1
|
Ni WH, Wang K, Wang Y, Lu J, Lu CT, Rong W, Gu YF, Qian WJ, Zhang HL. Long-term folic acid treatment relieves chronic inflammatory pain and pain-induced anxiety by reducing MMP2 expression in rats. Neuropharmacology 2025; 269:110352. [PMID: 39938859 DOI: 10.1016/j.neuropharm.2025.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Chronic inflammatory pain is a top priority for arthritis patients seeking medical care. Despite the availability of NSAIDs and glucocorticoids, pain management becomes increasingly challenging due to central and peripheral sensitization. Previous studies have shown that Matrix metalloproteinase 2 (MMP2) promotes neuroinflammation by cleaving extracellular matrix proteins and activating pro-inflammatory cytokines. Folic acid acts as a promising candidate for the treatment of neuroinflammatory diseases due to its neuroprotective effects. However, the role of folic acid in inflammatory pain remains unclear. This study investigated the analgesic mechanisms of folic acid in inflammatory pain. Adult rats underwent inflammatory pain by injecting complete freund's adjuvant (CFA) into the right hindpaw. Behavioral tests were used to assess the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL). The results demonstrated that CFA injection induced abnormal mechanical and thermal pain and increased MMP2 expression in L3-L5 DRG and SDH of CFA rats. MMP2 was mainly expressed in neurons rather than glial cells in L3-L5 DRG of CFA rats. We further discovered that MMP2 inhibitor auraptene or knockdown alleviated inflammatory pain in CFA rats. Interestingly, we observed that long-term folic acid treatment reversed MMP2 overexpression, resulting in sustained relief of chronic inflammatory pain. Consistently, long-term folic acid treatment also relieved pain-induced anxiety. These results indicated that folic acid had a protective role in chronic inflammatory pain and pain-induced anxiety by repressing MMP2 expression. Folic acid or auraptene might be promising therapeutic options for the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- Wen-Hui Ni
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China
| | - Ke Wang
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Yun Wang
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China
| | - Jia Lu
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China
| | - Chun-Ting Lu
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Wen Rong
- Department of Pain, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Yi-Feng Gu
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China
| | - Wen-Juan Qian
- Center for Translational Medicine, Department of Renal Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215600, China.
| | - Hai-Long Zhang
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2025; 62:4654-4676. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Kuret T, Sterle I, Romih R, Veranič P. Matched serum- and urine-derived biomarkers of interstitial cystitis/bladder pain syndrome. PLoS One 2024; 19:e0309815. [PMID: 39739829 PMCID: PMC11687793 DOI: 10.1371/journal.pone.0309815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/19/2024] [Indexed: 01/02/2025] Open
Abstract
Setting up the correct diagnosis of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic inflammatory disease of the bladder, is a challenge, as there are neither diagnostic criteria nor reliable and non-invasive disease biomarkers available. The aim of the present study was to simultaneously determine matched serum- and urine-derived biomarkers of IC/BPS, which would provide additional insights into disease mechanisms and set the basis for further biomarker validation. Our study included 12 female patients with IC/BPS and 12 healthy controls. A total of 33 different biomarkers were measured, including cytokines and chemokines, proteins involved in extracellular matrix remodeling, adhesion molecules, growth factors, and markers of oxidative stress using enzyme linked immunoassays and multiplex technology. Heatmaps and principal component analysis based on significantly altered biomarkers, revealed urine- and serum-associated IC/BPS signatures that clearly differentiated IC/BPS patients from controls. Four biomarkers, including CCL11, BAFF, HGF and MMP9, were significantly upregulated in both serum and urine of patients with IC/BPS compared to controls. Serum levels of MMP9 were associated with disease severity and could distinguish well between IC/BPS patients with and without Hunner's lesions. Systemic levels of MMP9 can therefore mirror the local pathology within the bladders of IC/BPS patients, and MMP9 may prove to be a useful target for the development of novel therapeutic interventions. Utilizing a comprehensive panel of both urine and serum biomarkers, identified here, holds promise for disease detection in IC/BPS patients.
Collapse
Affiliation(s)
- Tadeja Kuret
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Igor Sterle
- Department of Urology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
He SQ, Zhang C, Wang XW, Huang Q, Liu J, Lin Q, He H, Yang DZ, Tseng SC, Guan Y. HC-HA/PTX3 from Human Amniotic Membrane Induced Differential Gene Expressions in DRG Neurons: Insights into the Modulation of Pain. Cells 2024; 13:1887. [PMID: 39594635 PMCID: PMC11592720 DOI: 10.3390/cells13221887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The biologics derived from human amniotic membranes (AMs) demonstrate potential pain-inhibitory effects in clinical settings. However, the molecular basis underlying this therapeutic effect remains elusive. HC-HA/PTX3 is a unique water-soluble regenerative matrix that is purified from human AMs. We examined whether HC-HA/PTX3 can modulate the gene networks and transcriptional signatures in the dorsal root ganglia (DRG) neurons transmitting peripheral sensory inputs to the spinal cord. Methods: We conducted bulk RNA-sequencing (RNA-seq) of mouse DRG neurons after treating them with HC-HA/PTX3 (15 µg/mL) for 10 min and 24 h in culture. Differential gene expression analysis was performed using the limma package, and Gene Ontology (GO) and protein-protein interaction (PPI) analyses were conducted to identify the networks of pain-related genes. Western blotting and in vitro calcium imaging were used to examine the protein levels and signaling of pro-opiomelanocortin (POMC) in DRG neurons. Results: Compared to the vehicle-treated group, 24 h treatment with HC-HA/PTX3 induced 2047 differentially expressed genes (DEGs), which were centered on the ATPase activity, receptor-ligand activity, and extracellular matrix pathways. Importantly, PPI analysis revealed that over 50 of these DEGs are closely related to pain and analgesia. Notably, HC-HA/PTX3 increased the expression and signaling pathway of POMC, which may affect opioid analgesia. Conclusions: HC-HA/PTX3 induced profound changes in the gene expression in DRG neurons, centered around various neurochemical mechanisms associated with pain modulation. Our findings suggest that HC-HA/PTX3 may be an important biological active component in human AMs that partly underlies its pain inhibitory effect, presenting a new strategy for pain treatment.
Collapse
Affiliation(s)
- Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Xue-Wei Wang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Hua He
- BioTissue, Inc., Miami, FL 33126, USA; (H.H.); (S.C.T.)
| | - Da-Zhi Yang
- Acrogenic Technologies Inc., Rockville, MD 20847, USA;
| | | | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
6
|
Dong D, Yu X, Tao X, Wang Q, Zhao L. S1P/S1PR1 signaling is involved in the development of nociceptive pain. Front Pharmacol 2024; 15:1407347. [PMID: 39045057 PMCID: PMC11263082 DOI: 10.3389/fphar.2024.1407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Background Pain is a complex perception involving unpleasant somatosensory and emotional experiences. However, the underlying mechanisms that mediate its different components remain unclear. Sphingosine-1-phosphate (S1P), a metabolite of sphingomyelin and a potent lipid mediator, initiates signaling via G protein-coupled receptors (S1PRs) on cell surfaces. It serves as a second messenger in cellular processes such as proliferation and apoptosis. Nevertheless, the neuropharmacology of sphingolipid signaling in pain conditions within the central nervous system remains largely unexplored and controversial. Methods Chronic nociceptive pain models were induced in vivo by intraplantar injection of 20 μL complete Freund's adjuvant (CFA) into the left hind paws. We assessed S1P and S1PR1 expression in the spinal cords of CFA model mice. Functional antagonists of S1PR1 or S1PR1-specific siRNA were administered daily following CFA model establishment. Paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL) were measured to evaluate mechanical allodynia and thermal hyperalgesia, respectively. RT-PCR assessed interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels. Western blotting and immunofluorescence were used to analyze glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), STAT3, ERK, and p38 MAPK protein expression. Results In the chronic nociceptive pain model induced by CFA, S1P and S1PR1 expression levels were significantly elevated, leading to activation of spinal cord glial cells. S1PR1 activation also promoted MMP2-mediated cleavage of mature IL-1β. Additionally, S1PR1 activation upregulated phosphorylation of STAT3, ERK, and p38 MAPK in glial cells, profoundly impacting downstream signaling pathways and contributing to chronic nociceptive pain. Conclusion The S1P/S1PR1 axis plays a pivotal role in the cellular and molecular mechanisms underlying nociceptive pain. This signaling pathway modulates glial cell activation and the expression of pain-related genes (STAT3, ERK, p38 MAPK) and inflammatory factors in the spinal dorsal horn. These findings underscore the potential of targeting the S1P system for developing novel analgesic therapies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Xue Yu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Ministry of Education, Shenyang, China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
O'Brien JA, Austin PJ. Minocycline Abrogates Individual Differences in Nerve Injury-Evoked Affective Disturbances in Male Rats and Prevents Associated Supraspinal Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:30. [PMID: 38878098 PMCID: PMC11180027 DOI: 10.1007/s11481-024-10132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024]
Abstract
Chronic neuropathic pain precipitates a complex range of affective and behavioural disturbances that differ markedly between individuals. While the reasons for differences in pain-related disability are not well understood, supraspinal neuroimmune interactions are implicated. Minocycline has antidepressant effects in humans and attenuates affective disturbances in rodent models of pain, and acts by reducing neuroinflammation in both the spinal cord and brain. Previous studies, however, tend not to investigate how minocycline modulates individual affective responses to nerve injury, or rely on non-naturalistic behavioural paradigms that fail to capture the complexity of rodent behaviour. We investigated the development and resolution of pain-related affective disturbances in nerve-injured male rats by measuring multiple spontaneous ethological endpoints on a longitudinal naturalistic foraging paradigm, and the effect of chronic oral minocycline administration on these changes. Disrupted foraging behaviours appeared in 22% of nerve-injured rats - termed 'affected' rats - and were present at day 14 but partially resolved by day 21 post-injury. Minocycline completely prevented the emergence of an affected subgroup while only partly attenuating mechanical allodynia, dissociating the relationship between pain and affect. This was associated with a lasting downregulation of ΔFosB expression in ventral hippocampal neurons at day 21 post-injury. Markers of microglia-mediated neuroinflammation were not present by day 21, however proinflammatory microglial polarisation was apparent in the medial prefrontal cortex of affected rats and not in CCI minocycline rats. Individual differences in affective disturbances following nerve injury are therefore temporally related to altered microglial morphology and hippocampal neuronal activation, and are abrogated by minocycline.
Collapse
Affiliation(s)
- Jayden A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Paul J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Giri SS, Tripathi AS, Erkekoğlu P, Zaki MEA. Molecular pathway of pancreatic cancer-associated neuropathic pain. J Biochem Mol Toxicol 2024; 38:e23638. [PMID: 38613466 DOI: 10.1002/jbt.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 04/15/2024]
Abstract
The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1β into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.
