1
|
Gu Y, Xu J, Zhao Y, Zhang P, Zhang J, Yang W, Han X, Jin H, Zhang W, Wang Y, Yang Y, Shen X. Functional characterization of Mrr-family nuclease SLL1429 involved in MMC and phage resistance. Microbiol Res 2025; 296:128123. [PMID: 40037110 DOI: 10.1016/j.micres.2025.128123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Cyanobacteria, autotrophic prokaryotes capable of oxygenic photosynthesis, are important atmospheric carbon fixers of Earth and potential alternatives for producing green fuels and chemicals. However, they face significant environmental stress during growth, such as Ultraviolet radiation, salt, and cyanophage exposure, which can impact their physiology and growth. Nucleases, such as Mrr (Methylated adenine Recognition and Restriction) endonuclease, play key roles in stress response, DNA repair, or anti-phage functions, but these in cyanobacteria remains underexplored. The SLL1429 protein with Mrr/NA-iREase1 domain was predicted to play a role as a nuclease in stress resistance in cyanobacteria. In this study, our findings indicate that SLL1429 is a PD-(D/E)XK superfamily nuclease with DNase activities towards various DNA structures, including dsDNA, Holliday junction, Flap and Flap derivatives. The nuclease activity of SLL1429 is dependent on the Mrr domain. However, unlike classic Mrr, SLL1429 recognizes and cleaves both methylated and unmethylated DNA substrates. Notably, SLL1429 plays a role in Mitomycin C (MMC) resistance in Synechocystis sp. PCC6803 and anti-phage activity in E. coli. In view of the above, SLL1429 of Synechocystis sp. PCC6803 has been identified as a new stress-resistant nuclease. This discovery provides novel perspectives on the mechanism of environmental adaption in cyanobacteria and lays a theoretical foundation for further exploration of "microbial cell factory".
Collapse
Affiliation(s)
- Yanchao Gu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingling Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufei Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayu Zhang
- Suzhou XinBio Co., Ltd, Suzhou, Jiangsu 215299, China
| | - Wenguang Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoru Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Han Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenjing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Rand EA, Quinones-Olvera N, Jean KDC, Hernandez-Perez C, Owen SV, Baym M. Phage DisCo: targeted discovery of bacteriophages by co-culture. mSystems 2025:e0164424. [PMID: 40434069 DOI: 10.1128/msystems.01644-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Phages interact with many components of bacterial physiology from the surface to the cytoplasm. Although there are methods to determine the receptors and intracellular systems a specified phage interacts with retroactively, finding a phage that interacts with a chosen piece of bacterial physiology a priori is very challenging. Variation in phage plaque morphology does not to reliably distinguish distinct phages, and therefore many potentially redundant phages may need to be isolated, purified, and individually characterized to find phages of interest. Here, we present a method in which multiple bacterial strains are co-cultured on the same screening plate to add an extra dimension to plaque morphology data. In this method, phage discovery by co-culture (Phage DisCo), strains are isogenic except for fluorescent tags and one perturbation expected to impact phage infection. Differential plaquing on the strains is easily detectable by fluorescent signal and implies that the perturbation made to the surviving strain in a plaque prevents phage infection. We validate the Phage DisCo method by showing that characterized phages have the expected plaque morphology on Phage DisCo plates and demonstrate the power of Phage DisCo for multiple targeted discovery applications, from receptors to phage defense systems.IMPORTANCEIn this work, we describe a targeted phage discovery method that allows immediate isolation of phages with specific traits. Currently, to find a phage with specific properties, huge libraries of phages must be collected and screened retroactively. This assay, Phage Discovery by Co-culture (Phage DisCo), works by co-culture of host strains that are identical except for one perturbation that may interfere with phage infection and a unique fluorescent marker. These strains are co-cultured with an environmental sample of interest in traditional plaque assay format, making phage characteristics easily identifiable by fluorescent signal after imaging of the screening plate. We validate that Phage DisCo can identify phages with specific properties, even when these phages are rare in samples. This approach allows rapid exploration of the diversity within phage samples with vastly streamlined processes, and we anticipate it will be widely adopted within the phage discovery field.
