1
|
Cagigas ML, De Ciutiis I, Masedunskas A, Fontana L. Dietary and pharmacological energy restriction and exercise for healthspan extension. Trends Endocrinol Metab 2025:S1043-2760(25)00076-1. [PMID: 40318928 DOI: 10.1016/j.tem.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 05/07/2025]
Abstract
Extending healthspan - the years lived in optimal health - holds transformative potential to reduce chronic diseases and healthcare costs. Dietary restriction (DR), particularly when combined with nutrient-rich diets and exercise, is among the most effective, evidence-based strategies for enhancing metabolic health and longevity. By targeting fundamental pathways, it mitigates the onset and progression of obesity, type 2 diabetes (T2D), cardiovascular disease (CVD), neurodegeneration, and cancer. This review synthesizes human data on the impact of DR and exercise on metabolic and age-related diseases, while emphasizing key biological mechanisms such as nutrient sensing, insulin sensitivity, inflammation, mitochondrial function, and gut microbiota. We also examine the emerging role of pharmacologically induced DR, focusing on glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) that partially mimic DR and present opportunities for chronic disease prevention.
Collapse
Affiliation(s)
- Maria Lastra Cagigas
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Isabella De Ciutiis
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Andrius Masedunskas
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Luigi Fontana
- Charles Perkins Center, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Caprara G, Pallavi R, Sanyal S, Pelicci PG. Dietary Restrictions and Cancer Prevention: State of the Art. Nutrients 2025; 17:503. [PMID: 39940361 PMCID: PMC11820753 DOI: 10.3390/nu17030503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Worldwide, almost 10 million cancer deaths occurred in 2022, a number that is expected to rise to 16.3 million by 2040. Primary prevention has long been acknowledged as a crucial approach to reducing cancer incidence. In fact, between 30 and 50 percent of all tumors are known to be preventable by eating a healthy diet, staying active, avoiding alcohol, smoking, and being overweight. Accordingly, many international organizations have created tumor prevention guidelines, which underlie the importance of following a diet that emphasizes eating plant-based foods while minimizing the consumption of red/processed meat, sugars, processed foods, and alcohol. However, further research is needed to define the relationship between the effect of specific diets or nutritional components on cancer prevention. Interestingly, reductions in food intake and dietetic restrictions can extend the lifespan of yeast, nematodes, flies, and rodents. Despite controversial results in humans, those approaches have the potential to ameliorate health via direct and indirect effects on specific signaling pathways involved in cancer onset. Here, we describe the latest knowledge on the cancer-preventive potential of dietary restrictions and the biochemical processes involved. Molecular, preclinical, and clinical studies evaluating the effects of different fasting strategies will also be reviewed.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| | - Rani Pallavi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Shalini Sanyal
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, India
- The Operation Eyesight Universal Institute for Eye Cancer, L. V. Prasad Eye Institute, Hyderabad 500034, India; (R.P.); (S.S.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20139 Milan, Italy
| |
Collapse
|
3
|
He J, Chen D, Xiong W, Wang Y, Chen S, Yang M, Dong Z. A Single-Cell Analysis of the NK-Cell Landscape Reveals That Dietary Restriction Boosts NK-Cell Antitumor Immunity via Eomesodermin. Cancer Immunol Res 2024; 12:1508-1524. [PMID: 39150687 DOI: 10.1158/2326-6066.cir-23-0944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Abnormal metabolism in tumor cells represents a potential target for tumor therapy. In this regard, dietary restriction (DR) or its combination with anticancer drugs is of interest as it can impede the growth of tumor cells. In addition to its effects on tumor cells, DR also plays an extrinsic role in restricting tumor growth by regulating immune cells. NK cells are innate immune cells involved in tumor immunosurveillance. However, it remains uncertain whether DR can assist NK cells in controlling tumor growth. In this study, we demonstrate that DR effectively inhibits metastasis of melanoma cells to the lung. Consistent with this, the regression of tumors induced by DR was minimal in mice lacking NK cells. Single-cell RNA sequencing analysis revealed that DR enriched a rejuvenated subset of CD27+CD11b+ NK cells. Mechanistically, DR activated a regulatory network involving the transcription factor Eomesodermin (Eomes), which is essential for NK-cell development. First, DR promoted the expression of Eomes by optimizing mTORC1 signaling. The upregulation of Eomes revived the subset of functional CD27+CD11b+ NK cells by counteracting the expression of T-bet and downstream Zeb2. Moreover, DR enhanced the function and chemotaxis of NK cells by increasing the accessibility of Eomes to chromatin, leading to elevated expression of adhesion molecules and chemokines. Consequently, we conclude that DR therapy enhances tumor immunity through nontumor autonomous mechanisms, including promoting NK-cell tumor immunosurveillance and activation.
Collapse
Affiliation(s)
- Junming He
- Department of Allergy, The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Donglin Chen
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Wei Xiong
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Yuande Wang
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Shasha Chen
- Department of Allergy, The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis and Infection Prevention and Control, The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongjun Dong
- Department of Allergy, The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
5
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
6
|
Miranda BCJ, Tustumi F, Nakamura ET, Shimanoe VH, Kikawa D, Waisberg J. Obesity and Colorectal Cancer: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1218. [PMID: 39202500 PMCID: PMC11355959 DOI: 10.3390/medicina60081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Cancer is a multicausal disease, and environmental, cultural, socioeconomic, lifestyle, and genetic factors can influence the risk of developing cancer. Colorectal cancer (CRC) stands as the third most common cancer globally. Some countries have observed a rise in the incidence of CRC, especially among young people. This increase is associated with lifestyle changes over the last few decades, including changes in diet patterns, a sedentary lifestyle, and obesity. Currently, obesity and overweight account for approximately 39% of the world's population and increase the risk of overall mortality of certain cancer types. This study aims to conduct a literature review examining the association between obesity and CRC. Materials and Methods: This narrative review explored the pathophysiological mechanisms, treatment strategies, and challenges related to obesity and CRC. Results: Several studies have established a clear causal relationship between obesity and CRC, showing that individuals with morbid obesity are at a higher risk of developing colorectal cancer. The adipose tissue, particularly the visceral, secretes proinflammatory cytokines, such as TNF-alpha, interleukin-6, and C-reactive protein. Chronic inflammation is closely linked to cancer initiation and progression, with a complex interplay of molecular mechanisms underlying this association. Obesity can complicate the treatment of CRC due to several factors, reducing the therapeutic effectiveness and increasing the risk for adverse events during treatment. Dietary modification, calorie restriction, and other types of weight-control strategies can reduce the risk of CRC development and improve treatment outcomes. Conclusions: Obesity is intricately linked to CRC development and progression, making it a crucial target for intervention, whether through diet therapy, physical exercises, medical therapy, or bariatric surgery.
