1
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Yu X, Nollet M, Franks NP, Wisden W. Sleep and the recovery from stress. Neuron 2025:S0896-6273(25)00311-3. [PMID: 40409251 DOI: 10.1016/j.neuron.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 01/06/2025] [Accepted: 04/25/2025] [Indexed: 05/25/2025]
Abstract
The relationship between stress and sleep is multifaceted, with stress capable of both disrupting and promoting sleep depending on the nature, intensity, and duration of the stressor. While stress commonly leads to sleep fragmentation and arousal in both humans and animals, certain selective stressors, such as immune challenges and psychosocial stress, promote sleep in rodent models. Specific neural circuits, such as those involving the ventral tegmental area and lateral habenula, mediate this stress-induced sleep. Post-stress sleep may facilitate recovery, reduce anxiety, and enhance stress resilience, but the extent to which sleep versus wakefulness post-stress aids long-term adaptation is unclear. Both human and animal studies highlight a bidirectional relationship, where stress-induced changes in sleep architecture may have adaptive or maladaptive consequences. Here, we propose that post-stress sleep contributes to resilience and discuss potential mechanisms underlying this process. A deeper understanding of these pathways may provide new strategies for enhancing stress recovery and improving mental health outcomes.
Collapse
Affiliation(s)
- Xiao Yu
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Mathieu Nollet
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| | - William Wisden
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
3
|
Ye J, Xu Y, Huang K, Wang X, Wang L, Wang F. Hierarchical behavioral analysis framework as a platform for standardized quantitative identification of behaviors. Cell Rep 2025; 44:115239. [PMID: 40010299 DOI: 10.1016/j.celrep.2025.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 02/28/2025] Open
Abstract
Behavior is composed of modules that operate based on inherent logic. Understanding behavior and its neural mechanisms is facilitated by clear structural behavioral analysis. Here, we developed a hierarchical behavioral analysis framework (HBAF) that efficiently reveals the organizational logic of these modules by analyzing high-dimensional behavioral data. By creating a spontaneous behavior atlas for male and female mice, we discovered that spontaneous behavior patterns are hardwired, with sniffing serving as the hub node for movement transitions. The sniffing-to-grooming ratio accurately distinguished the spontaneous behavioral states in a high-throughput manner. These states are influenced by emotional status, circadian rhythms, and lighting conditions, leading to unique behavioral characteristics, spatiotemporal features, and dynamic patterns. By implementing the straightforward and achievable spontaneous behavior paradigm, HBAF enables swift and accurate assessment of animal behavioral states and bridges the gap between a theoretical understanding of the behavioral structure and practical analysis using comprehensive multidimensional behavioral information.
Collapse
Affiliation(s)
- Jialin Ye
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Xu
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kang Huang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Feng Wang
- Shenzhen Key Laboratory of Neuropsychiatric Modulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
4
|
Josefson CC, Fitzwater BM, Beltran RS, Costa DP, Fornara JH, Garland T, Harris BN, Hinde K, Hood WR, Hunt E, Kenagy GJ, Liebl AL, Litmer AR, Lopes PC, Misra D, Meuti M, Place NJ, Powers LE, Saltzman W, Orr TJ. Balancing Act: An Interdisciplinary Exploration of Trade-offs in Reproducing Females. Integr Comp Biol 2024; 64:1734-1756. [PMID: 38982258 DOI: 10.1093/icb/icae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Trade-offs resulting from the high demand of offspring production are a central focus of many subdisciplines within the field of biology. Yet, despite the historical and current interest on this topic, large gaps in our understanding of whole-organism trade-offs that occur in reproducing individuals remain, particularly as it relates to the nuances associated with female reproduction. This volume of Integrative and Comparative Biology (ICB) contains a series of papers that focus on reviewing trade-offs from the female-centered perspective of biology (i.e., a perspective that places female reproductive biology at the center of the topic being investigated or discussed). These papers represent some of the work showcased during our symposium held at the 2024 meeting of the Society for Integrative and Comparative Biology (SICB) in Seattle, Washington. In this roundtable discussion, we use a question-and-answer format to capture the diverse perspectives and voices involved in our symposium. We hope that the dialogue featured in this discussion will be used to motivate researchers interested in understanding trade-offs in reproducing females and provide guidance on future research endeavors.
Collapse
Affiliation(s)
- Chloe C Josefson
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Brooke M Fitzwater
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Katie Hinde
- Center for Evolution and Medicine, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Eloise Hunt
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - G J Kenagy
- University of Washington, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Andrea L Liebl
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Allison R Litmer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Deblina Misra
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Megan Meuti
- Department of Entomology, Ohio State University, Columbus, OH 43210, USA
| | - Ned J Place
- Population Medicine & Diagnostic Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lisa E Powers
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Teri J Orr
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
5
|
Zhang YD, Wang LN. Research progress in the treatment of chronic fatigue syndrome through interventions targeting the hypothalamus-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2024; 15:1373748. [PMID: 38660512 PMCID: PMC11039924 DOI: 10.3389/fendo.2024.1373748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic fatigue syndrome (CFS) causes great harm to individuals and society. Elucidating the pathogenesis of CFS and developing safe and effective treatments are urgently needed. This paper reviews the functional changes in the hypothalamus-pituitary-adrenal (HPA) axis in patients with CFS and the associated neuroendocrine mechanisms. Despite some controversy, the current mainstream research evidence indicates that CFS patients have mild hypocortisolism, weakened daily variation in cortisol, a weakened response to the HPA axis, and an increase in negative feedback of the HPA axis. The relationship between dysfunction of the HPA axis and the typical symptoms of CFS are discussed, and the current treatment methods are reviewed.
Collapse
Affiliation(s)
- Yi-Dan Zhang
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Li-Na Wang
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|