1
|
LeJeune JT. Predicting and preventing the next viral disease transmitted through food. Food Microbiol 2025; 130:104782. [PMID: 40210399 DOI: 10.1016/j.fm.2025.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The ability of viruses to infect humans following oral exposure and disrupt normal physiological or anatomical functions is a hallmark of their potential to cause foodborne disease. While the etiology of the vast majority of foodborne diseases remains undetermined, viruses are often identified as the culprit when the cause is ascertained. Many undiagnosed causes of foodborne illnesses, especially sporadic cases, may go undetected or be caused by yet-to-be-identified viruses. The potential for food to become a transmission vehicle for viral diseases that are not typically acquired following ingestion may be described within the epidemiological paradigm. This model considers the characteristics and interactions of the host (the human), the agent (the virus), and the environment (the food, the food producing animal or the food production environment). Importantly, these factors are not static and evolution of viruses, transformations in agrifood systems, and changes in environmental conditions and human health and behaviour may contribute to increased pathogenicity, virulence, or exposure. In the context of determining the potential for additional viruses to emerge as important causes of foodborne disease, factors that contribute to hazard characterization (e.g., receptor affinity and distribution) and exposure assessment (e.g., prevalence in food animals and food hygiene) are reviewed. Although it is not possible to predict the type, the timing nor the location of the emergence of the next important cause of foodborne viral disease, the deployment and implementation of actions and behaviours related to personal and food hygiene, sanitation, and safe food handling practices can reduce the likelihood and impact of known and emergent viruses on the safety of the food supply and human health.
Collapse
Affiliation(s)
- Jeffrey T LeJeune
- Agrifood Systems and Food Safety Division (ESF), Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153, Rome, Italy.
| |
Collapse
|
2
|
Wu T, Liu Y, Zhou S, Li J, Sun G, Gu B, Wang C. Wheat Germ Agglutinin-Modified "Three-in-One" Multifunctional Probe Driven Broad-Spectrum and Flexible Immunochromatographic Diagnosis of viruses With High Sensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406053. [PMID: 39439187 DOI: 10.1002/smll.202406053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The conventional lateral flow assay (LFA) fails to the demands for the accurate screening of viruses as a result of its low sensitivity of colorimetric signal output and poor universality limited by antibody pairs. Here, a magnetically assisted dual-signal output LFA platform is developed for the ultrasensitive, universal, and flexible detection of viruses. A "three-in-one" multifunctional probe (MAuDQD) is prepared using a 180 nm Fe3O4 core to load numerous Au nanoparticles (NPs) and two layers of QDs, which can substantially improve the sensitivity of LFA through coupling with the effects of magnetic enrichment and colorimetric/fluorescent enhancement. Wheat germ agglutinin (WGA)-modified MAuDQD attained the broad-spectrum capture viral membrane proteins and the colorimetric/fluorescent dual-mode detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monkeypox virus (MPXV) on the LFA strip. In the colorimetric mode, the target viruses detected directly, with the visual sensitivity reaching 0.1-0.5 ng mL-1 and the fluorescent mode supported quantitative analysis of SARS-CoV-2/MPXV with limits of detection decreasing to pg mL-1 level. Practicability of the MAuDQD@WGA-LFA is verified through the detection of 33 real clinical samples, showing the proposed assay has a great potential to become a sensitive, accurate, and universal tool for on-site monitoring of viral infections.