Collapse
Affiliation(s)
- Bárbara Cristina Jardim Miranda
- Department of Surgery, Instituto de Assistência Médica ao Servidor Público Estadual—IAMSPE, Sao Paulo 04029-000, SP, Brazil
- Department of Surgery, Faculdade de Medicina do ABC—FMABC, Santo Andre 09060-870, SP, Brazil
| | - Francisco Tustumi
- Department of Gastroenterology, Faculty of Medicine, Universidade de São Paulo—USP, Sao Paulo 14040-903, SP, Brazil
- Department of Health Sciences, Sociedade Beneficente Israelita Brasileira Albert Einstein, Sao Paulo 05652-900, SP, Brazil
| | - Eric Toshiyuki Nakamura
- Department of Gastroenterology, Faculty of Medicine, Universidade de São Paulo—USP, Sao Paulo 14040-903, SP, Brazil
| | - Victor Haruo Shimanoe
- Department of Gastroenterology, Faculty of Medicine, Universidade de São Paulo—USP, Sao Paulo 14040-903, SP, Brazil
| | - Daniel Kikawa
- Department of Gastroenterology, Faculty of Medicine, Universidade de São Paulo—USP, Sao Paulo 14040-903, SP, Brazil
| | - Jaques Waisberg
- Department of Surgery, Instituto de Assistência Médica ao Servidor Público Estadual—IAMSPE, Sao Paulo 04029-000, SP, Brazil
- Department of Surgery, Faculdade de Medicina do ABC—FMABC, Santo Andre 09060-870, SP, Brazil
| |
Collapse
|
7
|
Nakatsu G, Andreeva N, MacDonald MH, Garrett WS. Interactions between diet and gut microbiota in cancer. Nat Microbiol 2024; 9:1644-1654. [PMID: 38907007 DOI: 10.1038/s41564-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Dietary patterns and specific dietary components, in concert with the gut microbiota, can jointly shape susceptibility, resistance and therapeutic response to cancer. Which diet-microbial interactions contribute to or mitigate carcinogenesis and how they work are important questions in this growing field. Here we interpret studies of diet-microbial interactions to assess dietary determinants of intestinal colonization by opportunistic and oncogenic bacteria. We explore how diet-induced expansion of specific gut bacteria might drive colonic epithelial tumorigenesis or create immuno-permissive tumour milieus and introduce recent findings that provide insight into these processes. Additionally, we describe available preclinical models that are widely used to study diet, microbiome and cancer interactions. Given the rising clinical interest in dietary modulations in cancer treatment, we highlight promising clinical trials that describe the effects of different dietary alterations on the microbiome and cancer outcomes.
Collapse
Affiliation(s)
- Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Meghan H MacDonald
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
8
|
Nguyen NTA, Jiang Y, McQuade JL. Eating away cancer: the potential of diet and the microbiome for shaping immunotherapy outcome. Front Immunol 2024; 15:1409414. [PMID: 38873602 PMCID: PMC11169628 DOI: 10.3389/fimmu.2024.1409414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The gut microbiome (GMB) plays a substantial role in human health and disease. From affecting gut barrier integrity to promoting immune cell differentiation, the GMB is capable of shaping host immunity and thus oncogenesis and anti-cancer therapeutic response, particularly with immunotherapy. Dietary patterns and components are key determinants of GMB composition, supporting the investigation of the diet-microbiome-immunity axis as a potential avenue to enhance immunotherapy response in cancer patients. As such, this review will discuss the role of the GMB and diet on anti-cancer immunity. We demonstrate that diet affects anti-cancer immunity through both GMB-independent and GMB-mediated mechanisms, and that different diet patterns mold the GMB's functional and taxonomic composition in distinctive ways. Dietary modulation therefore shows promise as an intervention for improving cancer outcome; however, further and more extensive research in human cancer populations is needed.
Collapse
Affiliation(s)
| | | | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
9
|
Ho AN, Kiesel VA, Gates CE, Brosnan BH, Connelly SP, Glenny EM, Cozzo AJ, Hursting SD, Coleman MF. Exogenous Metabolic Modulators Improve Response to Carboplatin in Triple-Negative Breast Cancer. Cells 2024; 13:806. [PMID: 38786030 PMCID: PMC11119195 DOI: 10.3390/cells13100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks targeted therapies, leaving cytotoxic chemotherapy as the current standard treatment. However, chemotherapy resistance remains a major clinical challenge. Increased insulin-like growth factor 1 signaling can potently blunt chemotherapy response, and lysosomal processes including the nutrient scavenging pathway autophagy can enable cancer cells to evade chemotherapy-mediated cell death. Thus, we tested whether inhibition of insulin receptor/insulin-like growth factor 1 receptor with the drug BMS-754807 and/or lysosomal disruption with hydroxychloroquine (HCQ) could sensitize TNBC cells to the chemotherapy drug carboplatin. Using in vitro studies in multiple TNBC cell lines, in concert with in vivo studies employing a murine syngeneic orthotopic transplant model of TNBC, we show that BMS-754807 and HCQ each sensitized TNBC cells and tumors to carboplatin and reveal that exogenous metabolic modulators may work synergistically with carboplatin as indicated by Bliss analysis. Additionally, we demonstrate the lack of overt in vivo toxicity with our combination regimens and, therefore, propose that metabolic targeting of TNBC may be a safe and effective strategy to increase sensitivity to chemotherapy. Thus, we conclude that the use of exogenous metabolic modulators, such as BMS-754807 or HCQ, in combination with chemotherapy warrants additional study as a strategy to improve therapeutic responses in women with TNBC.
Collapse
Affiliation(s)
- Alyssa N. Ho
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Violet A. Kiesel
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Claire E. Gates
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bennett H. Brosnan
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P. Connelly
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elaine M. Glenny
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alyssa J. Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen D. Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael Francis Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
10
|
Pio R, Senent Y, Tavira B, Ajona D. Fasting and fasting-mimicking conditions in the cancer immunotherapy era. J Physiol Biochem 2024:10.1007/s13105-024-01020-3. [PMID: 38587595 DOI: 10.1007/s13105-024-01020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Fasting and fasting-mimicking conditions modulate tumor metabolism and remodel the tumor microenvironment (TME), which could be exploited for the treatment of tumors. A body of evidence demonstrates that fasting and fasting-mimicking conditions can kill cancer cells, or sensitize them to the antitumor activity of standard-of-care drugs while protecting normal cells against their toxic side effects. Pre- and clinical data also suggest that immune responses are involved in these therapeutic effects. Therefore, there is increasing interest in evaluating the impact of fasting-like conditions in the efficacy of antitumor therapies based on the restoration or activation of antitumor immune responses. Here, we review the recent progress in the intersection of fasting-like conditions and current cancer treatments, with an emphasis on cancer immunotherapy.
Collapse
Affiliation(s)
- Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Yaiza Senent
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Beatriz Tavira
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain.
- Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain.
