1
|
Ghafelehbashi H, Pahlevan Kakhki M, Kular L, Moghbelinejad S, Ghafelehbashi SH. Decreased Expression of IFNG-AS1
,IFNG
and IL-1B
Inflammatory Genes in Medicated Schizophrenia and Bipolar Patients. Scand J Immunol 2017; 86:479-485. [DOI: 10.1111/sji.12620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023]
Affiliation(s)
- H. Ghafelehbashi
- Cellular and Molecular Research Center; Qazvin University of Medical Sciences; Qazvin Iran
| | - M. Pahlevan Kakhki
- Department of Genetics; Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| | - L. Kular
- Department of Clinical Neuroscience; Center for Molecular Medicine; Karolinska Institute; Karolinska University Hospital; Stockholm Sweden
| | - S. Moghbelinejad
- Cellular and Molecular Research Center; Qazvin University of Medical Sciences; Qazvin Iran
- Department of Psychiatry; Qazvin University of Medical Sciences; Qazvin Iran
| | - S. H. Ghafelehbashi
- Cellular and Molecular Research Center; Qazvin University of Medical Sciences; Qazvin Iran
- Department of Psychiatry; Qazvin University of Medical Sciences; Qazvin Iran
| |
Collapse
|
2
|
Chen Y, Bang S, McMullen MF, Kazi H, Talbot K, Ho MX, Carlson G, Arnold SE, Ong WY, Kim SF. Neuronal Activity-Induced Sterol Regulatory Element Binding Protein-1 (SREBP1) is Disrupted in Dysbindin-Null Mice-Potential Link to Cognitive Impairment in Schizophrenia. Mol Neurobiol 2017; 54:1699-1709. [PMID: 26873854 PMCID: PMC4982840 DOI: 10.1007/s12035-016-9773-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder that affects about 1 % of the population. Dystrobrevin-binding protein 1 (DTNBP1 or dysbindin) is one of the Research Domain Constructs (RDoC) associated with cognition and is significantly reduced in the brain of schizophrenia patients. To further understand the molecular underpinnings of pathogenesis of schizophrenia, we have performed microarray analyses of the hippocampi from dysbindin knockout mice, and found that genes involved in the lipogenic pathway are suppressed. Moreover, we discovered that maturation of a master transcriptional regulator for lipid synthesis, sterol regulatory element binding protein-1 (SREBP1) is induced by neuronal activity, and is required for induction of the immediate early gene ARC (activity-regulated cytoskeleton-associated protein), necessary for synaptic plasticity and memory. We found that nuclear SREBP1 is dramatically reduced in dysbindin-1 knockout mice and postmortem brain tissues from human patients with schizophrenia. Furthermore, activity-dependent maturation of SREBP1 as well as ARC expression were attenuated in dysbindin-1 knockout mice, and these deficits were restored by an atypical antipsychotic drug, clozapine. Together, results indicate an important role of dysbindin-1 in neuronal activity induced SREBP1 and ARC, which could be related to cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yong Chen
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sookhee Bang
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary F McMullen
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hala Kazi
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Konrad Talbot
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mei-Xuan Ho
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore, 119260, Singapore
| | - Greg Carlson
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven E Arnold
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei-Yi Ong
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Severance EG, Yolken RH, Eaton WW. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr Res 2016; 176:23-35. [PMID: 25034760 PMCID: PMC4294997 DOI: 10.1016/j.schres.2014.06.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
Abstract
Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders.
Collapse
Affiliation(s)
- Emily G. Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933 U.S.A
| | - William W. Eaton
- Department of Mental Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD, U.S.A
| |
Collapse
|
4
|
Abstract
This review provides a comprehensive overview of clinical and molecular genetic as well as pharmacogenetic studies regarding the clinical phenotype of "psychotic depression." Results are discussed with regard to the long-standing debate on categorical vs dimensional disease models of affective and psychotic disorders on a continuum from unipolar depression over bipolar disorder and schizoaffective disorder to schizophrenia. Clinical genetic studies suggest a familial aggregation and a considerable heritability (39%) of psychotic depression partly shared with schizoaffective disorder, schizophrenia, and affective disorders. Molecular genetic studies point to potential risk loci of psychotic depression shared with schizoaffective disorder (1q42, 22q11, 19p13), depression, bipolar disorder, and schizophrenia (6p, 8p22, 10p13-12, 10p14, 13q13-14, 13q32, 18p, 22q11-13) and several vulnerability genes possibly contributing to an increased risk of psychotic symptoms in depression (eg, BDNF, DBH, DTNBP1, DRD2, DRD4, GSK-3beta, MAO-A). Pharmacogenetic studies implicate 5-HTT, TPH1, and DTNBP1 gene variation in the mediation of antidepressant treatment response in psychotic depression. Genetic factors are suggested to contribute to the disease risk of psychotic depression in partial overlap with disorders along the affective-psychotic spectrum. Thus, genetic research focusing on psychotic depression might inspire a more dimensional, neurobiologically and symptom-oriented taxonomy of affective and psychotic disorders challenging the dichotomous Kraepelinian view. Additionally, pharmacogenetic studies might aid in the development of a more personalized treatment of psychotic depression with an individually tailored antidepressive/antipsychotic pharmacotherapy according to genotype.