Collapse
Affiliation(s)
- Ting Wu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Yun Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Sihai Zhou
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Chongwen Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
3
|
Maryanchik SV, Borovikova SE, Ivanova AO, Trofimov VV, Bagrova OE, Frolova AS, Mityaeva ON, Volchkov PY, Deviatkin AA. Antivirotics based on defective interfering particles: emerging concepts and challenges. Front Cell Infect Microbiol 2025; 15:1436026. [PMID: 40066067 PMCID: PMC11891348 DOI: 10.3389/fcimb.2025.1436026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/28/2025] [Indexed: 05/13/2025] Open
Abstract
Viruses are obligate parasites, that use the host's internal metabolic systems for their own reproduction. This complicates the search for molecular targets to prevent the spread of viral infection without disrupting the vital functions of human cells. Defective interfering particles (DIPs) are natural competitors of viruses for important resources of viral reproduction. DIPs emerge during infection, originate from the normal viral replication process and inhibit its progression, making them an interesting candidate for antiviral therapy. Here we describe the biology of DIPs, advances in DIP-based antiviral technology, analyze their therapeutic potential and provide a systemic overview of existing preventive and therapeutic antiviral strategies.
Collapse
Affiliation(s)
- S. V. Maryanchik
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - S. E. Borovikova
- Institute of Gene Biology Russian Academy of Sciences (RAS), Moscow, Russia
| | - A. O. Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - O. E. Bagrova
- State Virus Collection Laboratory, Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Frolova
- Sechenov First Moscow State Medical University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | - O. N. Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - P. Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The Moscow Clinical Scientific Center (MCSC) named after A. S. Loginov, Moscow, Russia
| | - A. A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| |
Collapse
|
4
|
Hong SJ, Resnick SJ, Iketani S, Cha JW, Albert BA, Fazekas CT, Chang CW, Liu H, Dagan S, Abagyan MR, Fajtová P, Culbertson B, Brace B, Reddem ER, Forouhar F, Glickman JF, Balkovec JM, Stockwell BR, Shapiro L, O'Donoghue AJ, Sabo Y, Freundlich JS, Ho DD, Chavez A. A multiplex method for rapidly identifying viral protease inhibitors. Mol Syst Biol 2025; 21:158-172. [PMID: 39762652 PMCID: PMC11790949 DOI: 10.1038/s44320-024-00082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 02/05/2025] Open
Abstract
With current treatments addressing only a fraction of pathogens and new viral threats constantly evolving, there is a critical need to expand our existing therapeutic arsenal. To speed the rate of discovery and better prepare against future threats, we establish a high-throughput platform capable of screening compounds against 40 diverse viral proteases simultaneously. This multiplex approach is enabled by using cellular biosensors of viral protease activity combined with DNA-barcoding technology, as well as several design innovations that increase assay sensitivity and correct for plate-to-plate variation. Among >100,000 compound-target interactions explored within our initial screen, a series of broad-acting inhibitors against coronavirus proteases were uncovered and validated through orthogonal assays. A medicinal chemistry campaign was performed to improve one of the inhibitor's potency while maintaining its broad activity. This work highlights the power of multiplex screening to efficiently explore chemical space at a fraction of the time and costs of previous approaches.
Collapse
Affiliation(s)
- Seo Jung Hong
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Samuel J Resnick
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ji Won Cha
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92123, USA
| | - Benjamin Alexander Albert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92123, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christopher T Fazekas
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92123, USA
| | - Ching-Wen Chang
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Hengrui Liu
- Department of Biological Sciences, Department of Chemistry, and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Shlomi Dagan
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - Michael R Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bruce Culbertson
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Brooklyn Brace
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Eswar R Reddem
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Farhad Forouhar
- Department of Pathology and Cell Biology and Columbia University Digestive and Liver Disease Research Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, 10032, USA
| | - J Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, NY, 10065, USA
| | - James M Balkovec
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, and Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology and Columbia University Digestive and Liver Disease Research Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, 10032, USA
| | - Lawrence Shapiro
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yosef Sabo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92123, USA.
