1
|
Lv Z, Zeng Y, Lv T, Liu Q, Han L. GRP94 mediates blood-brain barrier permeation and substantia nigra-specific drug distribution in Parkinson's disease. Colloids Surf B Biointerfaces 2025; 250:114585. [PMID: 39983452 DOI: 10.1016/j.colsurfb.2025.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, which is characterized by pathological changes and progressive loss of dopaminergic neurons in the substantia nigra, e.g., endoplasmic reticulum stress. The blood-brain barrier (BBB) restricts the intracranial drug concentration and the therapeutic outcomes to a remarkable degree. Receptor-mediated transport has been extensively leveraged to design brain-targeting drug delivery systems to enhance intracranial drug levels. However, the target receptors at the BBB are widely expressed in normal brain parenchymal cells, which would affect drug distribution in local diseased brain regions, e.g., the substantia nigra in Parkinson's disease. Here, we found glucose-regulated protein 94 (GRP94), as an endoplasmic reticulum resident protein, is upregulated at the surface of substantia nigra neurons in Parkinson's disease. Considering that GRP94 could function like receptors to trigger cellular endocytosis and transcytosis, we constructed GRP94-specific peptide ligand NGPTHE-modified N-NPs and found that N-NPs could specially deliver drugs to the locally affected substantia nigra in Parkinson's disease. This study provides a GRP94-based proof-of-concept strategy for specific drug delivery for Parkinson's disease.
Collapse
Affiliation(s)
- Ziyan Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yuteng Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Taiyong Lv
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qiao Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Abstract
Both genetic and environmental factors modulate the risk of Parkinson's disease. In this article, all these pathophysiologic processes that contribute to damages at the tissue, cellular, organelle, and molecular levels, and their effects are talked about.
Collapse
Affiliation(s)
- Bin Xiao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - ZhiDong Zhou
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - YinXia Chao
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - Eng-King Tan
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore.
| |
Collapse
|
3
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2025; 45:909-946. [PMID: 39704040 PMCID: PMC11976381 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of NeurologyThe Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone HealthNew York CityNew YorkUSA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Pascal Derkinderen
- Department of NeurologyNantes Université, CHU Nantes, INSERMNantesFrance
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
4
|
Wang H, Hoffmann C, Tromm JV, Su X, Elliott J, Wang H, Deng M, McClenaghan C, Baum J, Pang ZP, Milovanovic D, Shi Z. Live-cell quantification reveals viscoelastic regulation of synapsin condensates by α-synuclein. SCIENCE ADVANCES 2025; 11:eads7627. [PMID: 40249817 PMCID: PMC12007584 DOI: 10.1126/sciadv.ads7627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Synapsin and α-synuclein represent a growing list of condensate-forming proteins where the material states of condensates are directly linked to cellular functions (e.g., neurotransmission) and pathology (e.g., neurodegeneration). However, quantifying condensate material properties in living systems has been a substantial challenge. Here, we develop micropipette aspiration and whole-cell patch-clamp (MAPAC), a platform that allows direct material quantification of condensates in live cells. We find 10,000-fold variations in the viscoelasticity of synapsin condensates, regulated by the partitioning of α-synuclein, a marker for synucleinopathies. Through in vitro reconstitutions, we identify multiple molecular factors that distinctly regulate the viscosity, interfacial tension, and maturation of synapsin condensates, confirming the cellular roles of α-synuclein. Overall, our study provides unprecedented quantitative insights into the material properties of neuronal condensates and reveals a crucial role of α-synuclein in regulating condensate viscoelasticity. Furthermore, we envision MAPAC applicable to study a broad range of condensates in vivo.
Collapse
Affiliation(s)
- Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Johannes V. Tromm
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Xiao Su
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Han Wang
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
| | - Mengying Deng
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Conor McClenaghan
- Center for Advanced Biotechnology and Medicine, and Departments of Pharmacology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin 10117, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin and Berlin Institute of Health, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Cancer Pharmacology Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Brzozowski CF, Challa H, Gcwensa NZ, Hall D, Nabert D, Chambers N, Gallardo I, Millet M, Volpicelli-Daley L, Moehle MS. Early A-synuclein aggregation decreases corticostriatal glutamate drive and synapse density. Neurobiol Dis 2025:106918. [PMID: 40250719 DOI: 10.1016/j.nbd.2025.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025] Open
Abstract
Neuronal inclusions of α-synuclein (α-syn) are pathological hallmarks of Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB). α-Syn pathology accumulates in cortical neurons which project to the striatum. To understand how α-syn pathology affects cortico-striatal synapses at early time points before significant dopamine neuron loss, pre-formed α-syn fibrils (PFF) were injected into the striatum to induce endogenous α-syn aggregation in corticostriatal-projecting neurons. Electrophysiological recordings of striatal spiny projection neurons (SPNs) from acute slices found a significant decrease in evoked corticostriatal glutamate release and corticostriatal synaptic release sites in mice with PFF-induced aggregates compared to monomer injected mice. Expansion microscopy, confocal microscopy and Imaris reconstructions were used to identify VGLUT1 positive presynaptic terminals juxtaposed to Homer1 positive postsynaptic densities, termed synaptic loci. Quantitation of synaptic loci density revealed an early loss of corticostriatal synapses. Immunoblots of the striatum showed reductions in expression of pre-synaptic proteins VGLUT1, VAMP2 and Snap25, in mice with α-syn aggregates compared to controls. Paradoxically, a small percentage of remaining VGLUT1+ synaptic loci positive for pS129-α-syn aggregates showed enlarged volumes compared to nearby synapses without α-syn aggregates. Our combined physiology and high-resolution imaging data point to an early loss of corticostriatal synapses in mice harboring α-synuclein inclusions, which may contribute to impaired basal ganglia circuitry in PD and DLB.
Collapse
Affiliation(s)
- Charlotte F Brzozowski
- Department of Neurology, Killon Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Harshita Challa
- Department of Neurology, Killon Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nolwazi Z Gcwensa
- Department of Neurology, Killon Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dominic Hall
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Douglas Nabert
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicole Chambers
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ignacio Gallardo
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michael Millet
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA
| | - Laura Volpicelli-Daley
- Department of Neurology, Killon Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, Center for Translational Research in Neurodegeneration, and Fixel Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
6
|
Takahashi M, Caraveo G. Ykt6 SNARE protein drives GluA1 insertion at synaptic spines during LTP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.632800. [PMID: 40236018 PMCID: PMC11996430 DOI: 10.1101/2025.02.10.632800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Long-Term Potentiation (LTP), a crucial form of synaptic plasticity essential for memory and learning, depends on protein synthesis and the upregulation of GluA1 at postsynaptic terminals. While extensive research has focused on the role of endosomal trafficking in GluA1 regulation, the contribution of endoplasmic reticulum (ER) trafficking pathways remains largely unexplored. A key opportunity to investigate this emerged from Ykt6, an evolutionarily conserved SNARE protein and a master regulator of vesicular fusion along ER-trafficking pathways. Here, we demonstrate that Ykt6 is highly expressed in the mammalian hippocampus, where it localizes to synaptic spines and regulates GluA1 surface expression in an LTP-dependent manner. Furthermore, we found that Ykt6 modulates synaptic vesicle pool dynamics as well as the amplitude and frequency of miniature excitatory postsynaptic currents. Ykt6 loss of function has been linked to α-synuclein pathology, a hallmark of Lewy Body Dementias (LBDs), where α-synuclein misfolding in the hippocampus disrupts LTP. Taken together, our findings establish Ykt6 as a critical SNARE protein in hippocampal function during LTP, with significant implications for neurodegenerative disorders such as LBDs.
Collapse
|
7
|
Blum C, Claessens MMAE. Balancing act: lipid-to-protein ratios steer the aggregation fate of α-synuclein. Trends Biochem Sci 2025; 50:285-286. [PMID: 40011177 DOI: 10.1016/j.tibs.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
A recent report by Makasewicz et al. delineates how α-synuclein (αSyn) membrane-binding modes drive amyloid formation. Their in vitro data reveal a lipid-to-protein (L/P) ratio tipping point influencing fibril formation. Preliminary validation from existing literature supports that these findings are also relevant in cellular contexts, informing potential new disease-modulating strategies.
Collapse
Affiliation(s)
- Christian Blum
- Nanobiophysics, Faculty of Science and Technology, MESA+ Institute for Nanotechnology and Technical Medical Centre, University of Twente, the Netherlands.
| | - Mireille M A E Claessens
- Nanobiophysics, Faculty of Science and Technology, MESA+ Institute for Nanotechnology and Technical Medical Centre, University of Twente, the Netherlands.
| |
Collapse
|
8
|
Mingo YB, Escobar Galvis ML, Henderson MX. α-Synuclein pathology and mitochondrial dysfunction: Toxic partners in Parkinson's disease. Neurobiol Dis 2025; 209:106889. [PMID: 40157617 DOI: 10.1016/j.nbd.2025.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025] Open
Abstract
Two major neuropathological features of Parkinson's disease (PD) are α-synuclein Lewy pathology and mitochondrial dysfunction. Although both α-synuclein pathology and mitochondrial dysfunction may independently contribute to PD pathogenesis, the interaction between these two factors is not yet fully understood. In this review, we discuss the physiological functions of α-synuclein and mitochondrial homeostasis in neurons as well as the pathological defects that ensue when these functions are disturbed in PD. Recent studies have highlighted that dysfunctional mitochondria can become sequestered within Lewy bodies, and cell biology studies have suggested that α-synuclein can directly impair mitochondrial function. There are also PD cases caused by genetic or environmental perturbation of mitochondrial homeostasis. Together, these studies suggest that mitochondrial dysfunction may be a common pathway to neurodegeneration in PD, triggered by multiple insults. We review the literature surrounding the interaction between α-synuclein and mitochondria and highlight open questions in the field that may be explored to advance our understanding of PD and develop novel, disease-modifying therapies.
