1
|
Totter E, von Einsiedel E, Regazzoni L, Schuerle S. Paving the way for bacteria-based drug delivery: biohybrid microrobots emerging from microrobotics and synthetic biology. Adv Drug Deliv Rev 2025; 221:115577. [PMID: 40250568 DOI: 10.1016/j.addr.2025.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Advances in microrobotics and synthetic biology are paving the way for innovative solutions to long-standing challenges in drug delivery. Both fields have independently worked on engineering bacteria as a therapeutic system, focusing on enhancing propulsion, cargo delivery, detection, and biocompatibility. Bacteria, with their inherent adaptability and functional versatility, serve as an ideal foundation for these efforts, enabling them to navigate complex biological environments such as the human body. This review explores the convergence of microrobotics and synthetic biology, which has catalysed the development of biohybrid bacterial microrobots that integrate the strengths of both disciplines. By incorporating external control modalities - such as light, ultrasound, and magnetic fields - these hybrid systems address the limitations of purely microrobotic or biological approaches, offering new opportunities to enhance precision and efficacy in targeted therapies. However, realising the full potential of biohybrid bacterial microrobots requires overcoming critical challenges, such as ensuring compatibility between biological and synthetic components, scaling manufacturing processes, and defining regulatory pathways tailored to living therapeutics. Addressing these hurdles through joint, interdisciplinary research efforts, can unlock the transformative possibilities of these systems in modern medicine.
Collapse
Affiliation(s)
- Elena Totter
- ETH Zurich, Institute of Translational Medicine, Gloriastrasse 37/39, 8092 Zurich, Switzerland
| | - Emilie von Einsiedel
- ETH Zurich, Institute of Translational Medicine, Gloriastrasse 37/39, 8092 Zurich, Switzerland
| | - Lisa Regazzoni
- ETH Zurich, Institute of Translational Medicine, Gloriastrasse 37/39, 8092 Zurich, Switzerland
| | - Simone Schuerle
- ETH Zurich, Institute of Translational Medicine, Gloriastrasse 37/39, 8092 Zurich, Switzerland.
| |
Collapse
|
2
|
Cooper KG, Kari L, Chong A, Tandon N, Doran K, Gomes Da Silva L, Cockrell DC, Baylink A, Steele-Mortimer O. HilD-regulated chemotaxis proteins contribute to Salmonella Typhimurium colonization in the gut. mBio 2025; 16:e0039025. [PMID: 39998229 PMCID: PMC11980550 DOI: 10.1128/mbio.00390-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
In the enteric pathogen Salmonella Typhimurium, invasion and motility are coordinated by HilD, a master regulator that activates expression of genes encoding the type III secretion system 1 and some motility genes, including the chemotaxis gene mcpC. Previously, we have shown that McpC induces smooth swimming, which is important for type III secretion system 1-dependent invasion of epithelial cells. Here, we have studied another Salmonella-specific chemotaxis gene, mcpA, and demonstrate that it is also HilD regulated. Whereas HilD induction of mcpC occurs by direct derepression of H-NS, mcpA induction requires neither H-NS derepression nor the flagellar-specific sigma factor fliA; instead it occurs through a HilD-SprB regulatory cascade, providing experimental confirmation of previous transcriptional regulatory mapping. McpA and McpC contain methyl-accepting domains characteristic of bacterial chemoreceptors, and McpA also contains a chemoreceptor zinc-binding (CZB) protein domain found in a variety of bacterial proteins, many of which are involved in signaling or regulatory roles. Here, we show that, in a mouse model for acute Salmonella colitis, both mcpA and mcpC deletion mutants are outcompeted by wild-type Salmonella Typhimurium in the gut lumen. CZB domains bind Zn2+ through a conserved cysteine residue and are thought to perform redox-sensing through redox-initiated alterations in zinc homeostasis. We found that the conserved cysteine is required for McpA function in the mouse gut, thus demonstrating a virulence role for the CZB Zn2+-binding site during infection. IMPORTANCE The gut-adapted bacterium Salmonella Typhimurium causes inflammatory diarrhea via a process that involves active invasion of intestinal epithelial cells, secretion of inflammatory molecules, and recruitment of immune cells. Although bacterial motility and invasion of host cells are coordinated, how directed movement facilitates luminal survival and growth or invasion at the mucosal surface is not understood. Chemotaxis is the process by which bacteria control movement toward attractants and away from repellents. Previously, we identified a Salmonella-specific chemoreceptor, McpC, that is co-expressed with the invasion machinery and promotes smooth swimming for optimal host cell invasion. Here, we investigated another chemoreceptor, McpA, also regulated with invasion-associated genes and show it contributes to luminal expansion rather than invasion of epithelial cells. McpA activity requires a conserved Zn2+-binding domain, thought to be involved in sensing inflammation. This work demonstrates that coordination of invasion and chemotaxis plays a significant role in the gut.
Collapse
Affiliation(s)
- Kendal G. Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Naman Tandon
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kathleen Doran
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Lidiane Gomes Da Silva
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Diane C. Cockrell
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Arden Baylink
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
3
|
Lu J, Wei J, Liu K, Li D, Li Z, Yu Y, Ye H, Li Y, Xu H, Pan X, Wu R. Pathogenic Aeromonas veronii with the cheZ-mshK-aerA triple-gene mutant is attenuated and exhibits a potential candidate as a live attenuated vaccine. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110125. [PMID: 39828014 DOI: 10.1016/j.fsi.2025.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Aeromonas veronii is a zoonotic pathogen that is commonly found in various aquatic environments and causes serious damage to the aquaculture industry. Anti-virulence strategies based on mutating the virulence factors are important antibiotic alternative methods against A. veronii infection. The type Ⅳ pili, polar flagella, and aerolysin are considered to be the major virulence factors. In this study, we constructed a triple-gene deletion mutant strain (cheZ/mshK/aerA, ΔCMA-AV) and evaluated its potential as a live attenuated vaccine (LAV) candidate. Pathogenicity test showed that the LD50 of ΔCMA-AV in crucian carp (Carassius auratus) was 5.34 times higher than that of WT-AV. Further research found that the decline of pathogenicity was associated with the decrease of hemolysis, biofilm formation ability and expression levels of virulence-related genes (type IV pili and flagella). Our preliminary results on ΔCMA-AV as a LAV showed that crucian carp immunized with ΔCMA-AV at a concentration of 3 × 106 CFU/mL did not show any evident pathological alterations or clinical symptoms. Non-specific immune indicators, including serum immune-related enzyme activities and the expression of immune-related genes in immune organs, showed an up-regulation trend in the ΔCMA-AV group. A. veronii specific antibody levels increased significantly from 2 to 4 weeks. The relative percent survival in ΔCMA-AV groups was 73.97 % ± 3.57 %, significantly higher than that of the inactivated A. veronii groups (53.73 % ± 10.87 %). These results indicate that the three genes (cheZ/mshK/aerA) play an important role in the pathogenicity of A. veronii, in additionΔCMA-AV could induce an effective immune response and provide strong protection against A. veronii in crucian carp without adverse effects.