Collapse
Affiliation(s)
- Eleanor A Rand
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| | - Kesther D C Jean
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Roxbury Community College, Boston, Massachusetts, USA
| | - Carmen Hernandez-Perez
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Siân V Owen
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School , Boston, Massachusetts, USA
| |
Collapse
|
3
|
Wang Y, Tian Y, Yang X, Yu F, Zheng J. Filamentation activates bacterial Avs5 antiviral protein. Nat Commun 2025; 16:2408. [PMID: 40069208 PMCID: PMC11897194 DOI: 10.1038/s41467-025-57732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Bacterial antiviral STANDs (Avs) are evolutionarily related to the nucleotide-binding oligomerization domain (NOD)-like receptors widely distributed in immune systems across animals and plants. EfAvs5, a type 5 Avs from Escherichia fergusonii, contains an N-terminal SIR2 effector domain, a NOD, and a C-terminal sensor domain, conferring protection against diverse phage invasions. Despite the established roles of SIR2 and STAND in prokaryotic and eukaryotic immunity, the mechanism underlying their collaboration remains unclear. Here we present cryo-EM structures of EfAvs5 filaments, elucidating the mechanisms of dimerization, filamentation, filament bundling, ATP binding, and NAD+ hydrolysis, all of which are crucial for anti-phage defense. The SIR2 and NOD domains engage in intra- and inter-dimer interaction to form an individual filament, while the outward C-terminal sensor domains contribute to bundle formation. Filamentation potentially stabilizes the dimeric SIR2 configuration, thereby activating the NADase activity of EfAvs5. Furthermore, we identify the nucleotide kinase gp1.7 of phage T7 as an activator of EfAvs5, demonstrating its ability to induce filamentation and NADase activity. Together, we uncover the filament assembly of Avs5 as a unique mechanism to switch enzyme activities and perform anti-phage defenses.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Tian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Guliy OI, Evstigneeva SS. Bacteria- and Phage-Derived Proteins in Phage Infection. FRONT BIOSCI-LANDMRK 2025; 30:24478. [PMID: 40018916 DOI: 10.31083/fbl24478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 03/01/2025]
Abstract
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage-bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins involved in these bacteriophage-host interactions often arise immediately after infection. Here, we review the main groups of phage enzymes involved in the first stage of viral infection and responsible for the degradation of the bacterial membrane. These include polysaccharide depolymerases (endosialidases, endorhamnosidases, alginate lyases, and hyaluronate lyases), and peptidoglycan hydrolases (ectolysins and endolysins). Host target proteins are inhibited, activated, or functionally redirected by the phage protein. These interactions determine the phage infection of bacteria. Proteins of interest are holins, endolysins, and spanins, which are responsible for the release of progeny during the phage lytic cycle. This review describes the main bacterial and phage enzymes involved in phage infection and analyzes the therapeutic potential of bacteriophage-derived proteins.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
5
|
Zhang Z, Todeschini TC, Wu Y, Kogay R, Naji A, Rodriguez JC, Mondi R, Kaganovich D, Taylor DW, Bravo JPK, Teplova M, Amen T, Koonin EV, Patel DJ, Nobrega FL. Kiwa is a bacterial membrane-embedded defence supercomplex activated by phage-induced membrane changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.26.530102. [PMID: 39896579 PMCID: PMC11785009 DOI: 10.1101/2023.02.26.530102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bacteria and archaea deploy diverse, sophisticated defence systems to counter virus infection, yet many immunity mechanisms remain poorly understood. Here, we characterise the Kiwa defence system as a membrane-associated supercomplex that senses changes in the membrane induced by phage infection and plasmid conjugation. This supercomplex, comprising KwaA tetramers bound to KwaB dimers, as its basic repeating unit, detects structural stress via KwaA, activating KwaB, which binds ejected phage DNA through its DUF4868 domain, stalling phage DNA replication forks and thus disrupting replication and late transcription. We show that phage-encoded DNA mimic protein Gam, which inhibits RecBCD, also targets Kiwa through KwaB recognition. However, Gam binding to one defence system precludes its inhibition of the other. These findings reveal a distinct mechanism of bacterial immune coordination, where sensing of membrane disruptions and inhibitor partitioning enhance protection against phages and plasmids.