- Navarra's Health Research Institute (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
11
|
Song X, Wei J, Li Y, Zhu W, Cai Z, Li K, Wei J, Lu J, Pan W, Li M. An integrative pan-cancer analysis of the molecular characteristics of dietary restriction in tumour microenvironment. EBioMedicine 2024; 102:105078. [PMID: 38507875 PMCID: PMC10965464 DOI: 10.1016/j.ebiom.2024.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Dietary restriction (DR), a general term for dieting, has been demonstrated as an effective intervention in reducing the occurrence of cancers. Molecular activities associated with DR are crucial in mediating its anti-cancer effects, yet a comprehensive exploration of the landscape of these activities at the pan-cancer level is still lacking. METHODS We proposed a computational approach for quantifying DR-related molecular activities and delineating the landscape of these activities across 33 cancer types and 30 normal tissues within 27,320 samples. We thoroughly examined the associations between DR-related molecular activities and various factors, including the tumour microenvironment, immunological phenotypes, genomic features, and clinical prognosis. Meanwhile, we identified two DR genes that show potential as prognostic predictors in hepatocellular carcinoma and verified them by immunohistochemical assays in 90 patients. FINDINGS We found that DR-related molecular activities showed a close association with tumour immunity and hold potential for predicting immunotherapy responses in various cancers. Importantly, a higher level of DR-related molecular activities is associated with improved overall survival and cancer-specific survival. FZD1 and G6PD are two DR genes that serve as biomarkers for predicting the prognosis of patients with hepatocellular carcinoma. INTERPRETATION This study presents a robust link between DR-related molecular activities and tumour immunity across multiple cancer types. Our research could open the path for further investigation of DR-related molecular processes in cancer treatment. FUNDING National Natural Science Foundation of China (Grant No. 82000628) and the Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine Foundation of Guangdong Province (Grant No. 2023LSYS001).
Collapse
Affiliation(s)
- Xiaoyi Song
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jiaxing Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Wen Zhu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhiyuan Cai
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Kunwei Li
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jingyue Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jieyu Lu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Wanping Pan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Man Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Biobank, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Department of Information Technology and Data Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
12
|
Giuliani G, Longo VD. Ketone bodies in cell physiology and cancer. Am J Physiol Cell Physiol 2024; 326:C948-C963. [PMID: 38189128 DOI: 10.1152/ajpcell.00441.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Ketogenic diets (KDs), fasting, or prolonged physical activity elevate serum ketone bodies (KBs) levels, providing an alternative fuel source for the brain and other organs. However, KBs play pleiotropic roles that go beyond their role in energy production. KBs can act as signaling metabolites, influence gene expression, proteins' posttranslational modifications (PTMs), inflammation, and oxidative stress. Here, we explore the impact of KBs on mammalian cell physiology, including aging and tissue regeneration. We also concentrate on KBs and cancer, given the extensive evidence that dietary approaches inducing ketosis, including fasting-mimicking diets (FMDs) and KDs, can prevent cancer and affect tumor progression.
Collapse
Affiliation(s)
- Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
13
|
Benfato ID, Quintanilha ACS, Henrique JS, Souza MA, Dos Anjos Rosário B, Beserra-Filho JIA, Ribeiro AM, Le Sueur Maluf L, de Oliveira CAM. Long-term calorie restriction prevented memory impairment in middle-aged male mice and increased a marker of DNA oxidative stress in hippocampal dentate gyrus. Neurobiol Learn Mem 2024; 209:107902. [PMID: 38336097 DOI: 10.1016/j.nlm.2024.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Calorie restriction (CR) is a non-invasive and economic approachknown to increase healthspan and life expectancy, through a decrease in oxidative stress, an increase in neurotrophins, among other benefits. However, it is not clear whether its benefit could be noted earlier, as at the beginning of middle-age. Hence, weaimed to determine whether six months of long-term CR, from early adulthood to the beginning of middle age (10 months of age) could positively affect cognitive, neurochemical, and behavioral parameters. Male C57BL6/J mice were randomly distributed into Young Control (YC, ad libitum food), Old Control (OC, ad libitum food), and Old Restricted (OR, 30 % of caloric restriction) groups. To analyze the cognitive and behavioral aspects, the novel object recognition task (NOR), open field, and elevated plus maze tests were performed. In addition, immunohistochemistry targetingΔFosB (neuronal activity), brain-derived neurotrophic factor (BDNF) and the DNA oxidative damage (8OHdG) in hippocampal subfields CA1, CA2, CA3, and dentate gyrus (DG), and in basolateral amygdala and striatum were performed. Our results showed that long-term CR prevented short-term memory impairment related to aging and increased 8OHdG in hippocampal DG. BDNF was not involved in the effects of either age or CR on memory at middle-age, as it increased in CA3 of the OC group but was not altered in OR. Regarding anxiety-type behavior, no parameter showed differences between the groups. In conclusion, while the effects of long-term CR on anxiety-type behavior were inconclusive, it mitigated the memory deficit related to aging, which was accompanied by an increase in hippocampal 8OHdG in DG. Future studies should investigate whether the benefits of CR would remain if the restriction were interrupted after this long-term protocol.
Collapse
Affiliation(s)
- Izabelle Dias Benfato
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Brasil
| | | | - Jessica Salles Henrique
- Programa de Pós-Graduação em Neurologia e Neurociências, Universidade Federal de São Paulo (UNIFESP), Brasil
| | - Melyssa Alves Souza
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Brasil
| | | | | | - Alessandra Mussi Ribeiro
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Brasil
| | - Luciana Le Sueur Maluf
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Brasil
| | | |
Collapse
|
14
|
Mecca M, Picerno S, Cortellino S. The Killer's Web: Interconnection between Inflammation, Epigenetics and Nutrition in Cancer. Int J Mol Sci 2024; 25:2750. [PMID: 38473997 DOI: 10.3390/ijms25052750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation is a key contributor to both the initiation and progression of tumors, and it can be triggered by genetic instability within tumors, as well as by lifestyle and dietary factors. The inflammatory response plays a critical role in the genetic and epigenetic reprogramming of tumor cells, as well as in the cells that comprise the tumor microenvironment. Cells in the microenvironment acquire a phenotype that promotes immune evasion, progression, and metastasis. We will review the mechanisms and pathways involved in the interaction between tumors, inflammation, and nutrition, the limitations of current therapies, and discuss potential future therapeutic approaches.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Simona Picerno
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Salvatore Cortellino
- Laboratory of Preclinical and Translational Research, Responsible Research Hospital, 86100 Campobasso, CB, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, 80138 Naples, NA, Italy
- S.H.R.O. Italia Foundation ETS, 10060 Candiolo, TO, Italy
| |
Collapse
|
15
|
Mishra A, Giuliani G, Longo VD. Nutrition and dietary restrictions in cancer prevention. Biochim Biophys Acta Rev Cancer 2024; 1879:189063. [PMID: 38147966 DOI: 10.1016/j.bbcan.2023.189063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The composition and pattern of dietary intake have emerged as key factors influencing aging, regeneration, and consequently, healthspan and lifespan. Cancer is one of the major diseases more tightly linked with aging, and age-related mortality. Although the role of nutrition in cancer incidence is generally well established, we are far from a consensus on how diet influences tumour development in different tissues. In this review, we will discuss how diet and dietary restrictions affect cancer risk and the molecular mechanisms potentially responsible for their effects. We will cover calorie restriction, intermittent fasting, prolonged fasting, fasting-mimicking diet, time-restricted eating, ketogenic diet, high protein diet, Mediterranean diet, and the vegan and vegetarian diets.