Collapse
Affiliation(s)
- Jiahui Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Jinming Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Kemei Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Detao Li
- The first affiliated hospital of Chongqing medical university, Chongqing, 400042, China.
| | - Ziyang Li
- The first affiliated hospital of Chongqing medical university, Chongqing, 400042, China.
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Yun Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Hao Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| | - Xiaoyi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Ronghua Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Shaw CA, Soltero-Rivera M, Profeta R, Weimer BC. Case Report: Shift from Aggressive Periodontitis to Feline Chronic Gingivostomatitis Is Linked to Increased Microbial Diversity. Pathogens 2025; 14:228. [PMID: 40137713 PMCID: PMC11944619 DOI: 10.3390/pathogens14030228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/29/2025] Open
Abstract
Aggressive Periodontitis (AP) and Feline Chronic Gingivostomatitis (FCGS) are two oral inflammatory diseases in cats with unknown etiology. Both conditions present with severe inflammation of the oral cavity and in FCGS it is found with additional deterioration of the non-keratinized mucosa. The oral microbiome is increasingly implicated in disease progression, but little is known about shifts in the microbial community during the AP and FCGS progression. To that end, we used deep metagenomic sequencing with total RNA on three longitudinal samples of the oral microbiome in a cat first diagnosed with AP that progressed to FCGS. This deep sequencing approach revealed that increased diversity at both the genus and species levels marked the shift from AP to FCGS, including increases in Porphyromonas and Treponema species, and decreased Streptobacillus species. The metatranscriptomes were then probed for expression of antimicrobial resistance genes and virulence factors. Disease-related genes that include cheY, and ompP5 were expressed in early AP and FCGS, while others like galU were only expressed in one or the other disease state. Both genus and species-level shifts were observed along the longitudinal microbiome samples with a noted increase in species diversity in the FCGS-associated microbiome. Corroborating that functional shifts accompany taxonomic changes, the AMR and virulence factor expression similarly changed between the sampling points. Together, these taxonomic and functional shifts indicate that AP and FCGS are potentially linked and may be marked by changes in the oral microbiome, which supports the development of microbial-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Claire A. Shaw
- Department of Population Health and Reproduction, 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA; (C.A.S.); (R.P.)
| | - Maria Soltero-Rivera
- Department of Surgical and Radiological Sciences, University of California, Davis, CA 95616, USA
| | - Rodrigo Profeta
- Department of Population Health and Reproduction, 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA; (C.A.S.); (R.P.)
| | - Bart C. Weimer
- Department of Population Health and Reproduction, 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA; (C.A.S.); (R.P.)
| |
Collapse
|
5
|
Franco K, Gentry-Lear Z, Shavlik M, Harms MJ, Baylink A. Navigating contradictions: Salmonella Typhimurium chemotactic responses to conflicting effector stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.18.576330. [PMID: 38293242 PMCID: PMC10827161 DOI: 10.1101/2024.01.18.576330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Chemotaxis controls motility and colonization in many enteric pathogens, yet most studies have examined bacterial responses to single effectors in isolation. Previously, we reported that Salmonella Typhimurium uses the chemoreceptor Tsr to detect l-serine (L-Ser) in human blood serum, promoting invasion of damaged vasculature (Glenn et al., eLife 2024 1). Tsr also mediates sensing of indole, a microbiota-derived chemorepellent and bactericide proposed to protect against enteric infection by deterring pathogen colonization. The major biological reservoir of indole in the gut is feces, where it accumulates to millimolar levels. Here, we tested whether indole-rich human fecal material is protective against infection and found that exposure to feces instead enhances intestinal invasion in an explant model. Surprisingly, diverse non-typhoidal Salmonella serovars were strongly attracted to feces despite its high indole content. We found that while pure indole is a strong repellent sensed through Tsr, its effects are overridden in the presence of nutrient attractants, including l-Ser. Moreover, indole only minimally impairs growth in the presence of sufficient nutrients. Using video microscopy, we observed that Tsr integrates l-Ser and indole signals in real time, biasing bacterial movement based on the relative concentrations of attractant and repellent. We propose that this chemotactic compromise optimizes pathogen fitness by guiding bacteria to niches with a favorable l-Ser-to-indole ratio, balancing nutrient acquisition and avoidance of high microbial competitor density. These findings highlight the limitations of single-effector studies in predicting bacterial navigation in complex environments, where chemotaxis is shaped by the integration of multiple, often opposing, chemical cues.
