1
|
Tan VX, Guillemin GJ. Kynurenine Pathway Metabolites as Biomarkers for Amyotrophic Lateral Sclerosis. Front Neurosci 2019; 13:1013. [PMID: 31616242 PMCID: PMC6764462 DOI: 10.3389/fnins.2019.01013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) currently lacks a robust and well-defined biomarker that can 1) assess the progression of the disease, 2) predict and/or delineate the various clinical subtypes, and 3) evaluate or predict a patient's response to treatments. The kynurenine Pathway (KP) of tryptophan degradation represent a promising candidate as it is involved with several neuropathological features present in ALS including neuroinflammation, excitotoxicity, oxidative stress, immune system activation and dysregulation of energy metabolism. Some of the KP metabolites (KPMs) can cross the blood brain barrier, and many studies have shown their levels are dysregulated in major neurodegenerative diseases including ALS. The KPMs can be easily analyzed in body fluids and tissue and as they are small molecules, and are stable. KPMs have a Janus face action, they can be either or both neurotoxic and/or neuroprotective depending of their levels. This mini review examines and presents evidence supporting the use of KPMs as a relevant set of biomarkers for ALS, and highlights the criteria required to achieve a valid biomarker set for ALS.
Collapse
Affiliation(s)
| | - Gilles J. Guillemin
- Macquarie University Centre for MND Research, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Rosenfeld J, Strong MJ. Challenges in the Understanding and Treatment of Amyotrophic Lateral Sclerosis/Motor Neuron Disease. Neurotherapeutics 2015; 12:317-25. [PMID: 25572957 PMCID: PMC4404444 DOI: 10.1007/s13311-014-0332-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
With the acceleration in our understanding of ALS and the related motor neuron disease has come even greater challenges in reconciling all of the proposed pathogenic mechanisms and how this will translate into impactful treatments. Fundamental issues such as diagnostic definition(s) of the disease spectrum, relevant biomarkers, the impact of multiple novel genetic mutations and the significant effect of symptomatic treatments on disease progression are all areas of active investigation. In this review, we will focus on these key issues and highlight the challenges that confront both clinicians and basic science researchers.
Collapse
Affiliation(s)
- Jeffrey Rosenfeld
- Central California Neuroscience Institute, UCSF Fresno, Division of Neurology, Fresno, CA, USA,
| | | |
Collapse
|
3
|
Oono M, Okado-Matsumoto A, Shodai A, Ido A, Ohta Y, Abe K, Ayaki T, Ito H, Takahashi R, Taniguchi N, Urushitani M. Transglutaminase 2 accelerates neuroinflammation in amyotrophic lateral sclerosis through interaction with misfolded superoxide dismutase 1. J Neurochem 2013; 128:403-18. [DOI: 10.1111/jnc.12441] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/09/2013] [Accepted: 08/27/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Miki Oono
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Otsu Shiga Japan
- Department of Neurology; Kyoto University Graduate school of Medicine; Kyoto Japan
| | | | - Akemi Shodai
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Otsu Shiga Japan
| | - Akemi Ido
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Otsu Shiga Japan
| | - Yasuyuki Ohta
- Department of Neurology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Koji Abe
- Department of Neurology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; Okayama Japan
| | - Takashi Ayaki
- Department of Neurology; Kyoto University Graduate school of Medicine; Kyoto Japan
| | - Hidefumi Ito
- Department of Neurology; Wakayama Medical University; Graduate School of Medicine; Wakayama Japan
| | - Ryosuke Takahashi
- Department of Neurology; Kyoto University Graduate school of Medicine; Kyoto Japan
| | | | - Makoto Urushitani
- Molecular Neuroscience Research Center; Shiga University of Medical Science; Otsu Shiga Japan
| |
Collapse
|
4
|
Zhang J, Twelvetrees AE, Lazarus JE, Blasier KR, Yao X, Inamdar NA, Holzbaur ELF, Pfister KK, Xiang X. Establishing a novel knock-in mouse line for studying neuronal cytoplasmic dynein under normal and pathologic conditions. Cytoskeleton (Hoboken) 2013; 70:215-27. [PMID: 23475693 PMCID: PMC3670090 DOI: 10.1002/cm.21102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 02/23/2013] [Accepted: 02/26/2013] [Indexed: 12/19/2022]
