1
|
Fraser SD, Klaassen RV, Villmann C, Smit AB, Harvey RJ. Milestone Review: Unlocking the Proteomics of Glycine Receptor Complexes. J Neurochem 2025; 169:e70061. [PMID: 40285371 PMCID: PMC12032442 DOI: 10.1111/jnc.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Glycine receptors (GlyRs) are typically known for mediating inhibitory synaptic transmission within the spinal cord and brainstem, but they also have key roles in embryonic brain development, learning/memory, inflammatory pain sensitization, and rhythmic breathing. GlyR dysfunction has been implicated in multiple neurological disease states, including startle disease (GlyR α1β) and neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), intellectual disability (ID), developmental delay (DD) and epilepsy (GlyR α2). However, GlyRs do not operate in isolation but depend upon stable and transient protein-protein interactions (PPIs) that influence synaptic localization, homeostasis, signaling pathways, and receptor function. Despite the affinity purification of GlyRs using the antagonist strychnine over four decades ago, we still have much to learn about native GlyR stoichiometry and accessory proteins. In contrast to other neurotransmitter receptors, < 20 potential GlyR interactors have been identified to date. These include some well-known proteins that are vital to inhibitory synapse function, such as the postsynaptic scaffolding protein gephyrin and the RhoGEF collybistin. However, the majority of known interactors either bind to the GlyR α1 and β subunits, or the binding partner in the GlyR complex is unknown. Several potential GlyR interactors are not found at inhibitory synapses and/or have no clear functional role. Moreover, other GlyR interactors are secondary interactors that bind indirectly, for example, via gephyrin. In this review, we provide a critical evaluation of known GlyR interacting proteins and methodological limitations to date. We also provide a road map for the use of innovative and emerging interaction proteomic techniques that will unlock the GlyR interactome. With the emergence of disease-associated missense mutations in the α1, α2 and β subunit intracellular domains in startle disease and NDDs, understanding the identity and roles of GlyR accessory proteins is vital in understanding GlyR function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Sean D. Fraser
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| | - Remco V. Klaassen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Carmen Villmann
- Institute of Clinical NeurobiologyUniversity Hospital, Julius‐Maximilians‐University of WürzburgWürzburgGermany
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Robert J. Harvey
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| |
Collapse
|
2
|
Welle TM, Rajgor D, Kareemo DJ, Garcia JD, Zych SM, Wolfe SE, Gookin SE, Martinez TP, Dell'Acqua ML, Ford CP, Kennedy MJ, Smith KR. miRNA-mediated control of gephyrin synthesis drives sustained inhibitory synaptic plasticity. EMBO Rep 2024; 25:5141-5168. [PMID: 39294503 PMCID: PMC11549329 DOI: 10.1038/s44319-024-00253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
Activity-dependent protein synthesis is crucial for long-lasting forms of synaptic plasticity. However, our understanding of translational mechanisms controlling GABAergic synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the mechanisms controlling plasticity-induced gephyrin translation remain unknown. We identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting inhibitory synaptic structure and function. iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and promoting de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Together, we delineate a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
Collapse
Affiliation(s)
- Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Dean J Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sarah M Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Wolfe
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Tyler P Martinez
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Rabenow M, Haar E, Schmidt K, Hänsch R, Mendel RR, Oliphant KD. Convergent evolution links molybdenum insertase domains with organism-specific sequences. Commun Biol 2024; 7:1352. [PMID: 39424966 PMCID: PMC11489736 DOI: 10.1038/s42003-024-07073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
In all domains of life, the biosynthesis of the pterin-based Molybdenum cofactor (Moco) is crucial. Molybdenum (Mo) becomes biologically active by integrating into a unique pyranopterin scaffold, forming Moco. The final two steps of Moco biosynthesis are catalyzed by the two-domain enzyme Mo insertase, linked by gene fusion in higher organisms. Despite well-understood Moco biosynthesis, the evolutionary significance of Mo insertase fusion remains unclear. Here, we present findings from Neurospora crassa that shed light on the critical role of Mo insertase fusion in eukaryotes. Substituting the linkage region with sequences from other species resulted in Moco deficiency, and separate expression of domains, as seen in lower organisms, failed to rescue deficient strains. Stepwise truncation and structural modeling revealed a crucial 20-amino acid sequence within the linkage region essential for fungal growth. Our findings highlight the evolutionary importance of gene fusion and specific sequence composition in eukaryotic Mo insertases.
Collapse
Affiliation(s)
- Miriam Rabenow
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Eduard Haar
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katharina Schmidt
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Hänsch
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kevin D Oliphant
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Mendel RR, Oliphant KD. The Final Step in Molybdenum Cofactor Biosynthesis-A Historical View. Molecules 2024; 29:4458. [PMID: 39339452 PMCID: PMC11434336 DOI: 10.3390/molecules29184458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Molybdenum (Mo) is an essential micronutrient across all kingdoms of life, where it functions as a key component of the active centers of molybdenum-dependent enzymes. For these enzymes to gain catalytic activity, Mo must be complexed with a pterin scaffold to form the molybdenum cofactor (Moco). The final step of Moco biosynthesis is catalyzed by the enzyme Mo-insertase. This review focuses on eukaryotic Mo-insertases, with an emphasis on those found in plants and mammals, which have been instrumental in advancing the understanding of Mo biochemistry. Additionally, a historical perspective is provided, tracing the discovery of Mo-insertase from the early 1960s to the detailed characterization of its reaction mechanism in 2021. This review also highlights key milestones in the study of Mo-insertase, including mutant characterization, gene cloning, structural elucidation at the atomic level, functional domain assignment, and the spatial organization of the enzyme within cellular protein networks.
Collapse
Affiliation(s)
- Ralf R. Mendel
- Institute of Plant Biology, Technical University Braunschweig, Humboldtstraße 1, 38106 Braunschweig, Germany;
| | | |
Collapse
|
5
|
Prvulovic M, Sokanovic S, Simeunovic V, Vukojevic A, Jovic M, Todorovic S, Mladenovic A. The complex relationship between late-onset caloric restriction and synaptic plasticity in aged Wistar rats. IUBMB Life 2024; 76:548-562. [PMID: 38390757 DOI: 10.1002/iub.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Age-related reduction in spine density, synaptic marker expression, and synaptic efficiency are frequently reported. These changes provide the cellular and molecular basis for the cognitive decline characteristic for old age. Nevertheless, there are several approaches that have the potential to ameliorate these processes and improve cognition, caloric restriction being one of the most promising and widely studied. While lifelong caloric restriction is known for its numerous beneficial effects, including improved cognitive abilities and increased expression of proteins essential for synaptic structure and function, the effects of late-onset and/or short-term CR on synaptic plasticity have yet to be investigated. We have previously documented that the effects of CR are strongly dependent on whether CR is initiated in young or old subjects. With this in mind, we conducted a long-term study in aging Wistar rats to examine changes in the expression of several key synaptic markers under the regimen of CR started at different time points in life. We found a significant increase in the expression of both presynaptic and postsynaptic markers. However, taking into account previously reported changes in the behavior detected in these animals, we consider that this increase cannot represent beneficial effect of CR.
Collapse
Affiliation(s)
- Milica Prvulovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srdjan Sokanovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Valentina Simeunovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Andjela Vukojevic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Jovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Smilja Todorovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Mladenovic
- Department for Neurobiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Campbell BFN, Cruz-Ochoa N, Otomo K, Lukacsovich D, Espinosa P, Abegg A, Luo W, Bellone C, Földy C, Tyagarajan SK. Gephyrin phosphorylation facilitates sexually dimorphic development and function of parvalbumin interneurons in the mouse hippocampus. Mol Psychiatry 2024; 29:2510-2526. [PMID: 38503929 PMCID: PMC11412903 DOI: 10.1038/s41380-024-02517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The precise function of specialized GABAergic interneuron subtypes is required to provide appropriate synaptic inhibition for regulating principal neuron excitability and synchronization within brain circuits. Of these, parvalbumin-type (PV neuron) dysfunction is a feature of several sex-biased psychiatric and brain disorders, although, the underlying developmental mechanisms are unclear. While the transcriptional action of sex hormones generates sexual dimorphism during brain development, whether kinase signaling contributes to sex differences in PV neuron function remains unexplored. In the hippocampus, we report that gephyrin, the main inhibitory post-synaptic scaffolding protein, is phosphorylated at serine S268 and S270 in a developmentally-dependent manner in both males and females. When examining GphnS268A/S270A mice in which site-specific phosphorylation is constitutively blocked, we found that sex differences in PV neuron density in the hippocampal CA1 present in WT mice were abolished, coincident with a female-specific increase in PV neuron-derived terminals and increased inhibitory input onto principal cells. Electrophysiological analysis of CA1 PV neurons indicated that gephyrin phosphorylation is required for sexually dimorphic function. Moreover, while male and female WT mice showed no difference in hippocampus-dependent memory tasks, GphnS268A/S270A mice exhibited sex- and task-specific deficits, indicating that gephyrin phosphorylation is differentially required by males and females for convergent cognitive function. In fate mapping experiments, we uncovered that gephyrin phosphorylation at S268 and S270 establishes sex differences in putative PV neuron density during early postnatal development. Furthermore, patch-sequencing of putative PV neurons at postnatal day 4 revealed that gephyrin phosphorylation contributes to sex differences in the transcriptomic profile of developing interneurons. Therefore, these early shifts in male-female interneuron development may drive adult sex differences in PV neuron function and connectivity. Our results identify gephyrin phosphorylation as a new substrate organizing PV neuron development at the anatomical, functional, and transcriptional levels in a sex-dependent manner, thus implicating kinase signaling disruption as a new mechanism contributing to the sex-dependent etiology of brain disorders.