Collapse
Affiliation(s)
- Yakum B Mingo
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America.
| |
Collapse
|
9
|
Luan ZX, Tang XL, Hao FR, Li M, Li SD, Yang MH. Effect of Bushen Huoxue Granule on Clearance of Pathological α-Synuclein in MPP +-Induced PC12 Cells. Chin J Integr Med 2025:10.1007/s11655-025-3707-2. [PMID: 40131610 DOI: 10.1007/s11655-025-3707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 03/27/2025]
Abstract
OBJECTIVE To investigate the effects of Bushen Huoxue Granule on the ubiquitin-proteasome system (UPS) in an in vitro model of Parkinson's disease. METHODS After treated with 1-methyl-4-phenylpyridinium (MPP+, 1 mmol/L) for 24 h, the cells were incubated with drug-free serum, Madopar-containing serum or Bushen Huoxue Granule-containing serum (BCS, 5%, 10%, and 20%) for another 24 h. The levels of α-synuclein (α-syn), tyrosine hydroxylase (TH) and UPS-related proteins were detected by Western blot. The expression levels of α-syn in PC12 cells were also analyzed by Western blot after treated with proteasome inhibitor MG132 and WT-α-syn plasmid transfection, respectively, as well as the alterations induced by subsequent BCS intervention. Immunocytochemistry was performed to determine the changes in α-syn phosphorylation at serine 129 (pSer129-α-syn) expression. The 20S proteasome levels were measured by enzyme-linked immunosorbnent assay. RESULTS BCS (volume fraction ⩽20%) intervention could alleviate the MMP+-induced cell viability decrease (P<0.05). In the MPP+ treated cells, α-syn was up-regulated, while TH and proteins of UPS such as ubiquitin (Ub), Ub binding with Ub-activating enzyme (UBE1), Parkin and Ub C-terminal hydrolase-1 (UCHL-1) were down-regulated (P<0.05). BCS intervention could attenuate the above changes (P<0.05). The activity of BCS on blocking α-syn accumulation was weakened by MG132 (P<0.05). While α-syn level was significantly increased in cells transfected with plasmid, and reduced by BCS intervention (P<0.05). pSer129-α-syn was increased in MPP+-induced PC12 cells, whereas decreased by later BCS intervention (P<0.05). The 20S proteasome activity of MPP+-induced PC12 cells was decreased, but increased after BCS intervention (P<0.05). CONCLUSION BCS intervention protected UPS function, increased 20S proteasome activity, promoted pathological α-syn clearance, restored cell viability, and reversed the damage caused by MPP+ in the in vitro model of Parkinson's disease.
Collapse
Affiliation(s)
- Zhen-Xian Luan
- Medical Department of Traditional Chinese Medicine, the Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - Xiang-Lin Tang
- Medical Department of Traditional Chinese Medicine, the Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - Fei-Ran Hao
- Medical Department of Traditional Chinese Medicine, the Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - Min Li
- Medical Department of Traditional Chinese Medicine, the Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - Shao-Dan Li
- Medical Department of Traditional Chinese Medicine, the Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China
| | - Ming-Hui Yang
- Medical Department of Traditional Chinese Medicine, the Sixth Medical Center of the PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
10
|
Lin X, Li Q, Pu M, Dong H, Zhang Q. Significance of nicotine and nicotinic acetylcholine receptors in Parkinson's disease. Front Aging Neurosci 2025; 17:1535310. [PMID: 40191787 PMCID: PMC11968747 DOI: 10.3389/fnagi.2025.1535310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Parkinson's disease (PD) is a multifaceted neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein. According to epidemiological data, PD is the second most prevalent neurodegenerative disorder after Alzheimer's disease (AD) and has emerged as a significant global health concern. This review examines the intricate pathological mechanisms and high-risk factors associated with PD, and discusses the challenges in its clinical diagnosis and treatment. We elucidate the relationship between smoking and the reduced risk of PD, highlighting the potential neuroprotective effects of nicotine present in tobacco. The interaction between nicotine and nicotinic acetylcholine receptors (nAChRs) is analyzed in detail, emphasizing their neuroprotective capabilities and underlying molecular mechanisms. Furthermore, we analyze the structural and functional diversity of nAChRs and their roles in the pathological progression of PD. Our review aims to elucidate the complex interplay of genetic, environmental, and biochemical factors in PD and to propose future research directions that may facilitate therapeutic development.
Collapse
Affiliation(s)
- Xia Lin
- Department of Neurology, First People's Hospital of Tianshui, Tianshui, Gansu, China
| | - Qian Li
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Min Pu
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Hao Dong
- First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Qinghua Zhang
- Department of Neurology, First People's Hospital of Tianshui, Tianshui, Gansu, China
| |
Collapse
|
11
|
Fantini J, Azzaz F, Aulas A, Chahinian H, Yahi N. Preclinical assessment of a ganglioside-targeted therapy for Parkinson's disease with the first-in-class adaptive peptide AmyP53. Sci Rep 2025; 15:9144. [PMID: 40097723 PMCID: PMC11914484 DOI: 10.1038/s41598-025-94148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
We propose a new concept for the treatment of Parkinson's disease (PD), which considers that its root cause, α-synuclein, is an intrinsically disordered protein (IDP) difficult to target by classic approaches. Upon binding to lipid raft gangliosides, α-synuclein shifts from random coil to α-helix, forming Ca2+-permeable oligomeric pores triggering a neurotoxicity cascade. We used the α-synuclein-ganglioside interaction as guideline to design a therapeutic peptide (AmyP53) that combines the respective flexible ganglioside-binding domains of α-synuclein and Alzheimer's β-amyloid protein. AmyP53 is an adaptive peptide, the first representant of a new therapeutic class. It acts as a competitive inhibitor of α-synuclein oligomer formation in brain cell membranes and prevents subsequent downstream synaptotoxicity, including the loss of dopaminergic neurons in an animal α-synuclein injection model of PD. It is active against both wild-type and mutant forms of α-synuclein. AmyP53 is administered intranasally without side effects. This new concept "target the target (gangliosides), not the arrow (IDP)" is distinct from classic α-synuclein centric approaches that did not cure PD so far.
Collapse
Affiliation(s)
| | - Fodil Azzaz
- Aix Marseille Univ, INSERM UA16, Marseille, France
| | | | | | - Nouara Yahi
- Aix Marseille Univ, INSERM UA16, Marseille, France
| |
Collapse
|
12
|
Li D, Yau WY, Chen S, Wilton S, Mastaglia F. A personalised and comprehensive approach is required to suppress or replenish SNCA for Parkinson's disease. NPJ Parkinsons Dis 2025; 11:42. [PMID: 40038287 DOI: 10.1038/s41531-025-00887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/07/2025] [Indexed: 03/06/2025] Open
Abstract
Based on the prevailing α-synuclein "gain-of-function" hypothesis, reducing α-synuclein levels and removing its aggregates is a current focus of disease-modifying therapies for Parkinson's disease. Emerging evidence of α-synuclein "loss-of-function" suggests that it may be necessary to replenish monomeric α-synuclein levels. We propose a personalized and comprehensive approach for different Parkinson's subgroups based on whether α-synuclein is likely to contribute to disease pathogenesis through a "gain-of-function", "loss-of-function", or both mechanisms.
Collapse
Affiliation(s)
- Dunhui Li
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, Western Australia, Australia.
- Personalised Medicine Center, Murdoch University, Perth, Western Australia, Australia.
- Stephen & Denise Adams Center for Parkinson's Disease Research, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Wai Yan Yau
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, Western Australia, Australia
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
| | - Steve Wilton
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, Western Australia, Australia
- Personalised Medicine Center, Murdoch University, Perth, Western Australia, Australia
| | - Frank Mastaglia
- Perron Institute for Neurological and Translational Science, the University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Yu L, Li X, Shi T, Li N, Zhang D, Liu X, Xiao Y, Liu X, Petersen RB, Xue W, Yu YV, Hu DS, Xu L, Chen H, Zheng L, Huang K, Peng A. Identification of novel phenolic inhibitors from traditional Chinese medicine against toxic α-synuclein aggregation via regulating phase separation. Int J Biol Macromol 2025; 297:139875. [PMID: 39818366 DOI: 10.1016/j.ijbiomac.2025.139875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease; herein, we identified chemicals from herbs that inhibit α-Syn aggregation. We screened commonly prescribed TCMs for PD from the CNKI database and registered patents, 13 chemicals were identified in the TCMSP databases as candidate inhibitors, among which three phenols, forsythoside B (FTSB), echinacoside (ECH), and 4-hydroxyindole (C4-OH) efficiently inhibit α-Syn aggregation. Moreover, FTSB and ECH increase α-Syn fluidity within condensates, inhibit α-Syn transition into amyloid fibrils and reduce fibril-induced toxicity in SH-SY5Y cells. Importantly, they disaggregated preformed α-Syn amyloid fibrils. Notably, in an α-Syn overexpressing NL5901 C. elegans PD model, either FTSB or ECH treatment significantly extended the lifespan and improved the PD-like movement disorders, both in the preventive and therapeutic treatment approaches, by reducing toxic α-Syn inclusion formation and improving the fluidity of α-Syn. Together, we offer new therapeutic candidates targeting phase separation-associated aggregation for PD.
Collapse
Affiliation(s)
- Linwei Yu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Li
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Shi
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Li
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Donge Zhang
- Wuhan Third hospital, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuhan 430060, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yushuo Xiao
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinran Liu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA
| | - Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
| | - Yanxun V Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
| | - De-Sheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Li Xu
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Tongji-Rong Cheng Biomedical Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Anlin Peng
- Wuhan Third hospital, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuhan 430060, China.
| |
Collapse
|
14
|
Chakrabarti A, Verma S. Identifying potential genes driving ferroptosis in the substantia nigra and dopaminergic neurons in Parkinson's disease. Mol Cell Neurosci 2025; 132:103993. [PMID: 39848553 DOI: 10.1016/j.mcn.2025.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by dopaminergic (DA) neuron degeneration in the substantia nigra (SN). Conventional dopamine replacement therapies provide limited long-term efficacy and significant side effects. Emerging evidence suggests ferroptosis-a form of cell death driven by iron-dependent lipid peroxidation-contributes to PD pathology, though direct evidence linking dysregulation of ferroptosis-related genes in DA neuron loss in PD remains limited. This study explores the expression of ferroptosis-associated genes in the SN and DA neurons of PD patients, identifying potential therapeutic targets. We analyzed two independent RNA-seq datasets, GSE7621 and GSE8397 (GPL-96), from the GEO database to identify common differentially expressed ferroptosis-related genes in the SN of PD patients. We also conducted Gene Ontology and pathway enrichment analyses of these genes to explore the underlying mechanisms and constructed a protein-protein interaction network. The findings were further validated using an additional dataset, GSE49036. We further explored the dysregulation of these ferroptosis-related genes in DA neurons using RNA-seq data GSE169755, derived from DA neurons isolated from the SN of PD patients and controls. Lastly, the proposed hypothesis was experimentally validated in an in vitro PD model. This comprehensive multi-dataset analysis uncovers novel insights into the expression of ferroptosis-related genes in PD, suggesting potential biomarkers and therapeutic targets for mitigating DA neuron loss and PD progression.