Collapse
Affiliation(s)
- Zhiying Zhang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Shared first authors
| | - Thomas C. Todeschini
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Shared first authors
- Current address: RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yi Wu
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Shared first authors
| | - Roman Kogay
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Ameena Naji
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Current address: School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Rupavidhya Mondi
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Current address: The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel Kaganovich
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA
| | - Jack P. K. Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Current address: Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Marianna Teplova
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triana Amen
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| |
Collapse
|
6
|
Bae HW, Choi SY, Ki HJ, Cho YH. Pseudomonas aeruginosa as a model bacterium in antiphage defense research. FEMS Microbiol Rev 2025; 49:fuaf014. [PMID: 40240293 PMCID: PMC12035536 DOI: 10.1093/femsre/fuaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteriophages, or phages, depend on their bacterial hosts for proliferation, leading to a coevolutionary relationship characterized by on-going arms races, where bacteria evolve diverse antiphage defense systems. The development of in silico methods and high-throughput screening techniques has dramatically expanded our understanding of bacterial antiphage defense systems, enormously increasing the known repertoire of the distinct mechanisms across various bacterial species. These advances have revealed that bacterial antiphage defense systems exhibit a remarkable level of complexity, ranging from highly conserved to specialized mechanisms, underscoring the intricate nature of bacterial antiphage defense systems. In this review, we provide a concise snapshot of antiphage defense research highlighting two preponderantly commandeered approaches and classification of the known antiphage defense systems. A special focus is placed on the model bacterial pathogen, Pseudomonas aeruginosa in antiphage defense research. We explore the complexity and adaptability of these systems, which play crucial roles in genome evolution and adaptation of P. aeruginosa in response to an arsenal of diverse phage strains, emphasizing the importance of this organism as a key emerging model bacterium in recent antiphage defense research.
Collapse
Affiliation(s)
- Hee-Won Bae
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Shin-Yae Choi
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Hyeong-Jun Ki
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| |
Collapse
|
7
|
Vassallo CN, Doering CR, Laub MT. Anti-viral defence by an mRNA ADP-ribosyltransferase that blocks translation. Nature 2024; 636:190-197. [PMID: 39443800 PMCID: PMC11618068 DOI: 10.1038/s41586-024-08102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Host-pathogen conflicts are crucibles of molecular innovation1,2. Selection for immunity to pathogens has driven the evolution of sophisticated immunity mechanisms throughout biology, including in bacterial defence against bacteriophages3. Here we characterize the widely distributed anti-phage defence system CmdTAC, which provides robust defence against infection by the T-even family of phages4. Our results support a model in which CmdC detects infection by sensing viral capsid proteins, ultimately leading to the activation of a toxic ADP-ribosyltransferase effector protein, CmdT. We show that newly synthesized capsid protein triggers dissociation of the chaperone CmdC from the CmdTAC complex, leading to destabilization and degradation of the antitoxin CmdA, with consequent liberation of the CmdT ADP-ribosyltransferase. Notably, CmdT does not target a protein, DNA or structured RNA, the known targets of other ADP-ribosyltransferases. Instead, CmdT modifies the N6 position of adenine in GA dinucleotides within single-stranded RNAs, leading to arrest of mRNA translation and inhibition of viral replication. Our work reveals a novel mechanism of anti-viral defence and a previously unknown but broadly distributed class of ADP-ribosyltransferases that target mRNA.
