1
|
Fleres G, Mirabile A, Lokate M, Rossen JWA, Couto N, Friedrich AW, García-Cobos S. Surveillance and Genomic Characterisation of Colistin-Resistant Gram-Negative Bacteria in the Drains of High-Risk Hospital Units. J Glob Antimicrob Resist 2025; 42:127-134. [PMID: 39993598 DOI: 10.1016/j.jgar.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE The health care water environment, including sinks and drainage systems, can be a long-term reservoir of nosocomial pathogens. In this study, we aimed to investigate the presence of colistin-resistant Gram-negative (ColR-GN) bacteria in humid compartments of high-risk hospital units at the University Medical Center Groningen, The Netherlands. METHODS Environmental sampling was conducted in sink and shower drains of high-risk hospital units, and colistin MICs were determined using broth microdilution. Whole-genome sequencing was performed to investigate the presence of mobile colistin resistance (mcr) genes, chromosomal point mutations and gene alterations linked to colistin resistance. RESULTS ColR-GN bacteria were detected in all investigated units, with Enterobacter spp. being the most abundant genus. Twelve isolates exhibited colistin resistance (MIC >2 mg/L), including Enterobacter cloacae complex (n = 11) and Klebsiella pneumoniae (n = 1). Chromosomal mutations in genes involved in lipopolysaccharide structure modifications were the main mechanisms contributing to colistin resistance in Enterobacter spp. and Klebsiella spp. (91.6%, 11/12). Additionally, two Enterobacter kobei isolates harboured mobile colistin resistance genes, mcr-4.3 and mcr-9.1. CONCLUSIONS The presence and persistence of bacterial ColR-GN clones in the sink and shower drains of high-risk hospital units highlights the importance of monitoring such environments for antibiotic-resistant bacteria to identify reservoirs and prevent further spread.
Collapse
Affiliation(s)
- Giuseppe Fleres
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alessia Mirabile
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Centre for Genomic Pathogen Surveillance, Pandemics Science Institute, University of Oxford, Oxford, UK
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| | - Silvia García-Cobos
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, Ying C, Liu Z, Xiao Y. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13:2317915. [PMID: 38356197 PMCID: PMC10896150 DOI: 10.1080/22221751.2024.2317915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
3
|
Orena BS, Liporace MF, Teri A, Girelli D, Salari F, Mutti M, Giordano G, Alteri C, Gentiloni Silverj F, Matinato C, Callegaro A, Cariani L. Active Surveillance of Patients Colonized with CRE: A Single-Center Study Based on a Combined Molecular/Culture Protocol. Antibiotics (Basel) 2024; 13:1053. [PMID: 39596746 PMCID: PMC11591537 DOI: 10.3390/antibiotics13111053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Carbapenem-resistant Enterobacteriaceae (CRE) are types of bacteria that need urgent attention globally. Active surveillance programs at hospitals are essential for the early identification of CRE carriers and the timely adoption of infection control measures. We aimed to analyze the epidemiology of CRE identified by multiplex RT-PCR in rectal swabs of patients upon admission to high-risk wards and to compare data obtained from both molecular and culture CRE screening. Methods: A total of 2861 rectal swabs, prospectively collected within 12-24 h of admission, underwent molecular screening for identification of K. pneumoniae carbapenemase (KPC), New Delhi metallo-β-lactamase (NDM), Verona integron-mediated metallo-β-lactamase (VIM), imipenemase (IMP), and OXA-48 (AllplexTM Entero-DR Assay). Only samples that tested positive or invalid underwent culture testing (Agar MacConkey and CHROMID® CARBA plates, bioMérieux, Craponne, France). Results: A total of 118 out of 2861 (about 4%) were positive for at least one carbapenem-resistant gene by a molecular approach (MA), with KPC, NDM, and VIM having the highest prevalence. Culture testing confirmed the presence of carbapenemase in 89 samples (75.4%), showing a disagreement rate of about 25% between the two methods, which, unfortunately, rises up to 60% for VIM. The dominant bacterial species were K. pneumoniae and E. coli (MALDI-TOF mass spectrometry). Conclusions: Our data underlined the need for the molecular screening of CRE carriers in order to implement active surveillance protocol in critical care settings and to improve infection control measures.
Collapse
Affiliation(s)
- Beatrice Silvia Orena
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| | - Maria Francesca Liporace
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| | - Antonio Teri
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| | - Daniela Girelli
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| | - Federica Salari
- Residency in Microbiology and Virology School, University of Milan, 20122 Milan, Italy
| | - Michela Mutti
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| | - Gabriele Giordano
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| | - Claudia Alteri
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Flaminia Gentiloni Silverj
- Direzione Medica di Presidio, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Caterina Matinato
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| | - Annapaola Callegaro
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| | - Lisa Cariani
- Clinical Microbiology and Virology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (M.F.L.); (G.G.); (C.A.)
| |
Collapse
|
4
|
Siderius NL, Sapula SA, Hart BJ, Hutchings JL, Venter H. Enterobacter adelaidei sp. nov. Isolation of an extensively drug resistant strain from hospital wastewater in Australia and the global distribution of the species. Microbiol Res 2024; 288:127867. [PMID: 39163716 DOI: 10.1016/j.micres.2024.127867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Enterobacter species are included among the normal human gut microflora and persist in a diverse range of other environmental niches. They have become important opportunistic nosocomial pathogens known to harbour plasmid-mediated multi-class antimicrobial resistance (AMR) determinants. Global AMR surveillance of Enterobacterales isolates shows the genus is second to Klebsiella in terms of frequency of carbapenem resistance. Enterobacter taxonomy is confusing and standard species identification methods are largely inaccurate or insufficient. There are currently 27 named species and a total of 46 taxa in the genus distinguishable via average nucleotide identity (ANI) calculation between pairs of genomic sequences. Here we describe an Enterobacter strain, ECC3473, isolated from the wastewater of an Australian hospital whose species could not be determined by standard methods nor by ribosomal RNA gene multi-locus typing. AIM To characterise ECC3473 in terms of phenotypic and genotypic antimicrobial resistance, biochemical characteristics and taxonomy as well as to determine the global distribution of the novel species to which it belongs. METHODS Standard broth dilution and disk diffusion were used to determine phenotypic AMR. The strain's complete genome, including plasmids, was obtained following long- and short read sequencing and a novel long/short read hybrid assembly and polishing, and the genomic basis of AMR was determined. Phylogenomic analysis and quantitative measures of relatedness (ANI, digital DNA-DNA hybridisation, and difference in G+C content) were used to study the taxonomic relationship between ECC3473 and Enterobacter type-strains. NCBI and PubMLST databases and the literature were searched for additional members of the novel species to determine its global distribution. RESULTS ECC3473 is one of 21 strains isolated globally belonging to a novel Enterobacter species for which the name, Enterobacter adelaidei sp. nov. is proposed. The novel species was found to be resilient in its capacity to persist in contaminated water and adaptable in its ability to accumulate multiple transmissible AMR determinants. CONCLUSION E. adelaidei sp. nov. may become increasingly important to the dissemination of AMR.
Collapse
Affiliation(s)
- Naomi L Siderius
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| | - Sylvia A Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| | - Bradley J Hart
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| | - Joshua L Hutchings
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
5
|
Gao N, Zhou J, Li G, Liu R, Lu G, Shen J. Methodological Evaluation of Carbapenemase Detection by Different Methods. Pol J Microbiol 2024; 73:383-394. [PMID: 39268952 PMCID: PMC11395418 DOI: 10.33073/pjm-2024-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
The global proliferation of carbapenemase-producing bacteria (CPB) has garnered significant attention worldwide. Early diagnosis of CPB and accurate identification of carbapenemases are crucial for preventing the spread of CPB and ensuring targeted antibiotic therapy. Therefore, efficient and accurate identification of carbapenemases is paramount in clinically treating diseases associated with CPB. In this study, 58 CPB strains were collected and detected using the DNA endonuclease-targeted CRISPR trans reporter (DETECTR) method, a rapid detection platform based on CRISPR-Cas12a gene editing and isothermal amplification. Additionally, four conventional methods (the APB/EDTA method, PCR, NG-test Carba 5, and GeneXpert Carba-R) were employed and compared against whole genome sequencing (WGS) results, considered the gold standard, to evaluate their efficacy in detecting carbapenemases. Detection by the APB/EDTA method revealed that 29 strains were positive for Class A serine endopeptidases, while 29 strains were positive for Class B metalloenzymes. The classification of these zymotypes was consistent with the sequencing result. All target carbapenemases for KPC were identified with 100% sensitivity using NG-test Carba 5, PCR, DETECTR, and GeneXpert Carba-R. In the case of NDM, both Xpert Carba-R and DETECTR showed a sensitivity of 100%. In contrast, NG-test Carba 5 and PCR had a slightly lower sensitivity of 96.7%, each missing one target carbapenemase. n this study, the APB/EDTA method is capable of identifying the zymotype classification but not the specific resistant genes, while Xpert Carba-R and DETECTR are able to detect all target carbapenemases.