Collapse
Affiliation(s)
- Katharina Domschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
5
|
van Alphen B, van Swinderen B. Drosophila strategies to study psychiatric disorders. Brain Res Bull 2013; 92:1-11. [DOI: 10.1016/j.brainresbull.2011.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 01/03/2023]
|
6
|
Fournet V, de Lavilléon G, Schweitzer A, Giros B, Andrieux A, Martres MP. Both chronic treatments by epothilone D and fluoxetine increase the short-term memory and differentially alter the mood status of STOP/MAP6 KO mice. J Neurochem 2012; 123:982-96. [PMID: 23013328 DOI: 10.1111/jnc.12027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 01/03/2023]
Abstract
Recent evidence underlines the crucial role of neuronal cytoskeleton in the pathophysiology of psychiatric diseases. In this line, the deletion of STOP/MAP6 (Stable Tubule Only Polypeptide), a microtubule-stabilizing protein, triggers various neurotransmission and behavioral defects, suggesting that STOP knockout (KO) mice could be a relevant experimental model for schizoaffective symptoms. To establish the predictive validity of such a mouse line, in which the brain serotonergic tone is dramatically imbalanced, the effects of a chronic fluoxetine treatment on the mood status of STOP KO mice were characterized. Moreover, we determined the impact, on mood, of a chronic treatment by epothilone D, a taxol-like microtubule-stabilizing compound that has previously been shown to improve the synaptic plasticity deficits of STOP KO mice. We demonstrated that chronic fluoxetine was either antidepressive and anxiolytic, or pro-depressive and anxiogenic, depending on the paradigm used to test treated mutant mice. Furthermore, control-treated STOP KO mice exhibited paradoxical behaviors, compared with their clear-cut basal mood status. Paradoxical fluoxetine effects and control-treated STOP KO behaviors could be because of their hyper-reactivity to acute and chronic stress. Interestingly, both epothilone D and fluoxetine chronic treatments improved the short-term memory of STOP KO mice. Such treatments did not affect the serotonin and norepinephrine transporter densities in cerebral areas of mice. Altogether, these data demonstrated that STOP KO mice could represent a useful model to study the relationship between cytoskeleton, mood, and stress, and to test innovative mood treatments, such as microtubule-stabilizing compounds.
Collapse
Affiliation(s)
- Vincent Fournet
- INSERM UMRS 952, CNRS UMR 7224, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
7
|
Discovery and development of integrative biological markers for schizophrenia. Prog Neurobiol 2011; 95:686-702. [DOI: 10.1016/j.pneurobio.2011.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 12/30/2022]
|
8
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
9
|
Ghiani CA, Dell'Angelica EC. Dysbindin-containing complexes and their proposed functions in brain: from zero to (too) many in a decade. ASN Neuro 2011; 3:e00058. [PMID: 21504412 PMCID: PMC3155195 DOI: 10.1042/an20110010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/18/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023] Open
Abstract
Dysbindin (also known as dysbindin-1 or dystrobrevin-binding protein 1) was identified 10 years ago as a ubiquitously expressed protein of unknown function. In the following years, the protein and its encoding gene, DTNBP1, have become the focus of intensive research owing to genetic and histopathological evidence suggesting a potential role in the pathogenesis of schizophrenia. In this review, we discuss published results demonstrating that dysbindin function is required for normal physiology of the mammalian central nervous system. In tissues other than brain and in non-neuronal cell types, the protein has been characterized as a stable component of a multi-subunit complex, named BLOC-1 (biogenesis of lysosome-related organelles complex-1), which has been implicated in intracellular protein trafficking and the biogenesis of specialized organelles of the endosomal-lysosomal system. In the brain, however, dysbindin has been proposed to associate into multiple complexes with alternative binding partners, and to play a surprisingly wide variety of functions including transcriptional regulation, neurite and dendritic spine formation, synaptic vesicle biogenesis and exocytosis, and trafficking of glutamate and dopamine receptors. This puzzling array of molecular and functional properties ascribed to the dysbindin protein from brain underscores the need of further research aimed at ascertaining its biological significance in health and disease.
Collapse
Key Words
- biogenesis of lysosome-related organelles complex-1 (bloc-1)
- dtnbp1
- dysbindin
- dystrobrevin-binding protein
- schizophrenia
- ap-3, adaptor protein-3
- bloc, biogenesis of lysosome-related organelles complex
- coip, co-immunoprecipitation
- hek-293 cells, human embryonic kidney cells
- hps, hermansky–pudlak syndrome
- jnk, c-jun n-terminal kinase
- ms/ms, tandem mass spectrometry
- rnai, rna interference
- shrna, short-hairpin rna
- sirna, small-interfering rna
- wash, wiskott–aldrich syndrome protein and scar homologue
- vamp-7, vesicle-associated membrane protein 7
- wave, wasp (wiskott–aldrich syndrome protein) verprolin homologous
- y2h, yeast two-hybrid
Collapse
Affiliation(s)
- Cristina A Ghiani
- *Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- †Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| | - Esteban C Dell'Angelica
- *Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
- ‡Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, U.S.A
| |
Collapse
|
10
|
Wilson C, Terry AV. Neurodevelopmental animal models of schizophrenia: role in novel drug discovery and development. ACTA ACUST UNITED AC 2010; 4:124-37. [PMID: 20643635 DOI: 10.3371/csrp.4.2.4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Schizophrenia is a devastating mental illness that is associated with a lifetime of disability. For patients to successfully function in society, the amelioration of disease symptoms is imperative. The recently published results of two large antipsychotic clinical trials (e.g., CATIE, CUtLASS) clearly exemplified the limitations of currently available treatment options for schizophrenia, and further highlighted the critical need for novel drug discovery and development in this field. One of the biggest challenges in schizophrenia-related drug discovery is to find an appropriate animal model of the illness so that novel hypotheses can be tested at the basic science level. A number of pharmacological, genetic, and neurodevelopmental models have been introduced; however, none of these models has been rigorously evaluated for translational relevance or to satisfy requirements of "face," "construct" and "predictive" validity. Given the apparent polygenic nature of schizophrenia and the limited translational significance of pharmacological models, neurodevelopmental models may offer the best chance of success. The purpose of this review is to provide a general overview of the various neurodevelopmental models of schizophrenia that have been introduced to date, and to summarize their behavioral and neurochemical phenotypes that may be useful from a drug discovery and development standpoint. While it may be that, in the final analysis, no single animal model will satisfy all the requirements necessary for drug discovery purposes, several of the models may be useful for modeling various phenomenological and pathophysiological components of schizophrenia that could be targeted independently with separate molecules or multi-target drugs.