Collapse
Affiliation(s)
- Ardra Chakrabarti
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
González AC, Goossens J, Campuzano EV, Sala I, Sánchez-Saudinós MB, Rodríguez-Baz Í, Lidón L, Perlaza D, Bejanin A, Haapasalo A, Fortea J, Alcolea D, Lleó A, Vanmechelen E, Belbin O. Evaluation of cerebrospinal fluid levels of VAMP-2 and SNAP-25 in a dementia with Lewy bodies clinical cohort stratified by Alzheimer's pathophysiological biomarkers. Alzheimers Res Ther 2025; 17:51. [PMID: 39994784 PMCID: PMC11849174 DOI: 10.1186/s13195-025-01685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/26/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Synaptic protein levels in cerebrospinal fluid (CSF) may represent much-needed objective biomarkers of cognitive impairment, disease progression and drug efficacy in patients with dementia with Lewy bodies (DLB). Soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNARE) proteins, such as VAMP-2 and SNAP-25, are implicated in α-synuclein pathophysiology and CSF levels of these proteins are associated with pathophysiological biomarkers and cognitive decline in Alzheimer's disease (AD). The aim of the study was to compare CSF levels of VAMP-2 and SNAP-25 in patients with DLB to cognitively unimpaired controls and AD patients and study their association with cognitive performance and AD and neurodegeneration biomarkers. METHODS VAMP-2 and SNAP-25 were quantified in CSF from cognitively normal controls (n = 62), DLB (n = 44) and AD (n = 114) patients from the Sant Pau Initiative for Neurodegeneration (SPIN) cohort using homebrew Single Molecule Array assays (Simoa). The DLB group was stratified into two groups with ("DLB + AD", n = 28) or without AD co-pathology ("pure DLB", n = 16) using our validated cut-off for the CSF phosphorylated tau (p-tau)/Aβ42 ratio. We used linear regression to test for group differences (adjusting for age) and association with AD biomarkers. We used standardized w-scores of the cognitive tests to analyze the association of the synaptic markers with cognitive performance. RESULTS CSF VAMP-2 and SNAP-25 levels correlated across all groups (r = 0.71-0.9, p < 0.001). Both proteins were decreased in pure DLB (p < 0.001, p = 0.01) but increased in DLB + AD (p = 0.01, p = 0.02) compared to controls and showed good accuracy to discriminate pure DLB from DLB + AD (AUC = 0.84, 0.85). Both proteins were associated with CSF p-tau and total tau (t-tau) across all groups (r2 = 0.49-0.88, p < 0.001), with the Aβ42/40 ratio in DLB + AD (r2 = 0.29-0.36, p < 0.001) and in AD (r2 = 0.12-0.23, p < 0.001) and with CSF neurofilament-light chain (NfL) in controls (r²=0.10-0.11, p < 0.001-0.01) and AD patients (r²=0.01-0.08, p = 0.01 - 0.001). SNAP-25 was associated with CSF NfL in the DLB + AD group (r²=0.15, p = 0.02). CSF VAMP-2 and SNAP-25 were associated with phonemic fluency in pure DLB (r2 = 0.39 - 0.28, p = 0.01-0.03) and SNAP-25 with the Clock drawing test and the MMSE in DLB + AD (adj.r2 = 0.15 - 0.14, p = 0.03-0.03) and DLB (adj.r2 = 0.12 - 0.08, p = 0.02-0.04) groups. CONCLUSIONS CSF VAMP-2 and SNAP-25 are promising surrogate markers of synapse degeneration in DLB. However, care should be taken when interpreting CSF levels of these synaptic markers in DLB in light of the confounding effect of AD pathophysiological markers.
Collapse
Affiliation(s)
- Alba Cervantes González
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Julie Goossens
- ADx NeuroSciences NV, Technologiepark-Zwijnaarde 6, Gent, 9052, Belgium
| | - Elena Vera Campuzano
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Isabel Sala
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - M Belén Sánchez-Saudinós
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Íñigo Rodríguez-Baz
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Laia Lidón
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Danna Perlaza
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juan Fortea
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eugeen Vanmechelen
- ADx NeuroSciences NV, Technologiepark-Zwijnaarde 6, Gent, 9052, Belgium.
| | - Olivia Belbin
- Sant Pau Memory Unit, Institut de Recerca Sant Pau, Universitat Autonoma de Barcelona, c/Sant Quintí 77, Barcelona, 08041, Spain.
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
16
|
Xiao B, Tan EK. Prasinezumab slows motor progression in Parkinsons disease: beyond the clinical data. NPJ Parkinsons Dis 2025; 11:31. [PMID: 39971932 PMCID: PMC11839931 DOI: 10.1038/s41531-025-00886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
A post hoc subgroup analysis has suggested potential therapeutic benefits of prasinezumab, a humanized monoclonal anti-α-synuclein antibody, in patients with rapidly progressing Parkinson's disease (PD), despite initial trials showing limited impact on primary outcomes. Caution is needed due to the retrospective nature of subgroup analyses, and potential confounding factors that may have influenced the observed treatment effects in specific patient subsets. Critical considerations are provided here for designing and implementing preclinical studies and clinical trials involving monoclonal antibodies, suggesting that future research should prioritize refining preclinical models and optimizing biomarker-based patient selection to reduce risks of false trial outcomes, eventually advancing antibody-based therapies in PD effectively and safely.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
17
|
Heras-Garvin A, Fellner L, Granata R, Wenning GK, Stefanova N. Transcriptional dysregulation in the cerebellum triggered by oligodendroglial α-synucleinopathy: insights from a transgenic mouse into the early disease mechanisms of MSA. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02892-5. [PMID: 39954078 DOI: 10.1007/s00702-025-02892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by abnormal accumulation of α-synuclein, progressive neuronal loss, motor impairment and widespread pathological changes, which include significant involvement of the cerebellum. To understand the early molecular mechanisms that might underlie α-synuclein-triggered MSA cerebellar pathology, we performed RNA sequencing (RNA-Seq) of cerebellar samples from a well-established model of MSA. RNA-Seq and differential gene expression analysis was conducted in the PLP-αSyn model of MSA. Cerebellum from two and 12-month-old MSA and wildtype mice were used. Gene ontology (GO) and KEGG enrichment analyses of the differentially expressed genes (DEGs) were performed to explore processes involved in MSA-like disease progression. The overlap between transcriptional changes in MSA and those associated with aging was also evaluated. RNA-Seq analysis demonstrated significant transcriptional dysregulation in cerebellum from MSA mice, even at early stages. GO and KEGG analyses of DEGs point to a potential role of synaptic dysfunction, cellular signaling dysregulation and inflammation in the cerebellar pathology of MSA mice. In addition, those changes exacerbate with disease progression. Additionally, our analysis of aging in both control and PLP-αSyn mice showed that age-related transcriptional changes in mid-aged controls seem to be present in young MSA mice. Thus, MSA-like pathology might lead to an acceleration of aging-related mechanisms. Our findings demonstrate significant cerebellar transcriptional dysregulation triggered by oligodendroglial α-synucleinopathy in PLP-αSyn mice, revealing pathways that might be critical for the early cerebellar pathology of MSA, and that may serve as potential molecular targets for therapeutic interventions in this devastating disorder.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria.
| | - Lisa Fellner
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria
| | - Roberta Granata
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria
| | - Gregor K Wenning
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria
| | - Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innrain 66, 3rd floor, Innsbruck, 6020, Austria.
| |
Collapse
|
18
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Kokhan VS, Chaprov K, Abaimov DA, Nesterov MS, Pikalov VA. Combined irradiation by gamma-rays and carbon-12 nuclei caused hyperlocomotion and change in striatal metabolism of rats. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:99-107. [PMID: 39864919 DOI: 10.1016/j.lssr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 01/28/2025]
Abstract
Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved. We conducted a study on grip strength, locomotor activity and intrasession habituation to novelty in 5-month-old rats after exposure to radiation (combined 0.4 Gy gamma-rays and 0.14 Gy 12C nuclei). At the same time, we carried out neurochemical and molecular analysis of the nucleus accumbens (NAc) and the dorsal striatum (dST). The study revealed radiation-induced hyperlocomotion and enhanced habituation. It also showed an increase in choline concentration and a decreased in 5-hydroxyindoleacetic acid concentration in the NAc after irradiation. In addition to this, a down-regulation of syntaxin 1A in NAc and dST as well as up-regulation α-synuclein in NAc were observed. The obtained data indicate both the damaging effect of irradiation on striatum tissues and the initiation of neuronal/axonal regeneration processes. It is hypothesized that the increase in choline concentration in NAc and the decreased content of syntaxin 1A in dST may be the part of the mechanism responsible for the radiation-induced hyperlocomotion.
Collapse
Affiliation(s)
- Viktor S Kokhan
- V.P. Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia.
| | - Kirill Chaprov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia
| | | | - Maxim S Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, settlement Svetlye Gory, Russia
| | - Vladimir A Pikalov
- Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino, Russia
| |
Collapse
|
20
|
Calis S, Gevaert K. The role of Nα-terminal acetylation in protein conformation. FEBS J 2025; 292:453-467. [PMID: 38923676 DOI: 10.1111/febs.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Especially in higher eukaryotes, the N termini of proteins are subject to enzymatic modifications, with the acetylation of the alpha-amino group of nascent polypeptides being a prominent one. In recent years, the specificities and substrates of the enzymes responsible for this modification, the Nα-terminal acetyltransferases, have been mapped in several proteomic studies. Aberrant expression of, and mutations in these enzymes were found to be associated with several human diseases, explaining the growing interest in protein Nα-terminal acetylation. With some enzymes, such as the Nα-terminal acetyltransferase A complex having thousands of possible substrates, researchers are now trying to decipher the functional outcome of Nα-terminal protein acetylation. In this review, we zoom in on one possible functional consequence of Nα-terminal protein acetylation; its effect on protein folding. Using selected examples of proteins associated with human diseases such as alpha-synuclein and huntingtin, here, we discuss the sometimes contradictory findings of the effects of Nα-terminal protein acetylation on protein (mis)folding and aggregation.