Collapse
Affiliation(s)
- Benjamin F N Campbell
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, 8057, Zürich, Switzerland
| | - Kanako Otomo
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
| | - Pedro Espinosa
- Department of Basic Neuroscience, University of Geneva, 1211, Geneva, Switzerland
| | - Andrin Abegg
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
| | - Camilla Bellone
- Department of Basic Neuroscience, University of Geneva, 1211, Geneva, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, 8057, Zürich, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, 8057, Zürich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
7
|
Welle TM, Rajgor D, Garcia JD, Kareemo D, Zych SM, Gookin SE, Martinez TP, Dell’Acqua ML, Ford CP, Kennedy MJ, Smith KR. miRNA-mediated control of gephyrin synthesis drives sustained inhibitory synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.570420. [PMID: 38168421 PMCID: PMC10760056 DOI: 10.1101/2023.12.12.570420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Activity-dependent protein synthesis is crucial for many long-lasting forms of synaptic plasticity. However, our understanding of the translational mechanisms controlling inhibitory synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the precise mechanisms controlling gephyrin translation during this process remain unknown. Here, we identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting GABAergic synaptic structure and function. We find that iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and allowing for increased de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Overall, this work delineates a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.
Collapse
Affiliation(s)
- Theresa M. Welle
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
- T.M.W and D.R. contributed equally to this work
| | - Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
- T.M.W and D.R. contributed equally to this work
| | - Joshua D. Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Dean Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Sarah M. Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Sara E. Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Tyler P. Martinez
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Matthew J. Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| | - Katharine R. Smith
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045
| |
Collapse
|
8
|
Moreno-Jiménez EP, Flor-García M, Hernández-Vivanco A, Terreros-Roncal J, Rodríguez-Moreno CB, Toni N, Méndez P, Llorens-Martín M. GSK-3β orchestrates the inhibitory innervation of adult-born dentate granule cells in vivo. Cell Mol Life Sci 2023; 80:225. [PMID: 37481766 PMCID: PMC10363517 DOI: 10.1007/s00018-023-04874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Adult hippocampal neurogenesis enhances brain plasticity and contributes to the cognitive reserve during aging. Adult hippocampal neurogenesis is impaired in neurological disorders, yet the molecular mechanisms regulating the maturation and synaptic integration of new neurons have not been fully elucidated. GABA is a master regulator of adult and developmental neurogenesis. Here we engineered a novel retrovirus encoding the fusion protein Gephyrin:GFP to longitudinally study the formation and maturation of inhibitory synapses during adult hippocampal neurogenesis in vivo. Our data reveal the early assembly of inhibitory postsynaptic densities at 1 week of cell age. Glycogen synthase kinase 3 Beta (GSK-3β) emerges as a key regulator of inhibitory synapse formation and maturation during adult hippocampal neurogenesis. GSK-3β-overexpressing newborn neurons show an increased number and altered size of Gephyrin+ postsynaptic clusters, enhanced miniature inhibitory postsynaptic currents, shorter and distanced axon initial segments, reduced synaptic output at the CA3 and CA2 hippocampal regions, and impaired pattern separation. Moreover, GSK-3β overexpression triggers a depletion of Parvalbumin+ interneuron perineuronal nets. These alterations might be relevant in the context of neurological diseases in which the activity of GSK-3β is dysregulated.
Collapse
Affiliation(s)
- E P Moreno-Jiménez
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Flor-García
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - J Terreros-Roncal
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - C B Rodríguez-Moreno
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - N Toni
- Department of Psychiatry, Center for Psychiatric Neurosciences, , Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - P Méndez
- Cajal Institute, CSIC, Madrid, Spain
| | - María Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa (CBMSO), Spanish Research Council (CSIC), Universidad Autónoma de Madrid (UAM) (Campus de Cantoblanco), c/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
9
|
Chen M, Koopmans F, Paliukhovich I, van der Spek SJF, Dong J, Smit AB, Li KW. Blue Native PAGE-Antibody Shift in Conjunction with Mass Spectrometry to Reveal Protein Subcomplexes: Detection of a Cerebellar α1/α6-Subunits Containing γ-Aminobutyric Acid Type A Receptor Subtype. Int J Mol Sci 2023; 24:ijms24087632. [PMID: 37108794 PMCID: PMC10143440 DOI: 10.3390/ijms24087632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The pentameric γ-Aminobutyric acid type A receptors (GABAARs) are ligand-gated ion channels that mediate the majority of inhibitory neurotransmission in the brain. In the cerebellum, the two main receptor subtypes are the 2α1/2β/γ and 2α6/2β/δ subunits. In the present study, an interaction proteomics workflow was used to reveal additional subtypes that contain both α1 and α6 subunits. Immunoprecipitation of the α6 subunit from mouse brain cerebellar extract co-purified the α1 subunit. In line with this, pre-incubation of the cerebellar extract with anti-α6 antibodies and analysis by blue native gel electrophoresis mass-shifted part of the α1 complexes, indicative of the existence of an α1α6-containing receptor. Subsequent mass spectrometry of the blue native gel showed the α1α6-containing receptor subtype to exist in two main forms, i.e., with or without Neuroligin-2. Immunocytochemistry on a cerebellar granule cell culture revealed co-localization of α6 and α1 in post-synaptic puncta that apposed the presynaptic marker protein Vesicular GABA transporter, indicative of the presence of this synaptic GABAAR subtype.
Collapse
Affiliation(s)
- Miao Chen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Sophie J F van der Spek
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jian Dong
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
10
|
Automated Image Analysis Reveals Different Localization of Synaptic Gephyrin C4 Splice Variants. eNeuro 2023; 10:ENEURO.0102-22.2022. [PMID: 36543537 PMCID: PMC9831149 DOI: 10.1523/eneuro.0102-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Postsynaptic scaffolding proteins function as central organization hubs, ensuring the synaptic localization of neurotransmitter receptors, trans-synaptic adhesion proteins, and signaling molecules. Gephyrin is the major postsynaptic scaffolding protein at glycinergic and a subset of GABAergic inhibitory synapses. In contrast to cells outside the CNS, where one gephyrin isoform is predominantly expressed, neurons express different splice variants. In this study, we characterized the expression and scaffolding of neuronal gephyrin isoforms differing in the inclusion of the C4 cassettes located in the central C-domain. In hippocampal and cortical neuronal populations, gephyrin P1, lacking additional cassettes, is the most abundantly expressed isoform. In addition, alternative splicing generated isoforms carrying predominantly C4a, and minor amounts of C4c or C4d cassettes. We detected no striking difference in C4 isoform expression between different neuron types and a single neuron can likely express all C4 isoforms. To avoid the cytosolic aggregates that are commonly observed upon exogenous gephyrin expression, we used adeno-associated virus (AAV)-mediated expression to analyze the scaffolding behavior of individual C4 isoforms in murine dissociated hippocampal glutamatergic neurons. While all isoforms showed similar clustering at GABAergic synapses, a thorough quantitative analysis revealed localization differences for the C4c isoform (also known as P2). Specifically, synaptic C4c isoform clusters showed a more distal dendritic localization and reduced occurrence at P1-predominating synapses. Additionally, inhibitory currents displayed faster decay kinetics in the presence of gephyrin C4c compared with P1. Therefore, inhibitory synapse heterogeneity may be influenced, at least in part, by mechanisms relating to C4 cassette splicing.
Collapse
|
11
|
Johannes L, Fu CY, Schwarz G. Molybdenum Cofactor Deficiency in Humans. Molecules 2022; 27:6896. [PMID: 36296488 PMCID: PMC9607355 DOI: 10.3390/molecules27206896] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Molybdenum cofactor (Moco) deficiency (MoCD) is characterized by neonatal-onset myoclonic epileptic encephalopathy and dystonia with cerebral MRI changes similar to hypoxic-ischemic lesions. The molecular cause of the disease is the loss of sulfite oxidase (SOX) activity, one of four Moco-dependent enzymes in men. Accumulating toxic sulfite causes a secondary increase of metabolites such as S-sulfocysteine and thiosulfate as well as a decrease in cysteine and its oxidized form, cystine. Moco is synthesized by a three-step biosynthetic pathway that involves the gene products of MOCS1, MOCS2, MOCS3, and GPHN. Depending on which synthetic step is impaired, MoCD is classified as type A, B, or C. This distinction is relevant for patient management because the metabolic block in MoCD type A can be circumvented by administering cyclic pyranopterin monophosphate (cPMP). Substitution therapy with cPMP is highly effective in reducing sulfite toxicity and restoring biochemical homeostasis, while the clinical outcome critically depends on the degree of brain injury prior to the start of treatment. In the absence of a specific treatment for MoCD type B/C and SOX deficiency, we summarize recent progress in our understanding of the underlying metabolic changes in cysteine homeostasis and propose novel therapeutic interventions to circumvent those pathological changes.
Collapse
Affiliation(s)
| | | | - Günter Schwarz
- Institute of Biochemistry, Department of Chemistry & Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
12
|
Imam N, Choudhury S, Heinze KG, Schindelin H. Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10. Front Synaptic Neurosci 2022; 14:959875. [PMID: 35989712 PMCID: PMC9386560 DOI: 10.3389/fnsyn.2022.959875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interneuronal synaptic transmission relies on the proper spatial organization of presynaptic neurotransmitter release and its reception on the postsynaptic side by cognate neurotransmitter receptors. Neurotransmitter receptors are incorporated into and arranged within the plasma membrane with the assistance of scaffolding and adaptor proteins. At inhibitory GABAergic postsynapses, collybistin, a neuronal adaptor protein, recruits the scaffolding protein gephyrin and interacts with various neuronal factors including cell adhesion proteins of the neuroligin family, the GABA A receptor α2-subunit and the closely related small GTPases Cdc42 and TC10 (RhoQ). Most collybistin splice variants harbor an N-terminal SH3 domain and exist in an autoinhibited/closed state. Cdc42 and TC10, despite sharing 67.4% amino acid sequence identity, interact differently with collybistin. Here, we delineate the molecular basis of the collybistin conformational activation induced by TC10 with the aid of recently developed collybistin FRET sensors. Time-resolved fluorescence-based FRET measurements reveal that TC10 binds to closed/inactive collybistin leading to relief of its autoinhibition, contrary to Cdc42, which only interacts with collybistin when forced into an open state by the introduction of mutations destabilizing the closed state of collybistin. Taken together, our data describe a TC10-driven signaling mechanism in which collybistin switches from its autoinhibited closed state to an open/active state.