Collapse
Affiliation(s)
- Christina Wilson
- Department of Pharmacology and Toxicology, School of Graduate Studies, Medical College of Georgia, Augusta, GA 30912-2300, USA
| | | |
Collapse
|
11
|
Artegiani B, Labbaye C, Sferra A, Quaranta MT, Torreri P, Macchia G, Ceccarini M, Petrucci TC, Macioce P. The interaction with HMG20a/b proteins suggests a potential role for beta-dystrobrevin in neuronal differentiation. J Biol Chem 2010; 285:24740-50. [PMID: 20530487 DOI: 10.1074/jbc.m109.090654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha and beta dystrobrevins are cytoplasmic components of the dystrophin-associated protein complex that are thought to play a role as scaffold proteins in signal transduction and intracellular transport. In the search of new insights into the functions of beta-dystrobrevin, the isoform restricted to non-muscle tissues, we performed a two-hybrid screen of a mouse cDNA library to look for interacting proteins. Among the positive clones, one encodes iBRAF/HMG20a, a high mobility group (HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-responsive genes, playing a key role in the initiation of neuronal differentiation. We characterized the beta-dystrobrevin-iBRAF interaction by in vitro and in vivo association assays, localized the binding region of one protein to the other, and assessed the kinetics of the interaction as one of high affinity. We also found that beta-dystrobrevin directly binds to BRAF35/HMG20b, a close homologue of iBRAF and a member of a co-repressor complex required for the repression of neural specific genes in neuronal progenitors. In vitro assays indicated that beta-dystrobrevin binds to RE-1 and represses the promoter activity of synapsin I, a REST-responsive gene that is a marker for neuronal differentiation. Altogether, our data demonstrate a direct interaction of beta-dystrobrevin with the HMG20 proteins iBRAF and BRAF35 and suggest that beta-dystrobrevin may be involved in regulating chromatin dynamics, possibly playing a role in neuronal differentiation.
Collapse
Affiliation(s)
- Benedetta Artegiani
- Department of Cell Biology and Neuroscience, National Center for Rare Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 2010; 15:473-500. [PMID: 18982004 DOI: 10.1038/mp.2008.116] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This systematic review summarizes pharmacogenetic studies on antidepressant response and side effects. Out of the 17 genes we reviewed, 8 genes were entered into the meta-analysis (SLC6A4, HTR1A, HTR2A, TPH1, gene encoding the beta-3 subunit, brain-derived neurotrophic factor (BDNF), HTR3A and HTR3B). TPH1 218C/C genotype (7 studies, 754 subjects) was significantly associated with a better response (odds ratio, OR=1.62; P=0.005) with no heterogeneity between ethnicities. A better response was also observed in subjects with the Met variant within the BDNF 66Val/Met polymorphism (4 studies, 490 subjects; OR=1.63, P=0.02). Variable number of tandem repeats polymorphism within intron 2 (STin2) 12/12 genotype showed a trend toward a better response in Asians (STin2: 5 studies, 686 subjects; OR=3.89, P=0.03). As for side effects, pooled ORs of serotonin transporter gene promoter polymorphism (5-HTTLPR) l (9 studies, 2642 subjects) and HTR2A -1438G/G (7 studies, 801 subjects) were associated with a significant risk modulation (OR=0.64, P=0.0005) and (OR=1.91, P=0.0006), respectively. Interestingly, this significance became more robust when analyzed with side effect induced by selective serotonin reuptake inhibitors only (5-HTTLPR: P=0.0001, HTR2A: P<0.0001). No significant result could be observed for the other variants. These results were not corrected for multiple testing in each variant, phenotype and subcategory. This would have required a Bonferroni significance level of P<0.0023. Although some heterogeneity was present across studies, our finding suggests that 5-HTTLPR, STin2, HTR1A, HTR2A, TPH1 and BDNF may modulate antidepressant response.