Collapse
Affiliation(s)
- Sam Calis
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
21
|
Clarke JR, Bacelar TS, Fernandes GG, Silva RCD, Antonio LS, Queiroz M, de Souza RV, Valadão LF, Ribeiro GS, De Lima EV, Colodeti LC, Mangeth LC, Wiecikowski A, da Silva TN, Paula-Neto HA, da Costa R, Cordeiro Y, Passos GF, Figueiredo CP. Abatacept inhibits Th17 differentiation and mitigates α-synuclein-induced dopaminergic dysfunction in mice. Mol Psychiatry 2025; 30:547-555. [PMID: 39152331 DOI: 10.1038/s41380-024-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is a multifaceted disease characterized by degeneration of nigrostriatal dopaminergic neurons, which results in motor and non-motor dysfunctions. Accumulation of α-synuclein (αSYN) in Lewy bodies is a key pathological feature of PD. Although the exact cause of PD remains unknown, accumulating evidence suggests that brain infiltration of T cells plays a critical role in the pathogenesis of disease, contributing to neuroinflammation and dopaminergic neurodegeneration. Here, we used a mouse model of brain-infused aggregated αSYN, which recapitulates motor and non-motor dysfunctions seen in PD patients. We found that αSYN-induced motor dysfunction in mice is accompanied by an increased number of brain-residing Th17 (IL17+ CD4+) cells, but not CD8+ T cells. To evaluate whether the modulation of T cell response could rescue αSYN-induced damage, we chronically treated animals with abatacept (8 mg/kg, sc, 3x per week), a selective T-cell co-stimulation modulator. We found that abatacept treatment decreased Th1 (IFNƔ+ CD4+) and Th17 (IL17+ CD4+) cells in the brain, rescued motor function and prevented dopaminergic neuronal loss in αSYN-infused mice. These results highlight the significance of effector CD4+ T cells, especially Th17, in the progression of PD and introduce novel possibilities for repurposing immunomodulatory drugs used for arthritis as PD-modifying therapies.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Thiago Sa Bacelar
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Raquel Costa da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia S Antonio
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Queiroz
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata V de Souza
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia F Valadão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel S Ribeiro
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V De Lima
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Lilian C Colodeti
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana C Mangeth
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adalgisa Wiecikowski
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita N da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Heitor A Paula-Neto
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Robson da Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Giselle F Passos
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
Schweitzer-Stenner R. Order-to-Disorder and Disorder-to-Order Transitions of Proteins upon Binding to Phospholipid Membranes: Common Ground and Dissimilarities. Biomolecules 2025; 15:198. [PMID: 40001501 PMCID: PMC11852466 DOI: 10.3390/biom15020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Cytochrome c is one of the most prominent representatives of peripheral membrane proteins. Besides functioning as an electron transfer carrier in the mitochondrial respiratory chain, it can acquire peroxidase capability, promote the self-assembly of α-synuclein, and function as a scavenger of superoxide. An understanding of its function requires knowledge of how the protein interacts with the inner membrane of mitochondria. The first part of this article provides an overview of a variety of experiments that were aimed at exploring the details of cytochrome c binding to anionic lipid liposomes, which serve as a model system for the inner membrane. While cytochrome c binding involves a conformational change from a folded into a partially disordered state, α-synuclein is intrinsically disordered in solution and subjected to a partial coil -> helix transition on membranes. Depending on the solution conditions and the surface density of α-synuclein, the protein facilitates the self-assembly into oligomers and fibrils. As for cytochrome c, results of binding experiments are discussed. In addition, the article analyzes experiments that explored α-synuclein aggregation. Similarities and differences between cytochrome c and α-synuclein binding are highlighted. Finally, the article presents a brief account of the interplay between cytochrome c and α-synuclein and its biological relevance.
Collapse
|
23
|
Dutta S, Hensel J, Scott A, Mohallem R, Rossitto LAM, Khan HF, Johnson T, Ferreira CR, Marmolejo JF, Chen X, Jayant K, Aryal UK, Volpicelli-Daley L, Rochet JC. Synaptic phosphoproteome modifications and cortical circuit dysfunction are linked to the early-stage progression of alpha-synuclein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634820. [PMID: 39896549 PMCID: PMC11785254 DOI: 10.1101/2025.01.24.634820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cortical dysfunction is increasingly recognized as a major contributor to the non-motor symptoms associated with Parkinson's disease (PD) and other synucleinopathies. Although functional alterations in cortical circuits have been observed in preclinical PD models, the underlying molecular mechanisms are unclear. To bridge this knowledge gap, we investigated tissue-level changes in the cortices of rats and mice treated with alpha-synuclein (aSyn) seeds using a multi-omics approach. Our study revealed significant phosphoproteomic changes, but not global proteomic or lipid profiling changes, in the rat sensorimotor cortex 3 months after intrastriatal injection with aSyn preformed fibrils (PFFs). Gene ontology analysis of the phosphoproteomic data indicated that PFF administration impacted pathways related to synaptic transmission and cytoskeletal organization. Similar phosphoproteomic perturbations were observed in the sensorimotor cortex of mice injected intrastriatally or intracortically with aSyn PFFs. Functional analyses demonstrated increased neuronal firing rates and enhanced spike-spike coherence in the sensorimotor cortices of PFF-treated mice, indicating seed-dependent cortical circuit dysfunction. Bioinformatic analysis of the altered phosphosites suggested the involvement of several kinases, including casein kinase-2 (CK2), which has been previously implicated in PD pathology. Collectively, these findings highlight the importance of phosphorylation-mediated signaling pathways in the cortical response to aSyn pathology spread in PD and related synucleinopathies, setting the stage for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sayan Dutta
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer Hensel
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Alicia Scott
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Leigh-Ana M Rossitto
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Hammad Furqan Khan
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Teshawn Johnson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christina R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | - Jackeline F. Marmolejo
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Xu Chen
- Department of Neurosciences, School of Medicine, University of California, San Diego, 92161, USA
| | - Krishna Jayant
- Weldon School of Biomedical Engineering, West Lafayette, Indiana, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Uma K. Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, 47907, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, 47906, USA
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
24
|
Renganathan A, Minaya MA, Broder M, Alfradique-Dunham I, Moritz M, Bhagat R, Marsh J, Verbeck A, Galasso G, Starr E, Agard DA, Cruchaga C, Karch CM. A novel lncRNA FAM151B-DT regulates autophagy and degradation of aggregation prone proteins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.22.25320997. [PMID: 39974060 PMCID: PMC11838976 DOI: 10.1101/2025.01.22.25320997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurodegenerative diseases share common features of protein aggregation along with other pleiotropic traits, including shifts in transcriptional patterns, neuroinflammation, disruptions in synaptic signaling, mitochondrial dysfunction, oxidative stress, and impaired clearance mechanisms like autophagy. However, key regulators of these pleotropic traits have yet to be identified. Here, we discovered a novel long non-coding RNA (lncRNA), FAM151B-DT, that is reduced in a stem cell model of frontotemporal dementia with tau inclusions (FTLD-tau) and in brains from FTLD-tau, progressive supranuclear palsy, Alzheimer's disease, and Parkinson's disease patients. We show that silencing FAM151B-DT in vitro is sufficient to enhance tau aggregation. To begin to understand the mechanism by which FAM151B-DT mediates tau aggregation and contributes to several neurodegenerative diseases, we deeply characterized this novel lncRNA and found that FAM151B-DT resides in the cytoplasm where it interacts with tau, α-synuclein, HSC70, and other proteins enriched in protein homeostasis. When silenced, FAM151B-DT blocks autophagy, leading to the accumulation of tau and α-synuclein. Importantly, we discovered that increasing FAM151B-DT expression is sufficient to promote autophagic flux, reduce phospho-tau and α-synuclein, and reduce tau aggregation. Overall, these findings pave the way for further exploration of FAM151B-DT as a promising molecular target for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Matthew Broder
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | | | - Michelle Moritz
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Reshma Bhagat
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Grant Galasso
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Emma Starr
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO
| |
Collapse
|
25
|
Yadav VK, Dhanasekaran S, Choudhary N, Nathiya D, Thakur V, Gupta R, Pramanik S, Kumar P, Gupta N, Patel A. Recent advances in nanotechnology for Parkinson's disease: diagnosis, treatment, and future perspectives. Front Med (Lausanne) 2025; 12:1535682. [PMID: 39911864 PMCID: PMC11794224 DOI: 10.3389/fmed.2025.1535682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease that destroys substantia nigra dopaminergic neurons, causing tremors, bradykinesia, rigidity, and postural instability. Current treatment approaches primarily focus on symptom management, employing pharmacological, non-pharmacological, and surgical methods. However, these treatments often result in fluctuating symptoms, side effects, and disease progression. Here, the authors have reviewed the emerging field of nanomedicine as a promising path for Parkinson's disease treatment, emphasizing its potential to overcome the limitations of traditional therapies. Nanomedicine utilizes nanoparticles for targeted drug delivery, leveraging their small size and high surface area to volume ratio to cross the blood-brain barrier and deliver therapeutic agents directly to affected brain regions. Various nanoparticles, including lipid-based, polymeric, metallic, and carbon-based, have shown potential in Parkinson's disease treatment. Additionally, nanocarrier systems like liposomes, nanogels, dendrimers, and solid lipid nanoparticles offer controlled and sustained release of therapeutic agents, enhancing their bioavailability and reducing side effects. This review provides insights into the pathophysiology of Parkinson's disease, highlighting the mechanisms of neurodegeneration, the role of alpha-synuclein, and the disruption of dopaminergic pathways. It further discusses the application of gene therapy in conjunction with nanomedicine for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Faculty of Sciences, Department of Microbiology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| | | | - Nisha Choudhary
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Nishant Gupta
- Department of Engineering and Medical Devices, River Engineering Pvt. Ltd., Greater Noida, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
26
|
Tahanis A, Hashem V, Ondo W. Serum alpha-synuclein in restless legs syndrome. Sleep 2025; 48:zsae217. [PMID: 39283300 DOI: 10.1093/sleep/zsae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Indexed: 01/14/2025] Open
Abstract
STUDY OBJECTIVES To determine any correlation between serum alpha-synuclein (α-syn) concentrations and restless legs syndrome (RLS), and to explore the impact of intravenous iron supplementation on serum α-syn levels. METHODS We collected clinical data on 113 RLS patients in whom serum α-syn levels were quantified using an ELISA kit and compared to a group of 45 age-matched controls. A subset of nine RLS patients who received intravenous (IV) iron underwent pre- and post-treatment blood sampling to assess α-syn and ferritin response. RESULTS A family history of RLS was reported by 62.8% of patients, and current dopaminergic augmentation was observed in 31.0%. Low serum ferritin levels below 75 μg/L were seen in 39.8%. Serum α-syn levels were found to be significantly decreased in RLS patients (mean: 7.7 ng/mL) compared to controls (mean: 10.7 ng/mL), p < .05. Stratification based on sex, age, and age of onset, did not reveal significant differences in α-syn levels. In nine RLS patients who received IV iron treatment, a linear correlation between fold change in α-syn and ferritin was observed (R: 0.7, p < .05). The temporal relation between serum α-syn and IV iron treatment showed a gradual decline of α-syn and ferritin by time correlation (p = .023, R: -.739). CONCLUSION In our study of 113 RLS participants, serum α-syn levels were decreased in RLS patients compared to healthy controls, and increased in the nine patients who received IV iron treatment in correlation with ferritin. This correlation could suggest a mechanism for reduced dopamine transmission in RLS.