Abstract
Cytoplasmic dynein plays important roles in mitosis and the intracellular transport of organelles, proteins, and mRNAs. Dynein function is particularly critical for survival of neurons, as mutations in dynein are linked to neurodegenerative diseases. Dynein function is also implicated in neuronal regeneration, driving the active transport of signaling molecules following injury of peripheral neurons. To enhance our understanding of dynein function and regulation in neurons, we established a novel knock-in mouse line in which the neuron-specific cytoplasmic dynein 1 intermediate chain 1 (IC-1) is tagged with both GFP and a 3xFLAG tag at its C-terminus. The fusion gene is under the control of IC-1's endogenous promoter and is integrated at the endogenous locus of the IC-1-encoding gene Dync1i1. The IC-1-GFP-3xFLAG fusion protein is incorporated into the endogenous dynein complex, and movements of GFP-labeled dynein expressed at endogenous levels can be observed in cultured neurons for the first time. The knock-in mouse line also allows isolation and analysis of dynein-bound proteins specifically from neurons. Using this mouse line we have found proteins, including 14-3-3 zeta, which physically interact with dynein upon injury of the brain cortex. Thus, we have created a useful tool for studying dynein function in the central nervous system under normal and pathologic conditions.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Alison E. Twelvetrees
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacob E. Lazarus
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kiev R. Blasier
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xuanli Yao
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Nirja A. Inamdar
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Erika L. F. Holzbaur
- Pennsylvania Muscle Institute and Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - K. Kevin Pfister
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
- Center for Neuroscience and Regenerative Medicine, the Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
5
|
Abstract
ALS is a fatal neurodegenerative disease characterized by selective motor neuron death resulting in muscle paralysis. Mutations in superoxide dismutase 1 (SOD1) are responsible for a subset of familial cases of ALS. Although evidence from transgenic mice expressing human mutant SOD1(G93A) suggests that axonal transport defects may contribute to ALS pathogenesis, our understanding of how these relate to disease progression remains unclear. Using an in vivo assay that allows the characterization of axonal transport in single axons in the intact sciatic nerve, we have identified clear axonal transport deficits in presymptomatic mutant mice. An impairment of axonal retrograde transport may therefore represent one of the earliest axonal pathologies in SOD1(G93A) mice, which worsens at an early symptomatic stage. A deficit in axonal transport may therefore be a key pathogenic event in ALS and an early disease indicator of motor neuron degeneration.
Collapse
|
6
|
Ganesalingam J, Bowser R. The application of biomarkers in clinical trials for motor neuron disease. Biomark Med 2010; 4:281-97. [PMID: 20406070 DOI: 10.2217/bmm.09.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interest and research into disease-related biomarkers has greatly accelerated over the last 10 years. The potential clinical benefits for disease-specific biomarkers include a more rapid and accurate disease diagnosis, and potential reduction in size and duration of clinical drug trials, which would speed up drug development. The application of biomarkers into the clinical arena of motor neuron disease should both determine if a drug hits its proposed target and whether the drug alters the course of disease. This article will highlight the progress made in discovering suitable biomarker candidates from a variety of sources, including imaging, neurophysiology and proteomics. For biomarkers to have clinical utility, specific criteria must be satisfied. While there has been tremendous effort to discover biomarkers, very few have been translated to the clinic. The bottlenecks in the biomarker pipeline will be highlighted as well as lessons that can be learned from other disciplines, such as oncology.