Collapse
Affiliation(s)
- Amrendra Mishra
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; IFOM, FIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milano, Italy.
| |
Collapse
|
16
|
Aslam S, Iqbal R, Saeed RF, Akram N, Ijaz F, Liaqat I, Aslam AS. Nutritional Genomics and Cancer Prevention. Cancer Treat Res 2024; 191:217-244. [PMID: 39133410 DOI: 10.1007/978-3-031-55622-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The scientific innovations have emphasized the importance of diet for one's health and wellbeing. The genetic revolution has enhanced our understanding about the effect of nutrients on genomic and transcriptomic profiles and gene-nutrition interactions (nutritional genomics). Furthermore, the contribution of micronutrient insufficiencies and macronutrient excess is evident in the development and progression of many diseases, especially cancer. It is speculated that nutrients have capacity to implicitly affect the physiological and pathophysiological processes via gene expression various regulatory processes. Moreover, the nutrients are known to affect the cellular networks involved in cancer progression and cancer inhibitory mechanisms targeting apoptosis or impaired angiogenesis. The interplay of regulatory processes in physiological systems and nutrients provides basis for the nutrigenomics. The functional genomics data further argue that cellular and molecular processes involved in the cancer progression are possibly programed genes during early development which may persist into adulthood and become detrimental. The incorporation of the functional interactions between nutrients and the genome has revolutionized the field of personalized medicine and provided the foundation for targeted cancer therapy through nutrients. There is growing evidence on the beneficial impacts of eating habits on lowering the risk of cancer, even if it can be difficult to pinpoint the precise role of nutrients. The nutrigenomic information may provide bases to develop disease prevention and treatment via nutrition, at the molecular level.
Collapse
Affiliation(s)
- Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Fatima Saeed
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Nuzhat Akram
- Hamdard College of Medicine, Hamdard University, Karachi, Pakistan
| | - Farhat Ijaz
- CMH Lahore Medical College & IOD (NUMS), Lahore, Pakistan
| | - Irfana Liaqat
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
17
|
Hine C, Patel AK, Ponti AK. Diet-Modifiable Redox Alterations in Ageing and Cancer. Subcell Biochem 2024; 107:129-172. [PMID: 39693023 PMCID: PMC11753504 DOI: 10.1007/978-3-031-66768-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
With ageing comes some of life's best and worst moments. Those lucky enough to live out into the seventh, eighth, and nineth decades and perhaps beyond have more opportunities to experience the wonders and joys of the world. As the world's population shifts towards more and more of these individuals, this is something to be celebrated. However, it is not without negative consequences. Advanced age also ushers in health decline and the burden of non-communicable diseases such as cancer, heart disease, stroke, and organ function decay. Thus, alleviating or at least dampening the severity of ageing as a whole, as well as these individual age-related disorders will enable the improvement in lifespan and healthspan. In the following chapter, we delve into hypothesised causes of ageing and experimental interventions that can be taken to slow their progression. We also highlight cellular and subcellular mechanisms of ageing with a focus on protein thiol oxidation and posttranslational modifications that impact cellular homeostasis and the advent and progression of ageing-related cancers. By having a better understanding of the mechanisms of ageing, we can hopefully develop effective, safe, and efficient therapeutic modalities that can be used prophylactically and/or concurrent to the onset of ageing.
Collapse
Affiliation(s)
- Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| | - Anand Kumar Patel
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Cardiovascular Genetics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - András K Ponti
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
18
|
Zhou X, Wang Z, Yuan K. The effect of diet and nutrition on T cell function in cancer. Int J Cancer 2023; 153:1954-1966. [PMID: 37504380 DOI: 10.1002/ijc.34668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Cancer can be considered one of the most threatening diseases to human health, and immunotherapy, especially T-cell immunotherapy, is the most promising treatment for cancers. Diet therapy is widely concerned in cancer because of its safety and fewer side effects. Many studies have shown that both the function of T cells and the progression of cancer can be affected by nutrients in the diet. In fact, it is challenging for T cells to infiltrate and eliminate cancer cells in tumor microenvironment, because of the harsh metabolic condition. The intake of different nutrients has a great influence on the proliferation, activation, differentiation and exhaustion of T cells. In this review, we summarize the effects of typical amino acids, lipids, carbohydrates and other nutritional factors on T cell functions and provide future perspectives for dietary treatment of cancer based on modifications of T cell functions.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Abstract
Obesity has been recognized to be increasing globally and is designated a disease with adverse consequences requiring early detection and appropriate care. In addition to being related to metabolic syndrome disorders such as type 2 diabetes, hypertension, stroke, and premature coronary artery disease. Obesity is also etiologically linked to several cancers. The non-gastrointestinal cancers are breast, uterus, kidneys, ovaries, thyroid, meningioma, and thyroid. Gastrointestinal (GI) cancers are adenocarcinoma of the esophagus, liver, pancreas, gallbladder, and colorectal. The brighter side of the problem is that being overweight and obese and cigarette smoking are mostly preventable causes of cancers. Epidemiology and clinical studies have revealed that obesity is heterogeneous in clinical manifestations. In clinical practice, BMI is calculated by dividing a person's weight in kilograms by the square of the person's height in square meters (kg/m2). A BMI above 30 kg/m2 (defining obesity in many guidelines) is considered obesity. However, obesity is heterogeneous. There are subdivisions for obesity, and not all obesities are equally pathogenic. Adipose tissue, in particular, visceral adipose tissue (VAT), is endocrine and abdominal obesity (a surrogate for VAT) is evaluated by waist-hip measurements or just waist measures. Visceral Obesity, through several hormonal mechanisms, induces a low-grade chronic inflammatory state, insulin resistance, components of metabolic syndrome, and cancers. Metabolically obese, normal-weight (MONW) individuals in several Asian countries may have BMI below normal levels to diagnose obesity but suffer from many obesity-related complications. Conversely, some people have high BMI but are generally healthy with no features of metabolic syndrome. Many clinicians advise weight loss by dieting and exercise to metabolically healthy obese with large body habitus than to individuals with metabolic obesity but normal BMI. The GI cancers (esophagus, pancreas, gallbladder, liver, and colorectal) are individually discussed, emphasizing the incidence, possible pathogenesis, and preventive measures. From 2005 to 2014, most cancers associated with overweight and Obesity increased in the United States, while cancers related to other factors decreased. The standard recommendation is to offer or refer adults with a body mass index (BMI) of 30 or more to intensive, multicomponent behavioral interventions. However, the clinicians have to go beyond. They should critically evaluate BMI with due consideration for ethnicity, body habitus, and other factors that influence the type of obesity and obesity-related risks. In 2001, the Surgeon General's ``Call to Action to Prevent and Decrease Overweight and Obesity'' identified obesity as a critical public health priority for the United States. At government levels reducing obesity requires policy changes that improve the food and physical activity for all. However, implementing some policies with the most significant potential benefit to public health is politically tricky. The primary care physician, as well as subspecialists, should identify overweight and Obesity based on all the variable factors in the diagnosis. The medical community should address the prevention of overweight and Obesity as an essential part of medical care as much as vaccination in preventing infectious diseases at all levels- from childhood, to adolescence, and adults.