Collapse
Affiliation(s)
- Nasir Imam
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Susobhan Choudhury
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katrin G. Heinze
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Khayenko V, Schulte C, Reis SL, Avraham O, Schietroma C, Worschech R, Nordblom NF, Kachler S, Villmann C, Heinze KG, Schlosser A, Schueler‐Furman O, Tovote P, Specht CG, Maric HM. A Versatile Synthetic Affinity Probe Reveals Inhibitory Synapse Ultrastructure and Brain Connectivity**. Angew Chem Int Ed Engl 2022; 61:e202202078. [PMID: 35421279 PMCID: PMC9400903 DOI: 10.1002/anie.202202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Visualization of inhibitory synapses requires protocol tailoring for different sample types and imaging techniques, and usually relies on genetic manipulation or the use of antibodies that underperform in tissue immunofluorescence. Starting from an endogenous ligand of gephyrin, a universal marker of the inhibitory synapse, we developed a short peptidic binder and dimerized it, significantly increasing affinity and selectivity. We further tailored fluorophores to the binder, yielding “Sylite”—a probe with outstanding signal‐to‐background ratio that outperforms antibodies in tissue staining with rapid and efficient penetration, mitigation of staining artifacts, and simplified handling. In super‐resolution microscopy Sylite precisely localizes the inhibitory synapse and enables nanoscale measurements. Sylite profiles inhibitory inputs and synapse sizes of excitatory and inhibitory neurons in the midbrain and combined with complimentary tracing techniques reveals the synaptic connectivity.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Clemens Schulte
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Sara L. Reis
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
| | - Orly Avraham
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada the Hebrew University Hadassah Medical School Jerusalem 91120 Israel
| | | | - Rafael Worschech
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Noah F. Nordblom
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Sonja Kachler
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Carmen Villmann
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
| | - Katrin G. Heinze
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Andreas Schlosser
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| | - Ora Schueler‐Furman
- Department of Microbiology and Molecular Genetics Institute for Medical Research Israel-Canada the Hebrew University Hadassah Medical School Jerusalem 91120 Israel
| | - Philip Tovote
- Institute of Clinical Neurobiology University Hospital Versbacher Str. 5 97078 Wuerzburg Germany
- Center of Mental Health University of Wuerzburg Margarete-Höppel-Platz 1 97080 Wuerzburg Germany
| | - Christian G. Specht
- Diseases and Hormones of the Nervous System (DHNS) Inserm U1195 Université Paris-Saclay 80 rue du Général Leclerc 94276 Le Kremlin-Bicêtre France
| | - Hans M. Maric
- Rudolf Virchow Center Center for Integrative and Translational Bioimaging; University of Wuerzburg Josef-Schneider-Str. 2 97080 Wuerzburg Germany
| |
Collapse
|
14
|
Chu MC, Wu HF, Lee CW, Chung YJ, Chi H, Chen PS, Lin HC. Generational synaptic functions of GABA A receptor β3 subunit deteriorations in an animal model of social deficit. J Biomed Sci 2022; 29:51. [PMID: 35821032 PMCID: PMC9277936 DOI: 10.1186/s12929-022-00835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disruption of normal brain development is implicated in numerous psychiatric disorders with neurodevelopmental origins, including autism spectrum disorder (ASD). Widespread abnormalities in brain structure and functions caused by dysregulations of neurodevelopmental processes has been recently shown to exert adverse effects across generations. An imbalance between excitatory/inhibitory (E/I) transmission is the putative hypothesis of ASD pathogenesis, supporting by the specific implications of inhibitory γ-aminobutyric acid (GABA)ergic system in autistic individuals and animal models of ASD. However, the contribution of GABAergic system in the neuropathophysiology across generations of ASD is still unknown. Here, we uncover profound alterations in the expression and function of GABAA receptors (GABAARs) in the amygdala across generations of the VPA-induced animal model of ASD. METHODS The F2 generation was produced by mating an F1 VPA-induced male offspring with naïve females after a single injection of VPA on embryonic day (E12.5) in F0. Autism-like behaviors were assessed by animal behavior tests. Expression and functional properties of GABAARs and related proteins were examined by using western blotting and electrophysiological techniques. RESULTS Social deficit, repetitive behavior, and emotional comorbidities were demonstrated across two generations of the VPA-induced offspring. Decreased synaptic GABAAR and gephyrin levels, and inhibitory transmission were found in the amygdala from two generations of the VPA-induced offspring with greater reductions in the F2 generation. Weaker association of gephyrin with GABAAR was shown in the F2 generation than the F1 generation. Moreover, dysregulated NMDA-induced enhancements of gephyrin and GABAAR at the synapse in the VPA-induced offspring was worsened in the F2 generation than the F1 generation. Elevated glutamatergic modifications were additionally shown across generations of the VPA-induced offspring without generation difference. CONCLUSIONS Taken together, these findings revealed the E/I synaptic abnormalities in the amygdala from two generations of the VPA-induced offspring with GABAergic deteriorations in the F2 generation, suggesting a potential therapeutic role of the GABAergic system to generational pathophysiology of ASD.
Collapse
Affiliation(s)
- Ming-Chia Chu
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Han-Fang Wu
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Chi-Wei Lee
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Yueh-Jung Chung
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Hsiang Chi
- grid.260539.b0000 0001 2059 7017Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Tainan, 112 Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan. .,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
15
|
Complex regulation of Gephyrin splicing is a determinant of inhibitory postsynaptic diversity. Nat Commun 2022; 13:3507. [PMID: 35717442 PMCID: PMC9206673 DOI: 10.1038/s41467-022-31264-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/10/2022] [Indexed: 01/05/2023] Open
Abstract
Gephyrin (GPHN) regulates the clustering of postsynaptic components at inhibitory synapses and is involved in pathophysiology of neuropsychiatric disorders. Here, we uncover an extensive diversity of GPHN transcripts that are tightly controlled by splicing during mouse and human brain development. Proteomic analysis reveals at least a hundred isoforms of GPHN incorporated at inhibitory Glycine and gamma-aminobutyric acid A receptors containing synapses. They exhibit different localization and postsynaptic clustering properties, and altering the expression level of one isoform is sufficient to affect the number, size, and density of inhibitory synapses in cerebellar Purkinje cells. Furthermore, we discovered that splicing defects reported in neuropsychiatric disorders are carried by multiple alternative GPHN transcripts, demonstrating the need for a thorough analysis of the GPHN transcriptome in patients. Overall, we show that alternative splicing of GPHN is an important genetic variation to consider in neurological diseases and a determinant of the diversity of postsynaptic inhibitory synapses. The protein gephyrin is involved in organizing synapses. Here, the authors show how different transcripts of gephyrin form and regulate inhibitory synapses.
Collapse
|
16
|
Khayenko V, Schulte C, Reis SL, Avraham O, Schietroma C, Worschech R, Nordblom NF, Kachler S, Villmann C, Heinze KG, Schlosser A, Schueler-Furman O, Tovote P, Specht CG, Maric HM. A Versatile Synthetic Affinity Probe Reveals Inhibitory Synapse Ultrastructure and Brain Connectivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vladimir Khayenko
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Josef-Schneider-Strasse. 2 97080 Würzburg GERMANY
| | - Clemens Schulte
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Josef-Schneider-Strasse. 2 97080 Würzburg GERMANY
| | - Sara L. Reis
- University Hospital Wurzburg: Universitatsklinikum Wurzburg Clinical Neurobiology Versbacherstr.5 97078 Würzburg GERMANY
| | - Orly Avraham
- The Hebrew University of Jerusalem Microbiology and Molecular Genetics ISRAEL
| | | | - Rafael Worschech
- University of Wurzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Noah F. Nordblom
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Sonja Kachler
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Carmen Villmann
- University Hospital Wurzburg: Universitatsklinikum Wurzburg Clinical Neurobiology GERMANY
| | - Katrin G. Heinze
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center GERMANY
| | - Andreas Schlosser
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Rudolf Virchow Center Rudolf Virchow Zentrum Gebäude D15Josef-Schneider-Strasse 2 97080 Würzburg GERMANY
| | - Ora Schueler-Furman
- The Hebrew University of Jerusalem Microbiology and Molecular Genetics ISRAEL
| | - Philip Tovote
- University of Würzburg: Julius-Maximilians-Universitat Wurzburg Clinical Neurobiology GERMANY
| | - Christian G. Specht
- INSERM U1195: Maladies et hormones du systeme nerveux NSERM U1195: Maladies et hormones du systeme nerveux FRANCE
| | - Hans Michael Maric
- University of Würzburg Biotechnology and Biophysics Rudolf Virchow Zentrum Gebäude D15Josef-Schneider-Strasse 2 97080 Würzburg GERMANY
| |
Collapse
|
17
|
Tallafuss A, Stednitz SJ, Voeun M, Levichev A, Larsch J, Eisen J, Washbourne P. Egr1 Is Necessary for Forebrain Dopaminergic Signaling during Social Behavior. eNeuro 2022; 9:ENEURO.0035-22.2022. [PMID: 35346959 PMCID: PMC8994534 DOI: 10.1523/eneuro.0035-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Finding the link between behaviors and their regulatory molecular pathways is a major obstacle in treating neuropsychiatric disorders. The immediate early gene (IEG) EGR1 is implicated in the etiology of neuropsychiatric disorders, and is linked to gene pathways associated with social behavior. Despite extensive knowledge of EGR1 gene regulation at the molecular level, it remains unclear how EGR1 deficits might affect the social component of these disorders. Here, we examined the social behavior of zebrafish with a mutation in the homologous gene egr1 Mutant fish exhibited reduced social approach and orienting, whereas other sensorimotor behaviors were unaffected. On a molecular level, expression of the dopaminergic biosynthetic enzyme, tyrosine hydroxylase (TH), was strongly decreased in TH-positive neurons of the anterior parvocellular preoptic nucleus. These neurons are connected with basal forebrain (BF) neurons associated with social behavior. Chemogenetic ablation of around 30% of TH-positive neurons in this preoptic region reduced social attraction to a similar extent as the egr1 mutation. These results demonstrate the requirement of Egr1 and dopamine signaling during social interactions, and identify novel circuitry underlying this behavior.