Collapse
Affiliation(s)
- Kailie Franco
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Zealon Gentry-Lear
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Michael Shavlik
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Michael J. Harms
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry & Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Arden Baylink
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
6
|
Ji P, Bao Y, Zhou H, Pei Y, Song W, Ou K, Qiao Z, Si J, Zhong Z, Xu X, Huang T, Shen D, Yin Z, Dou D. Blocking the isoflavone chemoreceptor in Phytophthora sojae to prevent disease. SCIENCE ADVANCES 2025; 11:eadt0925. [PMID: 39772695 PMCID: PMC11708900 DOI: 10.1126/sciadv.adt0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Inhibiting pathogen chemotaxis is a promising strategy for reducing disease pressure. However, this strategy is currently in the proof-of-concept stage. Here, Phytophthora sojae was used as a model, as its biflagellated zoospores could sense genistein, a soybean root exudate, to navigate host and initiate infection. We identify P. sojae IRK1 (isoflavone-insensitive receptor kinase 1) as a receptor for genistein, with PsIRK2 functioning as a coreceptor that enhances the binding affinity of PsIRK1 to genistein and regulates chemotaxis by phosphorylating G protein α subunit. Last, we identify an antagonist, esculetin, which disrupts the PsIRK1-genistein interaction, thereby preventing P. sojae infection by repelling zoospores. Our findings reveal the mechanism by which P. sojae senses host genistein and demonstrate a strategy for disease prevention by targeting the chemoreceptor.
Collapse
Affiliation(s)
- Peiyun Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yazhou Bao
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Pei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangmiao Ou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zijin Qiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengtao Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Xu
- Hefei Kejing Biotechnology Co., Ltd., Hefei 230061, China
| | - Tao Huang
- Hefei Kejing Biotechnology Co., Ltd., Hefei 230061, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Isenberg RY, Holschbach CS, Gao J, Mandel MJ. Functional analysis of cyclic diguanylate-modulating proteins in Vibrio fischeri. mSystems 2024; 9:e0095624. [PMID: 39436151 PMCID: PMC11575326 DOI: 10.1128/msystems.00956-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
As bacterial symbionts transition from a motile free-living state to a sessile biofilm state, they must coordinate behavior changes suitable to each lifestyle. Cyclic diguanylate (c-di-GMP) is an intracellular signaling molecule that can regulate this transition, and it is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. Generally, c-di-GMP inhibits motility and promotes biofilm formation. While c-di-GMP and the enzymes that contribute to its metabolism have been well studied in pathogens, considerably less focus has been placed on c-di-GMP regulation in beneficial symbionts. Vibrio fischeri is the sole beneficial symbiont of the Hawaiian bobtail squid (Euprymna scolopes) light organ, and the bacterium requires both motility and biofilm formation to efficiently colonize. c-di-GMP regulates swimming motility and cellulose exopolysaccharide production in V. fischeri. The genome encodes 50 DGCs and PDEs, and while a few of these proteins have been characterized, the majority have not undergone comprehensive characterization. In this study, we use protein overexpression to systematically characterize the functional potential of all 50 V. fischeri proteins. All 28 predicted DGCs and 10 of the 14 predicted PDEs displayed at least one phenotype consistent with their predicted function, and a majority of each displayed multiple phenotypes. Finally, active site mutant analysis of proteins with the potential for both DGC and PDE activities revealed potential activities for these proteins. This work presents a systems-level functional analysis of a family of signaling proteins in a tractable animal symbiont and will inform future efforts to characterize the roles of individual proteins during lifestyle transitions.IMPORTANCECyclic diguanylate (c-di-GMP) is a critical second messenger that mediates bacterial behaviors, and Vibrio fischeri colonization of its Hawaiian bobtail squid host presents a tractable model in which to interrogate the role of c-di-GMP during animal colonization. This work provides systems-level characterization of the 50 proteins predicted to modulate c-di-GMP levels. By combining multiple assays, we generated a rich understanding of which proteins have the capacity to influence c-di-GMP levels and behaviors. Our functional approach yielded insights into how proteins with domains to both synthesize and degrade c-di-GMP may impact bacterial behaviors. Finally, we integrated published data to provide a broader picture of each of the 50 proteins analyzed. This study will inform future work to define specific pathways by which c-di-GMP regulates symbiotic behaviors and transitions.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chandler S Holschbach
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jing Gao
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Zhu S, He R, Yue C, Zhang R, Yuan J. Enhanced chemotaxis efficiency of Escherichia coli in viscoelastic solutions. SOFT MATTER 2024; 20:8675-8683. [PMID: 39440528 DOI: 10.1039/d4sm01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Bacteria inhabit complex environments rich in macromolecular polymers that exhibit viscoelastic properties. While the influence of viscoelasticity on bacterial swimming is recognized, its impact on chemotaxis-a critical behavior for bacterial survival and colonization-remains elusive. In this study, we employed a microfluidic device to establish attractant gradients and observed the chemotactic behavior of Escherichia coli in both viscoelastic solutions containing carboxymethyl cellulose (CMC) and Newtonian buffers. Our results reveal that E. coli demonstrates markedly enhanced chemotactic efficiency in viscoelastic media. Notably, bacteria achieved faster migration velocities and higher steady-state accumulation in areas with higher attractant concentrations compared to those in Newtonian conditions. Through 3D tracking, we determined that changes in bulk motility parameters alone do not account for the observed enhancements. Further investigations through theoretical analysis and stochastic simulations suggested that the main enhancement mechanisms are mitigation of surface hydrodynamic hindrance resulting from solid surfaces commonly present in bacterial habitats, and the induction of a lifting force in viscoelastic solutions. These findings highlight the significant role of the rheological properties of bacterial habitats in shaping their chemotactic strategies, offering deeper insights into bacterial adaptive mechanisms in both natural and clinical settings.
Collapse
Affiliation(s)
- Shaoying Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Rui He
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Caijuan Yue
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Rongjing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Junhua Yuan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Fields JL, Zhang H, Bellis NF, Petersen HA, Halder SK, Rich-New ST, Krupovic M, Wu H, Wang F. Structural diversity and clustering of bacterial flagellar outer domains. Nat Commun 2024; 15:9500. [PMID: 39489766 PMCID: PMC11532411 DOI: 10.1038/s41467-024-53923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024] Open
Abstract
Supercoiled flagellar filaments function as mechanical propellers within the bacterial flagellum complex, playing a crucial role in motility. Flagellin, the building block of the filament, features a conserved inner D0/D1 core domain across different bacterial species. In contrast, approximately half of the flagellins possess additional, highly divergent outer domain(s), suggesting varied functional potential. In this study, we report atomic structures of flagellar filaments from three distinct bacterial species: Cupriavidus gilardii, Stenotrophomonas maltophilia, and Geovibrio thiophilus. Our findings reveal that the flagella from the facultative anaerobic G. thiophilus possesses a significantly more negatively charged surface, potentially enabling adhesion to positively charged minerals. Furthermore, we analyze all AlphaFold predicted structures for annotated bacterial flagellins, categorizing the flagellin outer domains into 682 structural clusters. This classification provides insights into the prevalence and experimental verification of these outer domains. Remarkably, two of the flagellar structures reported herein belong to a distinct cluster, indicating additional opportunities on the study of the functional diversity of flagellar outer domains. Our findings underscore the complexity of bacterial flagellins and open up possibilities for future studies into their varied roles beyond motility.