Collapse
Affiliation(s)
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Morioka N, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. High mobility group box-1: A therapeutic target for analgesia and associated symptoms in chronic pain. Biochem Pharmacol 2024; 222:116058. [PMID: 38367818 DOI: 10.1016/j.bcp.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The number of patients with chronic pain continues to increase against the background of an ageing society and a high incidence of various epidemics and disasters. One factor contributing to this situation is the absence of truly effective analgesics. Chronic pain is a persistent stress for the organism and can trigger a variety of neuropsychiatric symptoms. Hence, the search for useful analgesic targets is currently being intensified worldwide, and it is anticipated that the key to success may be molecules involved in emotional as well as sensory systems. High mobility group box-1 (HMGB1) has attracted attention as a therapeutic target for a variety of diseases. It is a very unique molecule having a dual role as a nuclear protein while also functioning as an inflammatory agent outside the cell. In recent years, numerous studies have shown that HMGB1 acts as a pain inducer in primary sensory nerves and the spinal dorsal horn. In addition, HMGB1 can function in the brain, and is involved in the symptoms of depression, anxiety and cognitive dysfunction that accompany chronic pain. In this review, we will summarize recent research and discuss the potential of HMGB1 as a useful drug target for chronic pain.
Collapse
Affiliation(s)
- Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
10
|
Dai XY, Liu L, Song FH, Gao SJ, Wu JY, Li DY, Zhang LQ, Liu DQ, Zhou YQ, Mei W. Matrix metalloproteinases as attractive therapeutic targets for chronic pain: A narrative review. Int J Biol Macromol 2024; 261:129619. [PMID: 38272407 DOI: 10.1016/j.ijbiomac.2024.129619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Chronic pain constitutes an abnormal pain state that detrimentally affects the quality of life, daily activities, occupational performance, and stability of mood. Despite the prevalence of chronic pain, effective drugs with potent abirritation and minimal side effects remain elusive. Substantial studies have revealed aberrant activation of the matrix metalloproteinases (MMPs) in multiple chronic pain models. Additionally, emerging evidence has demonstrated that the downregulation of MMPs can alleviate chronic pain in diverse animal models, underscoring the unique and crucial role of MMPs in different stages and types of chronic pain. This review delves into the mechanistic insights and roles of MMPs in modulating chronic pain. The aberrant activation of MMPs has been linked to neuropathic pain through mechanisms involving myelin abnormalities in peripheral nerve and spinal dorsal horn (SDH), hyperexcitability of dorsal root ganglion (DRG) neurons, activation of N-methyl-d-aspartate receptors (NMDAR) and Ca2+-dependent signals, glial cell activation, and proinflammatory cytokines release. Different MMPs also contribute significantly to inflammatory pain and cancer pain. Furthermore, we summarized the substantial therapeutic potential of MMP pharmacological inhibitors across different types of chronic pain. Overall, our findings underscore the promising therapeutic prospects of MMPs targeting for managing chronic pain.
Collapse
Affiliation(s)
- Xin-Yi Dai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Lin Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Fan-He Song
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Dan-Yang Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan, China; Wuhan Clinical Research Center for Geriatric Anesthesia, Wuhan, China.
| |
Collapse
|
11
|
Santi MD, Zhang M, Liu N, Viet CT, Xie T, Jensen DD, Amit M, Pan H, Ye Y. Repurposing EGFR Inhibitors for Oral Cancer Pain and Opioid Tolerance. Pharmaceuticals (Basel) 2023; 16:1558. [PMID: 38004424 PMCID: PMC10674507 DOI: 10.3390/ph16111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Oral cancer pain remains a significant public health concern. Despite the development of improved treatments, pain continues to be a debilitating clinical feature of the disease, leading to reduced oral mobility and diminished quality of life. Opioids are the gold standard treatment for moderate-to-severe oral cancer pain; however, chronic opioid administration leads to hyperalgesia, tolerance, and dependence. The aim of this review is to present accumulating evidence that epidermal growth factor receptor (EGFR) signaling, often dysregulated in cancer, is also an emerging signaling pathway critically involved in pain and opioid tolerance. We presented preclinical and clinical data to demonstrate how repurposing EGFR inhibitors typically used for cancer treatment could be an effective pharmacological strategy to treat oral cancer pain and to prevent or delay the development of opioid tolerance. We also propose that EGFR interaction with the µ-opioid receptor and glutamate N-methyl-D-aspartate receptor could be two novel downstream mechanisms contributing to pain and morphine tolerance. Most data presented here support that repurposing EGFR inhibitors as non-opioid analgesics in oral cancer pain is promising and warrants further research.
Collapse
Affiliation(s)
- Maria Daniela Santi
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Morgan Zhang
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Naijiang Liu
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (M.A.)
| | - Dane D. Jensen
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (M.A.)
| | - Huilin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yi Ye
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| |
Collapse
|
12
|
Tonello R, Silveira Prudente A, Hoon Lee S, Faith Cohen C, Xie W, Paranjpe A, Roh J, Park CK, Chung G, Strong JA, Zhang JM, Berta T. Single-cell analysis of dorsal root ganglia reveals metalloproteinase signaling in satellite glial cells and pain. Brain Behav Immun 2023; 113:401-414. [PMID: 37557960 PMCID: PMC10530626 DOI: 10.1016/j.bbi.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/14/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
Satellite glial cells (SGCs) are among the most abundant non-neuronal cells in dorsal root ganglia (DRGs) and closely envelop sensory neurons that detect painful stimuli. However, little is still known about their homeostatic activities and their contribution to pain. Using single-cell RNA sequencing (scRNA-seq), we were able to obtain a unique transcriptional profile for SGCs. We found enriched expression of the tissue inhibitor metalloproteinase 3 (TIMP3) and other metalloproteinases in SGCs. Small interfering RNA and neutralizing antibody experiments revealed that TIMP3 modulates somatosensory stimuli. TIMP3 expression decreased after paclitaxel treatment, and its rescue by delivery of a recombinant TIMP3 protein reversed and prevented paclitaxel-induced pain. We also established that paclitaxel directly impacts metalloproteinase signaling in cultured SGCs, which may be used to identify potential new treatments for pain. Therefore, our results reveal a metalloproteinase signaling pathway in SGCs for proper processing of somatosensory stimuli and potential discovery of novel pain treatments.
Collapse
Affiliation(s)
- Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Arthur Silveira Prudente
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Bioinformatics Collaborative Services, Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jueun Roh
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Gehoon Chung
- Department of Oral Physiology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Judith A Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Patel B, Eskander MA, Fang-Mei Chang P, Chapa B, Ruparel SB, Lai Z, Chen Y, Akopian A, Ruparel NB. Understanding painful versus non-painful dental pain in female and male patients: A transcriptomic analysis of human biopsies. PLoS One 2023; 18:e0291724. [PMID: 37733728 PMCID: PMC10513205 DOI: 10.1371/journal.pone.0291724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Dental pain from apical periodontitis is an infection induced-orofacial pain condition that presents with diversity in pain phenotypes among patients. While 60% of patients with a full-blown disease present with the hallmark symptom of mechanical allodynia, nearly 40% of patients experience no pain. Furthermore, a sexual dichotomy exists, with females exhibiting lower mechanical thresholds under basal and diseased states. Finally, the prevalence of post-treatment pain refractory to commonly used analgesics ranges from 7-19% (∼2 million patients), which warrants a thorough investigation of the cellular changes occurring in different patient cohorts. We, therefore, conducted a transcriptomic assessment of periapical biopsies (peripheral diseased tissue) from patients with persistent apical periodontitis. Surgical biopsies from symptomatic male (SM), asymptomatic male (AM), symptomatic female (SF), and asymptomatic female (AF) patients were collected and processed for bulk RNA sequencing. Using strict selection criteria, our study found several unique differentially regulated genes (DEGs) between symptomatic and asymptomatic patients, as well as novel candidate genes between sexes within the same pain group. Specifically, we found the role of cells of the innate and adaptive immune system in mediating nociception in symptomatic patients and the role of genes involved in tissue homeostasis in potentially inhibiting nociception in asymptomatic patients. Furthermore, sex-related differences appear to be tightly regulated by macrophage activity, its secretome, and/or migration. Collectively, we present, for the first time, a comprehensive assessment of peripherally diseased human tissue after a microbial insult and shed important insights into the regulation of the trigeminal system in female and male patients.
Collapse
Affiliation(s)
- Biraj Patel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael A. Eskander
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Phoebe Fang-Mei Chang
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Brett Chapa
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Shivani B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Armen Akopian
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nikita B. Ruparel
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
14
|
Son GY, Tu NH, Santi MD, Lopez SL, Souza Bomfim GH, Vinu M, Zhou F, Chaloemtoem A, Alhariri R, Idaghdour Y, Khanna R, Ye Y, Lacruz RS. The Ca 2+ channel ORAI1 is a regulator of oral cancer growth and nociceptive pain. Sci Signal 2023; 16:eadf9535. [PMID: 37669398 PMCID: PMC10747475 DOI: 10.1126/scisignal.adf9535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Oral cancer causes pain associated with cancer progression. We report here that the function of the Ca2+ channel ORAI1 is an important regulator of oral cancer pain. ORAI1 was highly expressed in tumor samples from patients with oral cancer, and ORAI1 activation caused sustained Ca2+ influx in human oral cancer cells. RNA-seq analysis showed that ORAI1 regulated many genes encoding oral cancer markers such as metalloproteases (MMPs) and pain modulators. Compared with control cells, oral cancer cells lacking ORAI1 formed smaller tumors that elicited decreased allodynia when inoculated into mouse paws. Exposure of trigeminal ganglia neurons to MMP1 evoked an increase in action potentials. These data demonstrate an important role of ORAI1 in oral cancer progression and pain, potentially by controlling MMP1 abundance.