Collapse
Affiliation(s)
| | | | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - Johannes Larsch
- Max Planck Institut für Neurobiologie, Martinsried, D-82152, Munich Germany
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | |
Collapse
|
18
|
Al Awabdh S, Donneger F, Goutierre M, Séveno M, Vigy O, Weinzettl P, Russeau M, Moutkine I, Lévi S, Marin P, Poncer JC. Gephyrin Interacts with the K-Cl Cotransporter KCC2 to Regulate Its Surface Expression and Function in Cortical Neurons. J Neurosci 2022; 42:166-182. [PMID: 34810232 PMCID: PMC8802937 DOI: 10.1523/jneurosci.2926-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/31/2021] [Accepted: 10/17/2021] [Indexed: 11/21/2022] Open
Abstract
The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.
Collapse
Affiliation(s)
- Sana Al Awabdh
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Florian Donneger
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Marie Goutierre
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Martial Séveno
- BCM, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Oana Vigy
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Pauline Weinzettl
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Institute of Biotechnology, University of Applied Sciences, Krems, Austria
| | - Marion Russeau
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Imane Moutkine
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Sabine Lévi
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Philippe Marin
- IGF, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Jean Christophe Poncer
- INSERM UMR-S 1270, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| |
Collapse
|
19
|
Macha A, Liebsch F, Fricke S, Hetsch F, Neuser F, Johannes L, Kress V, Djémié T, Santamaria-Araujo JA, Vilain C, Aeby A, Van Bogaert P, Dejanovic B, Weckhuysen S, Meier JC, Schwarz G. Bi-allelic gephyrin variants impair GABAergic inhibition in a patient with epileptic encephalopathy. Hum Mol Genet 2021; 31:901-913. [PMID: 34617111 DOI: 10.1093/hmg/ddab298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022] Open
Abstract
Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition is linked to epilepsy. Gephyrin (Geph) is the principal scaffolding protein at inhibitory synapses and is essential for postsynaptic clustering of glycine (GlyRs) and GABA type A receptors (GABAARs). Consequently, gephyrin is crucial for maintaining the relationship between excitation and inhibition in normal brain function and mutations in the gephyrin gene (GPHN) are associated with neurodevelopmental disorders and epilepsy. We identified bi-allelic variants in the GPHN gene, namely the missense mutation c.1264G > A and splice acceptor variant c.1315-2A > G, in a patient with developmental and epileptic encephalopathy (DEE). We demonstrate that the splice acceptor variant leads to nonsense-mediated mRNA decay (NMD). Furthermore, the missense variant (D422N) alters gephyrin structure, as examined by analytical size exclusion chromatography and CD-spectroscopy, thus leading to reduced receptor clustering and sensitivity towards calpain-mediated cleavage. Additionally, both alterations contribute to an observed reduction of inhibitory signal transmission in neurons, which likely contributes to the pathological encephalopathy.
Collapse
Affiliation(s)
- Arthur Macha
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Steffen Fricke
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Institute for Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Franziska Neuser
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Lena Johannes
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Vanessa Kress
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Tania Djémié
- Applied & Translational Neurogenomics Group, VIB-Center for Molecular Genetics, VIB, Antwerp, Belgium
| | - Jose A Santamaria-Araujo
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Alec Aeby
- Pediatric Neurology, Queen Fabiola Children Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Van Bogaert
- Departement of Pediatric Neurology, CHU d'Angers, and Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, France
| | - Borislav Dejanovic
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB-Center for Molecular Genetics, VIB, Antwerp, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.,Neurology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
C. elegans LIN-28 controls temporal cell fate progression by regulating LIN-46 expression via the 5' UTR of lin-46 mRNA. Cell Rep 2021; 36:109670. [PMID: 34496246 PMCID: PMC8445076 DOI: 10.1016/j.celrep.2021.109670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
Lin28/LIN-28 is a conserved RNA-binding protein that promotes proliferation and pluripotency and can be oncogenic in mammals. Mammalian Lin28 and C. elegans LIN-28 have been shown to inhibit biogenesis of the conserved cellular differentiation-promoting microRNA let-7 by directly binding to unprocessed let-7 transcripts. Lin28/LIN-28 also bind and regulate many mRNAs in diverse cell types. However, the determinants and consequences of LIN-28-mRNA interactions are not well understood. Here, we report that C. elegans LIN-28 represses the expression of LIN-46, a downstream protein in the heterochronic pathway. We find that lin-28 and sequences within the lin-46 5′ UTR are required to prevent LIN-46 expression at early larval stages. Moreover, we find that precocious LIN-46 expression caused by mutations in the lin-46 5′ UTR is sufficient to cause precocious heterochronic defects similar to those of lin-28(lf) animals. Thus, our findings demonstrate the biological importance of the regulation of individual target mRNAs by LIN-28. Ilbay et al. characterize the role of the 5′ UTR of lin-46, a heterochronic gene in C. elegans and the critical mRNA target of the widely conserved RNA-binding protein LIN-28, demonstrating the importance of the regulation of mRNAs by LIN-28 in vivo along with the conserved microRNA let-7.
Collapse
|
21
|
Law E, Li Y, Kahraman O, Haselwandter CA. Stochastic self-assembly of reaction-diffusion patterns in synaptic membranes. Phys Rev E 2021; 104:014403. [PMID: 34412234 DOI: 10.1103/physreve.104.014403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Synaptic receptor and scaffold molecules self-assemble into membrane protein domains, which play an important role in signal transmission across chemical synapses. Experiment and theory have shown that the formation of receptor-scaffold domains of the characteristic size observed in nerve cells can be understood from the receptor and scaffold reaction and diffusion processes suggested by experiments. We employ here kinetic Monte Carlo (KMC) simulations to explore the self-assembly of synaptic receptor-scaffold domains in a stochastic lattice model of receptor and scaffold reaction-diffusion dynamics. For reaction and diffusion rates within the ranges of values suggested by experiments we find, in agreement with previous mean-field calculations, self-assembly of receptor-scaffold domains of a size similar to that observed in experiments. Comparisons between the results of our KMC simulations and mean-field solutions suggest that the intrinsic noise associated with receptor and scaffold reaction and diffusion processes accelerates the self-assembly of receptor-scaffold domains, and confers increased robustness to domain formation. In agreement with experimental observations, our KMC simulations yield a prevalence of scaffolds over receptors in receptor-scaffold domains. Our KMC simulations show that receptor and scaffold reaction-diffusion dynamics can inherently give rise to plasticity in the overall properties of receptor-scaffold domains, which may be utilized by nerve cells to regulate the receptor number at chemical synapses.
Collapse
Affiliation(s)
- Everest Law
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Yiwei Li
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Osman Kahraman
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | - Christoph A Haselwandter
- Department of Physics and Astronomy and Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
22
|
Graeve A, Ioannidou I, Reinhard J, Görl DM, Faissner A, Weiss LC. Brain volume increase and neuronal plasticity underly predator-induced morphological defense expression in Daphnia longicephala. Sci Rep 2021; 11:12612. [PMID: 34131219 PMCID: PMC8206331 DOI: 10.1038/s41598-021-92052-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Predator-induced phenotypic plasticity describes the ability of prey to respond to an increased predation risk by developing adaptive phenotypes. Upon the perception of chemical predator cues, the freshwater crustacean Daphnia longicephala develops defensive crests against its predator Notonecta spec. (Heteroptera). Chemical predator perception initiates a cascade of biological reactions that leads to the development of these morphological features. Neuronal signaling is a central component in this series, however how the nervous system perceives and integrates environmental signals is not well understood. As neuronal activity is often accompanied by functional and structural plasticity of the nervous system, we hypothesized that predator perception is associated with structural and functional changes of nervous tissues. We observe structural plasticity as a volume increase of the central brain, which is independent of the total number of brain cells. In addition, we find functional plasticity in form of an increased number of inhibitory post-synaptic sites during the initial stage of defense development. Our results indicate a structural rewiring of nerve-cell connections upon predator perception and provide important insights into how the nervous system of prey species interprets predator cues and develops cost-benefit optimized defenses.
