepatic events were the most prevalent, they represented only approximately 30% of the total events. CIRs of cardiovascular events increased in the post-loss-of-control period. CONCLUSIONS HCV/HIV coinfection was the main factor associated with hepatic and extrahepatic nADEs in HIV controllers. The eradication of HCV infection may ameliorate the presence of comorbidities in these patients.
Collapse
Affiliation(s)
- Beatriz Dominguez-Molina
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital
| | - Agathe Leon
- Infectious Diseases Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona
| | - Carmen Rodriguez
- Centro Sanitario Sandoval, Instituto de Investigacion Sanitaria San Carlos (IdISSC)
| | - Jose M Benito
- Instituto de Investigacion Sanitaria-Fundacion Jimenez Díaz (IIS-FJD), Universidad Autonoma de Madrid (UAM)
| | | | - Felipe Garcia
- Infectious Diseases Unit, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona
| | - Jorge Del Romero
- Centro Sanitario Sandoval, Instituto de Investigacion Sanitaria San Carlos (IdISSC)
| | - Felix Gutierrez
- Hospital General de Elche and Universidad Miguel Hernández, Alicante
| | - Pompeyo Viciana
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital
| | - Jose Alcami
- AIDS Immunopathology Unit, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital
| | - Ezequiel Ruiz-Mateos
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital
| |
Collapse
|
19
|
Abstract
There is enormous enthusiasm in the scientific community for finding a cure for HIV. Although much remains to be discovered regarding the mechanisms of viral persistence and how it may be disrupted, some assumptions regarding the goals of a cure, applicability to target populations, and what is required of the assays we employ, may lead to missed opportunities and discoveries and hamper the discovery of a product that will safely cure tens of millions of HIV-infected people around the world. The field will benefit from an awareness and critical interrogation of assumptions that may be implicit in their scientific pursuits.
Collapse
Affiliation(s)
- Marcella Flores
- Research Department, amfAR, The Foundation for AIDS Research , New York, New York
| | - Rowena Johnston
- Research Department, amfAR, The Foundation for AIDS Research , New York, New York
| |
Collapse
|
20
|
Abstract
After the success of combination antiretroviral therapy (cART) to treat HIV infection, the next great frontier is to cure infected persons, a formidable challenge. HIV persists in a quiescent state in resting CD4+ T cells, where the replicative enzymes targeted by cART are not active. Although low levels of HIV transcripts are detectable in these resting cells, little to no viral protein is produced, rendering this reservoir difficult to detect by the host CD8+ T cell response. However, recent advances suggest that this state of latency might be pharmacologically reversed, resulting in viral protein expression without the adverse effects of massive cellular activation. Emerging data suggest that with this approach, infected cells will not die of viral cytopathic effects, but might be eliminated if HIV-specific CD8+ T cells can be effectively harnessed. Here, we address the antiviral properties of HIV-specific CD8+ T cells and how these cells might be harnessed to greater effect toward achieving viral eradication or a functional cure.
Collapse
|
21
|
Ballana E, Esté JA. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol 2015; 23:680-692. [PMID: 26439297 DOI: 10.1016/j.tim.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
SAMHD1 is a triphosphohydrolase enzyme that controls the intracellular level of deoxyribonucleoside triphosphates (dNTPs) and plays a role in innate immune sensing and autoimmune disease. SAMHD1 has also been identified as an intrinsic virus restriction factor, inactivated through degradation by HIV-2 Vpx or through a post-transcriptional regulatory mechanism. Phosphorylation of SAMHD1 by cyclin-dependent kinases has been strongly associated with inactivation of the virus restriction mechanism, providing an association between virus replication and cell proliferation. Tight regulation of cell proliferation suggests that viruses, particularly HIV-1 replication, latency, and reactivation, may be similarly controlled by multiple checkpoint mechanisms that, in turn, regulate dNTP levels. In this review, we discuss how SAMHD1 is a viral restriction factor, the mechanism associated with viral restriction, the pathway leading to its inactivation in proliferating cells, and how strategies aimed at controlling virus restriction could lead to a functional cure for HIV.
Collapse
Affiliation(s)
- Ester Ballana
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - José A Esté
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
22
|
Hematopoietic Stem and Immune Cells in Chronic HIV Infection. Stem Cells Int 2015; 2015:148064. [PMID: 26300920 PMCID: PMC4537765 DOI: 10.1155/2015/148064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure.
Collapse
|