Collapse
Affiliation(s)
- Ga-Yeon Son
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| | - Nguyen Huu Tu
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Maria Daniela Santi
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
| | - Santiago Loya Lopez
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | | | - Manikandan Vinu
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Fang Zhou
- Department of Pathology, New York University Langone Health, New York, NY 10010
| | - Ariya Chaloemtoem
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rama Alhariri
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Rajesh Khanna
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Yi Ye
- NYU Dentistry Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010
- New York University Pain Research Center, New York University, New York, NY 10010
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
| |
Collapse
|
15
|
Park J, Lee C, Kim YT. Effects of Natural Product-Derived Compounds on Inflammatory Pain via Regulation of Microglial Activation. Pharmaceuticals (Basel) 2023; 16:941. [PMID: 37513853 PMCID: PMC10386117 DOI: 10.3390/ph16070941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Inflammatory pain is a type of pain caused by tissue damage associated with inflammation and is characterized by hypersensitivity to pain and neuroinflammation in the spinal cord. Neuroinflammation is significantly increased by various neurotransmitters and cytokines that are expressed in activated primary afferent neurons, and it plays a pivotal role in the development of inflammatory pain. The activation of microglia and elevated levels of pro-inflammatory cytokines are the hallmark features of neuroinflammation. During the development of neuroinflammation, various intracellular signaling pathways are activated or inhibited in microglia, leading to the regulation of inflammatory proteins and cytokines. Numerous attempts have been conducted to alleviate inflammatory pain by inhibiting microglial activation. Natural products and their compounds have gained attention as potential candidates for suppressing inflammatory pain due to verified safety through centuries of use. Many studies have also shown that natural product-derived compounds have the potential to suppress microglial activation and alleviate inflammatory pain. Herein, we review the literature on inflammatory mediators and intracellular signaling involved in microglial activation in inflammatory pain, as well as natural product-derived compounds that have been found to suppress microglial activation. This review suggests that natural product-derived compounds have the potential to alleviate inflammatory pain through the suppression of microglial activation.
Collapse
Affiliation(s)
- Joon Park
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
16
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
17
|
Pan Y, Hu Q, Yang Y, Nie H, Yin C, Wei H, Tai Y, Liu B, Shen Z, He X, Fang J, Liu B. Characterization of pain-related behaviors and gene expression profiling of peripheral sensory ganglia in a mouse model of acute ankle sprain. Front Behav Neurosci 2023; 17:1189489. [PMID: 37304762 PMCID: PMC10248128 DOI: 10.3389/fnbeh.2023.1189489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Lateral ankle sprain (LAS) is a very common type of joint injury. It occurred with high incidence among general population and especially among individuals participating sports and outdoor activities. A certain proportion of individuals who once developed LAS may suffer persistent ankle pain that affects daily activities. However, the mechanisms underlying LAS-induced pain still remained largely unknown. Methods We established a LAS mouse model and systematically evaluated the pain-related behaviors in this mouse model. RNA sequencing (RNA-Seq), combined with bioinformatics analysis, was undertaken to explore gene expression profiles. Immunostaining was used to study glial cell and neuron activation in ipsilateral spinal cord dorsal horn (SCDH) of LAS model mice. Ibuprofen was used to treat LAS model mice. Results The LAS model mice developed obvious signs of mechanical and heat hypersensitivities as well as gait impairments in ipsilateral hind paws. Besides, LAS model mice developed signs of pain-related emotional disorder, including pain-induced aversion. By RNA-Seq, we were able to identify certain differentially expressed genes and signaling pathways that might contribute to pain mechanisms of LAS mouse model. In addition, LAS model mice showed increased c-Fos and p-ERK immunoreactivity as well as astrocyte and microglia overactivation in ipsilateral spinal cord dorsal horn, indicating central sensitization might occur. Finally, LAS model mice respond to ibuprofen, a drug clinically used to treat ankle sprain pain. Conclusion Our study found LAS model mice may be used as a preclinical animal model for screening novel targets or therapies for ankle sprain. Thus, the study may further help to understand molecular mechanisms contributing to ankle sprain-induced pain.
Collapse
Affiliation(s)
- Yushuang Pan
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qimiao Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunqin Yang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huimin Nie
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huina Wei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zui Shen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyi Liu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Tilley DM, Vallejo R, Vetri F, Platt DC, Cedeño DL. Regulation of Expression of Extracellular Matrix Proteins by Differential Target Multiplexed Spinal Cord Stimulation (SCS) and Traditional Low-Rate SCS in a Rat Nerve Injury Model. BIOLOGY 2023; 12:biology12040537. [PMID: 37106738 PMCID: PMC10135794 DOI: 10.3390/biology12040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
There is limited research on the association between the extracellular matrix (ECM) and chronic neuropathic pain. The objective of this study was twofold. Firstly, we aimed to assess changes in expression levels and the phosphorylation of ECM-related proteins due to the spared nerve injury (SNI) model of neuropathic pain. Secondly, two modalities of spinal cord stimulation (SCS) were compared for their ability to reverse the changes induced by the pain model back toward normal, non-injury levels. We identified 186 proteins as ECM-related and as having significant changes in protein expression among at least one of the four experimental groups. Of the two SCS treatments, the differential target multiplexed programming (DTMP) approach reversed expression levels of 83% of proteins affected by the pain model back to levels seen in uninjured animals, whereas a low-rate (LR-SCS) approach reversed 67%. There were 93 ECM-related proteins identified in the phosphoproteomic dataset, having a combined 883 phosphorylated isoforms. DTMP back-regulated 76% of phosphoproteins affected by the pain model back toward levels found in uninjured animals, whereas LR-SCS back-regulated 58%. This study expands our knowledge of ECM-related proteins responding to a neuropathic pain model as well as providing a better perspective on the mechanism of action of SCS therapy.
Collapse
Affiliation(s)
- Dana M. Tilley
- Research and Development, SGX Medical, Bloomington, IL 61704, USA
| | - Ricardo Vallejo
- Research and Development, SGX Medical, Bloomington, IL 61704, USA
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL 61701, USA
| | - Francesco Vetri
- Pain Management, National Spine and Pain Centers, Bloomington, IL 61704, USA
| | - David C. Platt
- Research and Development, SGX Medical, Bloomington, IL 61704, USA
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL 61701, USA
| | - David L. Cedeño
- Research and Development, SGX Medical, Bloomington, IL 61704, USA
- Neuroscience Program, Illinois Wesleyan University, Bloomington, IL 61701, USA
| |
Collapse
|
19
|
Li J, Ruan S, Jia J, Li Q, Jia R, Wan L, Yang X, Teng P, Peng Q, Shi YD, Yu P, Pan Y, Duan ML, Liu WT, Zhang L, Hu L. Hydrogen attenuates postoperative pain through Trx1/ASK1/MMP9 signaling pathway. J Neuroinflammation 2023; 20:22. [PMID: 36737785 PMCID: PMC9896749 DOI: 10.1186/s12974-022-02670-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Postoperative pain is a serious clinical problem with a poorly understood mechanism, and lacks effective treatment. Hydrogen (H2) can reduce neuroinflammation; therefore, we hypothesize that H2 may alleviate postoperative pain, and aimed to investigate the underlying mechanism. METHODS Mice were used to establish a postoperative pain model using plantar incision surgery. Mechanical allodynia was measured using the von Frey test. Cell signaling was assayed using gelatin zymography, western blotting, immunohistochemistry, and immunofluorescence staining. Animals or BV-2 cells were received with/without ASK1 and Trx1 inhibitors to investigate the effects of H2 on microglia. RESULTS Plantar incision surgery increased MMP-9 activity and ASK1 phosphorylation in the spinal cord of mice. MMP-9 knockout and the ASK1 inhibitor, NQDI-1, attenuated postoperative pain. H2 increased the expression of Trx1 in the spinal cord and in BV-2 cells. H2 treatment mimicked NQDI1 in decreasing the phosphorylation of ASK1, p38 and JNK. It also reduced MMP-9 activity, downregulated pro-IL-1β maturation and IBA-1 expression in the spinal cord of mice, and ameliorated postoperative pain. The protective effects of H2 were abolished by the Trx1 inhibitor, PX12. In vitro, in BV-2 cells, H2 also mimicked NQDI1 in inhibiting the phosphorylation of ASK1, p38, and JNK, and also reduced MMP-9 activity and decreased IBA-1 expression induced by LPS. The Trx1 inhibitor, PX12, abolished the protective effects of H2 in BV-2 cells. CONCLUSIONS For the first time, the results of our study confirm that H2 can be used as a therapeutic agent to alleviate postoperative pain through the Trx1/ASK1/MMP9 signaling pathway. MMP-9 and ASK1 may be the target molecules for relieving postoperative pain.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019 Jiangsu China
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Shirong Ruan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Jinhui Jia
- Department of Orthopedics, Jiangsu Province Hospital of Integration of Chinese and Western Medicine, Nanjing, 210029 Jiangsu China
| | - Qian Li
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100 Jiangsu China
| | - Rumeng Jia
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Li Wan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Xing Yang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Peng Teng
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Qilin Peng
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Ya-dan Shi
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100 Jiangsu China
| | - Pan Yu
- Department of Burn and Plastic, Jingling Hospital, School of Medicine, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Man-lin Duan
- Department of Anesthesiology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019 Jiangsu China
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Li Zhang
- Department of Anesthesiology, Children’s Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008 Jiangsu China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| |
Collapse
|
20
|
Paramakrishnan N, Chavan L, Lim KG, Paramaswaran Y, Muthuraman A. Reversal of Neuralgia Effect of Beta Carotene in Streptozotocin-Associated Diabetic Neuropathic Pain in Female Zebrafish via Matrix Metalloprotease-13 Inhibition. Pharmaceuticals (Basel) 2023; 16:157. [PMID: 37259308 PMCID: PMC9959792 DOI: 10.3390/ph16020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 08/26/2023] Open
Abstract
Beta carotene is a natural anti-oxidant agent, and it inhibits the matrix metalloprotease (MMP) activity. Diabetic neuropathic pain (DNP) is produced by cellular oxidative stress. The role of the beta carotene effect in diabetic neuropathic pain is not explored yet. The present study is designed for the evaluation of the palm oil mill effluent-derived beta carotene (PBC) effect in DNP in zebrafish. The DNP was induced by the intraperitoneal administration of streptozotocin (STZ). Blood glucose levels of above 15 mM were considered to be diabetic conditions. The zebrafish were exposed to test compound PBC (25, 50, and 100 µM), pregabalin (PG: 10 μM), and an MMP-13 inhibitor (CL-82198; 10 μM) for 10 consecutive days from day 11. The neuralgic behavioral parameters, i.e., temperature test, acetic acid test, and fin clip test were assessed on day 0 and the 7th, 14th, and 21st days. On the 22nd day, the blood glucose and MMP-13 levels and brain thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and MMP-13 activity levels were estimated. The treatment of PBC ameliorated the DNP-associated behavioral and biochemical changes. The results are similar to those of PG and CL-82198 treatments. Hence, the PBC possesses a potentially ameliorative effect against DNP due to its potential anti-oxidant, anti-lipid peroxidation, and MMP-13 inhibitory actions.