Collapse
Affiliation(s)
- Nana Gao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Jing Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Ge Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Runde Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Guoping Lu
- Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
6
|
Fu H, Zhu Z, Wang X, Lv J, Zhu J, Chen L, Yu H, Du H. Emergence of bla NDM-1-carrying Enterobacter chengduensis in China. Front Microbiol 2024; 15:1404996. [PMID: 39206374 PMCID: PMC11350614 DOI: 10.3389/fmicb.2024.1404996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Enterobacter chengduensis was defined as a novel species in the genus. Enterobacter in 2019, however, antimicrobial resistance, such as carbapenem resistance, has rarely been described in E. chengduensis. This study described the molecular features of four carbapenem-resistant E. chengduensis strains collected from a tertiary health care hospital in Southwest China. Methods Whole genome sequencing (WGS) was used to determine the genome sequence of four E. chengduensis strains. The precise species of strains were identified by average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH). The clonal relatedness of four E. chengduensis strains and additional 15 ones from NCBI were examined through phylogenetic analysis. The molecular features of E. chengduensis and genetic structure of carbapenemase- encoding plasmids were characterized through genomic annotation and analysis. Results The results revealed the emergence of bla NDM-1-carrying E. chengduensis strains in China. Multilocus sequence typing (MLST) analysis showed that all 19 E. chengduensis belonged to the same sequence type of ST414. Core SNP analysis suggested the potential intrahospital clonal transmission of ST414 E. chengduensis. The carbapenemase-encoding gene bla NDM-1 was harbored by an IncC-type plasmid, which was experimentally confirmed to be able to conjugate. Discussion This study reports the first emergence and potential clonal transmission of bla NDM-1-carrying E. chengduensis. Further surveillance should be advocated to monitor the dissemination of carbapenem-resistant E. chengduensis and bla NDM-1-harboring IncC-type plasmids in China.
Collapse
Affiliation(s)
- Hongyu Fu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Blood Transfusion, The Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Liang Chen
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Hua Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
He Y, Xiao Y, Feng Y, Wu S, Wei L, Zong Z. Two novel Enterobacter species, Enterobacter chinensis sp. nov. and Enterobacter rongchengensis sp. nov., recovered from clinical samples carrying multiple virulence factors. Microbiol Spectr 2024; 12:e0029224. [PMID: 38916331 PMCID: PMC11302248 DOI: 10.1128/spectrum.00292-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
Two Enterobacter strains 170198T and 170250T were isolated from clinical blood samples from distinct patients in a hospital in Chengdu, China, in 2022. These isolates were subjected to whole-genome sequencing. A phylogenomic tree based on 2,096 concatenated core genes showed that the two strains were clustered within the genus Enterobacter. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between each of the two strains and type strains of all currently known Enterobacter species were determined. The two strains belonged to two novel species as the highest ANI and isDDH values with type strains of all currently known Enterobacter species below the cutoff for species demarcation (96% for ANI and 70% for isDDH). Then the physiological and biochemical studies demonstrated that biochemical features and the profile of whole fatty acids of strains 170198T and 170250T were largely consistent with those known Enterobacter species. Nevertheless, the two novel species can be differentiated from all other Enterobacter species by certain biochemical characteristics. In conclusion, 170198T and 170250T represent two novel species of the genus Enterobacter, for which we propose Enterobacter chinensis sp. nov. and Enterobacter rongchengensis sp. nov., as the species names. The type strains of Enterobacter chinensis sp. nov., and Enterobacter rongchengensis sp. nov. are 170198T (=GDMCC 1.3549T=JCM 35826T) and 170250T (=GDMCC 1.3670T=JCM 36189T), respectively. The two novel species have clinical significance with the ability to cause bloodstream infections.IMPORTANCEEnterobacter is a group of bacteria comprising several common opportunistic pathogens and has a complicated taxonomy. Here, we reported two novel Enterobacter species. We demonstrated that the two novel species can be differentiated from other Enterobacter species by certain phenotypic characteristics and therefore provide information for designing tests for identification. We also showed that strains of the two novel species are able to cause human bloodstream infections and carry multiple virulence factors and therefore are of clinical significance. We highlight that the virulence of Enterobacter is less studied and warrants further exploration. We believe that the findings here are valuable for enhancing the appreciation toward Enterobacter, an important pathogen.
Collapse
Affiliation(s)
- Yanling He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Xiao
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shikai Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Mosaffa F, Saffari F, Veisi M, Tadjrobehkar O. Some virulence genes are associated with antibiotic susceptibility in Enterobacter cloacae complex. BMC Infect Dis 2024; 24:711. [PMID: 39030479 PMCID: PMC11264964 DOI: 10.1186/s12879-024-09608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Enterobacter cloacae complex (ECC) including different species are isolated from different human clinical samples. ECC is armed by many different virulence genes (VGs) and they were also classified among ESKAPE group by WHO recently. The present study was designed to find probable association between VGs and antibiotic susceptibility in different ECC species. METHODS Forty-five Enterobacter isolates that were harvested from different clinical samples were classified in four different species. Seven VGs were screened by PCR technique and antibiotic susceptibility assessment was performed by disk-diffusion assay. RESULT Four Enterobacter species; Enterobacter cloacae (33.3%), Enterobacter hormaechei (55.6%), Enterobacter kobei (6.7%) and Enterobacter roggenkampii (4.4%) were detected. Minimum antibiotic resistance was against carbapenem agents and amikacin even in MDR isolates. 33.3% and 13.3% of isolates were MDR and XDR respectively. The rpoS (97.8%) and csgD (11.1%) showed maximum and minimum frequency respectively. Blood sample isolated were highly virulent but less resistant in comparison to the other sample isolates. The csgA, csgD and iutA genes were associated with cefepime sensitivity. CONCLUSION The fepA showed a predictory role for differentiating of E. hormaechei from other species. More evolved iron acquisition system in E. hormaechei was hypothesized. The fepA gene introduced as a suitable target for designing novel anti-virulence/antibiotic agents against E. hormaechei. Complementary studies on other VGs and ARGs and with bigger study population is recommended.