Collapse
Affiliation(s)
| | | | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
8
|
Mahata T, Kanarek K, Goren MG, Marimuthu Ragavan R, Bosis E, Qimron U, Salomon D. Gamma-Mobile-Trio systems are mobile elements rich in bacterial defensive and offensive tools. Nat Microbiol 2024; 9:3268-3283. [PMID: 39443754 DOI: 10.1038/s41564-024-01840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
The evolutionary arms race between bacteria and phages led to the emergence of bacterial immune systems whose diversity and dynamics remain poorly understood. Here we use comparative genomics to describe a widespread genetic element, defined by the presence of the Gamma-Mobile-Trio (GMT) proteins, that serves as a reservoir of offensive and defensive tools. We demonstrate, using Vibrio parahaemolyticus as a model, that GMT-containing genomic islands are active mobile elements. Furthermore, we show that GMT islands' cargoes contain various anti-phage defence systems, antibacterial type VI secretion system (T6SS) effectors and antibiotic-resistance genes. We reveal four anti-phage defence systems encoded within GMT islands and further characterize one system, GAPS1, showing it is triggered by a phage capsid protein to induce cell dormancy. Our findings underscore the need to broaden the concept of 'defence islands' to include defensive and offensive tools, as both share the same mobile elements for dissemination.
Collapse
Affiliation(s)
- Tridib Mahata
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Moran G Goren
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rameshkumar Marimuthu Ragavan
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel.
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Biba DA, Makarova KS, Wolf YI, Waldron L, Koonin EV, Rochman ND. Ecological Determinants of Altruism in Prokaryote Antivirus Defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622165. [PMID: 39803436 PMCID: PMC11722316 DOI: 10.1101/2024.11.05.622165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Prokaryote evolution is driven in large part by the incessant arms race with viruses. Genomic investments in antivirus defense can be coarsely classified into two categories, immune systems that abrogate virus reproduction resulting in clearance, and altruistic programmed cell death (PCD) systems. Prokaryotic defense systems are enormously diverse, as revealed by an avalanche of recent discoveries, but the basic ecological determinants of defense strategy remain poorly understood. Through mathematical modeling of defense against lytic virus infection, we identify two principal determinants of optimal defense strategy and, through comparative genomics, we test this model by measuring the genomic investment into immunity vs PCD among diverse bacteria and archaea. First, as viral pressure grows, immunity becomes the preferred defense strategy. Second, as host population size grows, PCD becomes the preferred strategy. We additionally predict that, although optimal strategy typically involves investment in both PCD and immunity, overinvestment in immunity can result in system antagonism, increasing the probability a PCD-competent cell will lyse due to infection. Together these findings indicate that, generally, PCD is preferred at low multiplicity of infection (MOI) and immunity is preferred at high MOI, and that the landscape of prokaryotic antivirus defense is substantially more complex than previously suspected.
Collapse
Affiliation(s)
- Dmitry A. Biba
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD
- Oak Ridge Institute for Science and Education, Oak Ridge, TN
| | - Kira S. Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Yuri I. Wolf
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Leavi Waldron
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY
- Department CIBIO, University of Trento, Trento, Italy
| | - Eugene V. Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD
| | - Nash D. Rochman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY
| |
Collapse
|
10
|
Hobbs SJ, Kranzusch PJ. Nucleotide Immune Signaling in CBASS, Pycsar, Thoeris, and CRISPR Antiphage Defense. Annu Rev Microbiol 2024; 78:255-276. [PMID: 39083849 DOI: 10.1146/annurev-micro-041222-024843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Bacteria encode an arsenal of diverse systems that defend against phage infection. A common theme uniting many prevalent antiphage defense systems is the use of specialized nucleotide signals that function as second messengers to activate downstream effector proteins and inhibit viral propagation. In this article, we review the molecular mechanisms controlling nucleotide immune signaling in four major families of antiphage defense systems: CBASS, Pycsar, Thoeris, and type III CRISPR immunity. Analyses of the individual steps connecting phage detection, nucleotide signal synthesis, and downstream effector function reveal shared core principles of signaling and uncover system-specific strategies used to augment immune defense. We compare recently discovered mechanisms used by phages to evade nucleotide immune signaling and highlight convergent strategies that shape host-virus interactions. Finally, we explain how the evolutionary connection between bacterial antiphage defense and eukaryotic antiviral immunity defines fundamental rules that govern nucleotide-based immunity across all kingdoms of life.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip J Kranzusch
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Grafakou A, Mosterd C, Beck MH, Kelleher P, McDonnell B, de Waal PP, van Rijswijck IMH, van Peij NNME, Cambillau C, Mahony J, van Sinderen D. Discovery of antiphage systems in the lactococcal plasmidome. Nucleic Acids Res 2024; 52:9760-9776. [PMID: 39119896 PMCID: PMC11381338 DOI: 10.1093/nar/gkae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems. Systematic evaluation of 198 candidates facilitated the discovery of seven not previously described antiphage systems, as well as five systems, of which homologues had been described in other bacteria. All described systems confer resistance against the most prevalent lactococcal phages, and act post phage DNA injection, while all except one behave like abortive infection systems. Structure and domain predictions provided insights into their mechanism of action and allow grouping of several genetically distinct systems. Although rare within our plasmid collection, homologues of the seven novel systems appear to be widespread among bacteria. This study highlights plasmids as a rich repository of as yet undiscovered antiphage systems.