Collapse
Affiliation(s)
| | - Laxmikant Chavan
- Faculty of Medicine, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
21
|
Hong Y, Li Y, Ye M, Yan S, Yang W, Jiang C. Identifying an optimal machine learning model generated circulating biomarker to predict chronic postoperative pain in patients undergoing hepatectomy. Front Surg 2023; 9:1068321. [PMID: 36684250 PMCID: PMC9852489 DOI: 10.3389/fsurg.2022.1068321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic postsurgical pain (CPSP) after hepatectomy is highly prevalent and challenging to treat. Several risk factors have been unmasked for CPSP after hepatectomy, such as acute postoperative pain. The current secondary analysis of a clinical study sought to extend previous research by investigating more clinical variables and inflammatory biomarkers as risk factors for CPSP after hepatectomy and sifting those strongly related to CPSP to build a reliable machine learning model to predict CPSP occurring. Participants included 91 adults undergoing hepatectomy who was followed 3 months postoperatively. Twenty-four hours after surgery, participants completed numerical rating scale (NRS) grading and blood sample collecting. Three months after surgery, participants also reported whether CPSP occurred through follow-up. The Random Forest and Support Vector Machine models were conducted to predict pain outcomes 3 months after surgery. The results showed that the SVM model had better performance in predicting CPSP which consists of acute postoperative pain (evaluated by NRS) and matrix metalloprotease 3 (MMP3) level. What's more, besides traditional cytokines, several novel inflammatory biomarkers like C-X-C motif chemokine ligand 10 (CXCL10) and MMP2 levels were found to be closely related to CPSP and a novel spectrum of inflammatory biomarkers was created. These findings demonstrate that the SVM model consisting of acute postoperative pain and MMP3 level predicts greater chronic pain intensity 3 months after hepatectomy and with this model, intervention administration before CPSP occurs may prevent or minimize CPSP intensity successfully.
Collapse
Affiliation(s)
- Ying Hong
- Department of Anesthesiology, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Li
- Department of Anesthesiology, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Ye
- Department of Anesthesiology, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu Yan
- Department of Anesthesiology, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Yang
- Department of Anesthesiology, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chunling Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University and The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, Chengdu, China,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China,Correspondence: Chunling Jiang
| |
Collapse
|
22
|
Natural Herbal Non-Opioid Topical Pain Relievers-Comparison with Traditional Therapy. Pharmaceutics 2022; 14:pharmaceutics14122648. [PMID: 36559142 PMCID: PMC9785912 DOI: 10.3390/pharmaceutics14122648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Pain is the predominant symptom of many clinical diseases and is frequently associated with neurological and musculoskeletal problems. Chronic pain is frequent in the elderly, causing suffering, disability, social isolation, and increased healthcare expenses. Chronic pain medication is often ineffective and has many side effects. Nonsteroidal over-the-counter and prescription drugs are frequently recommended as first-line therapies for pain control; however, long-term safety issues must not be neglected. Herbs and nutritional supplements may be a safer and more effective alternative to nonsteroidal pharmaceuticals for pain management, especially when used long-term. Recently, topical analgesic therapies have gained attention as an innovative approach due to their sufficient efficacy and comparatively fewer systemic side effects and drug-drug interactions. In this paper, we overview the main natural herbal pain relievers, their efficacy and safety, and their potential use as topical agents for pain control. Although herbal-derived medications are not appropriate for providing quick relief for acute pain problems, they could be used as potent alternative remedies in managing chronic persistent pain with minimal side effects.
Collapse
|
23
|
Liu X, Bae C, Gelman BB, Chung JM, Tang SJ. A neuron-to-astrocyte Wnt5a signal governs astrogliosis during HIV-associated pain pathogenesis. Brain 2022; 145:4108-4123. [PMID: 35040478 PMCID: PMC10200293 DOI: 10.1093/brain/awac015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 10/21/2023] Open
Abstract
Chronic pain is the most common neurological disorder of HIV patients. Multiple neuropathologies were identified in the pain pathway. Among them is the prominent astrocytic reaction (also know an astrogliosis). However, the pathogenic role and mechanism of the astrogliosis are unclear. Here, we show that the astrogliosis is crucial for the pain development induced by a key neurotoxic HIV protein gp120 and that a neuron-to-astrocyte Wnt5a signal controls the astrogliosis. Ablation of astrogliosis blocked the development of gp120-induced mechanical hyperalgesia, and concomitantly the expression of neural circuit polarization in the spinal dorsal horn. We demonstrated that conditional knockout of either Wnt5a in neurons or its receptor ROR2 in astrocytes abolished not only gp120-induced astrogliosis but also hyperalgesia and neural circuit polarization. Furthermore, we found that the astrogliosis promoted expression of hyperalgesia and NCP via IL-1β regulated by a Wnt5a-ROR2-MMP2 axis. Our results shed light on the role and mechanism of astrogliosis in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC) and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chilman Bae
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| | - Benjamin B Gelman
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jin Mo Chung
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC) and Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
24
|
Tan PH, Ji J, Hsing CH, Tan R, Ji RR. Emerging Roles of Type-I Interferons in Neuroinflammation, Neurological Diseases, and Long-Haul COVID. Int J Mol Sci 2022; 23:ijms232214394. [PMID: 36430870 PMCID: PMC9696119 DOI: 10.3390/ijms232214394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines originally identified for their antiviral activity. IFN-α and IFN-β are both type I IFNs that have been used to treat neurological diseases such as multiple sclerosis. Microglia, astrocytes, as well as neurons in the central and peripheral nervous systems, including spinal cord neurons and dorsal root ganglion neurons, express type I IFN receptors (IFNARs). Type I IFNs play an active role in regulating cognition, aging, depression, and neurodegenerative diseases. Notably, by suppressing neuronal activity and synaptic transmission, IFN-α and IFN-β produced potent analgesia. In this article, we discuss the role of type I IFNs in cognition, neurodegenerative diseases, and pain with a focus on neuroinflammation and neuro-glial interactions and their effects on cognition, neurodegenerative diseases, and pain. The role of type I IFNs in long-haul COVID-associated neurological disorders is also discussed. Insights into type I IFN signaling in neurons and non-neuronal cells will improve our treatments of neurological disorders in various disease conditions.
Collapse
Affiliation(s)
- Ping-Heng Tan
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 701, Taiwan
- Correspondence: (P.-H.T.); (C.-H.H.)
| | - Jasmine Ji
- Neuroscience Department, Wellesley College, Wellesley, MA 02482, USA
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 701, Taiwan
- Correspondence: (P.-H.T.); (C.-H.H.)
| | - Radika Tan
- Kaohsiung American School, Kaohsiung 81354, Taiwan
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
25
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Sachinis NP, Yiannakopoulos CK, Chalidis B, Kitridis D, Givissis P. Biomolecules Related to Rotator Cuff Pain: A Scoping Review. Biomolecules 2022; 12:1016. [PMID: 35892325 PMCID: PMC9332043 DOI: 10.3390/biom12081016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The pathophysiology of pain in patients suffering from rotator cuff (RC) tendinopathy or tears has been examined in various ways. Several molecules from tissue samples taken from the subacromial bursa, supraspinatus tendon, glenohumeral joint fluid, and synovium as well as from peripheral blood have been investigated. This article explores these studies, the assessed biomarkers, and groups their results according to the status of tendon integrity (tendinopathy or tear). Through a structured PubMed database search, 9 out of 658 articles were reviewed. Interleukins, mostly IL-1b and its antagonist, IL-1ra, matrix Metalloproteinases (MMPs), the vascular endothelial growth factor (VEGF) and TNF-a are biomarkers directly searched for correlation to pain level. Most studies agree that IL-1b is directly positively correlated to the degree of pain in patients with RC tendinopathy, especially when the examined sample is taken from the subacromial bursa. VEGF, and TNF-a have been related to shoulder pain preoperatively and TNF-a has also been linked with sleep disturbance. Further studies pointing to more biomarkers taken from the subacromial bursa or tendon directly relating to pain degree are warranted.
Collapse
Affiliation(s)
| | - Christos K. Yiannakopoulos
- School of Physical Education & Sports Science, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Byron Chalidis
- “Georgios Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (B.C.); (D.K.); (P.G.)
| | - Dimitrios Kitridis
- “Georgios Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (B.C.); (D.K.); (P.G.)
| | - Panagiotis Givissis
- “Georgios Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (B.C.); (D.K.); (P.G.)
| |
Collapse
|
27
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
28
|
Tseng KY, Wang HC, Cheng KF, Wang YH, Chang LL, Cheng KI. Sciatic Nerve Intrafascicular Injection Induces Neuropathy by Activating the Matrix Modulators MMP-9 and TIMP-1. Front Pharmacol 2022; 13:859982. [PMID: 35694244 PMCID: PMC9178525 DOI: 10.3389/fphar.2022.859982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Peripheral nerve block (PNB) under echo guidance may not prevent intrafascicular anesthetic injection-induced nerve injury. This study investigated whether unintended needle piercing alone, or the intrafascicular nerve injectant could induce neuropathy. Methods: 120 adult male Sprague-Dawley rats were divided into four groups: 1) group S, only the left sciatic nerve was exposed; 2) group InF-P, the left sciatic nerve was exposed and pierced with a 30 G needle; 3) group InF-S, left sciatic nerve was exposed and injected with saline (0.9% NaCl 30 µL); 4) group InF-R, left sciatic nerve was exposed and injected with 0.5% (5 mg/mL, 30 µL) ropivacaine. Behaviors of thermal and mechanical stimuli responses from hindpaws, sciatic nerve vascular permeability and tight junction protein expression, and macrophage infiltration were assessed. Pro-inflammatory cytokine expression and TIMP-1 and MMP-9 activation at the injection site and the swollen, and distal sites of the sciatic nerve were measured by cytokine array, western blotting, and immunofluorescence of POh14 and POD3. Results: Intrafascicular saline and ropivacaine into the sciatic nerve, but not needle piercing alone, significantly induced mechanical allodynia that lasted for seven days. In addition, the prior groups increased vascular permeability and macrophage infiltration, especially in the swollen site of the sciatic nerve. Thermal hypersensitivity was induced and lasted for only 3 days after intrafascicular saline injection. Obvious upregulation of TIMP-1 and MMP-9 on POh6 and POh14 occurred regardless of intrafascicular injection or needle piercing. Compared to the needle piercing group, the ratio of MMP-9/TIMP-1 was significantly higher in the intrafascicular injectant groups at the injected and swollen sites of the sciatic nerve. Although no gross changes in the expressions of tight junction proteins (TJPs) claudin-5 and ZO-1, the TJPs turned to apparent fragmentation and fenestration-like degenerative change in swollen endothelial cells and thickened microvessels. Conclusion: Intrafascicular nerve injection is a distinct mechanism that induces neuropathy. It is likely that the InF nerve injection-induced neuropathy was largely due to dramatic, but transient, increases in enzymatic activities of MMP-9 and activating TIMP-1 in the operated nerves. The changes in enzymatic activities then contributed to certain levels of extracellular matrix degradation, which leads to increases in endoneurial vascular permeability.