Collapse
Affiliation(s)
- Jessie Lynda Fields
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Hua Zhang
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nathan F Bellis
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Holly A Petersen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sajal K Halder
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Shane T Rich-New
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, 75015, France
| | - Hui Wu
- Department of Oral Rehabilitation & Biosciences, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
10
|
Matilla MA, Krell T. Bacterial amino acid chemotaxis: a widespread strategy with multiple physiological and ecological roles. J Bacteriol 2024; 206:e0030024. [PMID: 39330213 PMCID: PMC11500578 DOI: 10.1128/jb.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Chemotaxis is the directed, flagellum-based movement of bacteria in chemoeffector gradients. Bacteria respond chemotactically to a wide range of chemoeffectors, including amino, organic, and fatty acids, sugars, polyamines, quaternary amines, purines, pyrimidines, aromatic hydrocarbons, oxygen, inorganic ions, or polysaccharides. Most frequent are chemotactic responses to amino acids (AAs), which were observed in numerous bacteria regardless of their phylogeny and lifestyle. Mostly chemoattraction responses are observed, although a number of bacteria are repelled from certain AAs. Chemoattraction is associated with the important metabolic value of AAs as growth substrates or building blocks of proteins. However, additional studies revealed that AAs are also sensed as environmental cues. Many chemoreceptors are specific for AAs, and signaling is typically initiated by direct ligand binding to their four-helix bundle or dCache ligand-binding domains. Frequently, bacteria possess multiple AA-responsive chemoreceptors that at times possess complementary AA ligand spectra. The identification of sequence motifs in the binding sites at dCache_1 domains has permitted to define an AA-specific family of dCache_1AA chemoreceptors. In addition, AAs are among the ligands recognized by broad ligand range chemoreceptors, and evidence was obtained for chemoreceptor activation by the binding of AA-loaded solute-binding proteins. The biological significance of AA chemotaxis is very ample including in biofilm formation, root and seed colonization by beneficial bacteria, plant entry of phytopathogens, colonization of the intestine, or different virulence-related features in human/animal pathogens. This review provides insights that may be helpful for the study of AA chemotaxis in other uncharacterized bacteria.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
11
|
Isenberg RY, Holschbach CS, Gao J, Mandel MJ. Functional analysis of cyclic diguanylate-modulating proteins in Vibrio fischeri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550417. [PMID: 37546929 PMCID: PMC10402110 DOI: 10.1101/2023.07.24.550417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
As bacterial symbionts transition from a motile free-living state to a sessile biofilm state, they must coordinate behavior changes suitable to each lifestyle. Cyclic diguanylate (c-di-GMP) is an intracellular signaling molecule that can regulate this transition, and it is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. Generally, c-di-GMP inhibits motility and promotes biofilm formation. While c-di-GMP and the enzymes that contribute to its metabolism have been well-studied in pathogens, considerably less focus has been placed on c-di-GMP regulation in beneficial symbionts. Vibrio fischeri is the sole beneficial symbiont of the Hawaiian bobtail squid (Euprymna scolopes) light organ, and the bacterium requires both motility and biofilm formation to efficiently colonize. C-di-GMP regulates swimming motility and cellulose exopolysaccharide production in V. fischeri. The genome encodes 50 DGCs and PDEs, and while a few of these proteins have been characterized, the majority have not undergone comprehensive characterization. In this study, we use protein overexpression to systematically characterize the functional potential of all 50 V. fischeri proteins. All 28 predicted DGCs and 14 predicted PDEs displayed at least one phenotype consistent with their predicted function, and a majority of each displayed multiple phenotypes. Finally, active site mutant analysis of proteins with the potential for both DGC and PDE activities revealed potential activities for these proteins. This work presents a systems-level functional analysis of a family of signaling proteins in a tractable animal symbiont and will inform future efforts to characterize the roles of individual proteins during lifestyle transitions.
Collapse
Affiliation(s)
- Ruth Y. Isenberg
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
- Current address: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN USA
| | - Chandler S. Holschbach
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| | - Jing Gao
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
12
|
Cheon J, Son J, Lim S, Jeong Y, Park JH, Mitchell RJ, Kim JU, Jeong J. Motile bacteria crossing liquid-liquid interfaces of an aqueous isotropic-nematic coexistence phase. SOFT MATTER 2024; 20:7313-7320. [PMID: 39248026 DOI: 10.1039/d4sm00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In nature, bacteria often swim in complex fluids, but our understanding of the interactions between bacteria and complex surroundings is still evolving. In this work, rod-like Bacillus subtilis swims in a quasi-2D environment with aqueous liquid-liquid interfaces, i.e., the isotropic-nematic coexistence phase of an aqueous chromonic liquid crystal. Focusing on the bacteria motion near and at the liquid-liquid interfaces, we collect and quantify bacterial trajectories ranging across the isotropic to the nematic phase. Despite its small magnitude, the interfacial tension of the order of 10 μN m-1 at the isotropic-nematic interface justifies our observations that bacteria swimming more perpendicular to the interface have a higher probability of crossing the interface. Our force-balance model, considering the interfacial tension, further predicts how the length and speed of the bacteria affect their crossing behaviors. Investigating how a phase change affects bacterial motion, we also find, as soon as the bacteria cross the interface and enter the nematic phase, they wiggle less, but faster, and that this occurs as the flagellar bundles aggregate within the nematic phase. Given the ubiquity of multi-phases in biological environments, our findings will help to understand active transport across various phases.