Collapse
Affiliation(s)
- Yuntao Zou
- Department of Medicine, Saint Peter's University Hospital, 125 Andover DR, Kendall Park, New Brunswick, NJ 08901, USA
| | - Capecomorin S Pitchumoni
- Department of Medicine, Saint Peter's University Hospital, 125 Andover DR, Kendall Park, New Brunswick, NJ 08901, USA.
| |
Collapse
|
20
|
Mitchell SE, Togo J, Green CL, Derous D, Hambly C, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XX. Impact of Long-Term Graded Calorie Restriction on Survival and Body Mass Dynamics in Male C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2023; 78:1953-1963. [PMID: 37354128 PMCID: PMC10613020 DOI: 10.1093/gerona/glad152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Indexed: 06/26/2023] Open
Abstract
Calorie restriction (CR) typically promotes a reduction in body mass, which correlates with increased lifespan. We evaluated the overall changes in survival, body mass dynamics, and body composition following long-term graded CR (580 days/19 months) in male C57BL/6J mice. Control mice (0% restriction) were fed ad libitum in the dark phase only (12-hour ad libitum [12AL]). CR groups were restricted by 10%-40% of their baseline food intake (10CR, 20CR, 30CR, and 40CR). Body mass was recorded daily, and body composition was measured at 8 time points. At 728 days/24 months, all surviving mice were culled. A gradation in survival rate over the CR groups was found. The pattern of body mass loss differed over the graded CR groups. Whereas the lower CR groups rapidly resumed an energy balance with no significant loss of fat or fat-free mass, changes in the 30 and 40CR groups were attributed to higher fat-free mass loss and protection of fat mass. Day-to-day changes in body mass were less variable under CR than for the 12AL group. There was no indication that body mass was influenced by external factors. Partial autocorrelation analysis examined the relationship between daily changes in body masses. A negative correlation between mass on Day 0 and Day +1 declined with age in the 12AL but not the CR groups. A reduction in the correlation with age suggested body mass homeostasis is a marker of aging that declines at the end of life and is protected by CR.
Collapse
Affiliation(s)
| | - Jacques Togo
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Cara L Green
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Catherine Hambly
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China
- China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
21
|
Hahm JH, Seo HD, Jung CH, Ahn J. Longevity through diet restriction and immunity. BMB Rep 2023; 56:537-544. [PMID: 37482753 PMCID: PMC10618078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
The share of the population that is aging is growing rapidly. In an aging society, technologies and interventions that delay the aging process are of great interest. Dietary restriction (DR) is the most reproducible and effective nutritional intervention tested to date for delaying the aging process and prolonging the health span in animal models. Preventive effects of DR on age-related diseases have also been reported in human. In addition, highly conserved signaling pathways from small animal models to human mediate the effects of DR. Recent evidence has shown that the immune system is closely related to the effects of DR, and functions as a major mechanism of DR in healthy aging. This review discusses the effects of DR in delaying aging and preventing age-related diseases in animal, including human, and introduces the molecular mechanisms that mediate these effects. In addition, it reports scientific findings on the relationship between the immune system and DRinduced longevity. The review highlights the role of immunity as a potential mediator of the effects of DR on longevity, and provides insights into healthy aging in human. [BMB Reports 2023; 56(10): 537-544].
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
22
|
DiVito D, Wellik A, Burfield J, Peterson J, Flickinger J, Tindall A, Albanowski K, Vishnubhatt S, MacMullen L, Martin I, Muraresku C, McCormick E, George-Sankoh I, McCormack S, Goldstein A, Ganetzky R, Yudkoff M, Xiao R, Falk MJ, R Mascarenhas M, Zolkipli-Cunningham Z. Optimized Nutrition in Mitochondrial Disease Correlates to Improved Muscle Fatigue, Strength, and Quality of Life. Neurotherapeutics 2023; 20:1723-1745. [PMID: 37723406 PMCID: PMC10684455 DOI: 10.1007/s13311-023-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/20/2023] Open
Abstract
We sought to prospectively characterize the nutritional status of adults ≥ 19 years (n = 22, 27% males) and children (n = 38, 61% male) with genetically-confirmed primary mitochondrial disease (PMD) to guide development of precision nutritional support strategies to be tested in future clinical trials. We excluded subjects who were exclusively tube-fed. Daily caloric requirements were estimated using World Health Organization (WHO) equations to predict resting energy expenditure (REE) multiplied by an activity factor (AF) based on individual activity levels. We developed a Mitochondrial Disease Activity Factors (MOTIVATOR) score to encompass the impact of muscle fatigue typical of PMD on physical activity levels. PMD cohort daily diet intake was estimated to be 1,143 ± 104.1 kcal in adults (mean ± SEM, 76.2% of WHO-MOTIVATOR predicted requirement), and 1,114 ± 62.3 kcal in children (86.4% predicted). A total of 11/22 (50%) adults and 18/38 (47.4%) children with PMD consumed ≤ 75% predicted daily Kcal needs. Malnutrition was identified in 16/60 (26.7%) PMD subjects. Increased protein and fat intake correlated with improved muscle strength in those with insufficient daily Kcal intake (≤ 75% predicted); higher protein and fat intake correlated with decreased muscle fatigue; and higher protein, fat, and carbohydrate intake correlated with improved quality of life (QoL). These data demonstrate the frequent occurrence of malnutrition in PMD and emphasize the critical need to devise nutritional interventions to optimize clinical outcomes.