Collapse
Affiliation(s)
- Kuang-Yi Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Chen Wang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Feng Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsuan Wang
- Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Kwatra SG, Misery L, Clibborn C, Steinhoff M. Molecular and cellular mechanisms of itch and pain in atopic dermatitis and implications for novel therapeutics. Clin Transl Immunology 2022; 11:e1390. [PMID: 35582626 PMCID: PMC9082890 DOI: 10.1002/cti2.1390] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease. Patients with atopic dermatitis experience inflammatory lesions associated with intense itch and pain, which lead to sleep disturbance and poor mental health and quality of life. We review the molecular mechanisms underlying itch and pain symptoms in atopic dermatitis and discuss the current clinical development of treatments for moderate-to-severe atopic dermatitis. The molecular pathology of atopic dermatitis includes aberrant immune activation involving significant cross-talk among the skin and immune and neuronal cells. Exogenous and endogenous triggers modulate stimulation of mediators including cytokine/chemokine expression/release by the skin and immune cells, which causes inflammation, skin barrier disruption, activation and growth of sensory neurons, itch and pain. These complex interactions among cell types are mediated primarily by cytokines, but also involve chemokines, neurotransmitters, lipids, proteases, antimicrobial peptides, agonists of ion channels or various G protein-coupled receptors. Patients with atopic dermatitis have a cytokine profile characterised by abnormal levels of interleukins 4, 12, 13, 18, 22, 31 and 33; thymic stromal lymphopoietin; and interferon gamma. Cytokine receptors mainly signal through the Janus kinase/signal transducer and activator of transcription pathway. Among emerging novel therapeutics, several Janus kinase inhibitors are being developed for topical or systemic treatment of moderate-to-severe atopic dermatitis because of their potential to modulate cytokine expression and release. Janus kinase inhibitors lead to changes in gene expression that have favourable effects on local and systemic cytokine release, and probably other mediators, thus successfully modulating molecular mechanisms responsible for itch and pain in atopic dermatitis.
Collapse
Affiliation(s)
- Shawn G Kwatra
- Department of DermatologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurent Misery
- Department of DermatologyUniversity Hospital of BrestBrestFrance
| | | | - Martin Steinhoff
- Department of Dermatology and VenereologyHamad Medical CorporationDohaQatar
- Translational Research InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Dermatology InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Department of DermatologyWeill Cornell Medicine‐QatarDohaQatar
- Qatar University, College of MedicineDohaQatar
- Department of DermatologyWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
30
|
Kingery MT, Adams AC, Manjunath AK, Berlinberg EJ, Markus DH, Strauss EJ. Synovial Fluid Cytokine Profile at the Time of Arthroscopy Explains Intermediate-Term Functional Outcomes. Am J Sports Med 2022; 50:1261-1271. [PMID: 35420497 DOI: 10.1177/03635465221075370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The intra-articular immune response after ligamentous, meniscal, or focal chondral knee injuries likely plays a role in intra-articular healing and the onset and progression of posttraumatic osteoarthritis. PURPOSE To evaluate the association of synovial fluid cytokine concentrations measured at the time of knee arthroscopy with intermediate-term functional outcomes after knee arthroscopy based on the Lysholm score. STUDY DESIGN Cohort study; Level of evidence, 2. METHODS This was a prospective cohort study of patients undergoing arthroscopic knee surgery. Synovial fluid was aspirated from the injured knee immediately before surgical incision, and the concentrations of 10 cytokines were analyzed using immunoassay. Principal component regression was used to create a model to predict patient-reported Lysholm score at a minimum of 5 years postoperatively. Hierarchical clustering was performed to identify groups of patients with similar synovial fluid inflammatory phenotypes. Lysholm scores and cytokine concentrations were compared between clusters. RESULTS A total of 26 patients (mean age, 40.33 ± 16.40 years) were included in the analysis. The mean duration between surgery and follow-up was 6.69 ± 0.72 years. A model consisting of 2 principal components (PC1, PC2) explained 62.48% of the variance in the cytokine data and 52.03% of the variance in intermediate-term Lysholm score. Hierarchical clustering resulted in 3 patient clusters based on the principal components used in the regression model. Despite no baseline differences in Lysholm score, cluster 3 demonstrated significantly greater intermediate-term Lysholm score compared with cluster 2 (94.33 vs 76.09, respectively; 95% CI, 5.96-30.52; P = .006) and cluster 1 (94.33 vs 52.33, respectively; 95% CI, 24.09-59.91; P = .003). Cluster 3, when compared with the overall means, was characterized by greater PC1 value (1.01 vs 0.00, respectively; P = .030) and greater PC2 value (0.86 vs 0.00, respectively; P = .002). CONCLUSION The concentrations of select synovial fluid cytokines assessed at the time of knee arthroscopy can be used to explain more than half of the variance in intermediate-term functional outcomes.
Collapse
Affiliation(s)
- Matthew T Kingery
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Anngela C Adams
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Amit K Manjunath
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Elyse J Berlinberg
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Danielle H Markus
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| | - Eric J Strauss
- Division of Sports Medicine, Department of Orthopedic Surgery, NYU Langone Orthopedic Hospital, New York, New York, USA
| |
Collapse
|
31
|
Ita ME, Ghimire P, Granquist EJ, Winkelstein BA. MMPs in tissues retrieved during surgery from patients with TMJ disorders relate to pain more than to radiological damage score. J Orthop Res 2022; 40:338-347. [PMID: 33792957 PMCID: PMC8484377 DOI: 10.1002/jor.25048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/04/2023]
Abstract
Orofacial pain is among the most common chronic pain conditions and can result from temporomandibular disorders (TMDs) of the temporomandibular joint (TMJ). Matrix metalloproteinases (MMPs) drive degeneration of TMJ tissues and likely mediate pain in TMJ disorders given their role in nociception. However, few studies have assessed MMPs in the TMJ innervated tissues nor in the context of pain. This study defined the extent of MMP-1, MMP-9, and MMP-2 in TMJ tissues from patients undergoing total joint replacement (TJR) or arthroplasty discectomy for painful TMJ disorders. Protein expression was probed by Western blot in TMJ disc and capsular ligaments taken during TJR (n = 6) or discectomy (n = 3) for osteoarthritis or internal derangement in an IRB-approved study. Pro- and active MMP-1, active MMP-9, and pro- and active MMP-2 are detectable. MMP-1 and MMP-9 correlate positively to each other (Kendall's τ = 0.63; p = 0.01), strengthening the hypothesis that they are mechanistically related in regulatory cascades. Active MMP-1 and active MMP-9 correlate positively with self-reported pain scores (τ ≥ 0.51; p ≤ 0.04), suggesting their involvement in peripheral nociception. Overall, neither MMPs nor pain correlate with the functional vertical opening of the jaw. MMP-1 varies with the observed stage of degeneration during surgery (p = 0.04). Neither overall MMPs nor pain correlate with the overall magnetic resonance imaging scores, corroborating the longstanding, but confounding, clinical observation that pain and radiological evidence of joint damage are not always related. Clinical significance: These findings suggest that MMPs mediate pain in innervated soft tissues and may be targets for diagnosing disease stage and treatments in painful TMJ disorders.
Collapse
Affiliation(s)
- Meagan E. Ita
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Prabesh Ghimire
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric J. Granquist
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Oral & Maxillofacial Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
32
|
Semler A, Hammad S, Lopes-Virella MF, Klein RL, Huang Y. Deoxysphingolipids Upregulate MMP-1, Downregulate TIMP-1, and Induce Cytotoxicity in Human Schwann Cells. Neuromolecular Med 2021; 24:352-362. [PMID: 34853975 DOI: 10.1007/s12017-021-08698-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Sphingolipids are a heterogeneous class of lipids and essential components of the plasma membrane and plasma lipoproteins. Studies have shown that plasma deoxysphingolipid (DSL), a newly identified sphingolipid class, is increased in diabetic patients and associated with diabetic neuropathy. However, it remains unknown if there is a causal relationship between plasma DSL increase and diabetic neuropathy. Since matrix metalloproteinases (MMPs) play an important role in diabetic neuropathy by degrading extracellular matrix in the peripheral nervous system, we investigated the effect of DSLs on the expression of MMPs and tissue inhibitor of metalloproteinase (TIMPs), and cytotoxicity in human Schwann cells. We quantified protein secretion, gene expression, and collagenase activity, and performed cytotoxicity assays. Results showed that DSLs upregulated MMP-1, downregulated TIMP-1, and induced cytotoxicity in Schwann cells. Furthermore, we quantified DSLs in VLDL, LDL, HDL2, and HDL3 isolated from type 2 diabetes mellitus (T2DM) patients with or without neuropathy. Interestingly, lipidomic analysis showed that only HDL2 isolated from T2DM patients with neuropathy contains significantly higher level of DSLs than that isolated from T2DM patients without neuropathy. Additionally, results showed that HDL2 isolated from T2DM patients with neuropathy was more potent than that isolated from T2DM patients without neuropathy in upregulating MMP-1, downregulating TIMP-1, and stimulating collagenase activity in Schwann cell. Taken together, this study demonstrated for the first time a potential causal relationship between DSLs and diabetic neuropathy and that DSL-containing HDL2 from T2DM patients with neuropathy was more potent than that from T2DM patients without neuropathy in stimulating collagenase activity.
Collapse
Affiliation(s)
- Andrea Semler
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Samar Hammad
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, USA
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, 29401, USA.,Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard L Klein
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, 29401, USA.,Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, 29401, USA. .,Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
33
|
Ma KH, Cheng CY, Chan WH, Chen SY, Kao LT, Sung CS, Hueng DY, Yeh CC. Pulsed Radiofrequency Upregulates Serotonin Transporters and Alleviates Neuropathic Pain-Induced Depression in a Spared Nerve Injury Rat Model. Biomedicines 2021; 9:biomedicines9101489. [PMID: 34680606 PMCID: PMC8533300 DOI: 10.3390/biomedicines9101489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is difficult to treat due to complex pathophysiological mechanisms. Pulsed radiofrequency (RRF) has been used widely with neuromodulation effect in refractory chronic pain treatment. A recent study found that PRF treatment may decrease chronic pain-related anxiety-depressant symptoms in patients, even though the mechanisms are unclear. Additionally, accumulated evidence has shown serotonin uptake is correlated with various neuropsychiatric diseases. Therefore, we investigated the effects and underlying mechanisms of PRF on depression-like behaviors, resulting from spared nerve injury (SNI)-induced NP. We examined the indexes of mechanical allodynia, cold allodynia, depression-like behavior, and blood cytokines by dynamic plantar aesthesiometry, acetone spray test, forced swimming test, and ProcartaPlex multiplex immunoassays in male Wistar rats, respectively. Serotonin transporters (SERTs) in rat brains were examined by using 4-[18F]-ADAM/PET imaging. We found that specific uptake ratios (SURs) of SERTs were significantly decreased in the brain regions of the thalamus and striatum in rats with SNI-induced NP and depression-like behaviors. Additionally, the decrease in SERT density was correlated with the development of a depression-like behavior indicated by the forced swimming test results and pronounced IL-6 cytokines. Moreover, we demonstrated that PRF application could modulate the descending serotoninergic pathway to relieve pain and depression behaviors.