Collapse
Affiliation(s)
- Jiyong Cheon
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Joowang Son
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Sungbin Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yundon Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Robert J Mitchell
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jaeup U Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
13
|
Stehnach MR, Henshaw RJ, Floge SA, Guasto JS. Multiplexed Microfluidic Platform for Parallel Bacterial Chemotaxis Assays. Bio Protoc 2024; 14:e5062. [PMID: 39282234 PMCID: PMC11393045 DOI: 10.21769/bioprotoc.5062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024] Open
Abstract
The sensing of and response to ambient chemical gradients by microorganisms via chemotaxis regulates many microbial processes fundamental to ecosystem function, human health, and disease. Microfluidics has emerged as an indispensable tool for the study of microbial chemotaxis, enabling precise, robust, and reproducible control of spatiotemporal chemical conditions. Previous techniques include combining laminar flow patterning and stop-flow diffusion to produce quasi-steady chemical gradients to directly probe single-cell responses or loading micro-wells to entice and ensnare chemotactic bacteria in quasi-steady chemical conditions. Such microfluidic approaches exemplify a trade-off between high spatiotemporal resolution of cell behavior and high-throughput screening of concentration-specific chemotactic responses. However, both aspects are necessary to disentangle how a diverse range of chemical compounds and concentrations mediate microbial processes such as nutrient uptake, reproduction, and chemorepulsion from toxins. Here, we present a protocol for the multiplexed chemotaxis device (MCD), a parallelized microfluidic platform for efficient, high-throughput, and high-resolution chemotaxis screening of swimming microbes across a range of chemical concentrations. The first layer of the two-layer polydimethylsiloxane (PDMS) device comprises a serial dilution network designed to produce five logarithmically diluted chemostimulus concentrations plus a control from a single chemical solution input. Laminar flow in the second device layer brings a cell suspension and buffer solution into contact with the chemostimuli solutions in each of six separate chemotaxis assays, in which microbial responses are imaged simultaneously over time. The MCD is produced via standard photography and soft lithography techniques and provides robust, repeatable chemostimulus concentrations across each assay in the device. This microfluidic platform provides a chemotaxis assay that blends high-throughput screening approaches with single-cell resolution to achieve a more comprehensive understanding of chemotaxis-mediated microbial processes. Key features • Microchannel master molds are fabricated using photolithography techniques in a clean room with a mask aligner to fabricate multilevel feature heights. • The microfluidic device is fabricated from PDMS using standard soft lithography replica molding from the master molds. • The resulting microchannel requires a one-time calibration of the driving inlet pressures, after which devices from the same master molds have robust performance. • The microfluidic platform is optimized and tested for measuring chemotaxis of swimming prokaryotes.
Collapse
Affiliation(s)
- Michael R Stehnach
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
- Department of Physics, Brandeis University, Waltham, MA, USA
| | - Richard J Henshaw
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Sheri A Floge
- Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Jeffrey S Guasto
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
14
|
Feng Y, Yang Y, Hu Y, Xiao Y, Xie Y, Wei L, Wen H, Zhang L, McNally A, Zong Z. Population genomics uncovers global distribution, antimicrobial resistance, and virulence genes of the opportunistic pathogen Klebsiella aerogenes. Cell Rep 2024; 43:114602. [PMID: 39137112 PMCID: PMC11372444 DOI: 10.1016/j.celrep.2024.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Klebsiella aerogenes is an understudied and clinically important pathogen. We therefore investigate its population structure by genome analysis aligned with metadata. We sequence 130 non-duplicated K. aerogenes clinical isolates and identify two inter-patient transmission events. We then retrieve all publicly available K. aerogenes genomes (n = 1,026, accessed by January 1, 2023) and analyze them with our 130 genomes. We develop a core-genome multi-locus sequence-typing scheme. We find that K. aerogenes is a species complex comprising four phylogroups undergoing evolutionary divergence, likely forming three species. We delineate remarkable clonal diversity and identify three worldwide-distributed carbapenemase-encoding clonal clusters, representing high-risk lineages. We uncover that K. aerogenes has an open genome equipped by a large arsenal of antimicrobial resistance genes. We identify two genetic regions specific for K. aerogenes, encoding a type VI secretion system and flagella/chemotaxis for motility, respectively, both contributing to the virulence. These results provide much-needed insights into the population structure and pan-genomes of K. aerogenes.
Collapse
Affiliation(s)
- Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Xiao
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Wen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Linwan Zhang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Gao P, Duan Z, Xu G, Gong Q, Wang J, Luo K, Chen J. Harnessing and Mimicking Bacterial Features to Combat Cancer: From Living Entities to Artificial Mimicking Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405075. [PMID: 39136067 DOI: 10.1002/adma.202405075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Bacterial-derived micro-/nanomedicine has garnered considerable attention in anticancer therapy, owing to the unique natural features of bacteria, including specific targeting ability, immunogenic benefits, physicochemical modifiability, and biotechnological editability. Besides, bacterial components have also been explored as promising drug delivery vehicles. Harnessing these bacterial features, cutting-edge physicochemical and biotechnologies have been applied to attenuated tumor-targeting bacteria with unique properties or functions for potent and effective cancer treatment, including strategies of gene-editing and genetic circuits. Further, the advent of bacteria-inspired micro-/nanorobots and mimicking artificial systems has furnished fresh perspectives for formulating strategies for developing highly efficient drug delivery systems. Focusing on the unique natural features and advantages of bacteria, this review delves into advances in bacteria-derived drug delivery systems for anticancer treatment in recent years, which has experienced a process from living entities to artificial mimicking systems. Meanwhile, a summary of relative clinical trials is provided and primary challenges impeding their clinical application are discussed. Furthermore, future directions are suggested for bacteria-derived systems to combat cancer.