Collapse
Affiliation(s)
- A Graeve
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - I Ioannidou
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - J Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - D M Görl
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - A Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - L C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
23
|
Bai G, Wang Y, Zhang M. Gephyrin-mediated formation of inhibitory postsynaptic density sheet via phase separation. Cell Res 2021; 31:312-325. [PMID: 33139925 PMCID: PMC8027005 DOI: 10.1038/s41422-020-00433-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/14/2020] [Indexed: 01/30/2023] Open
Abstract
Inhibitory synapses are also known as symmetric synapses due to their lack of prominent postsynaptic densities (PSDs) under a conventional electron microscope (EM). Recent cryo-EM tomography studies indicated that inhibitory synapses also contain PSDs, albeit with a rather thin sheet-like structure. It is not known how such inhibitory PSD (iPSD) sheet might form. Here, we demonstrate that the key inhibitory synapse scaffold protein gephyrin, when in complex with either glycine or GABAA receptors, spontaneously forms highly condensed molecular assemblies via phase separation both in solution and on supported membrane bilayers. Multivalent and specific interactions between the dimeric E-domain of gephyrin and the glycine/GABAA receptor multimer are essential for the iPSD condensate formation. Gephyrin alone does not form condensates. The linker between the G- and E-domains of gephyrin inhibits the iPSD condensate formation via autoinhibition. Phosphorylation of specific residues in the linker or binding of target proteins such as dynein light chain to the linker domain regulates gephyrin-mediated glycine/GABAA receptor clustering. Thus, analogous to excitatory PSDs, iPSDs are also formed by phase separation-mediated condensation of scaffold protein/neurotransmitter receptor complexes.
Collapse
Affiliation(s)
- Guanhua Bai
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yu Wang
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mingjie Zhang
- grid.24515.370000 0004 1937 1450Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China ,grid.24515.370000 0004 1937 1450Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
24
|
Kim S, Kang M, Park D, Lee AR, Betz H, Ko J, Chang I, Um JW. Impaired formation of high-order gephyrin oligomers underlies gephyrin dysfunction-associated pathologies. iScience 2021; 24:102037. [PMID: 33532714 PMCID: PMC7822942 DOI: 10.1016/j.isci.2021.102037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gephyrin is critical for the structure, function, and plasticity of inhibitory synapses. Gephyrin mutations have been linked to various neurological disorders; however, systematic analyses of the functional consequences of these mutations are lacking. Here, we performed molecular dynamics simulations of gephyrin to predict how six reported point mutations might change the structural stability and/or function of gephyrin. Additional in silico analyses revealed that the A91T and G375D mutations reduce the binding free energy of gephyrin oligomer formation. Gephyrin A91T and G375D displayed altered clustering patterns in COS-7 cells and nullified the inhibitory synapse-promoting effect of gephyrin in cultured neurons. However, only the G375D mutation reduced gephyrin interaction with GABAA receptors and neuroligin-2 in mouse brain; it also failed to normalize deficits in GABAergic synapse maintenance and neuronal hyperactivity observed in hippocampal dentate gyrus-specific gephyrin-deficient mice. Our results provide insights into biochemical, cell-biological, and network-activity effects of the pathogenic G375D mutation.
Collapse
Affiliation(s)
- Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Mooseok Kang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ae-Ree Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| | - Heinrich Betz
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Iksoo Chang
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea.,Supercomputing Bigdata Center, DGIST, Daegu 42988, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Core Protein Resources Center, DGIST, Daegu 42988, Korea
| |
Collapse
|
25
|
Tossell K, Dodhia RA, Galet B, Tkachuk O, Ungless MA. Tonic GABAergic inhibition, via GABA A receptors containing αβƐ subunits, regulates excitability of ventral tegmental area dopamine neurons. Eur J Neurosci 2021; 53:1722-1737. [PMID: 33522050 PMCID: PMC8651010 DOI: 10.1111/ejn.15133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The activity of midbrain dopamine neurons is strongly regulated by fast synaptic inhibitory γ‐Aminobutyric acid (GABA)ergic inputs. There is growing evidence in other brain regions that low concentrations of ambient GABA can persistently activate certain subtypes of GABAA receptor to generate a tonic current. However, evidence for a tonic GABAergic current in midbrain dopamine neurons is limited. To address this, we conducted whole‐cell recordings from ventral tegmental area (VTA) dopamine neurons in brain slices from mice. We found that application of GABAA receptor antagonists decreased the holding current, indicating the presence of a tonic GABAergic input. Global increases in GABA release, induced by either a nitric oxide donor or inhibition of GABA uptake, further increased this tonic current. Importantly, prolonged inhibition of the firing activity of local GABAergic neurons abolished the tonic current. A combination of pharmacology and immunohistochemistry experiments suggested that, unlike common examples of tonic inhibition, this current may be mediated by a relatively unusual combination of α4βƐ subunits. Lastly, we found that the tonic current reduced excitability in dopamine neurons suggesting a subtractive effect on firing activity.
Collapse
Affiliation(s)
- Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Rakesh A Dodhia
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin Galet
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Olga Tkachuk
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Dhuriya YK, Sharma D. Neuronal Plasticity: Neuronal Organization is Associated with Neurological Disorders. J Mol Neurosci 2020; 70:1684-1701. [PMID: 32504405 DOI: 10.1007/s12031-020-01555-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022]
Abstract
Stimuli from stressful events, attention in the classroom, and many other experiences affect the functionality of the brain by changing the structure or reorganizing the connections between neurons and their communication. Modification of the synaptic transmission is a vital mechanism for generating neural activity via internal or external stimuli. Neuronal plasticity is an important driving force in neuroscience research, as it is the basic process underlying learning and memory and is involved in many other functions including brain development and homeostasis, sensorial training, and recovery from brain injury. Indeed, neuronal plasticity has been explored in numerous studies, but it is still not clear how neuronal plasticity affects the physiology and morphology of the brain. Thus, unraveling the molecular mechanisms of neuronal plasticity is essential for understanding the operation of brain functions. In this timeline review, we discuss the molecular mechanisms underlying different forms of synaptic plasticity and their association with neurodegenerative/neurological disorders as a consequence of alterations in neuronal plasticity.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India.
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, 110016, India.
| |
Collapse
|
27
|
Semilunar Granule Cells Are the Primary Source of the Perisomatic Excitatory Innervation onto Parvalbumin-Expressing Interneurons in the Dentate Gyrus. eNeuro 2020; 7:ENEURO.0323-19.2020. [PMID: 32571963 PMCID: PMC7340841 DOI: 10.1523/eneuro.0323-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022] Open
Abstract
We analyzed the origin and relevance of the perisomatic excitatory inputs on the parvalbumin interneurons of the granule cell layer in mouse. Confocal analysis of the glutamatergic innervation showed that it represents ∼50% of the perisomatic synapses that parvalbumin cells receive. This excitatory input may originate from granule cell collaterals, the mossy cells, or even supramammillary nucleus. First, we assessed the input from the mossy cells on parvalbumin interneurons. Axon terminals of mossy cells were visualized by their calretinin content. Using multicolor confocal microscopy, we observed that less than 10% of perisomatic excitatory innervation of parvalbumin cells could originate from mossy cells. Correlative light and electron microscopy revealed that innervation from mossy cells, although present, was indeed infrequent, except for those parvalbumin cells whose somata were located in the inner molecular layer. Second, we investigated the potential input from supramammillary nucleus on parvalbumin cell somata using anterograde tracing or immunocytochemistry against vesicular glutamate transporter 2 (VGLUT2) and found only occasional contacts. Third, we intracellularly filled dentate granule cells in acute slice preparations using whole-cell recording and examined whether their axon collaterals target parvalbumin interneurons. We found that typical granule cells do not innervate the perisomatic region of these GABAergic cells. In sharp contrast, semilunar granule cells (SGCs), a scarce granule cell subtype often contacted the parvalbumin cell soma and proximal dendrites. Our data, therefore, show that perisomatic excitatory drive of parvalbumin interneurons in the granular layer of the dentate gyrus is abundant and originates primarily from SGCs.
Collapse
|
28
|
Structural basis for allosteric transitions of a multidomain pentameric ligand-gated ion channel. Proc Natl Acad Sci U S A 2020; 117:13437-13446. [PMID: 32482881 DOI: 10.1073/pnas.1922701117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) are allosteric receptors that mediate rapid electrochemical signal transduction in the animal nervous system through the opening of an ion pore upon binding of neurotransmitters. Orthologs have been found and characterized in prokaryotes and they display highly similar structure-function relationships to eukaryotic pLGICs; however, they often encode greater architectural diversity involving additional amino-terminal domains (NTDs). Here we report structural, functional, and normal-mode analysis of two conformational states of a multidomain pLGIC, called DeCLIC, from a Desulfofustis deltaproteobacterium, including a periplasmic NTD fused to the conventional ligand-binding domain (LBD). X-ray structure determination revealed an NTD consisting of two jelly-roll domains interacting across each subunit interface. Binding of Ca2+ at the LBD subunit interface was associated with a closed transmembrane pore, with resolved monovalent cations intracellular to the hydrophobic gate. Accordingly, DeCLIC-injected oocytes conducted currents only upon depletion of extracellular Ca2+; these were insensitive to quaternary ammonium block. Furthermore, DeCLIC crystallized in the absence of Ca2+ with a wide-open pore and remodeled periplasmic domains, including increased contacts between the NTD and classic LBD agonist-binding sites. Functional, structural, and dynamical properties of DeCLIC paralleled those of sTeLIC, a pLGIC from another symbiotic prokaryote. Based on these DeCLIC structures, we would reclassify the previous structure of bacterial ELIC (the first high-resolution structure of a pLGIC) as a "locally closed" conformation. Taken together, structures of DeCLIC in multiple conformations illustrate dramatic conformational state transitions and diverse regulatory mechanisms available to ion channels in pLGICs, particularly involving Ca2+ modulation and periplasmic NTDs.