| |
Collapse
|
5
|
Okesanya OJ, Amisu BO, Adigun OA, Ahmed MM, Agboola AO, Kab T, Eshun G, Ukoaka BM, Oso TA, Ogaya JB, Lucero-Prisno DE. Addressing the emerging threat of Oropouche virus: implications and public health responses for healthcare systems. Trop Dis Travel Med Vaccines 2025; 11:1. [PMID: 39748388 PMCID: PMC11694362 DOI: 10.1186/s40794-024-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Oropouche fever is an increasingly significant health concern in tropical and subtropical areas of South and Central America, and is primarily spread by midge vectors. The Oropouche virus (OROV) was first identified in 1955 and has been responsible for numerous outbreaks, particularly in urban environments. Despite its prevalence, the disease is often under-reported, making it difficult to fully understand its impact. OROV typically causes febrile illness characterized by symptoms such as headaches, muscle pain, and, occasionally, neurological issues such as meningitis. The ability of the virus to thrive in both forested and urban areas has raised concerns regarding its potential spread to new regions, particularly in the context of climate change. This paper delves into the epidemiology, clinical features, and transmission patterns of OROV, shedding light on the difficulties in diagnosing and managing the disease. The absence of specific treatments and vaccines highlights the urgent need for continued research and development of targeted public health strategies. Advancements in molecular diagnostics and vector control strategies can mitigate Oropouche fever's impact. However, a comprehensive public health approach involving increased surveillance, public education, and cross-border collaboration is needed, especially as the global climate crisis may expand vector habitats, posing risks to previously unaffected regions.
Collapse
Affiliation(s)
- Olalekan John Okesanya
- Faculty of Medicine, Department of Public Health and Maritime Transport, University of Thessaly, Volos, Greece
- Department of Medical Laboratory Science, Neuropsychiatric Hospital, Abeokuta, Nigeria
| | | | | | | | | | - Tolga Kab
- Faculty of Medicine, Department of Medicine, Istinye University, Istanbul, Turkey
| | - Gilbert Eshun
- Seventh Day Adventist Hospital, Asamang, Ghana
- School of Veterinary Studies and the Roslin Institute, The Royal (Dick), University of Edinburgh, Midlothian, UK
| | | | - Tolutope Adebimpe Oso
- Department of Medical Laboratory Science, Neuropsychiatric Hospital, Abeokuta, Nigeria
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Institute of Health Sciences and Nursing, Far Eastern University, Manila, Philippines
- Center for University Research, University of Makati, Makati City, Philippines
| | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Leyte, Philippines
- Research and Development Office, Biliran Province State University, Biliran, Philippines
| |
Collapse
|
6
|
George Pryzdial EL, Perrier JR, Rashid MU, West HE, Sutherland MR. Viral coagulation: pushing the envelope. J Thromb Haemost 2024; 22:3366-3382. [PMID: 39260743 DOI: 10.1016/j.jtha.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Many virus types affect the blood clotting system with correlations to pathology that range widely from thrombosis to hemorrhage linking to inflammation. Here we overview the intricate crosstalk induced by infection between proteins on the virus encoded by either the host or virus genomes, coagulation proteins, platelets, leukocytes, and endothelial cells. For blood-borne viruses with an outer covering acquired from the host cell, the envelope, a key player may be the cell-derived trigger of coagulation on the virus surface, tissue factor (TF). TF is a multifunctional transmembrane cofactor that accelerates factor (F)VIIa-dependent activation of FX to FXa, leading to clot formation. However, the nascent TF/FVIIa/FXa complex also facilitates G protein-coupled modulation of cells via protease-activated receptor 2. As a viral envelope constituent, TF can bypass the physiological modes of regulation, thereby initiating the activation of neighboring platelets, leukocytes, and endothelial cells. A thromboinflammatory environment is predicted due to feedback amplification in response to cellular release of cytokines, procoagulant proteins, neutrophil extracellular traps, and stimulus-induced accessibility of adhesive receptors, resulting in cellular aggregates. The pathobiological effects of thromboinflammation ultimately contribute to innate and adaptive immunity for viral clearance. In contrast, the preceding stages of viral infection may be enhanced via the TF-protease axis.