Collapse
Affiliation(s)
- Fatemeh Mosaffa
- Departement of Medical Microbiology (Bacteriology & Virology), Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Saffari
- Departement of Medical Microbiology (Bacteriology & Virology), Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahin Veisi
- Departement of Medical Microbiology (Bacteriology & Virology), Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Tadjrobehkar
- Departement of Medical Microbiology (Bacteriology & Virology), Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
9
|
Ghazawi A, Anes F, Mouftah S, Elbediwi M, Baig A, Alketbi M, Almazrouei F, Alhashmi M, Alzarooni N, Manzoor A, Habib I, Strepis N, Nabi A, Khan M. Genomic Study of High-Risk Clones of Enterobacter hormaechei Collected from Tertiary Hospitals in the United Arab Emirates. Antibiotics (Basel) 2024; 13:592. [PMID: 39061274 PMCID: PMC11274081 DOI: 10.3390/antibiotics13070592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Enterobacter hormaechei has emerged as a significant pathogen within healthcare settings due to its ability to develop multidrug resistance (MDR) and survive in hospital environments. This study presents a genome-based analysis of carbapenem-resistant Enterobacter hormaechei isolates from two major hospitals in the United Arab Emirates. Eight isolates were subjected to whole-genome sequencing (WGS), revealing extensive resistance profiles including the blaNDM-1, blaOXA-48, and blaVIM-4 genes. Notably, one isolate belonging to ST171 harbored dual carbapenemase genes, while five isolates exhibited colistin resistance without mcr genes. The presence of the type VI secretion system (T6SS), various adhesins, and virulence genes contributes to the virulence and competitive advantage of the pathogen. Additionally, our isolates (87.5%) possessed ampC β-lactamase genes, predominantly blaACT genes. The genomic context of blaNDM-1, surrounded by other resistance genes and mobile genetic elements, highlights the role of horizontal gene transfer (HGT) in the spread of resistance. Our findings highlight the need for rigorous surveillance, strategic antibiotic stewardship, and hospital-based WGS to manage and mitigate the spread of these highly resistant and virulent pathogens. Accurate identification and monitoring of Enterobacter cloacae complex (ECC) species and their resistance mechanisms are crucial for effective infection control and treatment strategies.
Collapse
Affiliation(s)
- Akela Ghazawi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Febin Anes
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (I.H.)
| | - Shaimaa Mouftah
- Department of Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt;
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14163 Berlin, Germany;
- Animal Health Research Institute, Agriculture Research Centre, Cairo 12618, Egypt
| | - Awase Baig
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Muna Alketbi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Fatema Almazrouei
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Mariam Alhashmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Norah Alzarooni
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Ashrat Manzoor
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (I.H.)
| | - Nikolaos Strepis
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Anju Nabi
- Microbiology and Immunology Department, Dubai Hospital, Dubai P.O. Box 53735, United Arab Emirates;
| | - Mushtaq Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| |
Collapse
|
10
|
Roque-Borda CA, Primo LMDG, Franzyk H, Hansen PR, Pavan FR. Recent advances in the development of antimicrobial peptides against ESKAPE pathogens. Heliyon 2024; 10:e31958. [PMID: 38868046 PMCID: PMC11167364 DOI: 10.1016/j.heliyon.2024.e31958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Multi-drug resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a global health threat. The severity of the problem lies in its impact on mortality, therapeutic limitations, the threat to public health, and the costs associated with managing infections caused by these resistant strains. Effectively addressing this challenge requires innovative approaches to research, the development of new antimicrobials, and more responsible antibiotic use practices globally. Antimicrobial peptides (AMPs) are a part of the innate immune system of all higher organisms. They are short, cationic and amphipathic molecules with broad-spectrum activity. AMPs interact with the negatively charged bacterial membrane. In recent years, AMPs have attracted considerable interest as potential antibiotics. However, AMPs have low bioavailability and short half-lives, which may be circumvented by chemical modification. This review presents recent in vitro and in silico strategies for the modification of AMPs to improve their stability and application in preclinical experiments.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
- Universidad Católica de Santa María, Vicerrectorado de Investigación, Arequipa, Peru
| | | | - Henrik Franzyk
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, Denmark
| | - Paul Robert Hansen
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
11
|
García-Romero I, Srivastava M, Monjarás-Feria J, Korankye SO, MacDonald L, Scott NE, Valvano MA. Drug efflux and lipid A modification by 4-L-aminoarabinose are key mechanisms of polymyxin B resistance in the sepsis pathogen Enterobacter bugandensis. J Glob Antimicrob Resist 2024; 37:108-121. [PMID: 38552872 DOI: 10.1016/j.jgar.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES A concern with the ESKAPE pathogen, Enterobacter bugandensis, and other species of the Enterobacter cloacae complex, is the frequent appearance of multidrug resistance against last-resort antibiotics, such as polymyxins. METHODS Here, we investigated the responses to polymyxin B (PMB) in two PMB-resistant E. bugandensis clinical isolates by global transcriptomics and deletion mutagenesis. RESULTS In both isolates, the genes of the CrrAB-regulated operon, including crrC and kexD, displayed the highest levels of upregulation in response to PMB. ∆crrC and ∆kexD mutants became highly susceptible to PMB and lost the heteroresistant phenotype. Conversely, heterologous expression of CrrC and KexD proteins increased PMB resistance in a sensitive Enterobacter ludwigii clinical isolate and in the Escherichia coli K12 strain, W3110. The efflux pump, AcrABTolC, and the two component regulators, PhoPQ and CrrAB, also contributed to PMB resistance and heteroresistance. Additionally, the lipid A modification with 4-L-aminoarabinose (L-Ara4N), mediated by the arnBCADTEF operon, was critical to determine PMB resistance. Biochemical experiments, supported by mass spectrometry and structural modelling, indicated that CrrC is an inner membrane protein that interacts with the membrane domain of the KexD pump. Similar interactions were modeled for AcrB and AcrD efflux pumps. CONCLUSION Our results support a model where drug efflux potentiated by CrrC interaction with membrane domains of major efflux pumps combined with resistance to PMB entry by the L-Ara4N lipid A modification, under the control of PhoPQ and CrrAB, confers the bacterium high-level resistance and heteroresistance to PMB.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom; Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Mugdha Srivastava
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany; Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
| | - Julia Monjarás-Feria
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Samuel O Korankye
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lewis MacDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom.
| |
Collapse
|
12
|
Rahi P, Mühle E, Scandola C, Touak G, Clermont D. Genome sequence-based identification of Enterobacter strains and description of Enterobacter pasteurii sp. nov. Microbiol Spectr 2024; 12:e0315023. [PMID: 38099614 PMCID: PMC10783019 DOI: 10.1128/spectrum.03150-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Accurate taxonomy is essential for microbial biological resource centers, since the microbial resources are often used to support new discoveries and subsequent research. Here, we used genome sequence data, alongside matrix-assisted laser desorption/ionization time-of-flight mass spectrometer biotyper-based protein profiling, to accurately identify six Enterobacter cloacae complex strains. This approach effectively identified distinct species within the E. cloacae complex, including Enterobacter asburiae, "Enterobacter xiangfangensis," and Enterobacter quasihormaechei. Moreover, the study revealed the existence of a novel species within the Enterobacter genus, for which we proposed the name Enterobacter pasteurii sp. nov. In summary, this study demonstrates the significance of adopting a genome sequence-driven taxonomy approach for the precise identification of bacterial strains in a biological resource center and expands our understanding of the E. cloacae complex.
Collapse
Affiliation(s)
- Praveen Rahi
- Collection of Institut Pasteur (CIP), Institut Pasteur, Université Paris Cité, Paris, France
| | - Estelle Mühle
- Collection of Institut Pasteur (CIP), Institut Pasteur, Université Paris Cité, Paris, France
| | - Cyril Scandola
- Ultrastructural Bioimaging Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Gerald Touak
- Collection of Institut Pasteur (CIP), Institut Pasteur, Université Paris Cité, Paris, France
| | - Dominique Clermont
- Collection of Institut Pasteur (CIP), Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
13
|
Vinchhi R, Yelpure C, Balachandran M, Matange N. Pervasive gene deregulation underlies adaptation and maladaptation in trimethoprim-resistant E. coli. mBio 2023; 14:e0211923. [PMID: 38032208 PMCID: PMC10746255 DOI: 10.1128/mbio.02119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Bacteria employ a number of mechanisms to adapt to antibiotics. Mutations in transcriptional regulators alter the expression levels of genes that can change the susceptibility of bacteria to antibiotics. Two-component signaling proteins are a major class of signaling molecule used by bacteria to regulate transcription. In previous work, we found that mutations in MgrB, a feedback regulator of the PhoQP two-component system, conferred trimethoprim tolerance to Escherichia coli. Here, we elucidate how mutations in MgrB have a domino-like effect on the gene regulatory network of E. coli. As a result, pervasive perturbation of gene regulation ensues. Depending on the environmental context, this pervasive deregulation is either adaptive or maladaptive. Our study sheds light on how deregulation of gene expression can be beneficial for bacteria when challenged with antibiotics, and why regulators like MgrB may have evolved in the first place.