Collapse
|
29
|
The netrin receptor UNC-40/DCC assembles a postsynaptic scaffold and sets the synaptic content of GABA A receptors. Nat Commun 2020; 11:2674. [PMID: 32471987 PMCID: PMC7260190 DOI: 10.1038/s41467-020-16473-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/28/2020] [Indexed: 01/11/2023] Open
Abstract
Increasing evidence indicates that guidance molecules used during development for cellular and axonal navigation also play roles in synapse maturation and homeostasis. In C. elegans the netrin receptor UNC-40/DCC controls the growth of dendritic-like muscle cell extensions towards motoneurons and is required to recruit type A GABA receptors (GABAARs) at inhibitory neuromuscular junctions. Here we show that activation of UNC-40 assembles an intracellular synaptic scaffold by physically interacting with FRM-3, a FERM protein orthologous to FARP1/2. FRM-3 then recruits LIN-2, the ortholog of CASK, that binds the synaptic adhesion molecule NLG-1/Neuroligin and physically connects GABAARs to prepositioned NLG-1 clusters. These processes are orchestrated by the synaptic organizer CePunctin/MADD-4, which controls the localization of GABAARs by positioning NLG-1/neuroligin at synapses and regulates the synaptic content of GABAARs through the UNC-40-dependent intracellular scaffold. Since DCC is detected at GABA synapses in mammals, DCC might also tune inhibitory neurotransmission in the mammalian brain. The netrin receptor UNC-40/DCC is required to recruit GABAAR at neuromuscular junctions in C. elegans. Here, the authors show that UNC-40/DCC assembles an intracellular synaptic scaffold, regulating the content of GABAAR and inhibitory neurotransmission.
Collapse
|
30
|
Antidepressant mechanisms of ketamine: Focus on GABAergic inhibition. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:43-78. [PMID: 32616214 DOI: 10.1016/bs.apha.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been much recent progress in understanding of the mechanism of ketamine's rapid and enduring antidepressant effects. Here we review recent insights from clinical and preclinical studies, with special emphasis of ketamine-induced changes in GABAergic synaptic transmission that are considered essential for its antidepressant therapeutic effects. Subanesthetic ketamine is now understood to exert its initial action by selectively blocking a subset of NMDA receptors on GABAergic interneurons, which results in disinhibition of glutamatergic target neurons, a surge in extracellular glutamate and correspondingly elevated glutamatergic synaptic transmission. This surge in glutamate appears to be corroborated by the rapid metabolism of ketamine into hydroxynorketamine, which acts at presynaptic sites to disinhibit the release of glutamate. Preclinical studies indicate that glutamate-induced activity triggers the release of BDNF, followed by transient activation of the mTOR pathway and increased expression of synaptic proteins, along with functional strengthening of glutamatergic synapses. This drug-on phase lasts for approximately 2h and is followed by a period of days characterized by structural maturation of newly formed glutamatergic synapses and prominently enhanced GABAergic synaptic inhibition. Evidence from mouse models with constitutive antidepressant-like phenotypes suggests that this phase involves strengthened inhibition of dendrites by somatostatin-positive GABAergic interneurons and correspondingly reduced NMDA receptor-mediated Ca2+ entry into dendrites, which activates an intracellular signaling cascade that converges with the mTOR pathway onto increased activity of the eukaryotic elongation factor eEF2 and enhanced translation of dendritic mRNAs. Newly synthesized proteins such as BDNF may be important for the prolonged therapeutic effects of ketamine.
Collapse
|
31
|
Kosaka Y, Yafuso T, Shimizu-Okabe C, Kim J, Kobayashi S, Okura N, Ando H, Okabe A, Takayama C. Development and persistence of neuropathic pain through microglial activation and KCC2 decreasing after mouse tibial nerve injury. Brain Res 2020; 1733:146718. [PMID: 32045595 DOI: 10.1016/j.brainres.2020.146718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.
Collapse
Affiliation(s)
- Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
32
|
Mayr SJ, Röper J, Schwarz G. Alternative splicing of the bicistronic gene molybdenum cofactor synthesis 1 ( MOCS1) uncovers a novel mitochondrial protein maturation mechanism. J Biol Chem 2020; 295:3029-3039. [PMID: 31996372 DOI: 10.1074/jbc.ra119.010720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/22/2020] [Indexed: 01/30/2023] Open
Abstract
Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1). Alternative splicing of MOCS1 within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I-III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.
Collapse
Affiliation(s)
- Simon J Mayr
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Juliane Röper
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany; Center for Molecular Medicine, University of Cologne, 5931 Cologne, Germany.
| |
Collapse
|
33
|
Yi Z, Waseem Ghani M, Ghani H, Jiang W, Waseem Birmani M, Ye L, Bin L, Cun LG, Lilong A, Mei X. Gimmicks of gamma-aminobutyric acid (GABA) in pancreatic β-cell regeneration through transdifferentiation of pancreatic α- to β-cells. Cell Biol Int 2020; 44:926-936. [PMID: 31903671 DOI: 10.1002/cbin.11302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023]
Abstract
In vivo regeneration of lost or dysfunctional islet β cells can fulfill the promise of improved therapy for diabetic patients. To achieve this, many mitogenic factors have been attempted, including gamma-aminobutyric acid (GABA). GABA remarkably affects pancreatic islet cells' (α cells and β cells) function through paracrine and/or autocrine binding to its membrane receptors on these cells. GABA has also been studied for promoting the transformation of α cells to β cells. Nonetheless, the gimmickry of GABA-induced α-cell transformation to β cells has two different perspectives. On the one hand, GABA was found to induce α-cell transformation to β cells in vivo and insulin-secreting β-like cells in vitro. On the other hand, GABA treatment showed that it has no α- to β-cell transformation response. Here, we will summarize the physiological effects of GABA on pancreatic islet β cells with an emphasis on its regenerative effects for transdifferentiation of islet α cells to β cells. We will also critically discuss the controversial results about GABA-mediated transdifferentiation of α cells to β cells.
Collapse
Affiliation(s)
- Zhao Yi
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Muhammad Waseem Ghani
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hammad Ghani
- Nawaz Sharif Medical College, University of Gujrat, Punjab, 50180, Pakistan
| | - Wu Jiang
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Muhammad Waseem Birmani
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Li Ye
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liu Bin
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Lang Guan Cun
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - An Lilong
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xiao Mei
- Department of Animal Science and Medicine, Agricultural College, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.,Department of Animal Breeding, Genetics and Reproduction, Agricultural Collage, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
34
|
Chiu CQ, Barberis A, Higley MJ. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity. Nat Rev Neurosci 2019; 20:272-281. [PMID: 30837689 DOI: 10.1038/s41583-019-0141-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cellular mechanisms that regulate the interplay of synaptic excitation and inhibition are thought to be central to the functional stability of healthy neuronal circuits. A growing body of literature demonstrates the capacity for inhibitory GABAergic synapses to exhibit long-term plasticity in response to changes in neuronal activity. Here, we review this expanding field of research, focusing on the diversity of mechanisms that link glutamatergic signalling, postsynaptic action potentials and inhibitory synaptic strength. Several lines of evidence indicate that multiple, parallel forms of plasticity serve to regulate activity at both the input and output domains of individual neurons. Overall, these varied phenomena serve to promote both stability and flexibility over the life of the organism.
Collapse
Affiliation(s)
- Chiayu Q Chiu
- Centro Interdisciplinario de Neurociencia de Valparaiso, Universidad de Valparaiso, Valparaiso, Chile
| | | | - Michael J Higley
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Zhou X, Bessereau JL. Molecular Architecture of Genetically-Tractable GABA Synapses in C. elegans. Front Mol Neurosci 2019; 12:304. [PMID: 31920535 PMCID: PMC6920096 DOI: 10.3389/fnmol.2019.00304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Inhibitory synapses represent a minority of the total chemical synapses in the mammalian brain, yet proper tuning of inhibition is fundamental to shape neuronal network properties. The neurotransmitter γ-aminobutyric acid (GABA) mediates rapid synaptic inhibition by the activation of the type A GABA receptor (GABAAR), a pentameric chloride channel that governs major inhibitory neuronal transduction in the nervous system. Impaired GABA transmission leads to a variety of neuropsychiatric diseases, including schizophrenia, autism, epilepsy or anxiety. From an evolutionary perspective, GABAAR shows remarkable conservations, and are found in all eukaryotic clades and even in bacteria and archaea. Specifically, bona fide GABAARs are found in the nematode Caenorhabditis elegans. Because of the anatomical simplicity of the nervous system and its amenability to genetic manipulations, C. elegans provide a powerful system to investigate the molecular and cellular biology of GABA synapses. In this mini review article, we will introduce the structure of the C. elegans GABAergic system and describe recent advances that have identified novel proteins controlling the localization of GABAARs at synapses. In particular, Ce-Punctin/MADD-4 is an evolutionarily-conserved extracellular matrix protein that behaves as an anterograde synaptic organizer to instruct the excitatory or inhibitory identity of postsynaptic domains.
Collapse
Affiliation(s)
- Xin Zhou
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
36
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
37
|
Caldow MK, Ham DJ, Trieu J, Chung JD, Lynch GS, Koopman R. Glycine Protects Muscle Cells From Wasting in vitro via mTORC1 Signaling. Front Nutr 2019; 6:172. [PMID: 31803749 PMCID: PMC6871541 DOI: 10.3389/fnut.2019.00172] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/25/2019] [Indexed: 12/25/2022] Open
Abstract
Glycine supplementation can protect skeletal muscles of mice from cancer-induced wasting, but the mechanisms underlying this protection are not well-understood. The aim of this study was to determine whether exogenous glycine directly protects skeletal muscle cells from wasting. C2C12 muscle cells were exposed to non-inflammatory catabolic stimuli via two models: serum withdrawal (SF) for 48 h; or incubation in HEPES buffered saline (HBS) for up to 5 h. Cells were supplemented with glycine or equimolar concentrations of L-alanine. SF- and HBS-treated myotubes (with or without L-alanine) were ~20% and ~30% smaller than control myotubes. Glycine-treated myotubes were up to 20% larger (P < 0.01) compared to cells treated with L-alanine in both models of muscle cell atrophy. The mTORC1 inhibitor rapamycin prevented the glycine-stimulated protection of myotube diameter, and glycine-stimulated S6 phosphorylation, suggesting that mTORC1 signaling may be necessary for glycine's protective effects in vitro. Increasing glycine availability may be beneficial for muscle wasting conditions associated with inadequate nutrient intake.