Collapse
Affiliation(s)
- Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 115, Taiwan;
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
| | - Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
| | - Shih-Yu Chen
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
| | - Li-Ting Kao
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 115, Taiwan
| | - Chun-Sung Sung
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
| | - Dueng-Yuan Hueng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan;
| | - Chun-Chang Yeh
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan; (W.-H.C.); (S.-Y.C.)
- Integrated Pain Management Center, Tri-Service General Hospital, National Defense Medical Center, Taipei 115, Taiwan
- Correspondence:
| |
Collapse
|
34
|
Saxena AK, Khrolia D, Chilkoti GT, Gondode PG, Sharma T, Thakur G, Banerjee BD. Modulation of the Extracellular Signal-Regulated Protein Kinase and Tissue Inhibitors of Matrix Metalloproteases-1 Gene in Chronic Neuropathic Pain. Indian J Palliat Care 2021; 27:251-256. [PMID: 34511792 PMCID: PMC8428873 DOI: 10.25259/ijpc_339_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Objectives: The aim of this study is to study the modulation of extracellular signal-regulated protein kinase (ERK) and tissue inhibitors of matrix metalloproteases 1 (TIMP 1) gene in patients with neuropathic pain (NP). Materials and Methods: In the present, cross-sectional, observational study, 2 ml of venous baseline sample was withdrawn from all the patients with neuropathic (NP) or non NP (NNP) soon after their diagnosis or on their first visit to the pain clinic. A real-time quantitative polymerase chain reaction experiment was conducted to measure the mRNA expression of TIMP1 and ERK genes in blood samples. The Delta Ct, Delta Ct, and fold change analysis of both the genes were conducted between patients with NP and NNP. Results: A total of 285 patients with chronic pain were assessed, out of which, 153 patients had NP and 132 had NNP. The average duration of chronic pain was 11 months for 285 patients. The mRNA expression of TIMP1 gene is significantly down regulated (2.65-fold) (P (-f. 01), and the mRNA expression level of ERK is significantly up regulated (2.03-fold) (P (-f. 01) in NP patients when compared with NNP. Conclusion: The mRNA expression of TIMP1 gene is significantly down regulated, and ERK is significantly up regulated in patients with NP. Further, multicentric trials with larger sample size are recommended to confirm this finding.
Collapse
Affiliation(s)
- Ashok Kumar Saxena
- Department of Anesthesiology and Critical Care, University College of Medical Sciences and Guru Teg Bahadur Hospital, Maharashtra, India
| | - Deepanshu Khrolia
- Department of Anesthesiology and Critical Care, University College of Medical Sciences and Guru Teg Bahadur Hospital, Maharashtra, India
| | - Geetanjali T Chilkoti
- Department of Anesthesiology and Critical Care, University College of Medical Sciences and Guru Teg Bahadur Hospital, Maharashtra, India
| | - Prakash Gyandev Gondode
- Department of Anesthesiology and Critical Care, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Tusha Sharma
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Delhi, India
| | - Gaurav Thakur
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Delhi, India
| | - Basu Dev Banerjee
- Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Delhi, India
| |
Collapse
|
35
|
Nascimento GC, De Paula BB, Gerlach RF, Leite-Panissi CRA. Temporomandibular inflammation regulates the matrix metalloproteinases MMP-2 and MMP-9 in limbic structures. J Cell Physiol 2021; 236:6571-6580. [PMID: 33611790 DOI: 10.1002/jcp.30341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Temporomandibular disorder (TMD) is characterized by acute or chronic orofacial pain, which can be associated with inflammatory processes in the temporomandibular joint (TMJ) and emotional disorders. Peripheral and central sensitization in painful orofacial processes is common, and it can be triggered by peripheral inflammatory challenge with consequent neuroinflammation phenomena. Such neuroinflammation comes from inflammatory products from supportive cells, blood-brain barrier, and extracellular matrix. Here, we evaluated the possible recruitment of limbic structures for modified matrix metalloproteinases (MMPs) expression and activity during temporomandibular inflammation-induced orofacial persistent pain. The inflammatory process in TMJs of rats was induced by Freund's Complete Adjuvant (CFA) administration. The activity and expression of MMPs-2 and 9 were assessed by in situ zymography and conventional zymography, respectively. A glial colocalization with the MMPs was performed using immunofluorescence. The results evidenced both short- and long-term alterations on MMP-2 and -9 expression in the limbic structures following CFA-induced temporomandibular inflammation. The gelatinolytic activity was increased in the central amygdala, hippocampus, hypothalamus, ventrolateral periaqueductal gray (vlPAG), superior colliculus, and inferior colliculus. Finally, an increase of colocalization of MMP-2/GFAP and MMP-9/GFAP in CFA-induced inflammation groups was observed when compared with saline groups in the central amygdala and vlPAG. It is possible to suggest that glial activation is partly responsible for the production of gelatinases in the persistent orofacial pain, and it is involved in the initiation and maintenance of this process, indicating that inhibition of MMPs might be pursued as a potential new therapeutic target for TMD.
Collapse
Affiliation(s)
- Glauce C Nascimento
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna B De Paula
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raquel F Gerlach
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
36
|
Borges JP, Mekhail K, Fairn GD, Antonescu CN, Steinberg BE. Modulation of Pathological Pain by Epidermal Growth Factor Receptor. Front Pharmacol 2021; 12:642820. [PMID: 34054523 PMCID: PMC8149758 DOI: 10.3389/fphar.2021.642820] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain has been widely recognized as a major public health problem that impacts multiple aspects of patient quality of life. Unfortunately, chronic pain is often resistant to conventional analgesics, which are further limited by their various side effects. New therapeutic strategies and targets are needed to better serve the millions of people suffering from this devastating disease. To this end, recent clinical and preclinical studies have implicated the epidermal growth factor receptor signaling pathway in chronic pain states. EGFR is one of four members of the ErbB family of receptor tyrosine kinases that have key roles in development and the progression of many cancers. EGFR functions by activating many intracellular signaling pathways following binding of various ligands to the receptor. Several of these signaling pathways, such as phosphatidylinositol 3-kinase, are known mediators of pain. EGFR inhibitors are known for their use as cancer therapeutics but given recent evidence in pilot clinical and preclinical investigations, may have clinical use for treating chronic pain. Here, we review the clinical and preclinical evidence implicating EGFR in pathological pain states and provide an overview of EGFR signaling highlighting how EGFR and its ligands drive pain hypersensitivity and interact with important pain pathways such as the opioid system.
Collapse
Affiliation(s)
- Jazlyn P Borges
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Katrina Mekhail
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Costin N Antonescu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
37
|
Ma L, Huang Y, Zhang F, Gao DS, Sun N, Ren J, Xia S, Li J, Peng X, Yu L, Jiang BC, Yan M. MMP24 Contributes to Neuropathic Pain in an FTO-Dependent Manner in the Spinal Cord Neurons. Front Pharmacol 2021; 12:673831. [PMID: 33995105 PMCID: PMC8118694 DOI: 10.3389/fphar.2021.673831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Nerve injury-induced gene expression change in the spinal cord is critical for neuropathic pain genesis. RNA N6-methyladenosine (m6A) modification represents an additional layer of gene regulation. We showed that spinal nerve ligation (SNL) upregulated the expression of matrix metallopeptidase 24 (MMP24) protein, but not Mmp24 mRNA, in the spinal cord neurons. Blocking the SNL-induced upregulation of spinal MMP24 attenuated local neuron sensitization, neuropathic pain development and maintenance. Conversely, mimicking MMP24 increase promoted the spinal ERK activation and produced evoked nociceptive hypersensitivity. Methylated RNA Immunoprecipitation Sequencing (MeRIP-seq) and RNA Immunoprecipitation (RIP) assay indicated the decreased m6A enrichment in the Mmp24 mRNA under neuropathic pain condition. Moreover, fat-mass and obesity-associated protein (FTO) was colocalized with MMP24 in spinal neurons and shown increased binding to the Mmp24 mRNA in the spinal cord after SNL. Overexpression or suppression of FTO correlates with promotion or inhibition of MMP24 expression in cultured spinal cord neurons. In conclusion, SNL promoted the m6A eraser FTO binding to the Mmp24 mRNA, which subsequently facilitated the translation of MMP24 in the spinal cord, and ultimately contributed to neuropathic pain genesis.
Collapse
Affiliation(s)
- Longfei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyuxin Huang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fengjiang Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dave Schwinn Gao
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Suyun Xia
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Peng
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Min Yan
- Department of Anesthesiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
38
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
39
|
Degradable polymeric vehicles for postoperative pain management. Nat Commun 2021; 12:1367. [PMID: 33649338 PMCID: PMC7921139 DOI: 10.1038/s41467-021-21438-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
Effective control of pain management has the potential to significantly decrease the need for prescription opioids following a surgical procedure. While extended release products for pain management are available commercially, the implementation of a device that safely and reliably provides extended analgesia and is sufficiently flexible to facilitate a diverse array of release profiles would serve to advance patient comfort, quality of care and compliance following surgical procedures. Herein, we review current polymeric systems that could be utilized in new, controlled post-operative pain management devices and highlight where opportunities for improvement exist.