Collapse
Affiliation(s)
- Edward Louis George Pryzdial
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.
| | - John Ruggles Perrier
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Mahamud-Ur Rashid
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Henry Euan West
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Michael Ross Sutherland
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Tharanga S, Ünlü ES, Hu Y, Sjaugi MF, Çelik MA, Hekimoğlu H, Miotto O, Öncel MM, Khan AM. DiMA: sequence diversity dynamics analyser for viruses. Brief Bioinform 2024; 26:bbae607. [PMID: 39592151 PMCID: PMC11596295 DOI: 10.1093/bib/bbae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Sequence diversity is one of the major challenges in the design of diagnostic, prophylactic, and therapeutic interventions against viruses. DiMA is a novel tool that is big data-ready and designed to facilitate the dissection of sequence diversity dynamics for viruses. DiMA stands out from other diversity analysis tools by offering various unique features. DiMA provides a quantitative overview of sequence (DNA/RNA/protein) diversity by use of Shannon's entropy corrected for size bias, applied via a user-defined k-mer sliding window to an input alignment file, and each k-mer position is dissected to various diversity motifs. The motifs are defined based on the probability of distinct sequences at a given k-mer alignment position, whereby an index is the predominant sequence, while all the others are (total) variants to the index. The total variants are sub-classified into the major (most common) variant, minor variants (occurring more than once and of incidence lower than the major), and the unique (singleton) variants. DiMA allows user-defined, sequence metadata enrichment for analyses of the motifs. The application of DiMA was demonstrated for the alignment data of the relatively conserved Spike protein (2,106,985 sequences) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the relatively highly diverse pol gene (2637) of the human immunodeficiency virus-1 (HIV-1). The tool is publicly available as a web server (https://dima.bezmialem.edu.tr), as a Python library (via PyPi) and as a command line client (via GitHub).
Collapse
Affiliation(s)
- Shan Tharanga
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
| | - Eyyüb Selim Ünlü
- Istanbul Faculty of Medicine, Istanbul University, Turgut Özal Millet St, Topkapi, Istanbul 34093, Türkiye
- Genome Surveillance Unit, Wellcome Sanger Institute, Mill Ln, Hinxton, Saffron Walden CB10 1SA, United Kingdom
| | - Yongli Hu
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Muhammad Farhan Sjaugi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
| | - Muhammet A Çelik
- Celik Sarayı, Yeni Elektrik Santral St. No:29/2, Meram, Konya 42090, Türkiye
| | - Hilal Hekimoğlu
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
| | - Olivo Miotto
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road, Old Road Campus, Oxford OX3 7LF, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd., Ratchathewi District, Bangkok 10400, Thailand
| | - Muhammed Miran Öncel
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, MAEPS Building, Jalan MAEPS Perdana, Serdang, Kuala Lumpur 50490, Malaysia
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Ali Ihsan Kalmaz St., No.10 Beykoz, Istanbul 34820, Türkiye
- College of Computing and Information Technology, University of Doha for Science and Technology, Jelaiah Street, Duhail North, Doha, Qatar
| |
Collapse
|
8
|
Casanova JL, Abel L. The Microbe, the Infection Enigma, and the Host. Annu Rev Microbiol 2024; 78:103-124. [PMID: 38986133 PMCID: PMC11956784 DOI: 10.1146/annurev-micro-092123-022855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Human infectious diseases are unique in that the discovery of their environmental trigger, the microbe, was sufficient to drive the development of extraordinarily effective principles and tools for their prevention or cure. This unique medical prowess has outpaced, and perhaps even hindered, the development of scientific progress of equal magnitude in the biological understanding of infectious diseases. Indeed, the hope kindled by the germ theory of disease was rapidly subdued by the infection enigma, in need of a host solution, when it was realized that most individuals infected with most infectious agents continue to do well. The root causes of disease and death in the unhappy few remained unclear. While canonical approaches in vitro (cellular microbiology), in vivo (animal models), and in natura (clinical studies) analyzed the consequences of infection with a microbe, considered to be the cause of disease, in cells, tissues, or organisms seen as a uniform host, alternative approaches searched for preexisting causes of disease, particularly human genetic and immunological determinants in populations of diverse individuals infected with a trigger microbe.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Laurent Abel