Collapse
|
13
|
Bousman CA, Glatt SJ, Everall IP, Tsuang MT. Genetic association studies of methamphetamine use disorders: A systematic review and synthesis. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:1025-49. [PMID: 19219857 DOI: 10.1002/ajmg.b.30936] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Efforts to understand the biological processes that increase susceptibility to methamphetamine (METH) use disorders (i.e., abuse, dependence, and psychosis) have uncovered several putative genotypic variants. However, to date a synthesis of this information has not been conducted. Thus, systematic searches of the current literature were undertaken for genetic-association studies of METH use disorders. Each gene's chromosomal location, function, and examined polymorphic markers were extracted. Frequencies, odds ratios and 95% confidence intervals for risk alleles, as well as sample size and power, were calculated. We uncovered 38 studies examining 39 genes, of which 18 were found to have a significant genotypic, allelic, and/or haplotypic association with METH use disorders. Three genes (COMT, DRD4, and GABRA1) were associated with METH abuse, nine (ARRB2, BDNF, CYP2D6, GLYT1, GSTM1, GSTP1, PDYN, PICK1, and SLC22A3) with METH dependence, two (AKT1 and GABRG2) with METH abuse/dependence, and four (DTNBP1, OPRM1, SNCA, and SOD2) with METH psychosis. Limitations related to phenotypic classification, statistical power, and potential publication bias in the current literature were noted. Similar to other behavioral, psychiatric, and substance use disorders, the genetic epidemiology of METH use disorders is complex and likely polygenic. National and international collaborative efforts are needed to increase the availability of large population-based samples and improve upon the power to detect genetic associations of small magnitude. Further, replication of the findings reviewed here along with further development of more rigorous methodologies and reporting protocols will aid in delineating the complex genetic epidemiology of METH use disorders.
Collapse
Affiliation(s)
- Chad A Bousman
- Department of Psychiatry, Center for Behavioral Genomics, University of California San Diego, La Jolla, 92037, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The molecular mechanisms that achieve homeostatic stabilization of neural function remain largely unknown. To better understand how neural function is stabilized during development and throughout life, we used an electrophysiology-based forward genetic screen and assessed the function of more than 250 neuronally expressed genes for a role in the homeostatic modulation of synaptic transmission in Drosophila. This screen ruled out the involvement of numerous synaptic proteins and identified a critical function for dysbindin, a gene linked to schizophrenia in humans. We found that dysbindin is required presynaptically for the retrograde, homeostatic modulation of neurotransmission, and functions in a dose-dependent manner downstream or independently of calcium influx. Thus, dysbindin is essential for adaptive neural plasticity and may link altered homeostatic signaling with a complex neurological disease.
Collapse
Affiliation(s)
- Dion K. Dickman
- Department of Biochemistry and Biophysics, University of California, San Francisco, 1550 4 street, Rock Hall 4 Floor North, San Francisco, CA 94158, USA
| | - Graeme W. Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, 1550 4 street, Rock Hall 4 Floor North, San Francisco, CA 94158, USA
| |
Collapse
|
15
|
Abstract
Mutations in the gene encoding tripartite motif protein 32 (TRIM32) cause two seemingly diverse diseases: limb-girdle muscular dystrophy type 2H (LGMD2H) or sarcotubular myopathy (STM) and Bardet–Biedl syndrome type 11(BBS11). Although TRIM32 is involved in protein ubiquitination, its substrates and the molecular consequences of disease-causing mutations are poorly understood. In this paper, we show that TRIM32 is a widely expressed ubiquitin ligase that is localized to the Z-line in skeletal muscle. Using the yeast two-hybrid system, we found that TRIM32 binds and ubiquitinates dysbindin, a protein implicated in the genetic aetiology of schizophrenia, augmenting its degradation. Small-interfering RNA-mediated knock-down of TRIM32 in myoblasts resulted in elevated levels of dysbindin. Importantly, the LGMD2H/STM-associated TRIM32 mutations, D487N and R394H impair ubiquitin ligase activity towards dysbindin and were mislocalized in heterologous cells. These mutants were able to self-associate and also co-immunoprecipitated with wild-type TRIM32 in transfected cells. Furthermore, the D487N mutant could bind to both dysbindin and its E2 enzyme but was defective in monoubiquitination. In contrast, the BBS11 mutant P130S did not show any biochemical differences compared with the wild-type protein. Our data identify TRIM32 as a regulator of dysbindin and demonstrate that the LGMD2H/STM mutations may impair substrate ubiquitination.
Collapse
Affiliation(s)
- Matthew Locke
- Department of Psychological Medicine, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|
16
|
Waite A, Tinsley CL, Locke M, Blake DJ. The neurobiology of the dystrophin-associated glycoprotein complex. Ann Med 2009; 41:344-59. [PMID: 19172427 DOI: 10.1080/07853890802668522] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
While the function of dystrophin in muscle disease has been thoroughly investigated, dystrophin and associated proteins also have important roles in the central nervous system. Many patients with Duchenne and Becker muscular dystrophies (D/BMD) have cognitive impairment, learning disability, and an increased incidence of some neuropsychiatric disorders. Accordingly, dystrophin and members of the dystrophin-associated glycoprotein complex (DGC) are found in the brain where they participate in macromolecular assemblies that anchor receptors to specialized sites within the membrane. In neurons, dystrophin and the DGC participate in the postsynaptic clustering and stabilization of some inhibitory GABAergic synapses. During development, alpha-dystroglycan functions as an extracellular matrix receptor controlling, amongst other things, neuronal migration in the developing cortex and cerebellum. Several types of congenital muscular dystrophy caused by impaired alpha-dystroglycan glycosylation cause neuronal migration abnormalities and mental retardation. In glial cells, the DGC is involved in the organization of protein complexes that target water-channels to the plasma membrane. Finally, mutations in the gene encoding epsilon-sarcoglycan cause the neurogenic movement disorder, myoclonus-dystonia syndrome implicating epsilon-sarcoglycan in dopaminergic neurotransmission. In this review we describe the recent progress in defining the role of the DGC and associated proteins in the brain.