Collapse
Affiliation(s)
- Donna DiVito
- Clinical Nutrition Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amanda Wellik
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica Burfield
- Clinical Nutrition Department, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Peterson
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean Flickinger
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alyssa Tindall
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kimberly Albanowski
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shailee Vishnubhatt
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura MacMullen
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Isaac Martin
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colleen Muraresku
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth McCormick
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ibrahim George-Sankoh
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana McCormack
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Goldstein
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca Ganetzky
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marc Yudkoff
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rui Xiao
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maria R Mascarenhas
- Division of Gastroenterology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Human Genetics, Mitochondrial Medicine Frontier Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Cortellino S, Longo VD. Metabolites and Immune Response in Tumor Microenvironments. Cancers (Basel) 2023; 15:3898. [PMID: 37568713 PMCID: PMC10417674 DOI: 10.3390/cancers15153898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The remodeled cancer cell metabolism affects the tumor microenvironment and promotes an immunosuppressive state by changing the levels of macro- and micronutrients and by releasing hormones and cytokines that recruit immunosuppressive immune cells. Novel dietary interventions such as amino acid restriction and periodic fasting mimicking diets can prevent or dampen the formation of an immunosuppressive microenvironment by acting systemically on the release of hormones and growth factors, inhibiting the release of proinflammatory cytokines, and remodeling the tumor vasculature and extracellular matrix. Here, we discuss the latest research on the effects of these therapeutic interventions on immunometabolism and tumor immune response and future scenarios pertaining to how dietary interventions could contribute to cancer therapy.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy;
| | - Valter D. Longo
- IFOM, The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
24
|
Wang L, Derous D, Huang X, Mitchell S, Douglas A, Lusseau D, Wang Y, Speakman J. The Effects of Graded Levels of Calorie Restriction: XIX. Impact of Graded Calorie Restriction on Protein Expression in the Liver. J Gerontol A Biol Sci Med Sci 2023; 78:1125-1134. [PMID: 36757838 PMCID: PMC10329235 DOI: 10.1093/gerona/glad017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 02/10/2023] Open
Abstract
Calorie restriction (CR) extends life span by modulating the mechanisms involved in aging. We quantified the hepatic proteome of male C57BL/6 mice exposed to graded levels of CR (0%-40% CR) for 3 months, and evaluated which signaling pathways were most affected. The metabolic pathways most significantly stimulated by the increase in CR, included the glycolysis/gluconeogenesis pathway, the pentose phosphate pathway, the fatty acid degradation pathway, the valine, leucine, and isoleucine degradation pathway, and the lysine degradation pathway. The metabolism of xenobiotics by cytochrome P450 pathway was activated and feminized by increased CR, while production in major urinary proteins (Mups) was strongly reduced, consistent with a reduced investment in reproduction as predicted by the disposable soma hypothesis. However, we found no evidence of increased somatic protection, and none of the 4 main pathways implied to be linked to the impact of CR on life span (insulin/insulin-like growth factor [IGF-1], nuclear factor-κB [NF-κB], mammalian Target of Rapamycin [mTOR], and sirtuins) as well as pathways in cancer, were significantly changed at the protein level in relation to the increase in CR level. This was despite previous work at the transcriptome level in the same individuals indicating such changes. On the other hand, we found Aldh2, Aldh3a2, and Aldh9a1 in carnitine biosynthesis and Acsl5 in carnitine shuttle system were up-regulated by increased CR, which are consistent with our previous work on metabolome of the same individuals. Overall, the patterns of protein expression were more consistent with a "clean cupboards" than a "disposable soma" interpretation.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, China
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- CAS Centre for Excellence in Animal Evolution and Genetics (CCEAEG), Kunming, China
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
25
|
Al-Jada DN, Takruri HR, Talib WH. From antiepileptic therapy to promising adjuvant in medical oncology: A historical view of the ketogenic diet. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
26
|
Pollicino F, Veronese N, Dominguez LJ, Barbagallo M. Mediterranean diet and mitochondria: New findings. Exp Gerontol 2023; 176:112165. [PMID: 37019345 DOI: 10.1016/j.exger.2023.112165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Mitochondria are subcellular organelles known for their central role in several energetic processes. Accumulating evidence supports a key role for mitochondria in the physiological response to both acute and chronic stress exposure, and, ultimately, the biological embedding of adversity in health and psychological functioning that increases the interest of these organelles in several medical conditions typical of older people. At the same time, Mediterranean diet (MedDiet) seems to affect the function of mitochondria further justifying the role of this diet in lowering the risk of negative health outcomes. In this review, we have elucidated the role of mitochondria in human diseases including the fundamental role in stress, aging, and neuropsychiatric and metabolic disorders. Overall, MedDiet can limit the production of free radicals, being rich in polyphenols. Moreover, MedDiet reduced mitochondrial reactive oxygen species (mtROS) production and ameliorated mitochondrial damage and apoptosis. Similarly, whole grains can maintain the mitochondrial respiration and membrane potential, finally improving mitochondrial function. Other components of MedDiet can have anti-inflammatory effects, again modulating mitochondrial function. For example, delphinidin (a flavonoid present in red wine and berries) restored the elevated level of mitochondrial respiration, mtDNA content, and complex IV activity; similarly, resveratrol and lycopene, present in grapefruits and tomatoes, exerted an anti-inflammatory effect modulating mitochondrial enzymes. Altogether, these findings support the notion that several positive effects of MedDiet can be mediated by a modulation in mitochondrial function indicating the necessity of further studies in human beings for finally confirming these findings.
Collapse
Affiliation(s)
- Francesco Pollicino
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"- PROMISE - University of Palermo, 90127 Palermo, Italy
| | - Nicola Veronese
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"- PROMISE - University of Palermo, 90127 Palermo, Italy.
| | - Ligia J Dominguez
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"- PROMISE - University of Palermo, 90127 Palermo, Italy; School of Medicine and Surgery, University Kore of Enna, Italy
| | - Mario Barbagallo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, "G. D'Alessandro"- PROMISE - University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
27
|
Fan H, Mao Q, Zhang W, Fang Q, Zou Q, Gong J. The Impact of Bariatric Surgery on Pancreatic Cancer Risk: a Systematic Review and Meta-Analysis. Obes Surg 2023:10.1007/s11695-023-06570-x. [PMID: 37020161 DOI: 10.1007/s11695-023-06570-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
A growing body of evidence suggests that bariatric surgery is associated with a reduced risk of some cancers. This meta-analysis aims to determine whether bariatric surgery affects pancreatic cancer risk. We conducted a comprehensive literature search of PubMed, Embase, and Web of Science databases. Fixed-effect models were used to estimate pooled data and presented as odds ratio (OR) and 95% confidence interval (CI). Heterogeneity was assessed using the Cochran Q test and I2 test. A total of 9 cohort studies involving 1,147,473 patients were included in the analysis. The pooled OR was 0.76 (95% CI = 0.64-0.90). The Cochran Q test and I2 test indicated only mild heterogeneity (P = 0.12, I2 = 38%). In the subgroup analyses, the pooled OR was 0.67 (95% CI = 0.54-0.82) for North America. In the subgroup analyses by mean follow-up time, the pooled OR was 0.46 (95% CI = 0.28-0.74) for less than 5 years. In conclusion, bariatric surgery has a positive effect on pancreatic cancer reduction, especially in North America. This effect may diminish or disappear with time.
Collapse
Affiliation(s)
- Hongdan Fan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qingsong Mao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qu Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
28
|
Mizuno Y, Inaba Y, Masuoka H, Kibe M, Kosaka S, Natsuhara K, Hirayama K, Inthavong N, Kounnavong S, Tomita S, Umezaki M. Impact of modernization on oxidative stress among indigenous populations in northern Laos. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 36919625 DOI: 10.1002/ajpa.24722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/30/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES To explore the impact of modernization on oxidative stress during a momentous health transition process, we investigated differences in oxidative stress among the indigenous populations of villages in northern Laos with different levels of modernization. METHODS We conducted a cross-sectional study of 380 adults in three villages with different levels of modernization. Three biomarkers related to oxidative stress were measured: urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane concentrations (both measured by liquid chromatography-tandem mass spectrometry), and blood telomere length (measured with qPCR). We examined associations between village-level modernization and oxidative stress-related biomarkers in a multilevel analysis including a random effect and covariates. RESULTS The geometric means of urinary 8-OHdG and 8-isoprostane concentrations were 2.92 and 0.700 μg/g creatinine, respectively, in our study population. Higher urinary 8-OHdG concentrations and shorter telomeres were observed in participants from the more modernized villages, whereas urinary 8-isoprostane concentrations did not differ significantly among villages. CONCLUSIONS Our findings imply that modernization-induced changes in lifestyle may increase oxidative DNA damage. Baseline levels of oxidative lipid damage are expected to be high in the indigenous populations of northern Laos. Assessments of oxidative stress may provide valuable insights into the mechanisms of health transition in specific populations.