Collapse
Affiliation(s)
- Rhea Vinchhi
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Chetna Yelpure
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Manasvi Balachandran
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| | - Nishad Matange
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, India
| |
Collapse
|
14
|
Zhu Z, Xie X, Yu H, Jia W, Shan B, Huang B, Qu F, Niu S, Lv J, Gao Q, Qian F, Tian X, Zhai Y, Wen Y, Yang C, Zhu J, Tang Y, Chen L, Du H. Epidemiological characteristics and molecular features of carbapenem-resistant Enterobacter strains in China: a multicenter genomic study. Emerg Microbes Infect 2023; 12:2148562. [PMID: 36382635 PMCID: PMC9769138 DOI: 10.1080/22221751.2022.2148562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidemiological characteristics and molecular features of carbapenem-resistant Enterobacter (CR-Ent) species remain unclear in China. In this study, we performed a genomic study on 92 isolates from Enterobacter-caused infections from a multicenter study in China. Whole genome sequencing (WGS) was used to determine the genome sequence of 92 non-duplicated CR-Ent strains collected from multiple tertiary health centres. The precise species of Enterobacter strains were identified by average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH). Molecular features of high-risk CR-Ent sequence type (ST) lineages and carbapenemase-encoding plasmids were determined. The result revealed that the most common human-source CR-Ent species in China was E. xiangfangensis (66/92, 71.93%), and the proportion of carbapenemase-producing Enterobacter (CP-Ent) in CR-Ent was high (72/92, 78.26%) in comparison to other global regions. Furthermore, ST171 and ST116 E. xiangfangensis were the major lineages of CP-Ent strains, and ST171 E. xiangfangensis was more likely to cause infections in older patients. Genomic analysis also highlighted the likelihood of intra-hospital/inter-hospital clonal transmission of ST171 and ST116 E. xiangfangensis. In addition, the blaNDM-harbouring IncX3-type plasmid was identified as the prevalent carbapenemase-encoding plasmid carried by CR-Ent strains, and was experimentally confirmed to be able to self-transfer with high frequency. This study detailed the genomic and clinical characteristics of CR-Ent in China in the form of multicenter for the first time. The high risk of carbapenemase-producing ST171 and ST116 E. xiangfangensis, and the blaNDM-harbouring IncX3-type plasmid were detected and emphasized.
Collapse
Affiliation(s)
- Zhichen Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Hua Yu
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wei Jia
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Bin Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fen Qu
- Laboratory Medicine Center, Aviation General Hospital, Beijing, People's Republic of China
| | - Siqiang Niu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinnan Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qizhao Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Feinan Qian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiangxiang Tian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yaxuan Zhai
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yicheng Wen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Chengcheng Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yiwei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medical Affairs, Danaher Diagnostic Platform/Cepheid (China), New York, NY, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack-Meridian Health, Nutley, NJ, USA.,Hackensack Meridian School of Medicine, Seton Hall University, Nutley, NJ, USA
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
15
|
Anderson AJG, Morrell B, Lopez Campos G, Valvano MA. Distribution and diversity of type VI secretion system clusters in Enterobacter bugandensis and Enterobacter cloacae. Microb Genom 2023; 9:001148. [PMID: 38054968 PMCID: PMC10763514 DOI: 10.1099/mgen.0.001148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Gram-negative bacteria use type VI secretion systems (T6SSs) to antagonize neighbouring cells. Although primarily involved in bacterial competition, the T6SS is also implicated in pathogenesis, biofilm formation and ion scavenging. Enterobacter species belong to the ESKAPE pathogens, and while their antibiotic resistance has been well studied, less is known about their pathogenesis. Here, we investigated the distribution and diversity of T6SS components in isolates of two clinically relevant Enterobacter species, E. cloacae and E. bugandensis. T6SS clusters are grouped into four types (T6SSi-T6SSiv), of which type i can be further divided into six subtypes (i1, i2, i3, i4a, i4b, i5). Analysis of a curated dataset of 31 strains demonstrated that most of them encode T6SS clusters belonging to the T6SSi type. All T6SS-positive strains possessed a conserved i3 cluster, and many harboured one or two additional i2 clusters. These clusters were less conserved, and some strains displayed evidence of deletion. We focused on a pathogenic E. bugandensis clinical isolate for comprehensive in silico effector prediction, with comparative analyses across the 31 isolates. Several new effector candidates were identified, including an evolved VgrG with a metallopeptidase domain and a Tse6-like protein. Additional effectors included an anti-eukaryotic catalase (KatN), M23 peptidase, PAAR and VgrG proteins. Our findings highlight the diversity of Enterobacter T6SSs and reveal new putative effectors that may be important for the interaction of these species with neighbouring cells and their environment.
Collapse
Affiliation(s)
- Amy J. G. Anderson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Becca Morrell
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
16
|
Feng L, Zhang M, Fan Z. Population genomic analysis of clinical ST15 Klebsiella pneumoniae strains in China. Front Microbiol 2023; 14:1272173. [PMID: 38033569 PMCID: PMC10684719 DOI: 10.3389/fmicb.2023.1272173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
ST15 Klebsiella pneumoniae (Kpn) is a growing public health concern in China and worldwide, yet its genomic and evolutionary dynamics in this region remain poorly understood. This study comprehensively elucidates the population genomics of ST15 Kpn in China by analyzing 287 publicly available genomes. The proportion of the genomes increased sharply from 2012 to 2021, and 92.3% of them were collected from the Yangtze River Delta (YRD) region of eastern China. Carbapenemase genes, including OXA-232, KPC-2, and NDM, were detected in 91.6% of the studied genomes, and 69.2% of which were multidrug resistant (MDR) and hypervirulent (hv). Phylogenetic analysis revealed four clades, C1 (KL112, 59.2%), C2 (mainly KL19, 30.7%), C3 (KL48, 0.7%) and C4 (KL24, 9.4%). C1 appeared in 2007 and was OXA-232-producing and hv; C2 and C4 appeared between 2005 and 2007, and both were KPC-2-producing but with different levels of virulence. Transmission clustering detected 86.1% (n = 247) of the enrolled strains were grouped into 55 clusters (2-159 strains) and C1 was more transmissible than others. Plasmid profiling revealed 88 plasmid clusters (PCs) that were highly heterogeneous both between and within clades. 60.2% (n = 53) of the PCs carrying AMR genes and 7 of which also harbored VFs. KPC-2, NDM and OXA-232 were distributed across 14, 4 and 1 PCs, respectively. The MDR-hv strains all carried one of two homologous PCs encoding iucABCD and rmpA2 genes. Pangenome analysis revealed two major coinciding accessory components predominantly located on plasmids. One component, associated with KPC-2, encompassed 15 additional AMR genes, while the other, linked to OXA-232, involved seven more AMR genes. This study provides essential insights into the genomic evolution of the high-risk ST15 CP-Kpn strains in China and warrants rigorous monitoring.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | | | | |
Collapse
|
17
|
Sreekumaran S, Premnath M, Prathyush PR, Mathew J, Nath CC, Paul N, Abraham SS, Radhakrishnan EK. Predicting Human Risk with Multidrug Resistant Enterobacter hormaechei MS2 having MCR 9 Gene Isolated from the Feces of Healthy Broiler Through Whole-Genome Sequence-Based Analysis. Curr Microbiol 2023; 81:8. [PMID: 37966536 DOI: 10.1007/s00284-023-03492-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023]
Abstract
The zoonotic spread of antimicrobial resistance (AMR) and the associated infections are becoming a major threat to the human population worldwide. Strategies to identify the potential pathogen dissemination by seemingly healthy livestock are at a nascent stage and it is of significant importance to monitor environmental evolution of AMR. In this study, a multidrug resistant strain (MDR) of Enterobacter hormaechei MS2 isolated from the feces of healthy broiler chicken has been characterized by whole-genome sequencing-based method. Here, the isolate was primarily subjected to antimicrobial susceptibility testing followed genome sequencing and analysis. From the antimicrobial susceptibility testing result, the strain was found to be resistant to multiple classes of drugs including the colistin which is an important last resort drug used to treat infectious diseases. The resistome prediction of genomic data further revealed the presence of 7 perfect and 26 strict hits including those for MCR-9 and FosA2. The pathogenicity prediction has also demonstrated the strain to have the potential to be a human pathogen with 0.72 probability. The phylogenetic analysis has also supported the zoonotic potential of the strain due to its clustering with isolates from both human and livestock-associated host groups. The results of the study suggest the need for a strong surveillance system to identify the opportunistic zoonotic pathogens to prevent a silent AMR menace mediated by them. Carriage of multi-drug resistant strains in the livestock gut microbiome is also a serious concern as it has high AMR transmissibility through contact and supply chain activities.