Collapse
Affiliation(s)
- Adrian Waite
- Department of Psychological Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
17
|
Bhardwaj SK, Baharnoori M, Sharif-Askari B, Kamath A, Williams S, Srivastava LK. Behavioral characterization of dysbindin-1 deficient sandy mice. Behav Brain Res 2008; 197:435-41. [PMID: 18984010 DOI: 10.1016/j.bbr.2008.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/09/2008] [Accepted: 10/07/2008] [Indexed: 12/15/2022]
Abstract
Dysbindin-1 (dystrobrevin binding protein-1) has been reported as a candidate gene associated with schizophrenia. Dysbindin-1 mRNA and protein levels are significantly reduced in the prefrontal cortex and hippocampus of schizophrenia subjects. To understand the in-vivo functions of dysbindin-1, we studied schizophrenia relevant behaviors in adult male Sandy homozygous (sdy/sdy) and heterozygous (sdy/+) mice that have a natural mutation in dysbindin-1 gene (on a DBA/2J background) resulting in loss of protein expression. Spontaneous locomotor activity of sdy/sdy and sdy/+ mice in novel environment was not significantly different from DBA/2J controls. However, on repeated testing in the same environment for 7 days, sdy/sdy mice, in contrast to DBA/2J controls showed a lack of locomotor habituation. Locomotor activating effect of a low dose of d-amphetamine (2.5 mg/kg i.p.), a behavioral measure of mesolimbic dopamine activity, was significantly reduced in the mutant mice. Interestingly, sdy/sdy mice showed enhanced locomotor sensitization to repeated five daily injection of amphetamine. Possible cognitive impairment in Sandy mutants was revealed in novel object recognition test as sdy/sdy and sdy/+ mice spent significantly less time exploring novel objects compared to DBA/2J. Sdy/sdy mice also showed deficits in emotionally motivated learning and memory showing greater freezing response to auditory conditioned stimulus (CS) in fear conditioning paradigm. In thermal nociceptive test, the latency of paw withdrawal in sdy/sdy and sdy/+ animals was significantly higher compared to DBA/2J indicating hypoalgesia in the mutants. Taken together, these data suggest that dysbindin-1 gene deficiency leads to significant changes in cognition and altered responses to psychostimulants.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Boul, Montreal H4H 1R3, QC, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Bennett A O MR. Dual constraints on synapse formation and regression in schizophrenia: neuregulin, neuroligin, dysbindin, DISC1, MuSK and agrin. Aust N Z J Psychiatry 2008; 42:662-77. [PMID: 18622774 DOI: 10.1080/00048670802203467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During adolescence there is a loss of approximately 30% of the synapses formed in the cortex during childhood. Comprehensive studies of the visual cortex show that this loss of synapses does not occur as a consequence of less appropriate projections being eliminated in favour of more appropriate ones. Rather it seems that synapses with low efficacy for transmission are eliminated in favour of those with higher efficacy. The loss of low-efficacy synapses is known, on theoretical grounds, to enhance the function of neural networks, but large synapse losses lead to failure of network function. In the dorsolateral prefrontal cortex (DLPC) of those suffering from schizophrenia the number of synapses is relatively very low, approximately 60% lower than that observed in normal childhood. It is not known if this is due to an additional loss over that during normal adolescence or whether it results from a failure to form a normal complement of synapses during childhood. The first study of synapse loss in the mammalian nervous system was made on the neuromuscular junction at Sydney University in 1974. Since then this junction has provided principal insights into the molecular basis of synapse formation and regression, so providing a paradigm for investigations of these phenomena in the DLPC. For example the molecules muscle-specific receptor tyrosine kinase (MuSK), agrin and neuregulin have been identified and their critical roles in the formation and maintenance of synapses elucidated. Loss of function of MuSK or agrin leads to failure of neuromuscular synapse formation as well as a loss of approximately 30% of excitatory synapses in the cortex. Similar synapse loss occurs on failure of neuregulin in vitro and of neuroligin in vivo. It is suggested that three important questions need to be answered: first, over what development period are the synapse numbers in DLPC of subjects with schizophrenia lower than normal; second, what are the relative importance of MuSK/agrin, neuregulin/ErB and neurexin/neuroligin in synapse formation and regression in the DLPC; and third, to what extent have these molecules gone awry in schizophrenia.
Collapse
Affiliation(s)
- Maxwell R Bennett A O
- Brain and Mind Research Institute, University of Sydney, 100 Mallett Street, Camperdown, NSW 2006, Australia.