Collapse
Affiliation(s)
- Jeban Ganesalingam
- Department of Clinical Neurosciences, Institute of Psychiatry, Kings College London, UK
| | | |
Collapse
|
7
|
Gowing G, Lalancette-Hébert M, Audet JN, Dequen F, Julien JP. Macrophage colony stimulating factor (M-CSF) exacerbates ALS disease in a mouse model through altered responses of microglia expressing mutant superoxide dismutase. Exp Neurol 2009; 220:267-75. [DOI: 10.1016/j.expneurol.2009.08.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/20/2009] [Accepted: 08/22/2009] [Indexed: 01/19/2023]
|
8
|
Franz CK, Quach ET, Krudy CA, Federici T, Kliem MA, Snyder BR, Raore B, Boulis NM. A conditioning lesion provides selective protection in a rat model of Amyotrophic Lateral Sclerosis. PLoS One 2009; 4:e7357. [PMID: 19806196 PMCID: PMC2752158 DOI: 10.1371/journal.pone.0007357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/18/2009] [Indexed: 11/18/2022] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is neurodegenerative disease characterized by muscle weakness and atrophy due to progressive motoneuron loss. The death of motoneuron is preceded by the failure of neuromuscular junctions (NMJs) and axonal retraction. Thus, to develop an effective ALS therapy you must simultaneously preserve motoneuron somas, motor axons and NMJs. A conditioning lesion has the potential to accomplish this since it has been shown to enhance neuronal survival and recovery from trauma in a variety of contexts. Methodology/Principal Findings To test the effects of a conditioning lesion in a model of familial ALS we administered a tibial nerve crush injury to presymptomatic fALSG93A rats. We examined its effects on motor function, motoneuron somas, motor axons, and NMJs. Our experiments revealed a novel paradigm for the conditioning lesion effect. Specifically we found that the motor functional decline in fALSG93A rats that received a conditioning lesion was delayed and less severe. These improvements in motor function corresponded to greater motoneuron survival, reduced motor axonopathy, and enhanced NMJ maintenance at disease end-stage. Furthermore, the increased NMJ maintenance was selective for muscle compartments innervated by the most resilient (slow) motoneuron subtypes, but was absent in muscle compartments innervated by the most vulnerable (fast fatigable) motoneuron subtypes. Conclusions/Significance These findings support the development of strategies aimed at mimicking the conditioning lesion effect to treat ALS as well as underlined the importance of considering the heterogeneity of motoneuron sub-types when evaluating prospective ALS therapeutics.
Collapse
Affiliation(s)
- Colin K. Franz
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
| | - Eric T. Quach
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
| | - Christina A. Krudy
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
| | - Thais Federici
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
| | - Michele A. Kliem
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
| | - Brooke R. Snyder
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
| | - Bethwel Raore
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
| | - Nicholas M. Boulis
- Department of Neurosurgery, Emory University, Atlanta, Georgia, United States of America
- Department of Neurology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ganesalingam J, Stahl D, Wijesekera L, Galtrey C, Shaw CE, Leigh PN, Al-Chalabi A. Latent cluster analysis of ALS phenotypes identifies prognostically differing groups. PLoS One 2009; 4:e7107. [PMID: 19771164 PMCID: PMC2741575 DOI: 10.1371/journal.pone.0007107] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/10/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a degenerative disease predominantly affecting motor neurons and manifesting as several different phenotypes. Whether these phenotypes correspond to different underlying disease processes is unknown. We used latent cluster analysis to identify groupings of clinical variables in an objective and unbiased way to improve phenotyping for clinical and research purposes. METHODS Latent class cluster analysis was applied to a large database consisting of 1467 records of people with ALS, using discrete variables which can be readily determined at the first clinic appointment. The model was tested for clinical relevance by survival analysis of the phenotypic groupings using the Kaplan-Meier method. RESULTS The best model generated five distinct phenotypic classes that strongly predicted survival (p<0.0001). Eight variables were used for the latent class analysis, but a good estimate of the classification could be obtained using just two variables: site of first symptoms (bulbar or limb) and time from symptom onset to diagnosis (p<0.00001). CONCLUSION The five phenotypic classes identified using latent cluster analysis can predict prognosis. They could be used to stratify patients recruited into clinical trials and generating more homogeneous disease groups for genetic, proteomic and risk factor research.
Collapse
Affiliation(s)
- Jeban Ganesalingam
- Department of Clinical Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, United Kingdom
| | - Daniel Stahl
- Department of Clinical Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, United Kingdom
| | - Lokesh Wijesekera
- Department of Clinical Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, United Kingdom
| | - Clare Galtrey
- Department of Clinical Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, United Kingdom
| | - Christopher E. Shaw
- Department of Clinical Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, United Kingdom
| | - P. Nigel Leigh
- Department of Clinical Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Clinical Neuroscience, MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
10
|
Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P. Role and therapeutic potential of VEGF in the nervous system. Physiol Rev 2009; 89:607-48. [PMID: 19342615 DOI: 10.1152/physrev.00031.2008] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of the nervous and vascular systems constitutes primary events in the evolution of the animal kingdom; the former provides electrical stimuli and coordination, while the latter supplies oxygen and nutrients. Both systems have more in common than originally anticipated. Perhaps the most striking observation is that angiogenic factors, when deregulated, contribute to various neurological disorders, such as neurodegeneration, and might be useful for the treatment of some of these pathologies. The prototypic example of this cross-talk between nerves and vessels is the vascular endothelial growth factor or VEGF. Although originally described as a key angiogenic factor, it is now well established that VEGF also plays a crucial role in the nervous system. We describe the molecular properties of VEGF and its receptors and review the current knowledge of its different functions and therapeutic potential in the nervous system during development, health, disease and in medicine.