Collapse
Affiliation(s)
- Andriana Grafakou
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Cas Mosterd
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Matthias H Beck
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Brian McDonnell
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Paul P de Waal
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Irma M H van Rijswijck
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Noël N M E van Peij
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255 Marseille, France
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
12
|
Getz LJ, Maxwell KL. Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements. Annu Rev Virol 2024; 11:343-362. [PMID: 38950439 DOI: 10.1146/annurev-virology-100422-125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Karen L Maxwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
13
|
Bullen NP, Johnson CN, Andersen SE, Arya G, Marotta SR, Lee YJ, Weigele PR, Whitney JC, Duerkop BA. An enterococcal phage protein inhibits type IV restriction enzymes involved in antiphage defense. Nat Commun 2024; 15:6955. [PMID: 39138193 PMCID: PMC11322646 DOI: 10.1038/s41467-024-51346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in vancomycin-resistant E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.
Collapse
Affiliation(s)
- Nathan P Bullen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Cydney N Johnson
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Shelby E Andersen
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Garima Arya
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA
| | - Sonia R Marotta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, Ipswich, MA, 01938, USA
| | - Peter R Weigele
- Research Department, New England Biolabs, Ipswich, MA, 01938, USA
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4L8, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School-Anschutz Medical Campus, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Bayat F, Hilal A, Thirugnanasampanthar M, Tremblay D, Filipe CDM, Moineau S, Didar TF, Hosseinidoust Z. High throughput platform technology for rapid target identification in personalized phage therapy. Nat Commun 2024; 15:5626. [PMID: 38992046 PMCID: PMC11239838 DOI: 10.1038/s41467-024-49710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
As bacteriophages continue to gain regulatory approval for personalized human therapy against antibiotic-resistant infections, there is a need for transformative technologies for rapid target identification through multiple, large, decentralized therapeutic phages biobanks. Here, we design a high throughput phage screening platform comprised of a portable library of individual shelf-stable, ready-to-use phages, in all-inclusive solid tablets. Each tablet encapsulates one phage along with luciferin and luciferase enzyme stabilized in a sugar matrix comprised of pullulan and trehalose capable of directly detecting phage-mediated adenosine triphosphate (ATP) release through ATP bioluminescence reaction upon bacterial cell burst. The tablet composition also enhances desiccation tolerance of all components, which should allow easier and cheaper international transportation of phages and as a result, increased accessibility to therapeutic phages. We demonstrate high throughput screening by identifying target phages for select multidrug-resistant clinical isolates of Pseudomonas aeruginosa, Salmonella enterica, Escherichia coli, and Staphylococcus aureus with targets identified within 30-120 min.
Collapse
Affiliation(s)
- Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Arwa Hilal
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Denise Tremblay
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Liu T, Gao X, Chen R, Tang K, Liu Z, Wang P, Wang X. A nuclease domain fused to the Snf2 helicase confers antiphage defence in coral-associated Halomonas meridiana. Microb Biotechnol 2024; 17:e14524. [PMID: 38980956 PMCID: PMC11232893 DOI: 10.1111/1751-7915.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.