- Paris Cité University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| |
Collapse
|
9
|
Wang C, Yu Q, Zheng S, Shen W, Li J, Xu C, Gu B. Phenylboronic Acid-Modified Membrane-Like Magnetic Quantum Dots Enable the Ultrasensitive and Broad-Spectrum Detection of Viruses by Lateral Flow Immunoassay. ACS NANO 2024; 18:16752-16765. [PMID: 38901038 DOI: 10.1021/acsnano.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Although lateral flow immunochromatographic assay (LFIA) is an effective point-of-care testing technology, it still cannot achieve broad-spectrum and ultrasensitive detection of viruses. Herein, we propose a multiplex LFIA platform using a two-dimensional graphene oxide (GO)-based magnetic fluorescent nanofilm (GF@DQD) as a multifunctional probe and 4-aminophenylboronic acid (APBA) as a broad-spectrum recognition molecule for viral glycoprotein detection. GF@DQD-APBA with enhanced magnetic/fluorescence properties and universal capture ability for multiple viruses was easily prepared through the electrostatic adsorption of one layer of density-controlled Fe3O4 nanoparticles (NPs) and thousands of small CdSe/ZnS-MPA quantum dots (QDs) on a monolayer GO sheet followed by chemical coupling with APBA on the QD surface. The GF@DQD-APBA probe enabled the universal capture and specific determination of different target viruses on the test strip through an arbitrary combination with the antibody-modified LFIA strip, thus greatly improving detection efficiency and reducing the cost and difficulty of multiplex LFIA for viruses. The proposed technique can simultaneously and sensitively diagnose three newly emerged viruses within 20 min with detection limits down to the pg/mL level. The excellent practicability of GF@DQD-APBA-LFIA was also demonstrated in the detection of 34 clinical specimens positive for SARS-CoV-2, revealing its potential for epidemic control and on-site viral detection.
Collapse
Affiliation(s)
- Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Qing Yu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Shuai Zheng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Wanzhu Shen
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Changyue Xu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China
| |
Collapse
|
10
|
Sattar AA, Qaiser A, Kausar H, Aqil S, Mudassar R, Manzoor S, Ashraf J. The potential of IFN-λ, IL-32γ, IL-6, and IL-22 as safeguards against human viruses: a systematic review and a meta-analysis. Front Immunol 2024; 15:1303115. [PMID: 38420119 PMCID: PMC10899505 DOI: 10.3389/fimmu.2024.1303115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Many studies have investigated the antiviral activity of cytokines, including interleukin-6 (IL-6), interleukin-22 (IL-22), interleukin-32 gamma (IL-32γ), and interferon-lambda (IFN-λ) in diverse populations. This study aims to evaluate the role of these cytokines in inhibition of various human and animal viruses when administered exogenously. A comprehensive meta-analysis and systematic review were conducted on all the relevant studies from three databases. Standard mean differences (SMDs) of overall viral inhibition were used to generate the difference in the antiviral efficacy of these cytokines between control and experimental groups. A total of 4,618 abstracts for IL-6, 3,517 abstracts for IL-22, 2,160 abstracts for IL-32γ, and 1,026 abstracts for IFN-λ were identified, and 7, 4, 8, and 35 studies were included, respectively, for each cytokine. IFN-λ (SMD = 0.9540; 95% CI: 0.69-0.22) and IL-32γ (SMD = 0.459; 95% CI: 0.02-0.90) showed the highest influence followed by IL-6 (SMD = 0.456; CI: -0.04-0.95) and IL-22 (SMD = 0.244; 95% CI: -0.33-0.81). None of the cytokines represented heterogeneity (tau² > 0), but only IFN-λ indicated the funnel plot asymmetry (p = 0.0097). Results also indicated that IFN-λ and IL-32γ are more potent antivirals than IL-6 and IL-22. The collective findings of this study emphasize that exogenously administered pro-inflammatory cytokines, specifically IFN-λ and IL-32, exhibit a significant antiviral activity, thereby underscoring them as potent antiviral agents. Nonetheless, additional research is required to ascertain their clinical utility and potential for integration into combinatorial therapeutic regimens against viral infections.