| |
Collapse
|
19
|
DTNBP1 haplotype influences baseline assessment scores of schizophrenic in-patients. Neurosci Lett 2008; 440:150-4. [DOI: 10.1016/j.neulet.2008.05.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/30/2008] [Accepted: 05/14/2008] [Indexed: 02/06/2023]
|
20
|
Dolzan V, Plesnicar BK, Serretti A, Mandelli L, Zalar B, Koprivsek J, Breskvar K. Polymorphisms in dopamine receptor DRD1 and DRD2 genes and psychopathological and extrapyramidal symptoms in patients on long-term antipsychotic treatment. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:809-15. [PMID: 17455212 DOI: 10.1002/ajmg.b.30544] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DRD(1) and DRD(2) receptor gene variants have been associated with clinical aspects of schizophrenia; however only specific features were analyzed in different samples. To assess the complex interaction between genetic and clinical factors, we studied the possible cross-interactions between DRD1 and DRD2 dopamine receptor gene polymorphisms, symptomatology of schizophrenia and schizoaffective disorders, and the occurrence of treatment induced side effects taking into consideration possible clinical confounding variables. One hundred thirty one outpatients in stable remission meeting the DSMIV criteria for schizophrenia spectrum disorders and receiving long-term maintenance therapy with haloperidol, fluphenazine, zuclopenthixole, or risperidone were genotyped for DRD1 A-48G, DRD2 Ins-141CDel, and DRD2 Ser311Cys polymorphisms. Psychopathological symptoms were assessed with the positive and negative syndrome scale for schizophrenia (PANSS). Extrapyramidal side effects were assessed with the Simpson-Angus extrapyramidal side effects scale (EPS), the Barnes Akathisia scale (BARS), and the abnormal involuntary movement scale (AIMS). Drug dosage was included as covariant because it was associated with the severity of symptomatology, akathisia, and parkinsonism. No association was observed for DRD1 and DRD2 polymorphisms and extrapyramidal side effects, or with the other clinical variables considered. Our study suggests that DRD1 and DRD2 variants are not liability factors for tardive dyskinesia.
Collapse
Affiliation(s)
- Vita Dolzan
- Institute of Biochemistry, Faculty of Medicine, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Szatmari P, Maziade M, Zwaigenbaum L, Mérette C, Roy MA, Joober R, Palmour R. Informative phenotypes for genetic studies of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:581-8. [PMID: 17219386 DOI: 10.1002/ajmg.b.30426] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite its initial promise, there has been both progress and some set backs in genetic studies of the major psychiatric disorders of childhood and adulthood. Finding true susceptibility genes may be delayed because the most genetically informative phenotypes are not being used on a regular basis in linkage analysis and association studies. It is highly likely that using alternative phenotypes instead of DSM diagnostic categories will lead more rapid success in the search for these susceptibility genes. The objective of this paper is to describe the different types of informative phenotypes that can be employed in psychiatric genetic studies, to clarify their uses, to identify several methodologic issues the design and conduct of linkage and association studies that use alternative phenotypes and finally to suggest possible solutions to those difficulties. This is a conceptual review with a focus on methodological issues that may arise in psychiatric genetics and examples are taken from the literature on autism, schizophrenia, bipolar disorder, and alcoholism.
Collapse
Affiliation(s)
- Peter Szatmari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
22
|
Newell-Litwa K, Seong E, Burmeister M, Faundez V. Neuronal and non-neuronal functions of the AP-3 sorting machinery. J Cell Sci 2007; 120:531-41. [PMID: 17287392 DOI: 10.1242/jcs.03365] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicles selectively exchange lipids, membrane proteins and luminal contents between organelles along the exocytic and endocytic routes. The repertoire of membrane proteins present in these vesicles is crucial for their targeting and function. Vesicle composition is determined at the time of their biogenesis by cytosolic coats. The heterotetrameric protein adaptor protein complex 3 (AP-3), a coat component, participates in the generation of a diverse group of secretory organelles and lysosome-related organelles. Recent work has shed light on the mechanisms that regulate AP-3 and the trafficking pathways controlled by this adaptor. Phenotypic analysis of organisms carrying genetic deficiencies in the AP-3 pathway highlight its role regulating the targeting of lysosomal, melanosomal and synaptic vesicle-specific membrane proteins. Synaptic vesicles from AP-3-deficient mice possess altered levels of neurotransmitter and ion transporters, molecules that ultimately define the type and amount of neurotransmitter stored in these vesicles. These findings reveal a complex picture of how AP-3 functions in multiple tissues, including neuronal tissue, and expose potential links between endocytic sorting mechanisms and the pathogenesis of psychiatric disorders such as schizophrenia.
Collapse
|
23
|
Joo EJ, Lee KY, Jeong SH, Chang JS, Ahn YM, Koo YJ, Kim YS. Dysbindin gene variants are associated with bipolar I disorder in a Korean population. Neurosci Lett 2007; 418:272-5. [PMID: 17433541 DOI: 10.1016/j.neulet.2007.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/14/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
The dysbindin gene (DTNBP1) has been associated with schizophrenia in several populations. Because the clinical characteristics of schizophrenia and bipolar disorder overlap in many respects and findings from genetic studies have suggested common genes between them, we conducted a case control association study of bipolar disorder in Korea to investigate the genetic association between DTNBP1 and bipolar disorder. In total, 163 patients with bipolar disorder and 350 controls were evaluated. We genotyped three single nucleotide polymorphisms of DTNBP1 (SNP A, P1763, and P1320) and analyzed the allele, genotype, and haplotype associations with bipolar disorder. We found significant genotypic associations with P1763 and P1320, but no association with SNP A in the bipolar I group. When we included bipolar II and schizoaffective disorder in the affected phenotype, the significance decreased. A positive association was observed between the SNP A-P1763 haplotype and the bipolar I phenotype. This haplotype association was lost when we either broadened our phenotype or included P1320 in a haplotype. The positive results of the present study lost significance after a Bonferroni correction for multiple testing. These findings are consistent with previous findings that showed a positive association of DTNBP1 with bipolar disorders. Moreover, our results suggest that DTNBP1 may contribute more to bipolar I disorder than bipolar II disorder or schizoaffective disorder. Further comprehensive studies will be required to clarify these association, however, it seems likely that DTNBP1 is a susceptibility gene for bipolar disorder.