Collapse
Affiliation(s)
- Marissa K Caldow
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel J Ham
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jin Dylan Chung
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Ilbay O, Ambros V. Regulation of nuclear-cytoplasmic partitioning by the lin-28- lin-46 pathway reinforces microRNA repression of HBL-1 to confer robust cell-fate progression in C. elegans. Development 2019; 146:dev183111. [PMID: 31597658 PMCID: PMC6857590 DOI: 10.1242/dev.183111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs target complementary mRNAs for degradation or translational repression, reducing or preventing protein synthesis. In Caenorhabditis elegans, the transcription factor HBL-1 (Hunchback-like 1) promotes early larval (L2)-stage cell fates, and the let-7 family microRNAs temporally downregulate HBL-1 to enable the L2-to-L3 cell-fate progression. In parallel to let-7-family microRNAs, the conserved RNA-binding protein LIN-28 and its downstream gene lin-46 also act upstream of HBL-1 in regulating the L2-to-L3 cell-fate progression. The molecular function of LIN-46, and how the lin-28-lin-46 pathway regulates HBL-1, are not understood. Here, we report that the regulation of HBL-1 by the lin-28-lin-46 pathway is independent of the let-7/lin-4 microRNA complementary sites (LCSs) in the hbl-1 3'UTR, and involves stage-specific post-translational regulation of HBL-1 nuclear accumulation. We find that LIN-46 is necessary and sufficient to prevent nuclear accumulation of HBL-1. Our results illuminate that robust progression from L2 to L3 cell fates depends on the combination of two distinct modes of HBL-1 downregulation: decreased synthesis of HBL-1 via let-7-family microRNA activity, and decreased nuclear accumulation of HBL-1 via action of the lin-28-lin-46 pathway.
Collapse
Affiliation(s)
- Orkan Ilbay
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
39
|
Serine-Arginine Protein Kinase SRPK2 Modulates the Assembly of the Active Zone Scaffolding Protein CAST1/ERC2. Cells 2019; 8:cells8111333. [PMID: 31671734 PMCID: PMC6912806 DOI: 10.3390/cells8111333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023] Open
Abstract
Neurons release neurotransmitters at a specialized region of the presynaptic membrane, the active zone (AZ), where a complex meshwork of proteins organizes the release apparatus. The formation of this proteinaceous cytomatrix at the AZ (CAZ) depends on precise homo- and hetero-oligomerizations of distinct CAZ proteins. The CAZ protein CAST1/ERC2 contains four coiled-coil (CC) domains that interact with other CAZ proteins, but also promote self-assembly, which is an essential step for its integration during AZ formation. The self-assembly and synaptic recruitment of the Drosophila protein Bruchpilot (BRP), a partial homolog of CAST1/ERC2, is modulated by the serine-arginine protein kinase (SRPK79D). Here, we demonstrate that overexpression of the vertebrate SRPK2 regulates the self-assembly of CAST1/ERC2 in HEK293T, SH-SY5Y and HT-22 cells and the CC1 and CC4 domains are involved in this process. Moreover, the isoform SRPK2 forms a complex with CAST1/ERC2 when co-expressed in HEK293T and SH-SY5Y cells. More importantly, SRPK2 is present in brain synaptic fractions and synapses, suggesting that this protein kinase might control the level of self-aggregation of CAST1/ERC2 in synapses, and thereby modulate presynaptic assembly.
Collapse
|
40
|
Bessières B, Jia M, Travaglia A, Alberini CM. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat basolateral amygdala. ACTA ACUST UNITED AC 2019; 26:436-448. [PMID: 31615855 PMCID: PMC6796789 DOI: 10.1101/lm.049866.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
The basolateral complex of amygdala (BLA) processes emotionally arousing aversive and rewarding experiences. The BLA is critical for acquisition and storage of threat-based memories and the modulation of the consolidation of arousing explicit memories, that is, the memories that are encoded and stored by the medial temporal lobe. In addition, in conjunction with the medial prefrontal cortex (mPFC), the BLA plays an important role in fear memory extinction. The BLA develops relatively early in life, but little is known about the molecular changes that accompany its development. Here, we quantified relative basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins in the rat BLA at various developmental ages: postnatal day 17 (PN17, infants), PN24 (juveniles), and PN80 (young adults). We found that the levels of activation markers of brain plasticity, including phosphorylation of CREB at Ser133, CamKIIα at Thr286, pERK1/pERK2 at Thr202/Tyr204, and GluA1 at Ser831 and Ser845, were significantly higher in infant and juvenile compared with adult brain. In contrast, age increase was accompanied by a significant augmentation in the levels of proteins that mark synaptogenesis and synapse maturation, such as synaptophysin, PSD95, SynCAM, GAD65, GAD67, and GluN2A/GluN2B ratio. Finally, we observed significant age-associated changes in structural markers, including MAP2, MBP, and MAG, suggesting that the structural connectivity of the BLA increases over time. The biological differences in the BLA between developmental ages compared with adulthood suggest the need for caution in extrapolating conclusions based on BLA-related brain plasticity and behavioral studies conducted at different developmental stages.
Collapse
Affiliation(s)
- Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Margaret Jia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
41
|
Phosphorylation of Gephyrin in Zebrafish Mauthner Cells Governs Glycine Receptor Clustering and Behavioral Desensitization to Sound. J Neurosci 2019; 39:8988-8997. [PMID: 31558619 DOI: 10.1523/jneurosci.1315-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/01/2023] Open
Abstract
The process by which future behavioral responses are shaped by past experiences is one of the central questions in neuroscience. To gain insight into this process at the molecular and cellular levels, we have applied zebrafish larvae to explore behavioral desensitization to sound. A sudden loud noise often evokes a defensive response known as the acoustic startle response (ASR), which is triggered by firing Mauthner cells in teleosts and amphibians. The probability of evoking ASR by suprathreshold sound is reduced after exposure to repetitive auditory stimuli insufficient in amplitude to evoke the ASR (subthreshold). Although it has been suggested that the potentiation of inhibitory glycinergic inputs into Mauthner cell is involved in this desensitization of the ASR, the molecular basis for the potentiation of glycinergic transmission has been unclear. Through the in vivo monitoring of fluorescently-tagged glycine receptors (GlyRs), we here showed that behavioral desensitization to sound in zebrafish is governed by GlyR clustering in Mauthner cells. We further revealed that CaMKII-dependent phosphorylation of the scaffolding protein gephyrin at serine 325 promoted the synaptic accumulation of GlyR on Mauthner neurons through the enhancement of the gephyrin-GlyR binding, which was indispensable for and could induce desensitization of the ASR. Our study demonstrates an essential molecular and cellular basis of sound-induced receptor dynamics and thus of behavioral desensitization to sound.SIGNIFICANCE STATEMENT Behavioral desensitization in the acoustic startle response of fish is known to involve the potentiation of inhibitory glycinergic input to the Mauthner cell, which is a command neuron for the acoustic startle response. However, the molecular and cellular basis for this potentiation has been unknown. Here we show that an increase in glycine receptor (GlyR) clustering at synaptic sites on zebrafish Mauthner cells is indispensable for and could induce desensitization. Furthermore, we demonstrate that CaMKII-mediated phosphorylation of the scaffolding protein gephyrin promotes GlyR clustering by increasing the binding between the β-loop of GlyRs and gephyrin. Thus, the phosphorylation of gephyrin is a key event which accounts for the potentiation of inhibitory glycinergic inputs observed during sound-evoked behavioral desensitization.