Collapse
Affiliation(s)
- Tianlang Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
16
|
Hör J, Wolf SG, Sorek R. Bacteria conjugate ubiquitin-like proteins to interfere with phage assembly. Nature 2024; 631:850-856. [PMID: 39020165 DOI: 10.1038/s41586-024-07616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/28/2024] [Indexed: 07/19/2024]
Abstract
Several immune pathways in humans conjugate ubiquitin-like proteins to virus and host molecules as a means of antiviral defence1-5. Here we studied an antiphage defence system in bacteria, comprising a ubiquitin-like protein, ubiquitin-conjugating enzymes E1 and E2, and a deubiquitinase. We show that during phage infection, this system specifically conjugates the ubiquitin-like protein to the phage central tail fibre, a protein at the tip of the tail that is essential for tail assembly as well as for recognition of the target host receptor. Following infection, cells encoding this defence system release a mixture of partially assembled, tailless phage particles and fully assembled phages in which the central tail fibre is obstructed by the covalently attached ubiquitin-like protein. These phages show severely impaired infectivity, explaining how the defence system protects the bacterial population from the spread of phage infection. Our findings demonstrate that conjugation of ubiquitin-like proteins is an antiviral strategy conserved across the tree of life.
Collapse
Affiliation(s)
- Jens Hör
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Wang S, Ma T, Xia X, Zhang L. Evolutionary insights and functional diversity of gasdermin family proteins and homologs in microorganisms. Front Immunol 2024; 15:1371611. [PMID: 38571940 PMCID: PMC10989679 DOI: 10.3389/fimmu.2024.1371611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
The gasdermin protein family and its homologs in microorganisms have gained significant attention due to their roles in programmed cell death, immune defense, and microbial infection. This review summarizes the current research status of gasdermin proteins, their structural features, and functional roles in fungi, bacteria, and viruses. The review presents evolutionary parallels between mammalian and microbial defense systems, highlighting the conserved role of gasdermin proteins in regulating cell death processes and immunity. Additionally, the structural and functional characteristics of gasdermin homologs in microorganisms are summarized, shedding light on their potential as targets for therapeutic interventions. Future research directions in this field are also discussed to provide a roadmap for further investigation.
Collapse
Affiliation(s)
- Shule Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Tingbo Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaoyi Xia
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
18
|
Patel PH, Taylor VL, Zhang C, Getz LJ, Fitzpatrick AD, Davidson AR, Maxwell KL. Anti-phage defence through inhibition of virion assembly. Nat Commun 2024; 15:1644. [PMID: 38388474 PMCID: PMC10884400 DOI: 10.1038/s41467-024-45892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.
Collapse
Affiliation(s)
| | | | - Chi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Guler P, Bendori SO, Borenstein T, Aframian N, Kessel A, Eldar A. Arbitrium communication controls phage lysogeny through non-lethal modulation of a host toxin-antitoxin defence system. Nat Microbiol 2024; 9:150-160. [PMID: 38177304 DOI: 10.1038/s41564-023-01551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Temperate Bacillus phages often utilize arbitrium communication to control lysis/lysogeny decisions, but the mechanisms by which this control is exerted remains largely unknown. Here we find that the arbitrium system of Bacillus subtilis phage ϕ3T modulates the host-encoded MazEF toxin-antitoxin system to this aim. Upon infection, the MazF ribonuclease is activated by three phage genes. At low arbitrium signal concentrations, MazF is inactivated by two phage-encoded MazE homologues: the arbitrium-controlled AimX and the later-expressed YosL proteins. At high signal, MazF remains active, promoting lysogeny without harming the bacterial host. MazF cleavage sites are enriched on transcripts of phage lytic genes but absent from the phage repressor in ϕ3T and other Spβ-like phages. Combined with low activation levels of MazF during infections, this pattern explains the phage-specific effect. Our results show how a bacterial toxin-antitoxin system has been co-opted by a phage to control lysis/lysogeny decisions without compromising host viability.