Collapse
Affiliation(s)
- Sreejith Sreekumaran
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - Manjusha Premnath
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - P R Prathyush
- State Institute of Animal Diseases, Thiruvananthapuram, Kerala, 695 563, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India
| | - Chitra C Nath
- Department of Microbiology, Government Medical College, Kottayam, Kerala, 686 008, India
| | - Nimmy Paul
- Department of Microbiology, Government Medical College, Kottayam, Kerala, 686 008, India
| | | | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, PD Hills (PO), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
18
|
Gracia-Ahufinger I, López-González L, Vasallo FJ, Galar A, Siller M, Pitart C, Bloise I, Torrecillas M, Gijón-Cordero D, Viñado B, Castillo-García J, Campo R, Mulet X, Madueño-Alonso A, Chamizo-López FJ, Arrastia-Erviti M, Galán-Sánchez F, Fernández-Quejo M, Rodríguez-Díaz JC, Gutiérrez-Zufiaurre MN, Rodríguez-Maresca MA, Ortega-Lafont MDP, Yagüe-Guirao G, Chaves-Blanco L, Colomina-Rodríguez J, Vidal-Acuña MR, Portillo ME, Franco-Álvarez de Luna F, Centelles-Serrano MJ, Azcona-Gutiérrez JM, Delgado-Iribarren García Campero A, Rey-Cao S, Muñoz P, Calvo-Montes J, Zboromyrska Y, Grandioso D, Càmara J, Cantón R, Larrosa-Escartín N, Díaz-Regañón J, Martínez-Martínez L. The CARBA-MAP study: national mapping of carbapenemases in Spain (2014-2018). Front Microbiol 2023; 14:1247804. [PMID: 37744921 PMCID: PMC10516297 DOI: 10.3389/fmicb.2023.1247804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Infections caused by carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa, including isolates producing acquired carbapenemases, constitute a prevalent health problem worldwide. The primary objective of this study was to determine the distribution of the different carbapenemases among carbapenemase-producing Enterobacterales (CPE, specifically Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, and Klebsiella aerogenes) and carbapenemase-producing P. aeruginosa (CPPA) in Spain from January 2014 to December 2018. Methods A national, retrospective, cross-sectional multicenter study was performed. The study included the first isolate per patient and year obtained from clinical samples and obtained for diagnosis of infection in hospitalized patients. A structured questionnaire was completed by the participating centers using the REDCap platform, and results were analyzed using IBM SPSS Statistics 29.0.0. Results A total of 2,704 carbapenemase-producing microorganisms were included, for which the type of carbapenemase was determined in 2692 cases: 2280 CPE (84.7%) and 412 CPPA (15.3%), most often using molecular methods and immunochromatographic assays. Globally, the most frequent types of carbapenemase in Enterobacterales and P. aeruginosa were OXA-48-like, alone or in combination with other enzymes (1,523 cases, 66.8%) and VIM (365 cases, 88.6%), respectively. Among Enterobacterales, carbapenemase-producing K. pneumoniae was reported in 1821 cases (79.9%), followed by E. cloacae complex in 334 cases (14.6%). In Enterobacterales, KPC is mainly present in the South and South-East regions of Spain and OXA-48-like in the rest of the country. Regarding P. aeruginosa, VIM is widely distributed all over the country. Globally, an increasing percentage of OXA-48-like enzymes was observed from 2014 to 2017. KPC enzymes were more frequent in 2017-2018 compared to 2014-2016. Discussion Data from this study help to understand the situation and evolution of the main species of CPE and CPPA in Spain, with practical implications for control and optimal treatment of infections caused by these multi-drug resistant organisms.
Collapse
Affiliation(s)
- Irene Gracia-Ahufinger
- Unit of Microbiology, Reina Sofia University Hospital, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Laura López-González
- Clinical Microbiology Service, IML, San Carlos Clinical University Hospital, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Francisco José Vasallo
- Microbiology Service, Vigo University Hospital Complex (CHUVI), Vigo, Spain
- Health Research Institute Galicia Sur (IISGS), Vigo, Spain
| | - Alicia Galar
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Hospital Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
| | - María Siller
- Microbiology Service, Marqués de Valdecilla University Hospital, Santander, Spain
- Marqués de Valdecilla Health Research Institute (IDIVAL), Santander, Spain
| | - Cristina Pitart
- Microbiology Service, Hospital Clinic, Barcelona, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institute of Global Health of Barcelona, Barcelona, Spain
| | - Iván Bloise
- Clinical Microbiology Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Miriam Torrecillas
- Clinical Microbiology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - Desirée Gijón-Cordero
- Microbiology Service, Ramón y Cajal University Hospital, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Belén Viñado
- Microbiology Service, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Javier Castillo-García
- Microbiology Service, Lozano Blesa Clinical University Hospital, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Rainer Campo
- Microbiology Service, Asturias Central University Hospital, Oviedo, Spain
| | - Xavier Mulet
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Son Espases University Hospital, Palma de Mallorca, Spain
- Institute for Health Research Illes Balears (IdISBa), Palma, Spain
| | - Ana Madueño-Alonso
- Microbiology Service, University Hospital of the Canary Islands, Tenerife, Spain
| | | | | | | | | | - Juan Carlos Rodríguez-Díaz
- Microbiology Service, General University Hospital Dr. Balmis, Alicante, Spain
- Health and Biomedical Research Institute of Alicante (ISABIAL), Alicante, Spain
| | | | | | | | - Genoveva Yagüe-Guirao
- Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
- Murcian Institute for Biomedical Research (IMIB), Murcia, Spain
| | - Lucía Chaves-Blanco
- Microbiology Service, San Cecilio Clinical University Hospital, Granada, Spain
| | | | | | - María Eugenia Portillo
- Clinical Microbiology Service, University Hospital of Navarra, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | | | - María José Centelles-Serrano
- Microbiology Area, Clinical Laboratory, Hospital of Tortosa Virgen de la Cinta, Tortosa, Spain
- Institute for Health Research Pere Virgili, Tortosa, Spain
| | | | | | - Sonia Rey-Cao
- Microbiology Service, Vigo University Hospital Complex (CHUVI), Vigo, Spain
- Health Research Institute Galicia Sur (IISGS), Vigo, Spain
| | - Patricia Muñoz
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Hospital Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Calvo-Montes
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Marqués de Valdecilla University Hospital, Santander, Spain
- Marqués de Valdecilla Health Research Institute (IDIVAL), Santander, Spain
| | - Yuliya Zboromyrska
- Microbiology Service, Hospital Clinic, Barcelona, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
| | - David Grandioso
- Clinical Microbiology Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Jordi Càmara
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Clinical Microbiology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- Institut Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Rafael Cantón
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Ramón y Cajal University Hospital, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Nieves Larrosa-Escartín
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Luis Martínez-Martínez
- Unit of Microbiology, Reina Sofia University Hospital, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
19
|