Collapse
Affiliation(s)
- Yuki Mizuno
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yohei Inaba
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Hiroaki Masuoka
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mihoko Kibe
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoko Kosaka
- Department of Public Health and Nursing, Nagasaki University, Nagasaki, Japan
| | | | - Kazuhiro Hirayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nouhak Inthavong
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Laos
| | | | - Shinsuke Tomita
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Masahiro Umezaki
- Department of Human Ecology, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells 2023; 12:cells12050769. [PMID: 36899905 PMCID: PMC10000584 DOI: 10.3390/cells12050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The hypothalamus, one of the major regulatory centers in the brain, controls various homeostatic processes, and hypothalamic neural stem cells (htNSCs) have been observed to interfere with hypothalamic mechanisms regulating aging. NSCs play a pivotal role in the repair and regeneration of brain cells during neurodegenerative diseases and rejuvenate the brain tissue microenvironment. The hypothalamus was recently observed to be involved in neuroinflammation mediated by cellular senescence. Cellular senescence, or systemic aging, is characterized by a progressive irreversible state of cell cycle arrest that causes physiological dysregulation in the body and it is evident in many neuroinflammatory conditions, including obesity. Upregulation of neuroinflammation and oxidative stress due to senescence has the potential to alter the functioning of NSCs. Various studies have substantiated the chances of obesity inducing accelerated aging. Therefore, it is essential to explore the potential effects of htNSC dysregulation in obesity and underlying pathways to develop strategies to address obesity-induced comorbidities associated with brain aging. This review will summarize hypothalamic neurogenesis associated with obesity and prospective NSC-based regenerative therapy for the treatment of obesity-induced cardiovascular conditions.
Collapse
|
30
|
Taleb NN, West J. Working with Convex Responses: Antifragility from Finance to Oncology. ENTROPY (BASEL, SWITZERLAND) 2023; 25:343. [PMID: 36832709 PMCID: PMC9955868 DOI: 10.3390/e25020343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/07/2023]
Abstract
We extend techniques and learnings about the stochastic properties of nonlinear responses from finance to medicine, particularly oncology, where it can inform dosing and intervention. We define antifragility. We propose uses of risk analysis for medical problems, through the properties of nonlinear responses (convex or concave). We (1) link the convexity/concavity of the dose-response function to the statistical properties of the results; (2) define "antifragility" as a mathematical property for local beneficial convex responses and the generalization of "fragility" as its opposite, locally concave in the tails of the statistical distribution; (3) propose mathematically tractable relations between dosage, severity of conditions, and iatrogenics. In short, we propose a framework to integrate the necessary consequences of nonlinearities in evidence-based oncology and more general clinical risk management.
Collapse
Affiliation(s)
| | - Jeffrey West
- Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
31
|
Rhodes CH, Zhu C, Agus J, Tang X, Li Q, Engebrecht J, Zivkovic AM. Human fasting modulates macrophage function and upregulates multiple bioactive metabolites that extend lifespan in Caenorhabditis elegans: a pilot clinical study. Am J Clin Nutr 2023; 117:286-297. [PMID: 36811567 PMCID: PMC10196604 DOI: 10.1016/j.ajcnut.2022.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Periodic prolonged fasting (PF) extends lifespan in model organisms and ameliorates multiple disease states both clinically and experimentally owing, in part, to its ability to modulate the immune system. However, the relationship between metabolic factors, immunity, and longevity during PF remains poorly characterized especially in humans. OBJECTIVE This study aimed to observe the effects of PF in human subjects on the clinical and experimental markers of metabolic and immune health and uncover underlying plasma-borne factors that may be responsible for these effects. METHODS In this rigorously controlled pilot study (ClinicalTrial.gov identifier, NCT03487679), 20 young males and females participated in a 3-d study protocol including assessments of 4 distinct metabolic states: 1) overnight fasted baseline state, 2) 2-h postprandial fed state, 3) 36-h fasted state, and 4) final 2-h postprandial re-fed state 12 h after the 36-h fasting period. Clinical and experimental markers of immune and metabolic health were assessed for each state along with comprehensive metabolomic profiling of participant plasma. Bioactive metabolites identified to be upregulated in circulation after 36 h of fasting were then assessed for their ability to mimic the effects of fasting in isolated human macrophage as well as the ability to extend lifespan in Caenorhabditis elegans. RESULTS We showed that PF robustly altered the plasma metabolome and conferred beneficial immunomodulatory effects on human macrophages. We also identified 4 bioactive metabolites that were upregulated during PF (spermidine, 1-methylnicotinamide, palmitoylethanolamide, and oleoylethanolamide) that could replicate these immunomodulatory effects. Furthermore, we found that these metabolites and their combination significantly extended the median lifespan of C. elegans by as much as 96%. CONCLUSIONS The results of this study reveal multiple functionalities and immunological pathways affected by PF in humans, identify candidates for the development of fasting mimetic compounds, and uncover targets for investigation in longevity research.
Collapse
Affiliation(s)
| | - Chenghao Zhu
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Joanne Agus
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA
| | - Qianyan Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA.
| |
Collapse
|
32
|
Anemoulis M, Vlastos A, Kachtsidis V, Karras SN. Intermittent Fasting in Breast Cancer: A Systematic Review and Critical Update of Available Studies. Nutrients 2023; 15:nu15030532. [PMID: 36771239 PMCID: PMC9920353 DOI: 10.3390/nu15030532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Breast cancer (BC) is the most-frequent malignancy amongst women, whereas obesity and excess caloric consumption increase the risk for developing the disease. The objective of this systematic review was to examine the impact of intermittent fasting (IF) on previously diagnosed BC patients, regarding quality of life (QoL) scores during chemotherapy, chemotherapy-induced toxicity, radiological response and BC recurrence, endocrine-related outcomes, as well as IF-induced adverse effects in these populations. A comprehensive search was conducted between 31 December 2010 and 31 October 2022, using the PubMed, CINAHL, Cochrane, Web of Science, and Scopus databases. Two investigators independently performed abstract screenings, full-text screenings, and data extraction, and the Mixed Method Appraisal Tool (MMAT) was used to evaluate the quality of the selected studies. We screened 468 papers, 10 of which were selected for data synthesis. All patients were female adults whose age ranged between 27 and 78 years. Participants in all studies were women diagnosed with BC of one of the following stages: I, II (HER2-/+), III (HER2-/+), IV, LUMINAL-A, LUMINAL-B (HER2-/+). Notably, IF during chemotherapy was found to be feasible, safe and able to relieve chemotherapy-induced adverse effects and cytotoxicity. IF seemed to improve QoL during chemotherapy, through the reduction of fatigue, nausea and headaches, however data were characterized as low quality. IF was found to reduce chemotherapy-induced DNA damage and augmented optimal glycemic regulation, improving serum glucose, insulin, and IGF-1 concentrations. A remarkable heterogeneity of duration of dietary patterns was observed among available studies. In conclusion, we failed to identify any IF-related beneficial effects on the QoL, response after chemotherapy or related symptoms, as well as measures of tumor recurrence in BC patients. We identified a potential beneficial effect of IF on chemotherapy-induced toxicity, based on markers of DNA and leukocyte damage; however, these results were derived from three studies and require further validation. Further studies with appropriate design and larger sample sizes are warranted to elucidate its potential standard incorporation in daily clinical practice.