Collapse
Affiliation(s)
- E J Joo
- Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Pedrosa E, Ye K, Nolan KA, Morrell L, Okun JM, Persky AD, Saito T, Lachman HM. Positive association of schizophrenia to JARID2 gene. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:45-51. [PMID: 16967465 DOI: 10.1002/ajmg.b.30386] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dysbindin (DTNBP1) is a positional candidate gene for 6p22.3-linked schizophrenia (SZ). However, so far, no disease-causing alleles have been identified. DTNBP1 is immediately adjacent to JARID2, a member of the ARID (AT-rich interaction domain) family of transcription modulators. We have previously suggested that proteins which bind to AT-rich domains could play a role in SZ pathogenesis. Consequently, we explored the possibility that JARID2 itself could be a candidate gene for 6p22.3-linked SZ. We used a case control design to analyze single nucleotide polymorphisms (SNPs) and insertion/deletion variants affecting AT-rich domains in both the DTNBP1 and JARID2 genes. Three of the DTNBP1 SNPs analyzed had previously been shown to be associated with SZ. We did not detect any significant difference in allele, genotype or haplotype distribution for any of these DTNBP1 markers. However, we did detect a significant difference in allele distribution for a tetranucleotide repeat polymorphism in the JARID2 gene that affects an AT-rich domain. A significant increase in short alleles (less than 11 repeats) was found in patients with SZ (chi(2) = 7.02; P = 0.008). No other JARID2 marker displayed statistically significant allele and genotype distributions. Our findings suggest that JARID2 should be viewed as a candidate gene for 6p22.3-linked SZ.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pae CU, Serretti A, Mandelli L, De Ronchi D, Patkar AA, Jun TY, Kim JJ, Lee CU, Lee SJ, Lee C, Paik IH. Dysbindin associated with selective serotonin reuptake inhibitor antidepressant efficacy. Pharmacogenet Genomics 2007; 17:69-75. [PMID: 17264804 DOI: 10.1097/01.fpc.0000236330.03681.6d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Antidepressant drug efficacy is partially under genetic control and a number of gene variants have been associated with antidepressants efficacy over the last few years. In the search for further genes influencing antidepressant response we focused on the dysbindin gene (dystrobrevin-binding-protein 1, DTNBP1). BASIC METHODS One hundred and four Korean inpatients affected by major depressive disorder were treated with various antidepressants at standard therapeutic daily doses and rated with the 10-items Montgomery-Asberg Depression rating scale (MADRS) at baseline and discharge. Five DTNBP1 variants (rs3213207 A/G, rs1011313 C/T, rs2005976 G/A, rs760761 C/T and rs2619522 A/C) were analysed for all patients. RESULTS Rs2005976 was found to be significantly associated with final MADRS scores, with the rarest A allele associated with higher final scores (P=0.00055), rs760761 also showed a significant association (P=0.0058) and rs2619522 showed a positive trend (P=0.025). Markers were not significantly associated with Clinical Global Impression Scale scores. Five marker haplotypes were mildly associated with MADRS final scores but when considering the block composed of the three single nucleotide polymorphisms individually associated with response (rs2005976, rs760761 and rs2619522), results were more marked (P=0.0096), with the more frequent G-C-A haplotype associated with a positive outcome. CONCLUSIONS Despite limitations due to the sample size and the mild antidepressant response, we observed a significant association between DTNBP1 variants and antidepressant response.
Collapse
Affiliation(s)
- Chi-Un Pae
- Department of Psychiatry, Kangnam St Mary's Hospital, The Catholic University of Korea College of Medicine, Seocho-Gu, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Joo EJ, Lee KY, Jeong SH, Ahn YM, Koo YJ, Kim YS. The dysbindin gene (DTNBP1) and schizophrenia: No support for an association in the Korean population. Neurosci Lett 2006; 407:101-6. [PMID: 16959423 DOI: 10.1016/j.neulet.2006.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/01/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
The dysbindin gene (DTNBP1) is located in chromosome 6p22.3, one of the regions of positive linkage for schizophrenia. A strong genetic association between DTNBP1 and schizophrenia has been replicated through many recent studies. In particular, dysbindin protein has been found to play a role in the glutamate neural transmission in the brain. In this study, we attempted to replicate the previously reported positive association between DTNBP1 and schizophrenia in the Korean population. Our sample included 194 patients with schizophrenia based on DSM-IV and 351 normal controls. We genotyped five SNPs including SNP A in promoter region of DTNBP1. The allele and genotype association were analyzed and the simulated haplotype was investigated as well. As the result, we could not find a significant association of DTNBP1 with schizophrenia in this Korean sample. Additional analysis of the subgroup of schizophrenia having familial loading of major psychiatric disorders did not show association, either. In summary, DTNBP1 is not likely to be a major susceptibility gene for schizophrenia in this Korean population. This result of no association also implies possible genetic heterogeneity of schizophrenia. Further studies with more dense SNPs of the whole gene sequence for various populations will be necessary to understand the genetic contribution of DTNBP1 for the development of schizophrenia.