Li Y, Qiu Y, Fang C, Dai X, Zhang L. Genomic characterisation of a bla KPC-2- and mcr-10-co-harbouring Enterobacter kobei isolate with high-level resistance to colistin and carbapenems. J Glob Antimicrob Resist 2023; 34:63-66. [PMID: 37369327 DOI: 10.1016/j.jgar.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVES The emergence and spread of colistin resistance in carbapenem-resistant Enterobacteriaceae pose a serious threat to human and animal health. This work aimed to characterise the genetic features of antimicrobial resistance of the carbapenem- and colistin-resistant Enterobacter kobei strain SCLZS19, isolated from hospital sewage, by using whole genome sequencing. METHODS Antimicrobial susceptibility tests were performed using the disk diffusion method. Whole genome sequencing of SCLZS19 was carried out on the HiSeq 2000 combined with PacBio RSII platforms. Sequence type, plasmid incompatibility types, resistance genes, and insertion elements were identified using multilocus sequence typing, PlasmidFinder, ResFinder, and ISfinder, respectively. Conjugation assays were performed using both broth- and filter-based methods with the azide-resistant Escherichia coli J53 as the recipient. The function of the mcr-9-like variant was determined by gene cloning. RESULTS E. kobei SCLZS19 had a 4 862 177-bp circular chromosome and nine circular plasmids ranging in size from 4120 bp to 282 472 bp. It carried 11 antibiotic resistance genes, and 10 of them were located on plasmids. The colistin resistance gene mcr-10 was located on a 118 766-bp non-transferable IncF (Y3:A-:B-) plasmid. The carbapenemase gene blaKPC-2 was carried by a self-transmissible IncP6 plasmid, which is epidemic in China. In addition, SCLZS19 also carried an mcr-9-like variant on a IncHI2 (ST1) plasmid. The cloning assay showed that the mcr-9-like variant did not mediate colistin resistance in E. coli DH5α. CONCLUSION The findings highlight that carbapenem- and colistin-resistant Enterobacterales from water environments may serve as a reservoir for clinically significant antibiotic resistance genes, and continuous surveillance is required.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yichuan Qiu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chengju Fang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
20
|
Wu X, Li X, Yu J, Shen M, Fan C, Lu Y, Gao J, Li X, Li H. Outbreak of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae ST15 in a Chinese teaching hospital: a molecular epidemiological study. Front Cell Infect Microbiol 2023; 13:1229284. [PMID: 37671147 PMCID: PMC10475586 DOI: 10.3389/fcimb.2023.1229284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Background and Aims The incidence of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) has been on the rise in China over the past five years, potentially leading to nosocomial epidemics. This study investigates the first outbreak of CRKP in the Second Affiliated Hospital of Jiaxing University. Methods Between February 2021 and March 2022, 21 clinical isolates of OXA-232-producing CRKP were recovered from 16 patients in the Second Affiliated Hospital of Jiaxing University. We conducted antimicrobial susceptibility tests, whole genome sequencing, and bioinformatics to determine the drug resistance profile of these clinical isolates. Results Whole-genome sequencing revealed that all 21 OXA-232-producing CRKP strains belonged to the sequence type 15 (ST15) and shared similar resistance, virulence genes, and plasmid types, suggesting clonal transmission between the environment and patients. Integrated genomic and epidemiological analysis traced the outbreak to two clonal transmission clusters, cluster 1 and cluster 2, including 14 and 2 patients. It was speculated that the CRKP transmission mainly occurred in the ICU, followed by brain surgery, neurosurgery, and rehabilitation department. Phylogenetic analysis indicated that the earliest outbreak might have started at least a year before the admission of the index patient, and these strains were closely related to those previously isolated from two major adjacent cities, Shanghai and Hangzhou. Comparative genomics showed that the IncFII-type and IncHI1B-type plasmids of cluster 2 had homologous recombination at the insertion sequence sites compared with the same type of plasmids in cluster 1, resulting in the insertion of 4 new drug resistance genes, including TEM-1, APH(6)-Id, APH(3'')-Ib and sul2. Conclusions Our study observed the clonal spread of ST15 OXA-232-producing between patients and the hospital environment. The integration of genomic and epidemiological data offers valuable insights and facilitate the control of nosocomial transmission.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research, Hangzhou, Zhejiang, China
| | - Junjie Yu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Mengli Shen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Chenliang Fan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yewei Lu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research, Hangzhou, Zhejiang, China
| | - Junshun Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research, Hangzhou, Zhejiang, China
| | - Xiaosi Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongsheng Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
21
|
Kumari K, Sharma PK, Shikha S, Singh RP. Molecular characterization and in-depth genome analysis of Enterobacter sp. S-16. Funct Integr Genomics 2023; 23:245. [PMID: 37460717 DOI: 10.1007/s10142-023-01161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
Enterobacter species are considered to be an opportunistic human pathogen owing to the existence of antibiotic-resistant strains and drug resides; however, the detailed analysis of the antibiotic resistance and virulence features in environmental isolates is poorly characterized. Here, in the study, we characterized the biochemical characteristics, and genome, pan-genome, and comparative genome analyses of an environmental isolate Enterobacter sp. S-16. The strain was identified as Enterobacter spp. by using 16S rRNA gene sequencing. To unravel genomic features, whole genome of Enterobacter sp. S-16 was sequenced using a hybrid assembly approach and genome assembly was performed using the Unicycler tool. The assembled genome contained the single conting size 5.3 Mbp, GC content 55.43%, and 4500 protein-coding genes. The genome analysis revealed the various gene clusters associated with virulence, antibiotic resistance, type VI secretion system (T6SS), and many stress tolerant genes, which may provide important insight for adapting to changing environment conditions. Moreover, different metabolic pathways were identified that potentially contribute to environmental survival. Various hydrolytic enzymes and motility functions equipped the strain S-16 as an active colonizer. The genome analysis confirms the presence of carbohydrate-active enzymes (CAZymes), and non-enzymatic carbohydrate-binding modules (CBMs) involved in the hydrolysis of complex carbohydrate polymers. Moreover, the pan-genome analysis provides detailed information about the core genes and shared genes with the closest related Enterobacter species. The present study is the first report showing the presence of YdhE/NorM in Enterobacter spp. Thus, the elucidation of genome sequencing will increase our understanding of the pathogenic nature of environmental isolate, supporting the One Health Concept.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, Pin 835215, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Shweta Shikha
- Shyama Prasad Mukherjee University, Ranchi, Jharkhand, India
| | - Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, Pin 835215, India.
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| |
Collapse
|
22
|
Wu S, Ma K, Feng Y, Zong Z. Resistance to aztreonam-avibactam due to a mutation of SHV-12 in Enterobacter. Ann Clin Microbiol Antimicrob 2023; 22:49. [PMID: 37365592 PMCID: PMC10294450 DOI: 10.1186/s12941-023-00605-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Aztreonam-avibactam is an important option against Enterobacterales producing metallo-β-lactamases (MBLs). We obtained an aztreonam-avibactam-resistant mutant of an MBL-producing Enterobacter mori strain by induced mutagenesis. Genome sequencing revealed an Arg244Gly (Ambler position) substitution of SHV-12 β-lactamase in the mutant. Cloning and susceptibility testing verified that the SHV-12 Arg244Gly substitution led to significantly reduced susceptibility to aztreonam-avibactam (MIC, from 0.5/4 to 4/4 mg/L) but with the loss of resistance to cephalosporins as tradeoff. Arg244 of SHV involves in the binding of avibactam by forming an arginine-mediated salt bridge and is a critical residue to interact with β-lactams. Molecular modeling analysis demonstrated that the Arg244Gly substitution hindered the binding of avibactam to SHV with higher binding energy (from - 5.24 to -4.32 kcal/mol) and elevated inhibition constant Ki (from 143.96 to 677.37 µM) to indicate lower affinity. This substitution, however, resulted in loss of resistance to cephalosporins as tradeoff by impairing substrate binding. This represents a new aztreonam-avibactam resistance mechanism.