Collapse
|
11
|
Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase. J Neurosci 2008; 28:10234-44. [PMID: 18842883 DOI: 10.1523/jneurosci.3494-08.2008] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microglial activation is a hallmark of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here, a detailed characterization of the microglial cell population within the spinal cord of a mouse model of familial ALS was performed. Using flow cytometry, we detected three distinct microglial populations within the spinal cord of mice overexpressing mutant superoxide dismutase (SOD1): mature microglial cells (CD11b(+), CD45(low)), myeloid precursor cells (CD11b(+), CD45(int)), and macrophages (CD11b(+), CD45(high)). Characterization of cell proliferation within the CNS of SOD1(G93A) mice revealed that the expansion in microglial cell population is mainly attributable to the proliferation of myeloid precursor cells. To assess the contribution of proliferating microglia in motor neuron degeneration, we generated CD11b-TK(mut-30); SOD1(G93A) doubly transgenic mice that allow the elimination of proliferating microglia on administration of ganciclovir. Surprisingly, a 50% reduction in reactive microglia specifically in the lumbar spinal cord of CD11b-TK(mut-30); SOD1(G93A) doubly transgenic mice had no effect on motor neuron degeneration. This suggests that proliferating microglia-expressing mutant SOD1 are not central contributors of the neurodegenerative process in ALS caused by mutant SOD1.
Collapse
|
12
|
Novel role for vascular endothelial growth factor (VEGF) receptor-1 and its ligand VEGF-B in motor neuron degeneration. J Neurosci 2008; 28:10451-9. [PMID: 18923022 DOI: 10.1523/jneurosci.1092-08.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although vascular endothelial growth factor-B (VEGF-B) is a homolog of the angiogenic factor VEGF, it has only minimal angiogenic activity, raising the question of whether this factor has other (more relevant) biological properties. Intrigued by the possibility that VEGF family members affect neuronal cells, we explored whether VEGF-B might have a role in the nervous system. Here, we document that the 60 kDa VEGF-B isoform, VEGF-B(186), is a neuroprotective factor. VEGF-B(186) protected cultured primary motor neurons against degeneration. Mice lacking VEGF-B also developed a more severe form of motor neuron degeneration when intercrossed with mutant SOD1 mice. The in vitro and in vivo effects of VEGF-B(186) were dependent on the tyrosine kinase activities of its receptor, Flt1, in motor neurons. When delivered intracerebroventricularly, VEGF-B(186) prolonged the survival of mutant SOD1 rats. Compared with a similar dose of VEGF, VEGF-B(186) was safer and did not cause vessel growth or blood-brain barrier leakiness. The neuroprotective activity of VEGF-B, in combination with its negligible angiogenic/permeability activity, offers attractive opportunities for the treatment of neurodegenerative diseases.
Collapse
|
13
|
Gadgil M. A Population Proportion approach for ranking differentially expressed genes. BMC Bioinformatics 2008; 9:380. [PMID: 18801167 PMCID: PMC2566584 DOI: 10.1186/1471-2105-9-380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 09/18/2008] [Indexed: 11/14/2022] Open
Abstract
Background DNA microarrays are used to investigate differences in gene expression between two or more classes of samples. Most currently used approaches compare mean expression levels between classes and are not geared to find genes whose expression is significantly different in only a subset of samples in a class. However, biological variability can lead to situations where key genes are differentially expressed in only a subset of samples. To facilitate the identification of such genes, a new method is reported. Methods The key difference between the Population Proportion Ranking Method (PPRM) presented here and almost all other methods currently used is in the quantification of variability. PPRM quantifies variability in terms of inter-sample ratios and can be used to calculate the relative merit of differentially expressed genes with a specified difference in expression level between at least some samples in the two classes, which at the same time have lower than a specified variability within each class. Results PPRM is tested on simulated data and on three publicly available cancer data sets. It is compared to the t test, PPST, COPA, OS, ORT and MOST using the simulated data. Under the conditions tested, it performs as well or better than the other methods tested under low intra-class variability and better than t test, PPST, COPA and OS when a gene is differentially expressed in only a subset of samples. It performs better than ORT and MOST in recognizing non differentially expressed genes with high variability in expression levels across all samples. For biological data, the success of predictor genes identified in appropriately classifying an independent sample is reported.