Collapse
Affiliation(s)
- Areej A Sattar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Ariba Qaiser
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Hina Kausar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Sarah Aqil
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Rida Mudassar
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Sobia Manzoor
- Molecular Virology Lab, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Javed Ashraf
- Department of Community Dentistry, Islamabad Medical and Dental College (IMDC), Islamabad, Pakistan
- Institute of Dentistry, University of Eastern Finland (UEF), Kuopio, Finland
| |
Collapse
|
11
|
Silcocks M, Dunstan SJ. Parallel signatures of Mycobacterium tuberculosis and human Y-chromosome phylogeography support the Two Layer model of East Asian population history. Commun Biol 2023; 6:1037. [PMID: 37833496 PMCID: PMC10575886 DOI: 10.1038/s42003-023-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The Two Layer hypothesis is fast becoming the favoured narrative describing East Asian population history. Under this model, hunter-gatherer groups who initially peopled East Asia via a route south of the Himalayas were assimilated by agriculturalist migrants who arrived via a northern route across Eurasia. A lack of ancient samples from tropical East Asia limits the resolution of this model. We consider insight afforded by patterns of variation within the human pathogen Mycobacterium tuberculosis (Mtb) by analysing its phylogeographic signatures jointly with the human Y-chromosome. We demonstrate the Y-chromosome lineages enriched in the traditionally hunter-gatherer groups associated with East Asia's first layer of peopling to display deep roots, low long-term effective population size, and diversity patterns consistent with a southern entry route. These characteristics mirror those of the evolutionarily ancient Mtb lineage 1. The remaining East Asian Y-chromosome lineage is almost entirely absent from traditionally hunter-gatherer groups and displays spatial and temporal characteristics which are incompatible with a southern entry route, and which link it to the development of agriculture in modern-day China. These characteristics mirror those of the evolutionarily modern Mtb lineage 2. This model paves the way for novel host-pathogen coevolutionary research hypotheses in East Asia.
Collapse
Affiliation(s)
- Matthew Silcocks
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - Sarah J Dunstan
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| |
Collapse
|
12
|
Isibor PO, Onwaeze OO, Kayode-Edwards II, Agbontaen DO, Ifebem-Ezima IAM, Bilewu O, Onuselogu C, Akinniyi AP, Obafemi YD, Oniha MI. Investigating and combatting the key drivers of viral zoonoses in Africa: an analysis of eight epidemics. BRAZ J BIOL 2023; 84:e270857. [PMID: 37531478 DOI: 10.1590/1519-6984.270857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/02/2023] [Indexed: 08/04/2023] Open
Abstract
Investigating the interplay of factors that result in a viral zoonotic outbreak is difficult, though it is increasingly important. As anthropogenic influences shift the delicate balance of ecosystems, new zoonoses emerge in humans. Sub-Saharan Africa is a notable hotspot for zoonotic disease due to abundant competent mammalian reservoir hosts. Furthermore, poverty, corruption, and an overreliance on natural resources play considerable roles in depleting biological resources, exacerbating the population's susceptibility. Unsurprisingly, viral zoonoses have emerged in Africa, including HIV/AIDS, Ebola, Avian influenza, Lassa fever, Zika, and Monkeypox. These diseases are among the principal causes of death in endemic areas. Though typically distinct in their manifestations, viral zoonoses are connected by underlying, definitive factors. This review summarises vital findings on viral zoonoses in Africa using nine notable case studies as a benchmark for future studies. We discuss the importance of ecological recuperation and protection as a central strategy to control zoonotic diseases. Emphasis was made on moderating key drivers of zoonotic diseases to forestall future pandemics. This is in conjunction with attempts to redirect efforts from reactive to pre-emptive through a multidisciplinary "one health" approach.