Collapse
Affiliation(s)
- Peng Gao
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Gang Xu
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kui Luo
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Jie Chen
- Department of General Surgery, Breast Disease Center, Department of Radiology, Huaxi MR Research Center (HMRRC), Liver Transplant Center, Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
16
|
Wadop YN, Vasquez EL, Mathews JJ, Muhammad JAS, Mavarez RP, Satizabal C, Gonzales MM, Tanner J, Maestre G, Fonteh AN, Seshadri S, Kautz TF, Fongang B. Differential Patterns of Gut and Oral Microbiomes in Hispanic Individuals with Cognitive Impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605455. [PMID: 39211240 PMCID: PMC11361189 DOI: 10.1101/2024.07.27.605455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease and related dementias (ADRD) have been associated with alterations in both oral and gut microbiomes. While extensive research has focused on the role of gut dysbiosis in ADRD, the contribution of the oral microbiome remains relatively understudied. Furthermore, the potential synergistic interactions between oral and gut microbiomes in ADRD pathology are largely unexplored. This study aims to evaluate distinct patterns and potential synergistic effects of oral and gut microbiomes in a cohort of predominantly Hispanic individuals with cognitive impairment (CI) and without cognitive impairment (NC). We conducted 16S rRNA gene sequencing on stool and saliva samples from 32 participants (17 CI, 15 NC; 62.5% female, mean age = 70.4 ± 6.2 years) recruited in San Antonio, Texas, USA. Correlation analysis through MaAslin2 assessed the relationship between participants' clinical measurements (e.g., fasting glucose and blood cholesterol) and their gut and saliva microbial contents. Differential abundance analysis evaluated taxa with significant differences between CI and NC groups, and alpha and beta diversity metrics assessed within-sample and group compositional differences. Our analyses revealed no significant differences between NC and CI groups in fasting glucose or blood cholesterol levels. However, a clear association was observed between gut microbiome composition and levels of fasting glucose and blood cholesterol. While alpha and beta diversity metrics showed no significant differences between CI and NC groups, differential abundance analysis revealed an increased presence of oral genera such as Dialister , Fretibacterium , and Mycoplasma in CI participants. Conversely, CI individuals exhibited a decreased abundance of gut genera, including Shuttleworthia , Holdemania , and Subdoligranulum , which are known for their anti-inflammatory properties. No evidence was found for synergistic contributions between oral and gut microbiomes in the context of ADRD. Our findings suggest that similar to the gut microbiome, the oral microbiome undergoes significant modifications as individuals transition from NC to CI. Notably, the identified oral microbes have been previously associated with periodontal diseases and gingivitis. These results underscore the necessity for further investigations with larger sample sizes to validate our findings and elucidate the complex interplay between oral and gut microbiomes in ADRD pathogenesis.
Collapse
|
17
|
Seymour JR, Brumley DR, Stocker R, Raina JB. Swimming towards each other: the role of chemotaxis in bacterial interactions. Trends Microbiol 2024; 32:640-649. [PMID: 38212193 DOI: 10.1016/j.tim.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Chemotaxis allows microorganisms to direct movement in response to chemical stimuli. Bacteria use this behaviour to develop spatial associations with animals and plants, and even larger microbes. However, current theory suggests that constraints imposed by the limits of chemotactic sensory systems will prevent sensing of chemical gradients emanating from cells smaller than a few micrometres, precluding the utility of chemotaxis in interactions between individual bacteria. Yet, recent evidence has revealed surprising levels of bacterial chemotactic precision, as well as a role for chemotaxis in metabolite exchange between bacterial cells. If indeed widespread, chemotactic sensing between bacteria could represent an important, but largely overlooked, phenotype within interbacterial interactions, and play a significant role in shaping cooperative and competitive relationships.
Collapse
Affiliation(s)
- Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia.
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Broadway, New South Wales, Australia.
| |
Collapse
|
18
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
19
|
Zhang X, Zhang Z, Yan Q, Du Z, Zhao L, Qin Y. Amino Acid-Induced Chemotaxis Plays a Key Role in the Adaptation of Vibrio harveyi from Seawater to the Muscle of the Host Fish. Microorganisms 2024; 12:1292. [PMID: 39065061 PMCID: PMC11278769 DOI: 10.3390/microorganisms12071292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
Vibrio harveyi is a normal flora in natural marine habitats and a significant opportunistic pathogen in marine animals. This bacterium can cause a series of lesions after infecting marine animals, in which muscle necrosis and ulcers are the most common symptoms. This study explored the adaptation mechanisms of V. harveyi from the seawater environment to host fish muscle environment. The comprehensive transcriptome analysis revealed dramatic changes in the transcriptome of V. harveyi during its adaptation to the host fish muscle environment. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, flagellar assembly, oxidative phosphorylation, bacterial chemotaxis, and two-component systems play crucial roles in V. harveyi's adaptation to host fish muscle. A comparison of biological phenotypes revealed that V. harveyi displayed a significant increase in flagellar length, swimming, twitching, chemotaxis, adhesion, and biofilm formation after induction by host fish muscle, and its dominant amino acids, especially bacterial chemotaxis induced by host muscle, Ala and Arg. It could be speculated that the enhancement of bacterial chemotaxis induced by amino acids plays a key role in the adaptation of V. harveyi from seawater to the muscle of the host fish.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Zhe Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Qingpi Yan
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Ziyan Du
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Lingmin Zhao
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Yingxue Qin
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (X.Z.); (Z.Z.); (Q.Y.); (Z.D.); (L.Z.)
- Key Laboratory of Health Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| |
Collapse
|
20
|
Glenn SJ, Gentry-Lear Z, Shavlik M, Harms MJ, Asaki TJ, Baylink A. Bacterial vampirism mediated through taxis to serum. eLife 2024; 12:RP93178. [PMID: 38820052 PMCID: PMC11142651 DOI: 10.7554/elife.93178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remain poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized an injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce bacterial attraction to the serum source. This response is orchestrated through chemotaxis and the chemoattractant L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. We find Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provide a competitive advantage for migration into enterohemorrhagic lesions. We define this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients as 'bacterial vampirism', which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.