Collapse
Affiliation(s)
- Mugdha Gadgil
- Chemical Engineering and Process Development, National Chemical Laboratory, Pune, India .
| |
Collapse
|
14
|
One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death III: diffusion pulse death zones. J Theor Biol 2008; 256:104-16. [PMID: 18824176 DOI: 10.1016/j.jtbi.2008.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/18/2008] [Accepted: 08/17/2008] [Indexed: 11/22/2022]
Abstract
This is the third of three papers in which we study a mathematical model of cytoskeleton-induced neuron death. In the first two papers of this suite [Lomasko, T., Clarke, G., Lumsden, C., 2007a. One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death I: cell fate arrival times. J. Theor. Biol. 249, 1-17, doi:10.1016/j.jtbi.2007.05.031; Lomasko, T., Clarke, G., Lumsden, C., 2007b. One-hit stochastic decline in a mechanochemical model of cytoskeleton-induced neuron death II: transition state metastability. J. Theor. Biol. 249, 18-28, doi:10.1016/j.jtbi.2007.05.032], we established that the mean-field limit of our model relates the known patterns of neuron decline to specific scales of cytoskeleton reorganization and cell-cell interaction by diffusible death factors. In the mean-field limit, the spatially variable concentration of diffusing death factor is replaced by a constant average value. Recent empirical advances now permit the actual diffusion of such factors to be followed in intact neuropil. In this paper we therefore extend the model beyond the mean-field limit, to include the diffusion dynamics of death factor bursts released from dying neurons. A range of novel tissue degeneration patterns is observed, for which we confirm and extend the mean-field prediction that sigmoidal patterns of neuron population decay are a principal hallmark of cell death in the presence of death factor release.
Collapse
|
15
|
Uchihara T, Paulus W. Research into neurodegenerative disease: an entangled web of mice and men. Acta Neuropathol 2008; 115:1-4. [PMID: 18026966 DOI: 10.1007/s00401-007-0319-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Shimizu M, Miyazaki I, Higashi Y, Eslava-Alva MJ, Diaz-Corrales FJ, Asanuma M, Ogawa N. Specific induction of PAG608 in cranial and spinal motor neurons of L-DOPA-treated parkinsonian rats. Neurosci Res 2007; 60:355-63. [PMID: 18242749 DOI: 10.1016/j.neures.2007.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 12/11/2007] [Accepted: 12/13/2007] [Indexed: 12/28/2022]
Abstract
We identified p53-activated gene 608 (PAG608) as a specifically induced gene in striatal tissue of L-DOPA (100mg/kg)-injected hemi-parkinsonian rats using differential display assay. In the present study, we further examined morphological distribution of PAG608 in the central nervous system of L-DOPA-treated hemi-parkinsonian rats. PAG608 expression was markedly induced in fibers and neuronal cells of the lateral globus pallidus and reticular thalamic nucleus adjacent to internal capsule, specifically in the parkinsonian side of L-DOPA-treated models. The protein was also constitutively expressed in motor neurons specifically in either side of the pontine nucleus and motor nuclei of trigeminal and facial nerves. Furthermore, L-DOPA-induced PAG608 expression on motor neurons in the contralateral side of the ventral horn of the spinal cord and the lateral corticospinal tract without cell loss. The specific induction of PAG608 6-48h after L-DOPA injection in the extrapyramidal tracts, pyramidal tracts and corresponding lower motor neurons of the spinal cords suggests its involvement in molecular events in stimulated motor neurons. Taken together with the constitutive expression of PAG608 in the motor nuclei of cranial nerves, PAG608 may be a useful marker of stressed or activated lower motor neurons.
Collapse
Affiliation(s)
- Masako Shimizu
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|