Collapse
Affiliation(s)
- P O Isibor
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O O Onwaeze
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - I I Kayode-Edwards
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - D O Agbontaen
- University of South Wales, Department of Public Health, Pontypridd, United Kingdom
| | - I-A M Ifebem-Ezima
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - O Bilewu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - C Onuselogu
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - A P Akinniyi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - Y D Obafemi
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| | - M I Oniha
- Covenant University, Department of Biological Sciences, Ota, Ogun State, Nigeria
| |
Collapse
|
13
|
da Costa VG, Gomes AJC, Bittar C, Geraldini DB, Previdelli da Conceição PJ, Cabral ÁS, Carvalho T, Biselli JM, Provazzi PJS, Campos GRF, Sanches PRDS, Costa PI, Nogueira ML, Araujo JP, Spilki FR, Calmon MF, Rahal P. Burden of Influenza and Respiratory Syncytial Viruses in Suspected COVID-19 Patients: A Cross-Sectional and Meta-Analysis Study. Viruses 2023; 15:665. [PMID: 36992374 PMCID: PMC10055802 DOI: 10.3390/v15030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Non-SARS-CoV-2 respiratory viral infections, such as influenza virus (FluV) and human respiratory syncytial virus (RSV), have contributed considerably to the burden of infectious diseases in the non-COVID-19 era. While the rates of co-infection in SARS-CoV-2-positive group (SCPG) patients have been determined, the burden of other respiratory viruses in the SARS-CoV-2-negative group (SCNG) remains unclear. Here, we conducted a cross-sectional study (São José do Rio Preto county, Brazil), and we collected our data using a meta-analysis to evaluate the pooled prevalence of FluV and RSV among SCNG patients. Out of the 901 patients suspected of COVID-19, our molecular results showed positivity of FluV and RSV in the SCNG was 2% (15/733) and 0.27% (2/733), respectively. Co-infection with SARS-CoV-2 and FluV, or RSV, was identified in 1.7% of the patients (3/168). Following our meta-analysis, 28 studies were selected (n = 114,318 suspected COVID-19 patients), with a pooled prevalence of 4% (95% CI: 3-6) for FluV and 2% (95% CI: 1-3) for RSV among SCNG patients were observed. Interestingly, FluV positivity in the SCNG was four times higher (OR = 4, 95% CI: 3.6-5.4, p < 0.01) than in the SCPG. Similarly, RSV positivity was significantly associated with SCNG patients (OR = 2.9, 95% CI: 2-4, p < 0.01). For subgroup analysis, cold-like symptoms, including fever, cough, sore throat, headache, myalgia, diarrhea, and nausea/vomiting, were positively associated (p < 0.05) with the SCPG. In conclusion, these results show that the pooled prevalence of FluV and RSV were significantly higher in the SCNG than in the SCPG during the early phase of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Vivaldo Gomes da Costa
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Ana Júlia Chaves Gomes
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Cíntia Bittar
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Dayla Bott Geraldini
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Pâmela Jóyce Previdelli da Conceição
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Ágata Silva Cabral
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Tamara Carvalho
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Joice Matos Biselli
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Paola Jocelan Scarin Provazzi
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Guilherme Rodrigues Fernandes Campos
- Laboratório de Pesquisas em Virologia (LPV), Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - Paulo Ricardo da Silva Sanches
- Laboratório de Virologia Molecular, Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas (UNESP), Araraquara 14800-903, SP, Brazil
| | - Paulo Inácio Costa
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas (UNESP), Araraquara 14801-360, SP, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, SP, Brazil
| | - João Pessoa Araujo
- Instituto de Biotecnologia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu 18607-440, SP, Brazil
| | - Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo 93525-075, RS, Brazil
| | - Marília Freitas Calmon
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|