Collapse
Affiliation(s)
- Eun-Jeong Joo
- Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, 280-1 Hagye-1-Dong, Nowon-gu, Seoul 139-711, South Korea
| | | | | | | | | | | |
Collapse
|
27
|
Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, McKnight GS, Roder JC, Quirion R, Boksa P, Srivastava LK, Yanai K, Weinshenker D, Sumiyoshi T. Psychosis pathways converge via D2high dopamine receptors. Synapse 2006; 60:319-46. [PMID: 16786561 DOI: 10.1002/syn.20303] [Citation(s) in RCA: 238] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The objective of this review is to identify a target or biomarker of altered neurochemical sensitivity that is common to the many animal models of human psychoses associated with street drugs, brain injury, steroid use, birth injury, and gene alterations. Psychosis in humans can be caused by amphetamine, phencyclidine, steroids, ethanol, and brain lesions such as hippocampal, cortical, and entorhinal lesions. Strikingly, all of these drugs and lesions in rats lead to dopamine supersensitivity and increase the high-affinity states of dopamine D2 receptors, or D2High, by 200-400% in striata. Similar supersensitivity and D2High elevations occur in rats born by Caesarian section and in rats treated with corticosterone or antipsychotics such as reserpine, risperidone, haloperidol, olanzapine, quetiapine, and clozapine, with the latter two inducing elevated D2High states less than that caused by haloperidol or olanzapine. Mice born with gene knockouts of some possible schizophrenia susceptibility genes are dopamine supersensitive, and their striata reveal markedly elevated D2High states; suchgenes include dopamine-beta-hydroxylase, dopamine D4 receptors, G protein receptor kinase 6, tyrosine hydroxylase, catechol-O-methyltransferase, the trace amine-1 receptor, regulator of G protein signaling RGS9, and the RIIbeta form of cAMP-dependent protein kinase (PKA). Striata from mice that are not dopamine supersensitive did not reveal elevated D2High states; these include mice with knockouts of adenosine A2A receptors, glycogen synthase kinase GSK3beta, metabotropic glutamate receptor 5, dopamine D1 or D3 receptors, histamine H1, H2, or H3 receptors, and rats treated with ketanserin or aD1 antagonist. The evidence suggests that there are multiple pathways that convergetoelevate the D2High state in brain regions and that this elevation may elicit psychosis. This proposition is supported by the dopamine supersensitivity that is a common feature of schizophrenia and that also occurs in many types of genetically altered, drug-altered, and lesion-altered animals. Dopamine supersensitivity, in turn, correlates with D2High states. The finding that all antipsychotics, traditional and recent ones, act on D2High dopamine receptors further supports the proposition.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, and Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Salazar G, Craige B, Styers ML, Newell-Litwa KA, Doucette MM, Wainer BH, Falcon-Perez JM, Dell'Angelica EC, Peden AA, Werner E, Faundez V. BLOC-1 complex deficiency alters the targeting of adaptor protein complex-3 cargoes. Mol Biol Cell 2006; 17:4014-26. [PMID: 16760431 PMCID: PMC1556383 DOI: 10.1091/mbc.e06-02-0103] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/16/2006] [Accepted: 05/31/2006] [Indexed: 01/10/2023] Open
Abstract
Mutational analyses have revealed many genes that are required for proper biogenesis of lysosomes and lysosome-related organelles. The proteins encoded by these genes assemble into five distinct complexes (AP-3, BLOC-1-3, and HOPS) that either sort membrane proteins or interact with SNAREs. Several of these seemingly distinct complexes cause similar phenotypic defects when they are rendered defective by mutation, but the underlying cellular mechanism is not understood. Here, we show that the BLOC-1 complex resides on microvesicles that also contain AP-3 subunits and membrane proteins that are known AP-3 cargoes. Mouse mutants that cause BLOC-1 or AP-3 deficiencies affected the targeting of LAMP1, phosphatidylinositol-4-kinase type II alpha, and VAMP7-TI. VAMP7-TI is an R-SNARE involved in vesicle fusion with late endosomes/lysosomes, and its cellular levels were selectively decreased in cells that were either AP-3- or BLOC-1-deficient. Furthermore, BLOC-1 deficiency selectively altered the subcellular distribution of VAMP7-TI cognate SNAREs. These results indicate that the BLOC-1 and AP-3 protein complexes affect the targeting of SNARE and non-SNARE AP-3 cargoes and suggest a function of the BLOC-1 complex in membrane protein sorting.
Collapse
Affiliation(s)
- G Salazar
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
van Belzen MJ, Heutink P. Genetic analysis of psychiatric disorders in humans. GENES BRAIN AND BEHAVIOR 2006; 5 Suppl 2:25-33. [PMID: 16681798 DOI: 10.1111/j.1601-183x.2006.00223.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Psychiatric disorders place a large burden not only on affected individuals and their families but also on societies and health services. Current treatment is only effective in a proportion of the patients, so considerable effort has been put into the development of new medications. The susceptibility to all major psychiatric disorders is, at least in part, genetic. Knowledge of the genes that underlie this susceptibility may lead to the identification of new drug targets and the development of more effective treatments. Therefore, numerous genetic studies in search for the genes involved in psychiatric disorders have been performed. Although results of both linkage and association studies have been inconsistent, several promising gene regions and candidate genes have been identified recently. In this article, we will review the strategies that proved to be successful in detecting genes for psychiatric disorders and we will provide some recommendations to increase the probability of detecting susceptibility genes in genetic studies of different designs.
Collapse
Affiliation(s)
- M J van Belzen
- Department of Medical Genomics, Center for Neurogenomics and Cognitive Research, VU University Medical Center and VU University, Amsterdam, The Netherlands
| | | |
Collapse
|