Collapse
Affiliation(s)
- Siena J Glenn
- Washington State University, Department of Veterinary Microbiology and PathologyPullmanUnited States
| | | | - Michael Shavlik
- University of Oregon, Institute of Molecular BiologyEugeneUnited States
| | - Michael J Harms
- University of Oregon, Institute of Molecular BiologyEugeneUnited States
- University of Oregon, Department of Chemistry & BiochemistryEugeneUnited States
| | - Thomas J Asaki
- Washington State University, Department of Mathematics and StatisticsPullmanUnited States
| | - Arden Baylink
- Washington State University, Department of Veterinary Microbiology and PathologyPullmanUnited States
| |
Collapse
|
21
|
Zhao Q, Yao F, Li W, Liu S, Bi S. Identification of a dCache-type chemoreceptor in Campylobacter jejuni that specifically mediates chemotaxis towards methyl pyruvate. Front Microbiol 2024; 15:1400284. [PMID: 38784811 PMCID: PMC11111895 DOI: 10.3389/fmicb.2024.1400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The foodborne pathogenic bacterium Campylobacter jejuni utilizes chemotaxis to assist in the colonization of host niches. A key to revealing the relationship among chemotaxis and pathogenicity is the discovery of signaling molecules perceived by the chemoreceptors. The C. jejuni chemoreceptor Tlp11 is encoded by the highly infective C. jejuni strains. In the present study, we report that the dCache-type ligand-binding domain (LBD) of C. jejuni ATCC 33560 Tlp11 binds directly to novel ligands methyl pyruvate, toluene, and quinoline using the same pocket. Methyl pyruvate elicits a strong chemoattractant response, while toluene and quinoline function as the antagonists without triggering chemotaxis. The sensory LBD was used to control heterologous proteins by constructing chimeras, indicating that the signal induced by methyl pyruvate is transmitted across the membrane. In addition, bioinformatics and experiments revealed that the dCache domains with methyl pyruvate-binding sites and ability are widely distributed in the order Campylobacterales. This is the first report to identify the class of dCache chemoreceptors that bind to attractant methyl pyruvate and antagonists toluene and quinoline. Our research provides a foundation for understanding the chemotaxis and virulence of C. jejuni and lays a basis for the control of this foodborne pathogen.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fulian Yao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangyu Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
22
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
23
|
Fields JL, Zhang H, Bellis NF, Petersen HA, Halder SK, Rich-New ST, Wu H, Wang F. Structural diversity and clustering of bacterial flagellar outer domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585621. [PMID: 38562817 PMCID: PMC10983879 DOI: 10.1101/2024.03.18.585621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Supercoiled flagellar filaments function as mechanical propellers within the bacterial flagellum complex, playing a crucial role in motility. Flagellin, the building block of the filament, features a conserved inner D0/D1 core domain across different bacterial species. In contrast, approximately half of the flagellins possess additional, highly divergent outer domain(s), suggesting varied functional potential. In this study, we elucidate atomic structures of flagellar filaments from three distinct bacterial species: Cupriavidus gilardii , Stenotrophomonas maltophilia , and Geovibrio thiophilus . Our findings reveal that the flagella from the facultative anaerobic G. thiophilus possesses a significantly more negatively charged surface, potentially enabling adhesion to positively charged minerals. Furthermore, we analyzed all AlphaFold predicted structures for annotated bacterial flagellins, categorizing the flagellin outer domains into 682 structural clusters. This classification provides insights into the prevalence and experimental verification of these outer domains. Remarkably, two of the flagellar structures reported herein belong to a previously unexplored cluster, indicating new opportunities on the study of the functional diversity of flagellar outer domains. Our findings underscore the complexity of bacterial flagellins and open up possibilities for future studies into their varied roles beyond motility.
Collapse
|
24
|
Glenn SJ, Gentry-Lear Z, Shavlik M, Harms MJ, Asaki TJ, Baylink A. Bacterial vampirism mediated through taxis to serum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.07.548164. [PMID: 37461633 PMCID: PMC10350070 DOI: 10.1101/2023.07.07.548164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Bacteria of the family Enterobacteriaceae are associated with gastrointestinal (GI) bleeding and bacteremia and are a leading cause of death, from sepsis, for individuals with inflammatory bowel diseases. The bacterial behaviors and mechanisms underlying why these bacteria are prone to bloodstream entry remains poorly understood. Herein, we report that clinical isolates of non-typhoidal Salmonella enterica serovars, Escherichia coli, and Citrobacter koseri are rapidly attracted toward sources of human serum. To simulate GI bleeding, we utilized a custom injection-based microfluidics device and found that femtoliter volumes of human serum are sufficient to induce the bacterial population to swim toward and aggregate at the serum source. This response is orchestrated through chemotaxis, and a major chemical cue driving chemoattraction is L-serine, an amino acid abundant in serum that is recognized through direct binding by the chemoreceptor Tsr. We report the first crystal structures of Salmonella Typhimurium Tsr in complex with L-serine and identify a conserved amino acid recognition motif for L-serine shared among Tsr orthologues. By mapping the phylogenetic distribution of this chemoreceptor we found Tsr to be widely conserved among Enterobacteriaceae and numerous World Health Organization priority pathogens associated with bloodstream infections. Lastly, we find that Enterobacteriaceae use human serum as a source of nutrients for growth and that chemotaxis and the chemoreceptor Tsr provides a competitive advantage for migration into enterohaemorrhagic lesions. We term this bacterial behavior of taxis toward serum, colonization of hemorrhagic lesions, and the consumption of serum nutrients, as 'bacterial vampirism' which may relate to the proclivity of Enterobacteriaceae for bloodstream infections.
Collapse
|
25
|
Phan TV, Mattingly HH, Vo L, Marvin JS, Looger LL, Emonet T. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. Proc Natl Acad Sci U S A 2024; 121:e2309251121. [PMID: 38194458 PMCID: PMC10801886 DOI: 10.1073/pnas.2309251121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.