Collapse
Affiliation(s)
- Aboud Tahanis
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
| | - Vera Hashem
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
| | - William Ondo
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical School, New York, NY, USA
| |
Collapse
|
27
|
Johnson DH, Kou OH, White JM, Ramirez SY, Margaritakis A, Chung PJ, Jaeger VW, Zeno WF. Lipid Packing Defects are Necessary and Sufficient for Membrane Binding of α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.14.623669. [PMID: 39829920 PMCID: PMC11741239 DOI: 10.1101/2024.11.14.623669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
α-Synuclein (αSyn), an intrinsically disordered protein implicated in Parkinson's disease, is potentially thought to initiate aggregation through binding to cellular membranes. Previous studies have suggested that anionic membrane charge is necessary for this binding. However, these studies largely focus on unmodified αSyn, while nearly all αSyn in the body is N-terminally acetylated (NTA). NTA dramatically shifts the narrative by diminishing αSyn's reliance on anionic charge for membrane binding. Instead, we demonstrate that membrane packing defects are the dominant forces driving NTA-αSyn interactions, challenging the long-standing paradigm that anionic membranes are essential for αSyn binding. Using fluorescence microscopy and circular dichroism spectroscopy, we monitored the binding of NTA-αSyn to reconstituted membrane surfaces with different lipid compositions. Phosphatidylcholine and phosphatidylserine concentrations were varied to control surface charge, while phospholipid tail unsaturation and methylation were varied to control lipid packing. All-atom molecular dynamics simulations of lipid bilayers supported the observation that membrane packing defects are necessary for NTA-αSyn binding and that defect-rich membranes are sufficient for NTA-αSyn binding regardless of membrane charge. We further demonstrated that this affinity for membrane defects persisted in reconstituted, cholesterol-containing membranes that mimicked the physiological lipid composition of synaptic vesicles. Increasing phospholipid unsaturation in these mimics led to more membrane packing defects and a corresponding increase in NTA-αSyn binding. Altogether, our results point to a mechanism for the regulation of NTA-αSyn binding in biological membranes that extends beyond phospholipid charge to the structural properties of the lipids themselves.
Collapse
Affiliation(s)
- David H. Johnson
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States
| | - Orianna H. Kou
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90089, United States
| | - John M. White
- Department of Chemical Engineering, University of Louisville, Ernst Hall, Room 312, 216 Eastern Parkway, Louisville, Kentucky 40292, United States
| | - Stephanie Y. Ramirez
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089, United States
| | - Antonis Margaritakis
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90089, United States
| | - Peter J. Chung
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, 90089, United States
| | - Vance W. Jaeger
- Department of Chemical Engineering, University of Louisville, Ernst Hall, Room 312, 216 Eastern Parkway, Louisville, Kentucky 40292, United States
| | - Wade F. Zeno
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States
| |
Collapse
|
28
|
Cheng L, Liu Z, Shen C, Xiong Y, Shin SY, Hwang Y, Yang S, Chen Z, Zhang X. A Wonderful Journey: The Diverse Roles of Adenosine Deaminase Action on RNA 1 (ADAR1) in Central Nervous System Diseases. CNS Neurosci Ther 2025; 31:e70208. [PMID: 39753993 PMCID: PMC11702419 DOI: 10.1111/cns.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases. RESULTS In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed. It is worth noting that recent studies have shown ADAR1 has great potential in the treatment of neurodegenerative diseases, but the mechanisms are still unclear. Therefore, it is necessary to elaborate on the role of ADAR1 in CNS diseases. CONCLUSIONS Here, we focus on the effects and mechanisms of ADAR1 on CNS diseases such as Aicardi-AicardiGoutières syndrome, Alzheimer's disease, Parkinson's disease, glioblastoma, epilepsy, amyotrophic lateral sclerosis, and autism. We also evaluate the impact of ADAR1-based treatment strategies on these diseases, with a particular focus on the development and treatment strategies of new technologies such as microRNAs, nanotechnology, gene editing, and stem cell therapy. We hope to provide new directions and insights for the future development of ADAR1 gene editing technology in brain science and the treatment of CNS diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunxiao Shen
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Department of RehabilitationAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Sang Yol Shin
- Department of Emergency Medical TechnologyWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Yong Hwang
- Department of Emergency MedicineWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Seung‐Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanJeonbuk‐doRepublic of Korea
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| |
Collapse
|
29
|
Wang H, Zhao Q, Zhang Y, Ma J, Lei M, Zhang Z, Xue H, Liu J, Sun Z, Xu J, Zhai Y, Wang Y, Cai M, Zhu W, Liu F. Shared genetic architecture of cortical thickness alterations in major depressive disorder and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111121. [PMID: 39154931 DOI: 10.1016/j.pnpbp.2024.111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and schizophrenia (SCZ) are heritable brain disorders characterized by alterations in cortical thickness. However, the shared genetic basis for cortical thickness changes in these disorders remains unclear. METHODS We conducted a systematic literature search on cortical thickness in MDD and SCZ through PubMed and Web of Science. A coordinate-based meta-analysis was performed to identify cortical thickness changes. Additionally, utilizing summary statistics from the largest genome-wide association studies for depression (Ncase = 268,615, Ncontrol = 667,123) and SCZ (Ncase = 53,386, Ncontrol = 77,258), we explored shared genomic loci using conjunctional false discovery rate (conjFDR) analysis. Transcriptome-neuroimaging association analysis was then employed to identify shared genes associated with cortical thickness alterations, and enrichment analysis was finally carried out to elucidate the biological significance of these genes. RESULTS Our search yielded 34 MDD (Ncase = 1621, Ncontrol = 1507) and 19 SCZ (Ncase = 1170, Ncontrol = 1043) neuroimaging studies for cortical thickness meta-analysis. Specific alterations in the left supplementary motor area were observed in MDD, while SCZ exhibited widespread reductions in various brain regions, particularly in the frontal and temporal areas. The conjFDR approach identified 357 genomic loci jointly associated with MDD and SCZ. Within these loci, 55 genes were found to be associated with cortical thickness alterations in both disorders. Enrichment analysis revealed their involvement in nervous system development, apoptosis, and cell communication. CONCLUSION This study revealed the shared genetic architecture underlying cortical thickness alterations in MDD and SCZ, providing insights into common neurobiological pathways. The identified genes and pathways may serve as potential transdiagnostic markers, informing precision medicine approaches in psychiatric care.
Collapse
Affiliation(s)
- He Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiyu Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yijing Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Juanwei Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Minghuan Lei
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhihui Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Xue
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiawei Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zuhao Sun
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinglei Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Zhai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Wang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Medical Imaging, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou 450000, China.
| | - Wenshuang Zhu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
30
|
Fadel A, Hussain H, Hernandez RJ, Clichy Silva AM, Estil-Las AA, Hamad M, Saadoon ZF, Naseer L, Sultan WC, Sultan C, Schnepp T, Jayakumar AR. Mechanisms of Neurosyphilis-Induced Dementia: Insights into Pathophysiology. Neurol Int 2024; 16:1653-1665. [PMID: 39728746 DOI: 10.3390/neurolint16060120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies. Treponema pallidum triggers an inflammatory cascade, resulting in neuronal injury and synaptic dysfunction. Abnormal protein accumulations, including TAR DNA-binding protein 43 (TDP-43) and tau, contribute to neuronal loss and cognitive decline. Seizures, psychiatric symptoms, and motor deficits further complicate the progression of dementia. Diagnosis includes clinical assessment, cerebrospinal fluid analysis, and neuroimaging. Diagnostic tests include CSF-VDRL, FTA-ABS, and neuroimaging techniques such as MRI and PET scans, which help detect structural changes and confirm neurosyphilis. Management of neurosyphilis-induced dementia involves antibiotic therapy and psychotropic medications to address both infectious and symptomatic components. While penicillin remains the cornerstone of treatment, psychotropic agents, including haloperidol, risperidone, quetiapine, and divalproex sodium, can manage psychiatric symptoms. However, careful monitoring is required due to potential side effects and interactions with ongoing treatment. Overall, early diagnosis and comprehensive management are crucial for mitigating the cognitive and neuropsychiatric impairments associated with neurosyphilis-induced dementia.
Collapse
Affiliation(s)
- Aya Fadel
- Department of Internal Medicine at Ocean Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Hussain Hussain
- Department of Internal Medicine, HCA Florida Kendall Hospital, Miami, FL 33175, USA
| | - Robert J Hernandez
- Department of Internal Medicine, HCA Florida Kendall Hospital, Miami, FL 33175, USA
| | | | | | - Mohammad Hamad
- School of Medicine, Ross University, Miramar, FL 33025, USA
| | - Zahraa F Saadoon
- Department of Internal Medicine, HCA Florida Kendall Hospital, Miami, FL 33175, USA
| | - Lamia Naseer
- Department of Internal Medicine, HCA Florida Kendall Hospital, Miami, FL 33175, USA
| | - William C Sultan
- Department of Psychiatry, Broward Health Medical Center, Fort Lauderdale, FL 33316, USA
| | - Carla Sultan
- Department of Psychiatry, Southern Winds Hospital, Hialeah, FL 33012, USA
| | - Taylor Schnepp
- School of Medicine, Ross University, Miramar, FL 33025, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| |
Collapse
|
31
|
Chen H, Li J, Huang Z, Fan X, Wang X, Chen X, Guo H, Liu H, Li S, Yu S, Li H, Huang X, Ma X, Deng X, Wang C, Liu Y. Dopaminergic system and neurons: Role in multiple neurological diseases. Neuropharmacology 2024; 260:110133. [PMID: 39197818 DOI: 10.1016/j.neuropharm.2024.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.