Collapse
|
42
|
Liu Y, Zong X, Huang J, Guan Y, Li Y, Du T, Liu K, Kang X, Dou C, Sun X, Wu R, Wen L, Zhang Y. Ginsenoside Rb1 regulates prefrontal cortical GABAergic transmission in MPTP-treated mice. Aging (Albany NY) 2019; 11:5008-5034. [PMID: 31314744 PMCID: PMC6682523 DOI: 10.18632/aging.102095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/10/2019] [Indexed: 04/12/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, featured by motor deficits and non-motor symptoms such as cognitive impairment, and malfunction of gamma-aminobutyric acid (GABA) mediated inhibitory transmission plays an important role in PD pathogenesis. The ginsenoside Rb1 molecule, a major constituent of the extract from the Ginseng root, has been demonstrated to ameliorate motor deficits and prevent dopaminergic neuron death in PD. However, whether Rb1 can regulate GABAergic transmission in PD-associated deficits and its underlying mechanisms are still unclear. In this study, we explored the effects of Rb1 on the GABAergic synaptic transmission in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. We demonstrated that Rb1 can bind with GABAARα1 and increase its expression in the SH-SY5Y cells and in the prefrontal cortex (PFC) of MPTP model in vitro and in vivo. Furthermore, Rb1 can promote prefrontal cortical GABA level and GABAergic transmission in MPTP-treated mice. We also revealed that Rb1 may suppress presynaptic GABABR1 to enhance GABA release and GABAA receptor-mediated inhibitory transmission. In addition, Rb1 attenuated MPTP-induced dysfunctional gait dynamic and cognitive impairment, and this neuroprotective mechanism possibly involved regulating prefrontal cortical GABAergic transmission. Thus, Rb1 may serve as a potential drug candidate for the treatment of PD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaodan Zong
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Jie Huang
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yanfei Guan
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuanquan Li
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ting Du
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Keyin Liu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xinpan Kang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chunyan Dou
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiangdong Sun
- School of Basic Medical Sciences, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
- Provincial Key Laboratory of Medical Molecular Imaging, Shantou 515041, China
| | - Lei Wen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
43
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
44
|
Mele M, Costa RO, Duarte CB. Alterations in GABA A-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front Cell Neurosci 2019; 13:77. [PMID: 30899215 PMCID: PMC6416223 DOI: 10.3389/fncel.2019.00077] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
GABAA receptors (GABAAR) are the major players in fast inhibitory neurotransmission in the central nervous system (CNS). Regulation of GABAAR trafficking and the control of their surface expression play important roles in the modulation of the strength of synaptic inhibition. Different pieces of evidence show that alterations in the surface distribution of GABAAR and dysregulation of their turnover impair the activity of inhibitory synapses. A diminished efficacy of inhibitory neurotransmission affects the excitatory/inhibitory balance and is a common feature of various disorders of the CNS characterized by an increased excitability of neuronal networks. The synaptic pool of GABAAR is mainly controlled through regulation of internalization, recycling and lateral diffusion of the receptors. Under physiological condition these mechanisms are finely coordinated to define the strength of GABAergic synapses. In this review article, we focus on the alteration in GABAAR trafficking with an impact on the function of inhibitory synapses in various disorders of the CNS. In particular we discuss how similar molecular mechanisms affecting the synaptic distribution of GABAAR and consequently the excitatory/inhibitory balance may be associated with a wide diversity of pathologies of the CNS, from psychiatric disorders to acute alterations leading to neuronal death. A better understanding of the cellular and molecular mechanisms that contribute to the impairment of GABAergic neurotransmission in these disorders, in particular the alterations in GABAAR trafficking and surface distribution, may lead to the identification of new pharmacological targets and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
45
|
Witte H, Schreiner D, Scheiffele P. A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes. Eur J Neurosci 2019; 49:1436-1453. [PMID: 30589479 DOI: 10.1111/ejn.14332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Alternative splicing is one of the key mechanisms to increase the diversity of cellular transcriptomes, thereby expanding the coding capacity of the genome. This diversity is of particular importance in the nervous system with its elaborated cellular networks. Sam68, a member of the Signal Transduction Associated RNA-binding (STAR) family of RNA-binding proteins, is expressed in the developing and mature nervous system but its neuronal functions are poorly understood. Here, we perform genome-wide mapping of the Sam68-dependent alternative splicing program in mice. We find that Sam68 is required for the regulation of a set of alternative splicing events in pre-mRNAs encoding several postsynaptic scaffolding molecules that are central to the function of GABAergic and glutamatergic synapses. These components include Collybistin (Arhgef9), Gephyrin (Gphn), and Densin-180 (Lrrc7). Sam68-regulated Lrrc7 variants engage in differential protein interactions with signalling proteins, thus, highlighting a contribution of the Sam68 splicing program to shaping synaptic complexes. These findings suggest an important role for Sam68-dependent alternative splicing in the regulation of synapses in the central nervous system.
Collapse
Affiliation(s)
- Harald Witte
- Biozentrum of the University of Basel, Basel, Switzerland
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Basel, Switzerland.,Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | | |
Collapse
|
46
|
Jia M, Travaglia A, Pollonini G, Fedele G, Alberini CM. Developmental changes in plasticity, synaptic, glia, and connectivity protein levels in rat medial prefrontal cortex. ACTA ACUST UNITED AC 2018; 25:533-543. [PMID: 30224556 PMCID: PMC6149953 DOI: 10.1101/lm.047753.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022]
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in complex brain functions including decision-making, integration of emotional, and cognitive aspects in memory processing and memory consolidation. Because relatively little is known about the molecular mechanisms underlying its development, we quantified rat mPFC basal expression levels of sets of plasticity, synaptic, glia, and connectivity proteins at different developmental ages. Specifically, we compared the mPFC of rats at postnatal day 17 (PN17), when they are still unable to express long-term contextual and spatial memories, to rat mPFC at PN24, when they have acquired the ability of long-term memory expression and finally to the mPFC of adult rats. We found that, with increased age, there are remarkable and significant decreases in markers of cell activation and significant increases in proteins that mark synaptogenesis and synapse maturation. Furthermore, we found significant changes in structural markers over the ages, suggesting that structural connectivity of the mPFC increases over time. Finally, the substantial biological difference in mPFC at different ages suggest caution in extrapolating conclusions from brain plasticity studies conducted at different developmental stages.
Collapse
Affiliation(s)
- Margaret Jia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Alessio Travaglia
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Gabriella Pollonini
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Giuseppe Fedele
- Center for Neural Science, New York University, New York, New York 10003, USA
| | - Cristina M Alberini
- Center for Neural Science, New York University, New York, New York 10003, USA
| |
Collapse
|
47
|
Kasaragod VB, Schindelin H. Structure-Function Relationships of Glycine and GABA A Receptors and Their Interplay With the Scaffolding Protein Gephyrin. Front Mol Neurosci 2018; 11:317. [PMID: 30258351 PMCID: PMC6143783 DOI: 10.3389/fnmol.2018.00317] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/16/2018] [Indexed: 12/03/2022] Open
Abstract
Glycine and γ-aminobutyric acid (GABA) are the major determinants of inhibition in the central nervous system (CNS). These neurotransmitters target glycine and GABAA receptors, respectively, which both belong to the Cys-loop superfamily of pentameric ligand-gated ion channels (pLGICs). Interactions of the neurotransmitters with the cognate receptors result in receptor opening and a subsequent influx of chloride ions, which, in turn, leads to hyperpolarization of the membrane potential, thus counteracting excitatory stimuli. The majority of glycine receptors and a significant fraction of GABAA receptors (GABAARs) are recruited and anchored to the post-synaptic membrane by the central scaffolding protein gephyrin. This ∼93 kDa moonlighting protein is structurally organized into an N-terminal G-domain (GephG) connected to a C-terminal E-domain (GephE) via a long unstructured linker. Both inhibitory neurotransmitter receptors interact via a short peptide motif located in the large cytoplasmic loop located in between transmembrane helices 3 and 4 (TM3-TM4) of the receptors with a universal receptor-binding epitope residing in GephE. Gephyrin engages in nearly identical interactions with the receptors at the N-terminal end of the peptide motif, and receptor-specific interaction toward the C-terminal region of the peptide. In addition to its receptor-anchoring function, gephyrin also interacts with a rather large collection of macromolecules including different cytoskeletal elements, thus acting as central scaffold at inhibitory post-synaptic specializations. Dysfunctions in receptor-mediated or gephyrin-mediated neurotransmission have been identified in various severe neurodevelopmental disorders. Although biochemical, cellular and electrophysiological studies have helped to understand the physiological and pharmacological roles of the receptors, recent high resolution structures of the receptors have strengthened our understanding of the receptors and their gating mechanisms. Besides that, multiple crystal structures of GephE in complex with receptor-derived peptides have shed light into receptor clustering by gephyrin at inhibitory post-synapses. This review will highlight recent biochemical and structural insights into gephyrin and the GlyRs as well as GABAA receptors, which provide a deeper understanding of the molecular machinery mediating inhibitory neurotransmission.
Collapse
Affiliation(s)
- Vikram B Kasaragod
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
48
|
Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res 2018; 1695:18-30. [DOI: 10.1016/j.brainres.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 05/10/2018] [Accepted: 05/19/2018] [Indexed: 12/22/2022]
|
49
|
Bar-Elli O, Steinitz D, Yang G, Tenne R, Ludwig A, Kuo Y, Triller A, Weiss S, Oron D. Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect. ACS PHOTONICS 2018; 5:2860-2867. [PMID: 30042952 PMCID: PMC6053642 DOI: 10.1021/acsphotonics.8b00206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 05/05/2023]
Abstract
Properly designed colloidal semiconductor quantum dots (QDs) have already been shown to exhibit high sensitivity to external electric fields via the quantum confined Stark effect (QCSE). Yet, detection of the characteristic spectral shifts associated with the effect of the QCSE has traditionally been painstakingly slow, dramatically limiting the sensitivity of these QD sensors to fast transients. We experimentally demonstrate a new detection scheme designed to achieve shot-noise-limited sensitivity to emission wavelength shifts in QDs, showing feasibility for their use as local electric field sensors on the millisecond time scale. This regime of operation is already potentially suitable for detection of single action potentials in neurons at a high spatial resolution.
Collapse
Affiliation(s)
- Omri Bar-Elli
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Dan Steinitz
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Gaoling Yang
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Ron Tenne
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Anastasia Ludwig
- L’Ecole
Normale Superieure, Institute of Biologie
(IBENS), Paris Sciences et Lettres (PSL), CNRS UMR 8197, Inserm 1024, 46 Rue d’Ulm, Paris 75005, France
| | - Yung Kuo
- Department of Chemistry and Biochemistry, Department of Physiology,
and California NanoSystems Institute, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Antoine Triller
- L’Ecole
Normale Superieure, Institute of Biologie
(IBENS), Paris Sciences et Lettres (PSL), CNRS UMR 8197, Inserm 1024, 46 Rue d’Ulm, Paris 75005, France
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, Department of Physiology,
and California NanoSystems Institute, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department of Physics, Institute for Nanotechnology
and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Oron
- Department of Physics
of Complex Systems, Weizmann Institute of
Science, Rehovot 76100, Israel
- E-mail:
| |
Collapse
|
50
|
Gamlin CR, Yu WQ, Wong ROL, Hoon M. Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system. Neural Dev 2018; 13:12. [PMID: 29875009 PMCID: PMC5991458 DOI: 10.1186/s13064-018-0109-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/06/2018] [Indexed: 12/19/2022] Open
Abstract
Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, WA, USA. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|