Collapse
Affiliation(s)
- Trung V. Phan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | | | - Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
| | - Jonathan S. Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA20147
| | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA20147
- HHMI, University of California, San Diego, CA92093
- Department of Neurosciences, University of California, San Diego, CA92093
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
| |
Collapse
|
26
|
Matilla MA, Krell T. Sensing the environment by bacterial plant pathogens: What do their numerous chemoreceptors recognize? Microb Biotechnol 2024; 17:e14368. [PMID: 37929806 PMCID: PMC10832524 DOI: 10.1111/1751-7915.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
Bacteria have evolved multiple sensing strategies to efficiently adapt to their natural hosts and environments. In the context of plant pathology, chemotaxis allows phytopathogenic bacteria to direct their movement towards hosts through the detection of a landscape of plant-derived molecules, facilitating the initiation of the infective process. The importance of chemotaxis for the lifestyle of phytopathogens is also reflected in the fact that they have, on average, twice as many chemoreceptors as bacteria that do not interact with plants. Paradoxically, the knowledge about the function of plant pathogen chemoreceptors is scarce. Notably, many of these receptors seem to be specific to plant-interacting bacteria, suggesting that they may recognize plant-specific compounds. Here, we highlight the need to advance our knowledge of phytopathogen chemoreceptor function, which may serve as a base for the development of anti-infective therapies for the control of phytopathogens.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| | - Tino Krell
- Department of Biotechnology and Environmental ProtectionEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
27
|
Zhou B, Garber JM, Vlach J, Azadi P, Ng KKS, Escalante-Semerena JC, Szymanski CM. Campylobacter jejuni uses energy taxis and a dehydrogenase enzyme for l-fucose chemotaxis. mBio 2023; 14:e0273223. [PMID: 38032212 PMCID: PMC10746189 DOI: 10.1128/mbio.02732-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE In this study, we identify a separate role for the Campylobacter jejuni l-fucose dehydrogenase in l-fucose chemotaxis and demonstrate that this mechanism is not only limited to C. jejuni but is also present in Burkholderia multivorans. We now hypothesize that l-fucose energy taxis may contribute to the reduction of l-fucose-metabolizing strains of C. jejuni from the gastrointestinal tract of breastfed infants, selecting for isolates with increased colonization potential.
Collapse
Affiliation(s)
- Bibi Zhou
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jolene M. Garber
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Jiri Vlach
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | | | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
28
|
Matilla MA, Krell T. Targeting motility and chemotaxis as a strategy to combat bacterial pathogens. Microb Biotechnol 2023; 16:2205-2211. [PMID: 37387327 PMCID: PMC10686171 DOI: 10.1111/1751-7915.14306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
29
|
Matilla MA, Gavira JA, Krell T. Accessing nutrients as the primary benefit arising from chemotaxis. Curr Opin Microbiol 2023; 75:102358. [PMID: 37459734 DOI: 10.1016/j.mib.2023.102358] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 09/17/2023]
Abstract
About half of the known bacterial species perform chemotaxis that gains them access to sites that are optimal for growth and survival. The motility apparatus and chemotaxis signaling pathway impose a large energetic and metabolic burden on the cell. There is almost no limit to the type of chemoeffectors that are recognized by bacterial chemoreceptors. For example, they include hormones, neurotransmitters, quorum-sensing molecules, and inorganic ions. However, the vast majority of chemoeffectors appear to be of metabolic value. We review here the experimental evidence indicating that accessing nutrients is the main selective force that led to the evolution of chemotaxis.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies, IACT (CSIC-UGR), Armilla, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
30
|
Phan TV, Mattingly HH, Vo L, Marvin JS, Looger LL, Emonet T. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543315. [PMID: 37333331 PMCID: PMC10274659 DOI: 10.1101/2023.06.01.543315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering new insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.
Collapse
Affiliation(s)
- Trung V. Phan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | | | - Lam Vo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
| | | | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT
- Quantitative Biology Institute, Yale University, New Haven, CT
- Department of Physics, Yale University, New Haven, CT
| |
Collapse
|
31
|
Chen C, Chen K, Huang Z, Huang X, Wang Z, He F, Qin M, Long C, Tang B, Mo X, Liu J, Tang W. Identification of intestinal microbiome associated with lymph-vascular invasion in colorectal cancer patients and predictive label construction. Front Cell Infect Microbiol 2023; 13:1098310. [PMID: 37249979 PMCID: PMC10215531 DOI: 10.3389/fcimb.2023.1098310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE To identify differences between the composition, abundance, and biological function of the intestinal microbiome of patients with and without lymph-vascular invasion (LVI) colorectal cancer (CRC) and to construct predictive labels to support accurate assessment of LVI in CRC. METHOD 134 CRC patients were included, which were divided into two groups according to the presence or absence of LVI, and their intestinal microbiomes were sequenced by 16SrRNA and analyzed for differences. The transcriptome sequencing data of 9 CRC patients were transformed into immune cells abundance matrix by CIBERSORT algorithm, and the correlation among LVI-associated differential intestinal microbiomes, immune cells, immune-related genes and LVI-associated differential GO items and KEGG pathways were analyzed. A random forest (RF) and eXtreme Gradient Boosting (XGB) model were constructed to predict the LVI of CRC patients based on the differential microbiome. RESULT There was no significant difference in α-diversity and β-diversity of intestinal microbiome between CRC patients with and without LVI (P > 0.05). Linear discriminant analysis Effect Size (LEfSe) analysis showed 34 intestinal microbiomes enriched in CRC patients of the LVI group and 5 intestinal microbiomes were significantly enriched in CRC patients of the non-lymph-vascular invasion (NLVI) group. The RF and XGB prediction models constructed with the top 15% of the LVI-associated differential intestinal microbiomes ranked by feature significance had good efficacy. CONCLUSIONS There are 39 intestinal flora with significantly different species abundance between the LVI and NLVI groups. g:Alistipes.s:Alistipes_indistinctus is closely associated with colorectal cancer vascular invasion. LVI-associated differential intestinal flora may be involved in regulating the infiltration of immune cells in CRC and influencing the expression of immune-related genes. LVI-associated differential intestinal flora may influence the process of vascular invasion in CRC through a number of potential biological functions. RF prediction models and XGB prediction models constructed based on microbial markers of gut flora can be used to predict CRC-LVI conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|