Collapse
Affiliation(s)
- Heng Chen
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jieshu Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhixing Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoxiao Fan
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaofei Wang
- Beijing Normal University, Beijing, 100875, China
| | - Xing Chen
- University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Haitao Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hao Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuqi Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaojun Yu
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Honghong Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xinyu Huang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehua Ma
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xinqi Deng
- Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yonggang Liu
- Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
32
|
Contaldi E, Basellini MJ, Mazzetti S, Calogero AM, Colombo A, Cereda V, Innocenti G, Ferri V, Calandrella D, Isaias IU, Pezzoli G, Cappelletti G. α-Synuclein Oligomers in Skin Biopsies Predict the Worsening of Cognitive Functions in Parkinson's Disease: A Single-Center Longitudinal Cohort Study. Int J Mol Sci 2024; 25:12176. [PMID: 39596242 PMCID: PMC11594322 DOI: 10.3390/ijms252212176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
α-synuclein oligomers within synaptic terminals of autonomic fibers of the skin reliably discriminate Parkinson's disease (PD) patients from healthy controls. Nonetheless, the prognostic role of oligomers for disease progression is unknown. We explored whether α-synuclein oligomers evaluated as proximity ligation assay (PLA) score may predict the worsening of cognitive functions in patients with Parkinson's disease. Thirty-four patients with PD and thirty-four healthy controls (HC), matched 1:1 for age and sex, were enrolled. Patients with PD underwent baseline skin biopsy and an assessment of cognitive domains including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Clock Drawing Test, and Frontal Assessment Battery. At the last follow-up visit available, patients were either cognitively stable (PD-CS) or cognitively deteriorated (PD-CD). α-synuclein oligomers were quantified as PLA scores. Differences between groups were assessed, controlling for potential confounders. The relationship between skin biopsy measures and cognitive changes was explored using correlation and multivariable regression analyses. The discrimination power of the PLA score was assessed via ROC curve. To elucidate the relationship between skin biopsy and longitudinal cognitive measures, we conducted multivariable regression analyses using delta scores of cognitive tests (Δ) as dependent variables. We found that PD-CD had higher baseline PLA scores than PD-CS (p = 0.0003), and they were correctly identified in the ROC curve analysis (AUC = 0.872, p = 0.0003). Furthermore, ANCOVA analysis with Bonferroni correction, considering all groups (PD-CS, PD-CD, and HC), showed significant differences between PD-CS and PD-CD (p = 0.003), PD-CS and HC (p = 0.002), and PD-CD and HC (p < 0.001). In the regression model using ΔMMSE as the dependent variable, the PLA score was found to be a significant predictor (β = -0.441, p = 0.016). Similar results were observed when evaluating the model with ΔMoCA (β = -0.378, p = 0.042). In conclusion, patients with Parkinson's disease with higher α-synuclein burden in the peripheral nervous system may be more susceptible to cognitive decline.
Collapse
Affiliation(s)
- Elena Contaldi
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
| | - Milo Jarno Basellini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (S.M.); (A.M.C.); (G.C.)
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (S.M.); (A.M.C.); (G.C.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (S.M.); (A.M.C.); (G.C.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Aurora Colombo
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Viviana Cereda
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Gionata Innocenti
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
| | - Valentina Ferri
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Daniela Calandrella
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Ioannis U. Isaias
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Department of Neurology, University Hospital of Würzburg and Julius-Maximilian-University of Würzburg, 97080 Würzburg, Germany
| | - Gianni Pezzoli
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (S.M.); (A.M.C.); (G.C.)
| |
Collapse
|
33
|
Román-Vendrell C, Wallace JN, Watson AH, Celikag M, Bartels T, Morgan JR. Acute introduction of monomeric or multimeric α-synuclein induces distinct impacts on synaptic vesicle trafficking at lamprey giant synapses. J Physiol 2024. [PMID: 39530449 DOI: 10.1113/jp286281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Synaptic aggregation of α-synuclein often occurs in Parkinson's disease (PD), dementia with Lewy bodies (DLB) and other synucleinopathies and is associated with cognitive deficits and dementia. Thus, it is important to understand how accumulation of α-synuclein affects synapse structure and function. Native, physiological α-synuclein comprises a mixture of tetramers and related physiological oligomers (60-100 kDa) in equilibrium with monomeric α-synuclein. We previously demonstrated that acutely increasing the levels of physiological α-synuclein impaired intracellular synaptic vesicle trafficking and produced a pleiotropic phenotype, raising questions about which aspects of the synaptic phenotype were due to multimeric versus monomeric α-synuclein. Here, we address this by taking advantage of the unique features of the lamprey giant reticulospinal (RS) synapse, a vertebrate synapse that is amenable to acute perturbations of presynaptic processes via microinjection of purified proteins. α-Synuclein monomers and multimers were purified from HEK cells and separately introduced to lamprey synapses. Ultrastructural analysis revealed that both multimeric and monomeric α-synuclein impaired intracellular vesicle trafficking, leading to a loss of synaptic vesicles and buildup of endosomes. However, while monomeric α-synuclein additionally induced atypical fusion/fission at the active zone and impaired clathrin-mediated endocytosis, multimeric α-synuclein did not. Conversely, multimeric α-synuclein led to a decrease in synaptic vesicle docking, which was not observed with monomeric α-synuclein. These data provide further evidence that different molecular species of α-synuclein produce distinct and complex impacts on synaptic vesicle trafficking and reveal important insights into the cell biological processes that are affected in PD and DLB. KEY POINTS: α-Synuclein accumulation at synapses is associated with cognitive decline and dementia in Parkinson's disease and other synucleinopathies. We previously showed that acute introduction of excess human brain-derived α-synuclein to lamprey giant synapses caused pleiotropic phenotypes on synaptic vesicle trafficking, probably due to the mixture of molecular species of α-synuclein. Here, we dissected which aspects of the synaptic phenotypes were caused by monomeric (14 kDa) or multimeric (60-100 kDa) α-synuclein by purifying each molecular species and introducing each one separately to synapses via axonal microinjection. While monomeric α-synuclein inhibited clathrin-mediated synaptic vesicle endocytosis, multimeric α-synuclein primarily impaired endosomal trafficking. These findings reveal that different molecular species of α-synuclein have distinct impacts on synapses, suggesting different cellular and molecular targets.
Collapse
Affiliation(s)
- Cristina Román-Vendrell
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Jaqulin N Wallace
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | | - Meral Celikag
- UK Dementia Research Institute, University College London, London, UK
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London, UK
| | - Jennifer R Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| |
Collapse
|
34
|
Cristiani CM, Scaramuzzino L, Parrotta EI, Cuda G, Quattrone A, Quattrone A. Erythrocytic α-Synuclein in Parkinson's Disease and Progressive Supranuclear Palsy-A Pilot Study. Biomedicines 2024; 12:2510. [PMID: 39595076 PMCID: PMC11592387 DOI: 10.3390/biomedicines12112510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The current research examines the accuracy of α-synuclein in RBCs as a diagnostic biomarker for PD and PSP, despite their distinct molecular etiologies. Methods: We used ELISA to measure total, oligomeric, and p129-α-synuclein levels in erythrocytes from 8 PSP patients, 19 PD patients, and 18 healthy controls (HCs). The classification performances of RBC α-synuclein levels were investigated by receiver operator characteristic (ROC) curve. We also evaluated a possible correlation between RBC α-synuclein level and the biological and clinical features of our cohorts. Results: RBC total α-synuclein was higher in PSP patients compared to both PD patients and HCs, achieving good classification performance (AUC: 0.853) in distinguishing PSP patients from PD patients, with a sensitivity of 100% and a specificity of 70.6%; moreover, the levels of this biomarker positively correlated with disease severity in PSP group. Regarding oligomeric α-synuclein and p129-α-synuclein, the latter was slightly increased in RBCs from PSP patients compared to HCs, but no correlations were detected. Conclusions: Although these findings need to be confirmed in larger studies, our pilot work suggests that RBC total α-synuclein may represent a potential molecular biomarker for the differential diagnosis and clinical staging of PSP.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Clinical and Experimental Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
35
|
Yang X, Zheng R, Zhang H, Ou Z, Wan S, Lin D, Yan J, Jin M, Tan J. Optineurin regulates motor and learning behaviors by affecting dopaminergic neuron survival in mice. Exp Neurol 2024; 383:115007. [PMID: 39428042 DOI: 10.1016/j.expneurol.2024.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Optineurin (OPTN) is an autophagy receptor that participates in the degradation of damaged mitochondria, protein aggregates, and invading pathogens. OPTN is closely related to various types of neurodegenerative diseases. However, the role of OPTN in the central nervous system is unclear. Here, we found that OPTN dysregulation in the compact part of substantia nigra (SNc) led to motor and learning deficits in animal models. Knockdown of OPTN increased total and phosphorylated α-synuclein levels which induced microglial activation and dopaminergic neuronal loss in the SNc. Overexpression of OPTN can't reverse the motor and learning phenotypes. Mechanistic analysis revealed that upregulation of OPTN increased α-synuclein phosphorylation independent of its autophagy receptor activity, which further resulted in microglial activation and dopaminergic neuronal loss similar to OPTN downregulation. Our study uncovers the crucial role of OPTN in maintaining dopaminergic neuron survival and motor and learning functions which are disrupted in PD patients.