Collapse
|
40
|
Zhang L, Chen X, Wu L, Li Y, Wang L, Zhao X, Zhao T, Zhang L, Yan Z, Wei G. Ameliorative effects of escin on neuropathic pain induced by chronic constriction injury of sciatic nerve. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113503. [PMID: 33091488 DOI: 10.1016/j.jep.2020.113503] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Escin is a natural mixture of triterpene saponins extracted from the seeds of Aesculus wilsonii Rehd. And has been reported to possess the therapeutic effects against neuropathic pain (NP). However, the underlying mechanisms remain unclear. AIM OF THE STUDY The present study aimed to investigate the therapeutic effects and explore the underlying mechanisms of escin on rats of NP induced by chronic constriction injury (CCI) of sciatic nerve. MATERIALS AND METHODS Rats were treated with escin (7, 14, and 28 mg/kg, i. g.) daily from the third day after the surgery (day 0) for consecutive 14 days. Regular behavior and thermal threshold were measured on days 0, 3, 5, 7, 10 and 14. Investigations into mechanisms involved measurement of inflammatory factors and biochemical factors in dorsal root ganglion (DRG). Inflammatory pain responses and nerve injuries were induced by the CCI model. Tonic pain model and acute inflammatory model induced by formalin or carrageenan were established to evaluated the pharmacological effects of escin on acute inflammatory pain. Corresponding behaviors were monitored and relevant gene expression such as c-fos, mu opioid receptor (MOR) and KCNK1 were detected by qRT-PCR. Investigate the neuroprotective effects of escin on PC12 cell injury induced by lipopolysaccharide (LPS). Cell morphology was observed under inverted microscope and neuroprotective effect of escin on cell activity was assessed by MTT assay. RESULTS Escin could widen thermal threshold, downregulate the concentration of inflammatory factors like tumor necrosis factor (TNF)-α and interleukin (IL)-1β, suppress the gene expression of toll-like receptor 4 (TLR4), nuclear factor κB (NF-κB), decrease the level of glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) remarkably. In addition, escin significantly lowered the duration of licking, numbers of flinches and increase in paw edema, showing great therapeutic effects on inflammatory pain responses. Moreover, the activity of injured PC12 cells was significantly improved after escin administrated. CONCLUSION Escin exerted the ameliorative effects on NP induced by CCI which may be related to downregulating the release of pro-inflammatory cytokines, suppressing TLR-4/NF-κB signal pathway, thereafter decreasing the level of GFAP and NGF.
Collapse
Affiliation(s)
- Liudai Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Xiu Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Lanlan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yongbiao Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Liwen Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Xiaoqin Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Tingting Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Li Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Guihua Wei
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, PR China.
| |
Collapse
|
41
|
Rimola V, Hahnefeld L, Zhao J, Jiang C, Angioni C, Schreiber Y, Osthues T, Pierre S, Geisslinger G, Ji RR, Scholich K, Sisignano M. Lysophospholipids Contribute to Oxaliplatin-Induced Acute Peripheral Pain. J Neurosci 2020; 40:9519-9532. [PMID: 33158961 PMCID: PMC7724144 DOI: 10.1523/jneurosci.1223-20.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxaliplatin, a platinum-based chemotherapeutic drug, which is used as first-line treatment for some types of colorectal carcinoma, causes peripheral neuropathic pain in patients. In addition, an acute peripheral pain syndrome develop in almost 90% of patients immediately after oxaliplatin treatment, which is poorly understood mechanistically but correlates with incidence and severity of the later-occurring neuropathy. Here we investigated the effects of acute oxaliplatin treatment in a murine model, showing that male and female mice develop mechanical hypersensitivity 24 h after oxaliplatin treatment. Interestingly, we found that the levels of several lipids were significantly altered in nervous tissue during oxaliplatin-induced acute pain. Specifically, the linoleic acid metabolite 9,10-EpOME (epoxide of linoleic acid) as well as the lysophospholipids lysophosphatidylcholine (LPC) 18:1 and LPC 16:0 were significantly increased 24 h after oxaliplatin treatment in sciatic nerve, DRGs, or spinal cord tissue as revealed by untargeted and targeted lipidomics. In contrast, inflammatory markers including cytokines and chemokines, ROS markers, and growth factors are unchanged in the respective nervous system tissues. Importantly, LPC 18:1 and LPC 16:0 can induce Ca2+ transients in primary sensory neurons, and we identify LPC 18:1 as a previously unknown endogenous activator of the ligand-gated calcium channels transient receptor potential V1 and M8 (transient receptor potential vanilloid 1 and transient receptor potential melastatin 8) in primary sensory neurons using both pharmacological inhibition and genetic knockout. Additionally, a peripheral LPC 18:1 injection was sufficient to induce mechanical hypersensitivity in naive mice. Hence, targeting signaling lipid pathways may ameliorate oxaliplatin-induced acute peripheral pain and the subsequent long-lasting neuropathy.SIGNIFICANCE STATEMENT The first-line cytostatic drug oxaliplatin can cause acute peripheral pain and chronic neuropathic pain. The former is causally connected with the chronic neuropathic pain, but its mechanisms are poorly understood. Here, we performed a broad unbiased analysis of cytokines, chemokines, growth factors, and ∼200 lipids in nervous system tissues 24 h after oxaliplatin treatment, which revealed a crucial role of lysophospholipids lysophosphatidylcholine (LPC) 18:1, LPC 16:0, and 9,10-EpOME in oxaliplatin-induced acute pain. We demonstrate for the first time that LPC 18:1 contributes to the activation of the ion channels transient receptor potential vanilloid 1 and transient receptor potential melastatin 8 in sensory neurons and causes mechanical hypersensitivity after peripheral injection in vivo These findings suggest that the LPC-mediated lipid signaling is involved in oxaliplatin-induced acute peripheral pain.
Collapse
Affiliation(s)
- Vittoria Rimola
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), 60596 Frankfurt am Main, Germany
| | - Tabea Osthues
- Fraunhofer Institute for Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), 60596 Frankfurt am Main, Germany
| | - Sandra Pierre
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), 30625 Hannover, Germany
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), 60596 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), 30625 Hannover, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University, D-60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), 60596 Frankfurt am Main, Germany
| |
Collapse
|
42
|
The Neuroprotective Effect of Mesna on Cisplatin-Induced Neurotoxicity: Behavioral, Electrophysiological, and Molecular Studies. Neurotox Res 2020; 39:826-840. [PMID: 33216283 DOI: 10.1007/s12640-020-00315-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/07/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023]
Abstract
Peripheral neuropathy and cognitive impairments following cisplatin administration may interfere with the clinical usage of the drug. Mesna is a chemoprotective agent with anti-inflammatory and anti-oxidant effects. Our study aimed to investigate the protective effects of mesna against cisplatin-induced neurotoxicity. Neurotoxicity was induced by the administration of 2.5 mg/kg cisplatin twice a week for four consecutive weeks in male Wistar rats. The neuroprotective effect of mesna (150 mg/kg/day) was evaluated through behavioral, electrophysiological, and molecular studies. Cisplatin treatment caused passive avoidance memory impairment, increased anxiety-like behaviors, altered thermal sensitivity, and decreased muscle strength in a grip strength test. Our electrophysiological studies indicated that administration of cisplatin induced peripheral sensory neuropathy and decreased the amplitudes of the compound action potential of sensory nerves. Cisplatin administration increased MDA and 4-HNE levels and decreased anti-oxidant (SOD and GPx) enzymes. Proinflammatory cytokines (IL-1β and TNF-α) and metalloproteinase-2 and 9 (MMP-2/9) were increased by cisplatin treatment. Morphological alterations were observed in the dorsal root ganglion (DRG) of cisplatin-treated rats. Cognitive impairments, anxiety, muscle strength, and thermal sensitivity changes induced by cisplatin were improved with mesna treatment. The reduced conduction velocity in sensory nerves was recovered in the cisplatin + mesna group. Mesna partially alleviated redox imbalance, reduced the proinflammatory cytokines, and MMP-2/9 levels. Mesna administration also relieved the morphological changes in DRG of cisplatin-treated rats. In conclusion, our results revealed that mesna can alleviate cisplatin-induced central and peripheral nervous system toxicity. These results support the concept that chemotherapy-induced neuropathy can be partially inhibited via mesna.
Collapse
|
43
|
Kruglikov IL, Joffin N, Scherer PE. The MMP14-caveolin axis and its potential relevance for lipoedema. Nat Rev Endocrinol 2020; 16:669-674. [PMID: 32792644 DOI: 10.1038/s41574-020-0395-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Lipoedema is associated with widespread adipose tissue expansion, particularly in the proximal extremities. The mechanisms that drive the development of lipoedema are unclear. In this Perspective article, we propose a new model for the pathophysiology of lipoedema. We suggest that lipoedema is an oestrogen-dependent disorder of adipose tissue, which is triggered by a dysfunction of caveolin 1 (CAV1) and subsequent uncoupling of feedback mechanisms between CAV1, the matrix metalloproteinase MMP14 and oestrogen receptors. In addition, reduced CAV1 activity also leads to the activation of ERα and impaired regulation of the lymphatic system through the transcription factor prospero homeobox 1 (PROX1). The resulting upregulation of these factors could effectively explain the main known features of lipoedema, such as adipose hypertrophy, dysfunction of blood and lymphatic vessels, the overall oestrogen dependence and the associated sexual dimorphism, and the mechanical compliance of adipose tissue.
Collapse
Affiliation(s)
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
44
|
Nam DH, Lee KB, Kruchowy E, Pham H, Ge X. Protease Inhibition Mechanism of Camelid-like Synthetic Human Antibodies. Biochemistry 2020; 59:3802-3812. [PMID: 32997500 PMCID: PMC7572768 DOI: 10.1021/acs.biochem.0c00690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macromolecular protease inhibitors and camelid single-domain antibodies achieve their enzymic inhibition functions often through protruded structures that directly interact with catalytic centers of targeted proteases. Inspired by this phenomenon, we constructed synthetic human antibody libraries encoding long CDR-H3s, from which highly selective monoclonal antibodies (mAbs) that inhibit multiple proteases were discovered. To elucidate their molecular mechanisms, we performed in-depth biochemical characterizations on a panel of matrix metalloproteinase (MMP)-14 inhibitory mAbs. Assays included affinity and potency measurements, enzymatic kinetics, a competitive enzyme-linked immunosorbent assay, proteolytic stability, and epitope mapping followed by quantitative analysis of binding energy changes. The results collectively indicated that these mAbs of convex paratopes were competitive inhibitors recognizing the vicinity of the active cleft, with their significant epitopes scattered across the north and south rims of the cleft. Remarkably, identified epitopes were the surface loops that were highly diverse among MMPs and predominately located at the prime side of the proteolytic site, shedding light on the mechanisms of target selectivity and proteolytic resistance. Substrate sequence profiling and paratope mutagenesis further suggested that mAb 3A2 bound to the active-site cleft in a canonical (substrate-like) manner, by direct interactions between 100hNLVATP100m of its CDR-H3 and subsites S1-S5' of MMP-14. Overall, synthetic mAbs carrying convex paratopes can achieve efficient inhibition and thus hold great therapeutic promise for effectively and safely targeting biomedically important proteases.