Collapse
Affiliation(s)
- Shikai Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Ke Ma
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Wu S, He Y, Feng Y, Zong Z. Enterobacter pseudoroggenkampii sp. nov. carrying quinolone-resistant gene qnrE recovered from clinical samples in China. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01833-0. [PMID: 37101063 DOI: 10.1007/s10482-023-01833-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Two Enterobacter strains 155092T and 170,225 were isolated from clinical samples, pus and sputum, from two hospitalised patients separately, in China. Preliminary identification using Vitek II microbiology system assigned the strains to the Enterobacter cloacae complex. The two strains were subjected to genome sequencing and genome-based taxonomy analysis with type strains of all Enterobacter species and those within closely related genera Huaxiibacter, Leclercia, Lelliottia, and Pseudoenterobacter. The average nucleotide identity (ANI) and in silico DNA-DNA hybridisation (isDDH) values between the two strains were 98.35% and 89.4%, respectively, suggesting that they belong to one species. The two strains had the highest ANI (95.02% and 95.04%) with the type strain of Enterobacter quasiroggenkampii. Their highest isDDH values, also seen with the type strain of E. quasiroggenkampii, were 59.5% and 59.8%, well below the 70% cutoff to define species. The two strains were also characterised for morphological and biochemical features by a set of experiments and observations. The abilities of metabolising gelatin and L-rhamnose could differentiate the two strains from all currently known Enterobacter species. Collectively, the two strains represent a novel Enterobacter species, for which we propose Enterobacter pseudoroggenkampii sp. nov. as the species name. The type strain of this novel species is155092T (= GDMCC 1.3415T = JCM 35646T). The two strains also carried multiple virulence factors comprising aerobactin-encoding iucABCD-iutA and salmochelin-encoding iroN. The two strains also had chromosomally located qnrE, a gene associated with reduced susceptibility to quinolones, suggesting that this species is a potential reservoir of qnrE genes.
Collapse
Affiliation(s)
- Shikai Wu
- Center of Infectious Diseases, West China Hospital (Huaxi), Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yanling He
- Center of Infectious Diseases, West China Hospital (Huaxi), Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital (Huaxi), Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| |
Collapse
|
24
|
Carson DV, Patiño M, Elashal HE, Cartagena AJ, Zhang Y, Whitley ME, So L, Kayser-Browne AK, Earl AM, Bhattacharyya RP, Link AJ. Cloacaenodin, an Antimicrobial Lasso Peptide with Activity against Enterobacter. ACS Infect Dis 2023; 9:111-121. [PMID: 36519726 PMCID: PMC10038104 DOI: 10.1021/acsinfecdis.2c00446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using genome mining and heterologous expression, we report the discovery and production of a new antimicrobial lasso peptide from species related to the Enterobacter cloacae complex. Using NMR and mass spectrometric analysis, we show that this lasso peptide, named cloacaenodin, employs a threaded lasso fold which imparts proteolytic resistance that its unthreaded counterpart lacks. Cloacaenodin has selective, low micromolar, antimicrobial activity against species related to the E. cloacae complex, including species implicated in nosocomial infections and against clinical isolates of carbapenem-resistant Enterobacterales. We further used site-directed mutagenesis to probe the importance of specific residues to the peptide's biosynthesis, stability, and bioactivity.
Collapse
Affiliation(s)
- Drew V. Carson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Monica Patiño
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Hader E. Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alexis Jaramillo Cartagena
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Yi Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Megan E. Whitley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Larry So
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Angelo K. Kayser-Browne
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Roby P. Bhattacharyya
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Chen Z, Luo J, Jia M, Chai Y, Bao Y. Polygonatum sibiricum saponin Exerts Beneficial Hypoglycemic Effects in Type 2 Diabetes Mice by Improving Hepatic Insulin Resistance and Glycogen Synthesis-Related Proteins. Nutrients 2022; 14:5222. [PMID: 36558381 PMCID: PMC9786127 DOI: 10.3390/nu14245222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a systemic metabolic disorder characterized by insulin deficiency and insulin resistance. Recently, it has become a significant threat to public health. Polygonatum sibiricum saponin (PSS) has potential hypoglycemic effects, but its specific mechanism needs further study. In this study, PSS significantly decreased the level of blood glucose, water intake, and the organ index in diabetic mice. Meanwhile, PSS effectively reduced the content of total triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the blood, and increased the content of high-density lipoprotein cholesterol (HDL-C). This suggests that PSS could reduce the content of blood lipids and initially improve the damage of hepatocytes. We found that PSS alleviated hepatic insulin resistance, repaired islet beta cells, and enabled insulin to play its biological role normally. It also improved oral glucose tolerance and abated serum lipopolysaccharide (LPS) and glycosylated hemoglobin (HbA1c) levels in T2DM mice. Furthermore, studies have found that PSS increased the content of phosphorylated protein kinase B (AKT), thereby promoting the effect of glucose transporter 4 (GLUT-4), and activating glycogen synthase kinase 3beta (GSK-3β) and glycogen synthase (GS) proteins to promote hepatic glycogen synthesis. Finally, we found that PSS could promote the growth of beneficial bacteria such as Bifidobacterium and Lactobacillus, reduce the growth of harmful bacteria such as Enterococcus and Enterobacter, and preliminarily improve the composition of important bacteria in the intestine. These studies indicate that PSS has an excellent hypoglycemic effect, which provides a potential new treatment for T2DM and guidance for more in-depth research.
Collapse
Affiliation(s)
- Zefu Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Luo
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Mingjie Jia
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yangyang Chai
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
26
|
Ma J, Song X, Li M, Yu Z, Cheng W, Yu Z, Zhang W, Zhang Y, Shen A, Sun H, Li L. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol Res 2022; 266:127249. [DOI: 10.1016/j.micres.2022.127249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
27
|
Pot M, Reynaud Y, Couvin D, Dereeper A, Ferdinand S, Bastian S, Foucan T, Pommier JD, Valette M, Talarmin A, Guyomard-Rabenirina S, Breurec S. Emergence of a Novel Lineage and Wide Spread of a blaCTX-M-15/IncHI2/ST1 Plasmid among Nosocomial Enterobacter in Guadeloupe. Antibiotics (Basel) 2022; 11:1443. [PMID: 36290101 PMCID: PMC9598596 DOI: 10.3390/antibiotics11101443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 04/04/2024] Open
Abstract
Between April 2018 and August 2019, a total of 135 strains of Enterobacter cloacae complex (ECC) were randomly collected at the University Hospital Center of Guadeloupe to investigate the structure and diversity of the local bacterial population. These nosocomial isolates were initially identified genetically by the hsp60 typing method, which revealed the clinical relevance of E. xiangfangensis (n = 69). Overall, 57/94 of the third cephalosporin-resistant strains were characterized as extended-spectrum-β-lactamase (ESBL) producers, and their whole-genome was sequenced using Illumina technology to determine the clonal relatedness and diffusion of resistance genes. We found limited genetic diversity among sequence types (STs). ST114 (n = 13), ST1503 (n = 9), ST53 (n = 5) and ST113 (n = 4), which belong to three different Enterobacter species, were the most prevalent among the 57 ESBL producers. The blaCTXM-15 gene was the most prevalent ESBL determinant (56/57) and was in most cases associated with IncHI2/ST1 plasmid replicon carriage (36/57). To fully characterize this predominant blaCTXM-15/IncHI2/ST1 plasmid, four isolates from different lineages were also sequenced using Oxford Nanopore sequencing technology to generate long-reads. Hybrid sequence analyses confirmed the circulation of a well-conserved plasmid among ECC members. In addition, the novel ST1503 and its associated species (ECC taxon 4) were analyzed, in view of its high prevalence in nosocomial infections. These genetic observations confirmed the overall incidence of nosocomial ESBL Enterobacteriaceae infections acquired in this hospital during the study period, which was clearly higher in Guadeloupe (1.59/1000 hospitalization days) than in mainland France (0.52/1,000 hospitalization days). This project revealed issues and future challenges for the management and surveillance of nosocomial and multidrug-resistant Enterobacter in the Caribbean.