Collapse
Affiliation(s)
- Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Ruoling Zheng
- Shantou Longhu People's Hospital, Shantou 515041, China
| | - Hongyao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Zixian Ou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Dongfeng Lin
- Shantou University Mental Health Center, Shantou University, Shantou 515063, China
| | - Jianguo Yan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China
| | - Mingyue Jin
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, College of Basic Medicine, Guilin Medical University, Guilin 541199, China; Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| |
Collapse
|
36
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 PMCID: PMC11549938 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
37
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 PMCID: PMC11808831 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Robert H. Edwards
- Department of Physiology and NeurologyUniversity of California, San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of SydneyCamperdownNew South WalesAustralia
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Hilal A. Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRSFontenay‐Aux‐RosesFrance
| | - Shigeo Murayama
- Department of NeuropathologyTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child DevelopmentOsaka UniversityOsakaJapan
| | - Tiago F. Outeiro
- Department of Experimental NeurodegenerationUniversity Medical CenterGöttingenGermany
- Faculty of Medical Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Stella M. Papa
- Department of NeurologySchool of Medicine, and Emory National Primate Research Center, Emory UniversityAtlantaGeorgiaUSA
| | - Leonidas Stefanis
- First Department of NeurologyEginitio Hospital, School of Medicine, National and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Amanda L. Woerman
- Department of BiologyInstitute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
- Department of Microbiology, Immunology, and PathologyPrion Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Lorraine V. Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
38
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
39
|
Secco V, Tiago T, Staats R, Preet S, Chia S, Vendruscolo M, Carra S. HSPB6: A lipid-dependent molecular chaperone inhibits α-synuclein aggregation. iScience 2024; 27:110657. [PMID: 39280615 PMCID: PMC11402235 DOI: 10.1016/j.isci.2024.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
The process of protein misfolding and aggregation is associated with various cytotoxic effects. Understanding how this phenomenon is regulated by the protein homeostasis system, however, is difficult, since it takes place through a complex non-linear network of coupled microscopic steps, including primary nucleation, fibril elongation, and secondary nucleation, which depend on environmental factors. To address this problem, we studied how the aggregation of α-synuclein, a protein associated with Parkinson's disease, is modulated by molecular chaperones and lipid membranes. We focused on small heat shock proteins (sHSPs/HSPBs), which interact with proteins and lipids and are upregulated during aging, a major risk factor for protein misfolding diseases. HSPBs act on different microscopic steps to prevent α-synuclein aggregation, with HSPB6 showing a lipid-dependent chaperone activity. Our findings provide an example of how HSPBs diversified their mechanisms of action to reach an efficient regulation of protein misfolding and aggregation within the complex cellular environment.
Collapse
Affiliation(s)
- Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roxine Staats
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Swapan Preet
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
40
|
Tan S, Chi H, Wang P, Zhao R, Zhang Q, Gao Z, Xue H, Tang Q, Li G. Protein tyrosine phosphatase receptor type O serves as a key regulator of insulin resistance-induced α-synuclein aggregation in Parkinson's disease. Cell Mol Life Sci 2024; 81:403. [PMID: 39276174 PMCID: PMC11401831 DOI: 10.1007/s00018-024-05436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Insulin resistance (IR) was found to be a critical element in the pathogenesis of Parkinson's disease (PD), facilitating abnormal α-synuclein (α-Syn) aggregation in neurons and thus promoting PD development. However, how IR contributes to abnormal α-Syn aggregation remains ill-defined. Here, we analyzed six PD postmortem brain transcriptome datasets to reveal module genes implicated in IR-mediated α-Syn aggregation. In addition, we induced IR in cultured dopaminergic (DA) neurons overexpressing α-Syn to identify IR-modulated differentially expressed genes (DEGs). Integrated analysis of data from PD patients and cultured neurons revealed 226 genes involved in α-Syn aggregation under IR conditions, of which 53 exhibited differential expression between PD patients and controls. Subsequently, we conducted an integrated analysis of the 53 IR-modulated genes employing transcriptome data from PD patients with different Braak stages and DA neuron subclasses with varying α-Syn aggregation scores. Protein tyrosine phosphatase receptor type O (PTPRO) was identified to be closely associated with PD progression and α-Syn aggregation. Experimental validation in a cultured PD cell model confirmed that both mRNA and protein of PTPRO were reduced under IR conditions, and the downregulation of PTPRO significantly facilitated α-Syn aggregation and cell death. Collectively, our findings identified PTPRO as a key regulator in IR-mediated α-Syn aggregation and uncovered its prospective utility as a therapeutic target in PD patients with IR.
Collapse
Affiliation(s)
- Shichuan Tan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
- Department of Emergency Neurosurgical Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Pin Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, 250012, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Qinran Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China
| | - Qilin Tang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan, 250012, China.
| |
Collapse
|
41
|
Chen CH, Liang HH, Wang CC, Yang YT, Lin YH, Chen YL. Unlocking early detection of Alzheimer's disease: The emerging role of nanomaterial-based optical sensors. J Food Drug Anal 2024; 32:296-324. [PMID: 39636776 PMCID: PMC11464041 DOI: 10.38212/2224-6614.3520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder that affects millions of individuals worldwide. Researchers have conducted numerous studies to find accurate biomarkers for early AD diagnosis and develop more effective treatments. The main pathological hallmarks of AD are amyloid beta and Tau proteins. Other biomarkers, such as DNA, RNA, and proteins, can also be helpful in early AD diagnosis. To diagnose and treat AD promptly, it is essential to accurately measure the concentration of biomarkers in the cerebrospinal fluid or blood. However, due to the low concentrations of these biomarkers in the body, highly sensitive analytical techniques are required. To date, sensors have become increasingly important due to their high sensitivity, swift detection, and adaptable manipulation features. These qualities make them an excellent substitute for conventional instruments. Nanomaterials are commonly employed in sensors to amplify signals and improve sensitivity. This review paper summarized the integration of nanomaterials in optical sensor systems, including colorimetric, fluorescent, and surface-enhanced Raman scattering sensors for AD biomarkers detection.
Collapse
Affiliation(s)
- Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| | - Hsin-Hua Liang
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301,
Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378,
Taiwan
| | - Yi-Ting Yang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, China Medical University, Taichung 406040,
Taiwan
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301,
Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301,
Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378,
Taiwan
| |
Collapse
|
42
|
McConnell EM, Chan D, Ventura K, Callahan JP, Harris K, Hunt VH, Boisjoli S, Knight D, Monk ET, Holahan MR, DeRosa MC. Selection of DNA aptamers that prevent the fibrillization of α-synuclein protein in cellular and mouse models. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102251. [PMID: 39377064 PMCID: PMC11456556 DOI: 10.1016/j.omtn.2024.102251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/13/2024] [Indexed: 10/09/2024]
Abstract
A neuropathological hallmark of Parkinson's disease (PD) is the aggregation and spreading of misfolded α-synuclein (αSyn) protein. In this study, a selection method was developed to identify aptamers that showed affinity for monomeric αSyn and inhibition of αSyn aggregation. Aptamer a-syn-1 exhibited strong inhibition of αSyn aggregation in vitro by transmission electron microscopy and Thioflavin T fluorescence. A-syn-1-treated SH-SY5Y cells incubated with pre-formed fibrils (PFFs) showed less intracellular aggregation of αSyn in comparison with a scrambled oligonucleotide control, as observed with fluorescent microscopy. Systemic delivery of a-syn-1 to the brain was achieved using a liposome vehicle and confirmed with fluorescence microscopy and qPCR. Transgenic mice overexpressing the human A53T variant of αSyn protein were injected with a-syn-1 loaded liposomes at 5 months of age both acutely (single intraperitoneal [i.p.] injection) and repeatedly (5 i.p. injections over 5 days). Western blot protein quantification revealed that both acute and repeated injections of a-syn-1 decreased levels of the aggregated form of αSyn in the transgenic mice in the prefrontal cortex, caudate, and substania nigra (SNc). These results provide in vitro and in vivo evidence that a-syn-1 can inhibit pathological αSyn aggregation and may have implications in treatment strategies to target dysregulation in PD.
Collapse
Affiliation(s)
- Erin M. McConnell
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Dennis Chan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Joshua P. Callahan
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kathryn Harris
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Vernon H. Hunt
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Spencer Boisjoli
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel Knight
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Evan T. Monk
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maria C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
43
|
Patton T, Comini G, Narasimhan K, Cairns AG, Ådén J, Almqvist F, Bemelmans A, Brouillet E, McKernan DP, Dowd E. Intra-striatal infusion of the small molecule alpha-synuclein aggregator, FN075, does not enhance parkinsonism in a subclinical AAV-alpha-synuclein rat model. Eur J Neurosci 2024; 60:5234-5248. [PMID: 39143728 DOI: 10.1111/ejn.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Numerous challenges hinder the development of neuroprotective treatments for Parkinson's disease, with a regularly identified issue being the lack of clinically relevant animal models. Viral vector overexpression of α-synuclein is widely considered the most relevant model; however, this has been limited by high variability and inconsistency. One potential method of optimisation is pairing it with a secondary insult such as FN075, a synthetic molecule demonstrated to accelerate α-synucleinopathy. Thus, the aim of this study was to investigate if sequential infusion of adeno-associated virus (AAV)-α-synuclein and FN075 into the rat brain can replicate α-synucleinopathy, nigrostriatal pathology and motor dysfunction associated with Parkinson's disease. Rats received a unilateral injection of AAV-α-synuclein (or AAV-green fluorescent protein) into two sites in the substantia nigra, followed 4 weeks later by unilateral injection of FN075 (or vehicle) into the striatum. Animals underwent behavioural testing every 4 weeks until sacrifice at 20 weeks, followed by immunohistochemistry assessment post-mortem. As anticipated, AAV-α-synuclein led to extensive overexpression of human α-synuclein throughout the nigrostriatal pathway, as well as elevated levels of phosphorylated and aggregated forms of the protein. However, the sequential administration of FN075 into the striatum did not exacerbate any of the α-synuclein pathology. Furthermore, despite the extensive α-synuclein pathology, neither administration of AAV-α-synuclein nor FN075, alone or in combination, was sufficient to induce dopaminergic degeneration or motor deficits. In conclusion, this approach did not replicate the key characteristics of Parkinson's disease, and further studies are required to create more representational models for testing of novel compounds and treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Tommy Patton
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | | | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Alexis Bemelmans
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Declan P McKernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
44
|
Wang H, Hoffmann C, Tromm JV, Su X, Elliott J, Wang H, Baum J, Pang ZP, Milovanovic D, Shi Z. Live-Cell Quantification Reveals Viscoelastic Regulation of Synapsin Condensates by α-Synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605529. [PMID: 39211102 PMCID: PMC11361170 DOI: 10.1101/2024.07.28.605529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Synapsin and α-synuclein represent a growing list of condensate-forming proteins where the material states of condensates are directly linked to cellular functions (e.g., neurotransmission) and pathology (e.g., neurodegeneration). However, quantifying condensate material properties in living systems has been a significant challenge. To address this, we develop MAPAC (micropipette aspiration and whole-cell patch clamp), a platform that allows direct material quantification of condensates in live cells. We find 10,000-fold variations in the viscoelasticity of synapsin condensates, regulated by the partitioning of α-synuclein, a marker for synucleinopathies. Through in vitro reconstitutions, we identify 4 molecular factors that distinctly regulate the viscosity and interfacial tension of synapsin condensates, verifying the cellular effects of α-synuclein. Overall, our study provides unprecedented quantitative insights into the material properties of neuronal condensates and reveals a crucial role of α-synuclein in regulating condensate viscoelasticity. Furthermore, we envision MAPAC applicable to study a broad range of condensates in vivo. .