Collapse
Affiliation(s)
- Polina Guler
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shira Omer Bendori
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Tom Borenstein
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nitzan Aframian
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
20
|
Nicastro GG, Burroughs AM, Iyer L, Aravind L. Functionally comparable but evolutionarily distinct nucleotide-targeting effectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Res 2023; 51:11479-11503. [PMID: 37889040 PMCID: PMC10681802 DOI: 10.1093/nar/gkad879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
While nucleic acid-targeting effectors are known to be central to biological conflicts and anti-selfish element immunity, recent findings have revealed immune effectors that target their building blocks and the cellular energy currency-free nucleotides. Through comparative genomics and sequence-structure analysis, we identified several distinct effector domains, which we named Calcineurin-CE, HD-CE, and PRTase-CE. These domains, along with specific versions of the ParB and MazG domains, are widely present in diverse prokaryotic immune systems and are predicted to degrade nucleotides by targeting phosphate or glycosidic linkages. Our findings unveil multiple potential immune systems associated with at least 17 different functional themes featuring these effectors. Some of these systems sense modified DNA/nucleotides from phages or operate downstream of novel enzymes generating signaling nucleotides. We also uncovered a class of systems utilizing HSP90- and HSP70-related modules as analogs of STAND and GTPase domains that are coupled to these nucleotide-targeting- or proteolysis-induced complex-forming effectors. While widespread in bacteria, only a limited subset of nucleotide-targeting effectors was integrated into eukaryotic immune systems, suggesting barriers to interoperability across subcellular contexts. This work establishes nucleotide-degrading effectors as an emerging immune paradigm and traces their origins back to homologous domains in housekeeping systems.
Collapse
Affiliation(s)
- Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, USA
| |
Collapse
|
21
|
Yerushalmy O, Braunstein R, Alkalay-Oren S, Rimon A, Coppenhagn-Glazer S, Onallah H, Nir-Paz R, Hazan R. Towards Standardization of Phage Susceptibility Testing: The Israeli Phage Therapy Center "Clinical Phage Microbiology"-A Pipeline Proposal. Clin Infect Dis 2023; 77:S337-S351. [PMID: 37932122 DOI: 10.1093/cid/ciad514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Using phages as salvage therapy for nonhealing infections is gaining recognition as a viable solution for patients with such infections. The escalating issue of antibiotic resistance further emphasizes the significance of using phages in treating bacterial infections, encompassing compassionate-use scenarios and clinical trials. Given the high specificity of phages, selecting the suitable phage(s) targeting the causative bacteria becomes critical for achieving treatment success. However, in contrast to conventional antibiotics, where susceptibility-testing procedures were well established for phage therapy, there is a lack of standard frameworks for matching phages from a panel to target bacterial strains and assessing their interactions with antibiotics or other agents. This review discusses and compares published methods for clinical phage microbiology, also known as phage susceptibility testing, and proposes guidelines for establishing a standard pipeline based on our findings over the past 5 years of phage therapy at the Israeli Phage Therapy Center.
Collapse
Affiliation(s)
- Ortal Yerushalmy
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ron Braunstein
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Alkalay-Oren
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Rimon
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagn-Glazer
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadil Onallah
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ran Nir-Paz
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronen Hazan
- The Israeli Phage Therapy Center (IPTC) of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Fernández-García L, Wood TK. Phage-Defense Systems Are Unlikely to Cause Cell Suicide. Viruses 2023; 15:1795. [PMID: 37766202 PMCID: PMC10535081 DOI: 10.3390/v15091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
As new phage-defense systems (PDs) are discovered, the overlap between their mechanisms and those of toxin/antitoxin systems (TAs) is becoming clear in that both use similar means to reduce cellular metabolism; for example, both systems have members that deplete energetic compounds (e.g., NAD+, ATP) and deplete nucleic acids, and both have members that inflict membrane damage. Moreover, both TAs and PDs are similar in that rather than altruistically killing the host to limit phage propagation (commonly known as abortive infection), both reduce host metabolism since phages propagate less in slow-growing cells, and slow growth facilitates the interaction of multiple phage-defense systems.
Collapse
Affiliation(s)
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA;
| |
Collapse
|