Collapse
Affiliation(s)
- Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Yann Reynaud
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Alexis Dereeper
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | - Sylvaine Bastian
- Laboratory of Clinical Microbiology, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Tania Foucan
- Operational Hygiene Team, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Jean-David Pommier
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Marc Valette
- Division of Intensive Care, University Hospital Center of Guadeloupe, 97159 Pointe-à-Pitre, France
| | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
| | | | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, 97139 Les Abymes, France
- Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, 97157 Pointe-à-Pitre, France
- INSERM, Center for Clinical Investigation 1424, 97139 Les Abymes, France
| |
Collapse
|
28
|
Han H, Wang M, Zhong R, Yi B, Schroyen M, Zhang H. Depletion of Gut Microbiota Inhibits Hepatic Lipid Accumulation in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms23169350. [PMID: 36012616 PMCID: PMC9408850 DOI: 10.3390/ijms23169350] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dysregulated lipid metabolism is a key pathology in metabolic diseases and the liver is a critical organ for lipid metabolism. The gut microbiota has been shown to regulate hepatic lipid metabolism in the host. However, the underlying mechanism by which the gut microbiota influences hepatic lipid metabolism has not been elucidated. Here, a gut microbiota depletion mouse model was constructed with an antibiotics cocktail (Abx) to study the mechanism through which intestinal microbiota regulates hepatic lipid metabolism in high-fat diet (HFD)-fed mice. Our results showed that the Abx treatment effectively eradicated the gut microbiota in these mice. Microbiota depletion reduced the body weight and fat deposition both in white adipose tissue and liver. In addition, microbiota depletion reduced serum levels of glucose, total cholesterol (TC), low-density lipoproteins (LDL), insulin, and leptin in HFD-fed mice. Importantly, the depletion of gut microbiota in HFD-fed mice inhibited excessive hepatic lipid accumulation. Mechanistically, RNA-seq results revealed that gut microbiota depletion changed the expression of hepatic genes involved in cholesterol and fatty acid metabolism, such as Cd36, Mogat1, Cyp39a1, Abcc3, and Gpat3. Moreover, gut microbiota depletion reduced the abundance of bacteria associated with abnormal metabolism and inflammation, including Lachnospiraceae, Coriobacteriaceae_UCG-002, Enterorhabdus, Faecalibaculum, and Desulfovibrio. Correlation analysis showed that there was strong association between the altered gut microbiota abundance and the serum cholesterol level. This study indicates that gut microbiota ameliorates HFD-induced hepatic lipid metabolic dysfunction, which might be associated with genes participating in cholesterol and fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, 4000 Gembloux, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
29
|
Abstract
Bacterial resistance to antibiotics threatens our progress in healthcare, modern medicine, food production and ultimately life expectancy. Antibiotic resistance is a global concern, which spreads rapidly across borders and continents due to rapid travel of people, animals and goods. Derivatives of metabolically stable pyrazole nucleus are known for their wide range of pharmacological properties, including antibacterial activities. This review highlights recent reports of pyrazole derivatives targeting different bacterial strains focusing on the drug-resistant variants. Pyrazole derivatives target different metabolic pathways of both Gram-positive and Gram-negative bacteria.
Collapse
|
30
|
Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001136. [PMID: 35118938 PMCID: PMC8941995 DOI: 10.1099/mic.0.001136] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
The polymyxin and lipopeptide classes of antibiotics are membrane-targeting drugs of last resort used to treat infections caused by multi-drug-resistant pathogens. Despite similar structures, these two antibiotic classes have distinct modes of action and clinical uses. The polymyxins target lipopolysaccharide in the membranes of most Gram-negative species and are often used to treat infections caused by carbapenem-resistant species such as Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa. By contrast, the lipopeptide daptomycin requires membrane phosphatidylglycerol for activity and is only used to treat infections caused by drug-resistant Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. However, despite having distinct targets, both antibiotic classes cause membrane disruption, are potently bactericidal in vitro and share similarities in resistance mechanisms. Furthermore, there are concerns about the efficacy of these antibiotics, and there is increasing interest in using both polymyxins and daptomycin in combination therapies to improve patient outcomes. In this review article, we will explore what is known about these distinct but structurally similar classes of antibiotics, discuss recent advances in the field and highlight remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London, SW7 2AZ, UK
| |
Collapse
|
31
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1237-1246. [DOI: 10.1093/jac/dkac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
|
32
|
Re-examining the association of AmpC variants with Enterobacter species in the context of updated taxonomy. Antimicrob Agents Chemother 2021; 65:e0159621. [PMID: 34516244 DOI: 10.1128/aac.01596-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We performed whole genome sequencing for 17 Enterobacter clinical strains and analyzed all available Enterobacter genomes and its closely-related genera (n=3,389) from NCBI. The exact origin of plasmid-borne blaCMH and blaMIR genes is Enterobacter cloacae and Enterobacter roggenkampii, respectively, while plasmid-borne blaACT genes originated from multiple other Enterobacter species including Enterobacter xiangfangensis, Enterobacter hoffmannii, and Enterobacter asburiae, Enterobacter ludwigii, and Enterobacter kobei. The genus of Enterobacter represents a large reservoir of plasmid-borne AmpC β-lactamase.
Collapse
|
33
|
Andrade BGN, Goris T, Afli H, Coutinho FH, Dávila AMR, Cuadrat RRC. Putative mobilized colistin resistance genes in the human gut microbiome. BMC Microbiol 2021; 21:220. [PMID: 34294041 PMCID: PMC8296556 DOI: 10.1186/s12866-021-02281-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The high incidence of bacterial genes that confer resistance to last-resort antibiotics, such as colistin, caused by mobilized colistin resistance (mcr) genes, poses an unprecedented threat to human health. Understanding the spread, evolution, and distribution of such genes among human populations will help in the development of strategies to diminish their occurrence. To tackle this problem, we investigated the distribution and prevalence of potential mcr genes in the human gut microbiome using a set of bioinformatics tools to screen the Unified Human Gastrointestinal Genome (UHGG) collection for the presence, synteny and phylogeny of putative mcr genes, and co-located antibiotic resistance genes. RESULTS A total of 2079 antibiotic resistance genes (ARGs) were classified as mcr genes in 2046 metagenome assembled genomes (MAGs), distributed across 1596 individuals from 41 countries, of which 215 were identified in plasmidial contigs. The genera that presented the largest number of mcr-like genes were Suterella and Parasuterella. Other potential pathogens carrying mcr genes belonged to the genus Vibrio, Escherichia and Campylobacter. Finally, we identified a total of 22,746 ARGs belonging to 21 different classes in the same 2046 MAGs, suggesting multi-resistance potential in the corresponding bacterial strains, increasing the concern of ARGs impact in the clinical settings. CONCLUSION This study uncovers the diversity of mcr-like genes in the human gut microbiome. We demonstrated the cosmopolitan distribution of these genes in individuals worldwide and the co-presence of other antibiotic resistance genes, including Extended-spectrum Beta-Lactamases (ESBL). Also, we described mcr-like genes fused to a PAP2-like domain in S. wadsworthensis. These novel sequences increase our knowledge about the diversity and evolution of mcr-like genes. Future research should focus on activity, genetic mobility and a potential colistin resistance in the corresponding strains to experimentally validate those findings.
Collapse
Affiliation(s)
- Bruno G N Andrade
- Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - Tobias Goris
- Department of Molecular Toxicology, Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke - DIfE, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Haithem Afli
- Department of Computer Science, Munster Technological University, MTU/ADAPT, Cork, Ireland
| | - Felipe H Coutinho
- Departamento de producción vegetal y microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Alberto M R Dávila
- Computational and Systems Biology Laboratory and Graduate Program on Biodiversity and Health, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Rafael R C Cuadrat
- Bioinformatics and Omics Data Science, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), Berlin, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
34
|
Kim JS, Kwon MJ, Jeon SJ, Park SH, Han S, Park SH, Yu JK, Kang M, Jang JI, Lee JH, Hwang YO, Oh YH. Identification of a carbapenem-resistant Enterobacter kobei clinical strain co-harbouring mcr-4.3 and mcr-9 in Republic of Korea. J Glob Antimicrob Resist 2021; 26:114-116. [PMID: 34133988 DOI: 10.1016/j.jgar.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jin Seok Kim
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea.
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Su Jin Jeon
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Sang-Hun Park
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Sunghee Han
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - So Hyeon Park
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Jin Kyung Yu
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Minji Kang
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Jung Im Jang
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Jib-Ho Lee
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Young Ok Hwang
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| | - Young-Hee Oh
- Bacteria Team, Seoul Metropolitan Government Research Institute of Public Health and Environment, Gyeonggi-do, Republic of Korea
| |
Collapse
|