Collapse
|
45
|
Arumugam M, Pachamuthu RS, Rymbai E, Jha AP, Rajagopal K, Kothandan R, Muthu S, Selvaraj D. Gene network analysis combined with preclinical studies to identify and elucidate the mechanism of action of novel irreversible Keap1 inhibitor for Parkinson's disease. Mol Divers 2024:10.1007/s11030-024-10965-y. [PMID: 39145879 DOI: 10.1007/s11030-024-10965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
The cysteine residues of Keap1 such as C151, C273, and C288 are critical for its repressor activity on Nrf2. However, to date, no molecules have been identified to covalently modify all three cysteine residues for Nrf2 activation. Hence, in this study, our goal is to discover new Keap1 covalent inhibitors that can undergo a Michael addition with all three cysteine residues. The Keap1's intervening region was modeled using Modeller v10.4. Covalent docking and binding free energy were calculated using CovDock. Molecular dynamics (MD) was performed using Desmond. Various in-vitro assays were carried out to confirm the neuroprotective effects of the hit molecule in 6-OHDA-treated SH-SY5Y cells. Further, the best hit was evaluated in vivo for its ability to improve rotenone-induced postural instability and cognitive impairment in male rats. Finally, network pharmacology was used to summarize the complete molecular mechanism of the hit molecule. Chalcone and plumbagin were found to form the necessary covalent bonds with all three cysteine residues. However, MD analysis indicated that the binding of plumbagin is more stable than chalcone. Plumbagin displayed neuroprotective effects in 6-OHDA-treated SH-SY5Y cells at concentrations 0.01 and 0.1 μM. Plumbagin at 0.1 µM had positive effects on reactive oxygen species formation and glutathione levels. Plumbagin also improved postural instability and cognitive impairment in rotenone-treated male rats. Our network analysis indicated that plumbagin could also improve dopamine signaling. Additionally, plumbagin could exhibit anti-oxidant and anti-inflammatory activity through the activation of Nrf2. Cumulatively, our study suggests that plumbagin is a novel Keap1 covalent inhibitor for Nrf2-mediated neuroprotection in PD.
Collapse
Affiliation(s)
- Monisha Arumugam
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ranjith Sanjeeve Pachamuthu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Aditya Prakash Jha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Santhoshkumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India.
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
46
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
47
|
Schepers J, Löser T, Behl C. Lipids and α-Synuclein: adding further variables to the equation. Front Mol Biosci 2024; 11:1455817. [PMID: 39188788 PMCID: PMC11345258 DOI: 10.3389/fmolb.2024.1455817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Aggregation of alpha-Synuclein (αSyn) has been connected to several neurodegenerative diseases, such as Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), that are collected under the umbrella term synucleinopathies. The membrane binding abilities of αSyn to negatively charged phospholipids have been well described and are connected to putative physiological functions of αSyn. Consequently, αSyn-related neurodegeneration has been increasingly connected to changes in lipid metabolism and membrane lipid composition. Indeed, αSyn aggregation has been shown to be triggered by the presence of membranes in vitro, and some genetic risk factors for PD and DLB are associated with genes coding for proteins directly involved in lipid metabolism. At the same time, αSyn aggregation itself can cause alterations of cellular lipid composition and brain samples of patients also show altered lipid compositions. Thus, it is likely that there is a reciprocal influence between cellular lipid composition and αSyn aggregation, which can be further affected by environmental or genetic factors and ageing. Little is known about lipid changes during physiological ageing and regional differences of the lipid composition of the aged brain. In this review, we aim to summarise our current understanding of lipid changes in connection to αSyn and discuss open questions that need to be answered to further our knowledge of αSyn related neurodegeneration.
Collapse
Affiliation(s)
| | | | - Christian Behl
- The Autophagy Lab, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
48
|
El Hajji S, Shiga Y, Belforte N, Solorio YC, Tastet O, D’Onofrio P, Dotigny F, Prat A, Arbour N, Fortune B, Di Polo A. Insulin restores retinal ganglion cell functional connectivity and promotes visual recovery in glaucoma. SCIENCE ADVANCES 2024; 10:eadl5722. [PMID: 39110798 PMCID: PMC11305393 DOI: 10.1126/sciadv.adl5722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Dendrite pathology and synaptic loss result in neural circuit dysfunction, a common feature of neurodegenerative diseases. There is a lack of strategies that target dendritic and synaptic regeneration to promote neurorecovery. We show that daily human recombinant insulin eye drops stimulate retinal ganglion cell (RGC) dendrite and synapse regeneration during ocular hypertension, a risk factor to develop glaucoma. We demonstrate that the ribosomal protein p70S6 kinase (S6K) is essential for insulin-dependent dendritic regrowth. Furthermore, S6K phosphorylation of the stress-activated protein kinase-interacting protein 1 (SIN1), a link between the mammalian target of rapamycin complexes 1 and 2 (mTORC1/2), is required for insulin-induced dendritic regeneration. Using two-photon microscopy live retinal imaging, we show that insulin rescues single-RGC light-evoked calcium (Ca2+) dynamics. We further demonstrate that insulin enhances neuronal survival and retina-brain connectivity leading to improved optomotor reflex-elicited behaviors. Our data support that insulin is a compelling pro-regenerative strategy with potential clinical implications for the treatment and management of glaucoma.
Collapse
Affiliation(s)
- Sana El Hajji
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nicolas Belforte
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Yves Carpentier Solorio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Olivier Tastet
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Philippe D’Onofrio
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Florence Dotigny
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Alexandre Prat
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Nathalie Arbour
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO box 6128, Station centre-ville, Montreal, Quebec, Canada
- Neuroscience Division, Centre de recherche du Centre Hospitalier de l’Université de Montréal (CR-CHUM), 900 Saint Denis Street, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Yuan X, Yu Q, Liu Y, Chen J, Gao J, Liu Y, Song R, Zhang Y, Hou Z. Microstructural alterations in white matter and related neurobiology based on the new clinical subtypes of Parkinson's disease. Front Neurosci 2024; 18:1439443. [PMID: 39148522 PMCID: PMC11324559 DOI: 10.3389/fnins.2024.1439443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Background and objectives The advent of new clinical subtyping systems for Parkinson's disease (PD) has led to the classification of patients into distinct groups: mild motor predominant (PD-MMP), intermediate (PD-IM), and diffuse malignant (PD-DM). Our goal was to evaluate the efficacy of diffusion tensor imaging (DTI) in the early diagnosis, assessment of clinical progression, and prediction of prognosis of these PD subtypes. Additionally, we attempted to understand the pathological mechanisms behind white matter damage using single-photon emission computed tomography (SPECT) and cerebrospinal fluid (CSF) analyses. Methods We classified 135 de novo PD patients based on new clinical criteria and followed them up after 1 year, along with 45 healthy controls (HCs). We utilized tract-based spatial statistics to assess the microstructural changes of white matter at baseline and employed multiple linear regression to examine the associations between DTI metrics and clinical data at baseline and after follow-up. Results Compared to HCs, patients with the PD-DM subtype demonstrated reduced fractional anisotropy (FA), increased axial diffusivity (AD), and elevated radial diffusivity (RD) at baseline. The FA and RD values correlated with the severity of motor symptoms, with RD also linked to cognitive performance. Changes in FA over time were found to be in sync with changes in motor scores and global composite outcome measures. Furthermore, baseline AD values and their rate of change were related to alterations in semantic verbal fluency. We also discovered the relationship between FA values and the levels of α-synuclein and β-amyloid. Reduced dopamine transporter uptake in the left putamen correlated with RD values in superficial white matter, motor symptoms, and autonomic dysfunction at baseline as well as cognitive impairments after 1 year. Conclusions The PD-DM subtype is characterized by severe clinical symptoms and a faster progression when compared to the other subtypes. DTI, a well-established technique, facilitates the early identification of white matter damage, elucidates the pathophysiological mechanisms of disease progression, and predicts cognitively related outcomes. The results of SPECT and CSF analyses can be used to explain the specific pattern of white matter damage in patients with the PD-DM subtype.
Collapse
Affiliation(s)
- Xiaorong Yuan
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Yanyan Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinge Chen
- Department of Radiology, Shandong Mental Health Center, Jinan, Shandong, China
| | - Jie Gao
- Department of Medical Imaging, Shandong Provincial Third Hospital, Jinan, Shandong, China
| | - Yujia Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruxi Song
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Yingzhi Zhang
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhongyu Hou
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
50
|
Liu Y, Li H, Yang M, Guo J, Sun Z, Wang S, Li R, Pang X, Kim Y, Wang X, Peng Y. Sika Deer Velvet Antler Peptide Exerts Neuroprotective Effect in a Parkinson's Disease Model via Regulating Oxidative Damage and Gut Microbiota. Pharmaceuticals (Basel) 2024; 17:972. [PMID: 39065820 PMCID: PMC11280472 DOI: 10.3390/ph17070972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder globally. Recognizing the potential of velvet antler in the nervous system, as shown in numerous studies, this research was aimed at evaluating the neuroprotective effects of Sika Deer velvet antler peptide (VAP), along with the underlying mechanisms in neurotoxin-induced PD models. Initially, a peptidomic analysis of the VAP, which comprised 189 varieties of peptides, was conducted using LC-MS. Nine sequences were identified as significant using Proteome Discoverer 2.5 software. In a cellular model of PD, where PC12 cells are treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), the administration of the VAP reduced the cell damage and apoptosis induced by MPP+. This protective effect was associated with a decrease in oxidative stress. This protective mechanism was found to be mediated through the activation of the SIRT1-dependent Akt/Nrf2/HO-1-signaling pathway. In animal models, specifically in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, the administration of the VAP effectively reduced the dopaminergic neuron damage and reversed the neurobehavioral deficits. They also diminished microglia activation and apoptosis, all without any noticeable adverse effects. Additionally, the VAP was observed to beneficially alter the gut microbiota, as marked by an increase in the abundances of Prevotellaceae, Helicobacteraceae, and Prevotella. These findings suggest that VAP exerts its neuroprotective effect against neurodegeneration by inhibiting oxidative stress and modulating gut microbiota.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Hongyuan Li
- Laboratory of Chemistry Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.L.); (X.W.)
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Shuyue Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Ru Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| | - Xin Pang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Yumi Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Xiaohui Wang
- Laboratory of Chemistry Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (H.L.); (X.W.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.L.); (M.Y.); (J.G.); (Z.S.); (R.L.); (X.P.)
| |
Collapse
|