Collapse
Affiliation(s)
- Dong Hyun Nam
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ki Baek Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Evan Kruchowy
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Henry Pham
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
45
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1779-1795. [PMID: 32725282 DOI: 10.1007/s00210-020-01935-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, the worldwide interest is growing to use medicinal plants and their active constituents to develop new potent medicines with fewer side effects. Precise dietary compounds have prospective beneficial applications for various neurodegenerative ailments. Rosmarinic acid is a polyphenol and is detectable most primarily in many Lamiaceae families, for instance, Rosmarinus officinalis also called rosemary. This review prepared a broad and updated literature review on rosmarinic acid elucidating its biological activities on some nervous system disorders. Rosmarinic acid has significant antinociceptive, neuroprotective, and neuroregenerative effects. In this regard, we classified and discussed our findings in different nervous system disorders including Alzheimer's disease, epilepsy, depression, Huntington's disease, familial amyotrophic lateral sclerosis, Parkinson's disease, cerebral ischemia/reperfusion injury, spinal cord injury, stress, anxiety, and pain.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary ( Rosmarinus officinalis L.) and its active constituents on nervous system disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1100-1112. [PMID: 32963731 PMCID: PMC7491497 DOI: 10.22038/ijbms.2020.45269.10541] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
Rosemary (Rosmarinus officinalis L.) is an evergreen bushy shrub which grows along the Mediterranean Sea, and sub-Himalayan areas. In folk medicine, it has been used as an antispasmodic, mild analgesic, to cure intercostal neuralgia, headaches, migraine, insomnia emotional upset, and depression. Different investigations have highlighted rosemary neuropharmacological properties as their main topics. Rosemary has significant antimicrobial, anti-inflammatory, anti-oxidant, anti-apoptotic, anti-tumorigenic, antinociceptive, and neuroprotective properties. Furthermore, it shows important clinical effects on mood, learning, memory, pain, anxiety, and sleep. The aim of the current work is to review the potential neuropharmacological effects of different rosemary extracts and its active constituents on nervous system disorders, their relevant mechanisms and its preclinical application to recall the therapeutic potential of this herb and more directions of future research projects. The data were gathered by searching the English articles in PubMed, Scopus, Google Scholar, and Web of Science. The keywords used as search terms were 'Rosmarinus officinalis', 'rosemary', 'nervous system', 'depression', 'memory', 'Alzheimer's disease' 'epilepsy', 'addiction', 'neuropathic pain', and 'disorders'. All kinds of related articles, abstracts and books were included. No time limitation was considered. Both in vitro and in vivo studies were subjected to this investigation. This review authenticates that rosemary has appeared as a worthy source for curing inflammation, analgesic, anti-anxiety, and memory boosting. It also arranges new perception for further investigations on isolated constituents, especially carnosic acid, rosmarinic acid, and essential oil to find exquisite therapeutics and support drug discovery with fewer side effects to help people suffering from nervous system disorders.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
The Lipid Receptor G2A (GPR132) Mediates Macrophage Migration in Nerve Injury-Induced Neuropathic Pain. Cells 2020; 9:cells9071740. [PMID: 32708184 PMCID: PMC7409160 DOI: 10.3390/cells9071740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Nerve injury-induced neuropathic pain is difficult to treat and mechanistically characterized by strong neuroimmune interactions, involving signaling lipids that act via specific G-protein coupled receptors. Here, we investigated the role of the signaling lipid receptor G2A (GPR132) in nerve injury-induced neuropathic pain using the robust spared nerve injury (SNI) mouse model. We found that the concentrations of the G2A agonist 9-HODE (9-Hydroxyoctadecadienoic acid) are strongly increased at the site of nerve injury during neuropathic pain. Moreover, G2A-deficient mice show a strong reduction of mechanical hypersensitivity after nerve injury. This phenotype is accompanied by a massive reduction of invading macrophages and neutrophils in G2A-deficient mice and a strongly reduced release of the proalgesic mediators TNFα, IL-6 and VEGF at the site of injury. Using a global proteome analysis to identify the underlying signaling pathways, we found that G2A activation in macrophages initiates MyD88-PI3K-AKT signaling and transient MMP9 release to trigger cytoskeleton remodeling and migration. We conclude that G2A-deficiency reduces inflammatory responses by decreasing the number of immune cells and the release of proinflammatory cytokines and growth factors at the site of nerve injury. Inhibiting the G2A receptor after nerve injury may reduce immune cell-mediated peripheral sensitization and may thus ameliorate neuropathic pain.
Collapse
|
48
|
Yuan F, Xie JL, Liu KY, Shan JL, Sun YG, Ying WG. Xanthan gum protects temporomandibular chondrocytes from IL‑1β through Pin1/NF‑κB signaling pathway. Mol Med Rep 2020; 22:1129-1136. [PMID: 32626995 PMCID: PMC7339445 DOI: 10.3892/mmr.2020.11233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/26/2020] [Indexed: 11/09/2022] Open
Abstract
Temporomandibular disorder (TMD) is a complicated and multi-factorial disease related to inflammation and cartilage destruction. Intra-articular injection of xanthan gum (XG) has been demonstrated to protect the joint cartilage and reduce osteoarthritis progression. However, the role and mechanism of XG in TMD is still unclear. In the present study, chondrocytes were isolated from rats and identified by immunofluorescence. Cells were stimulated by XG or interleukin (IL)-1β. Cell viability was analyzed by MTT assay. Tumor necrosis factor α (TNF-α) and IL-6 levels were determined by ELISA. The expression of monocyte chemoattractive protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), collagens, matrix metalloproteinases (MMPs), peptidyl-prolyl isomerase 1 (Pin1) and phosphorylated nuclear factor κB (NF-κB) p65 (p-p65) was analyzed by quantitative PCR or western blotting. MMP activity was assessed by gelatin zymography. Compared with the control, XG treatment partially reversed the IL-1β-reduced cell viability. In addition, IL-1β stimulation increased inflammatory cytokine expression, including TNF-α, IL-6 secretion, MCP-1 and iNOS expression, whereas XG treatment reduced the expression of these inflammatory cytokines compared with that of the IL-1β-stimulated cells. Additionally, XG increased the expression of collagen, but reduced MMP expression and activity as compared with that in the IL-1β group. In addition, XG treatment prevented the IL-1β-increased Pin1 and p-p65 expression. These data suggested that XG reduced the expression of inflammatory cytokines and may maintain the balance between collagens and MMPs partially through the Pin1/NF-κB signaling pathway in IL-1β-stimulated temporomandibular chondrocytes. Therefore, XG may be useful in the treatment of TMD.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Prosthodontics, East Branch, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Jian-Li Xie
- Department of Prosthodontics, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Ke-Yin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250001, P.R. China
| | - Jian-Liang Shan
- Department of Prosthodontics, Shungeng Branch, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Yu-Gang Sun
- Department of Prosthodontics, Shungeng Branch, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| | - Wang-Gui Ying
- Department of Prosthodontics, Shungeng Branch, Jinan Stomatological Hospital, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
49
|
Wangzhou A, McIlvried LA, Paige C, Barragan-Iglesias P, Shiers S, Ahmad A, Guzman CA, Dussor G, Ray PR, Gereau RW, Price TJ. Pharmacological target-focused transcriptomic analysis of native vs cultured human and mouse dorsal root ganglia. Pain 2020; 161:1497-1517. [PMID: 32197039 PMCID: PMC7305999 DOI: 10.1097/j.pain.0000000000001866] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dorsal root ganglion (DRG) neurons detect sensory inputs and are crucial for pain processing. They are often studied in vitro as dissociated cell cultures with the assumption that this reasonably represents in vivo conditions. However, to the best of our knowledge, no study has directly compared genome-wide transcriptomes of DRG tissue in vivo versus in vitro or between laboratories and culturing protocols. Comparing RNA sequencing-based transcriptomes of native to cultured (4 days in vitro) human or mouse DRG, we found that the overall expression levels of many ion channels and G-protein-coupled receptors specifically expressed in neurons are markedly lower although still expressed in culture. This suggests that most pharmacological targets expressed in vivo are present under the condition of dissociated cell culture, but with changes in expression levels. The reduced relative expression for neuronal genes in human DRG cultures is likely accounted for by increased expression of genes in fibroblast-like and other proliferating cells, consistent with their mitotic status in these cultures. We found that the expression of a subset of genes typically expressed in neurons increased in human and mouse DRG cultures relative to the intact ganglion, including genes associated with nerve injury or inflammation in preclinical models such as BDNF, MMP9, GAL, and ATF3. We also found a striking upregulation of a number of inflammation-associated genes in DRG cultures, although many were different between mouse and human. Our findings suggest an injury-like phenotype in DRG cultures that has important implications for the use of this model system for pain drug discovery.
Collapse
Affiliation(s)
- Andi Wangzhou
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Lisa A. McIlvried
- Washington University Pain Center and Department of
Anesthesiology, Washington University School of Medicine
| | - Candler Paige
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Paulino Barragan-Iglesias
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Stephanie Shiers
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Ayesha Ahmad
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Carolyn A. Guzman
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Gregory Dussor
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Pradipta R. Ray
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of
Anesthesiology, Washington University School of Medicine
| | - Theodore J. Price
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| |
Collapse
|
50
|
Donnelly CR, Andriessen AS, Chen G, Wang K, Jiang C, Maixner W, Ji RR. Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain. Neurotherapeutics 2020; 17:846-860. [PMID: 32820378 PMCID: PMC7609632 DOI: 10.1007/s13311-020-00905-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Interactions between central glial cells and neurons in the pain circuitry are critical contributors to the pathogenesis of chronic pain. In the central nervous system (CNS), two major glial cell types predominate: astrocytes and microglia. Injuries or pathological conditions which evoke pain are concurrently associated with the presence of a reactive microglia or astrocyte state, which is characterized by a variety of changes in the morphological, molecular, and functional properties of these cells. In this review, we highlight the changes that reactive microglia and astrocytes undergo following painful injuries and insults and discuss the critical and interactive role these two cell types play in the initiation and maintenance of chronic pain. Additionally, we focus on several crucial mechanisms by which microglia and astrocytes contribute to chronic pain and provide commentary on the therapeutic promise of targeting these pathways. In particular, we discuss how the inflammasome in activated microglia drives maturation and release of key pro-inflammatory cytokines, which drive pain through neuronal- and glial regulations. Moreover, we highlight several potentially-druggable hemichannels and proteases produced by reactive microglia and astrocytes in pain states and discuss how these pathways regulate distinct phases during pain pathogenesis. We also review two emerging areas in chronic pain research: 1) sexually dimorphic glial cell signaling and 2) the role of oligodendrocytes. Finally, we highlight important considerations for potential pain therapeutics targeting glial cell mediators as well as questions that remain in our conceptual understanding of glial cell activation in pain states.
Collapse
Affiliation(s)
- Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Amanda S Andriessen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kaiyuan Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|