Collapse
Affiliation(s)
- Marios Anemoulis
- Medical School, Aristotle University, 55535 Thessaloniki, Greece
| | - Antonios Vlastos
- Medical School, Aristotle University, 55535 Thessaloniki, Greece
| | | | - Spyridon N. Karras
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 55535 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310324863
| |
Collapse
|
33
|
Liu S, Zeng M, Wan W, Huang M, Li X, Xie Z, Wang S, Cai Y. The Health-Promoting Effects and the Mechanism of Intermittent Fasting. J Diabetes Res 2023; 2023:4038546. [PMID: 36911497 PMCID: PMC10005873 DOI: 10.1155/2023/4038546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023] Open
Abstract
Intermittent fasting (IF) is an eating pattern in which individuals go extended periods with little or no energy intake after consuming regular food in intervening periods. IF has several health-promoting effects. It can effectively reduce weight, fasting insulin levels, and blood glucose levels. It can also increase the antitumor activity of medicines and cause improvement in the case of neurological diseases, such as memory deficit, to achieve enhanced metabolic function and prolonged longevity. Additionally, IF activates several biological pathways to induce autophagy, encourages cell renewal, prevents cancer cells from multiplying and spreading, and delays senescence. However, IF has specific adverse effects and limitations when it comes to people of a particular age and gender. Hence, a more systematic study on the health-promoting effects and safety of IF is needed. This article reviewed the research on the health-promoting effects of IF, providing a theoretical basis, direction for subsequent basic research, and information related to the clinical application of IF.
Collapse
Affiliation(s)
- Simin Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Weixi Wan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ming Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiang Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zixian Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shang Wang
- College of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yu Cai
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
34
|
Makuku R, Sinaei Far Z, Khalili N, Moyo A, Razi S, Keshavarz-Fathi M, Mahmoudi M, Rezaei N. The Role of Ketogenic Diet in the Treatment of Neuroblastoma. Integr Cancer Ther 2023; 22:15347354221150787. [PMID: 36752115 PMCID: PMC9909060 DOI: 10.1177/15347354221150787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
The ketogenic diet (KD) was initially used in 1920 for drug-resistant epileptic patients. From this point onward, ketogenic diets became a pivotal part of nutritional therapy research. To date, KD has shown therapeutic potential in many pathologies such as Alzheimer's disease, Parkinson's disease, autism, brain cancers, and multiple sclerosis. Although KD is now an adjuvant therapy for certain diseases, its effectiveness as an antitumor nutritional therapy is still an ongoing debate, especially in Neuroblastoma. Neuroblastoma is the most common extra-cranial solid tumor in children and is metastatic at initial presentation in more than half of the cases. Although Neuroblastoma can be managed by surgery, chemotherapy, immunotherapy, and radiotherapy, its 5-year survival rate in children remains below 40%. Earlier studies have proposed the ketogenic diet as a possible adjuvant therapy for patients undergoing treatment for Neuroblastoma. In this study, we seek to review the possible roles of KD in the treatment of Neuroblastoma.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Zeinab Sinaei Far
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Neda Khalili
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alistar Moyo
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Sepideh Razi
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Nima Rezaei
- Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
35
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
36
|
Gabel K, Fitzgibbon ML, Yazici C, Gann P, Sverdlov M, Guzman G, Chen Z, McLeod A, Hamm A, Varady KA, Tussing‐Humphreys L. The basis and design for time-restricted eating compared with daily calorie restriction for weight loss and colorectal cancer risk reduction trial (TRE-CRC trial). Obesity (Silver Spring) 2022; 30:2376-2385. [PMID: 36319597 PMCID: PMC9691536 DOI: 10.1002/oby.23579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Approximately 42% of American adults are living with obesity, increasing their risk of colorectal cancer (CRC). Efficacious approaches to prevent and treat obesity may reduce CRC incidence. Daily calorie restriction (Cal-R) is the most common approach to treating obesity, yet clinically meaningful weight loss is elusive owing to waning adherence. Time-restricted eating (TRE) consists of consuming foods within a specified time frame, creating a natural calorie deficit. TRE in animals shows cancer protective effects. In humans, TRE is safe and acceptable among adults with obesity, producing ~3% to 5% weight loss and reductions in oxidative stress and insulin resistance. However, TRE has not been tested rigorously for CRC preventive effects. METHODS The authors describe a 12-month randomized controlled trial of 8-hour TRE (ad libitum 12 PM-8 PM), Cal-R (25% restriction daily), or Control among 255 adults at increased risk for CRC and with obesity. RESULTS Effects on the following will be examined: 1) body weight, body composition, and adherence; 2) circulating metabolic, inflammation, and oxidative stress biomarkers; 3) colonic mucosal gene expression profiles and tissue microenvironment; and 4) maintenance of benefits on body weight/composition and CRC risk markers. CONCLUSIONS This study will examine efficacious lifestyle strategies to treat obesity and reduce CRC risk among individuals with obesity.
Collapse
Affiliation(s)
- Kelsey Gabel
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| | - Marian L. Fitzgibbon
- University of Illinois Cancer CenterChicagoIllinoisUSA
- Institute for Health Research and PolicyChicagoIllinoisUSA
| | - Cemal Yazici
- University of Illinois Cancer CenterChicagoIllinoisUSA
- Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Peter Gann
- University of Illinois Cancer CenterChicagoIllinoisUSA
- Department of Pathology, University of Illinois ChicagoChicagoIllinoisUSA
| | - Maria Sverdlov
- University of Illinois Cancer CenterChicagoIllinoisUSA
- Research Histology and Tissue Imaging CoreUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Grace Guzman
- University of Illinois Cancer CenterChicagoIllinoisUSA
- Department of Pathology, University of Illinois ChicagoChicagoIllinoisUSA
| | - Zhengjia Chen
- University of Illinois Cancer CenterChicagoIllinoisUSA
| | - Andrew McLeod
- University of Illinois Cancer CenterChicagoIllinoisUSA
- Institute for Health Research and PolicyChicagoIllinoisUSA
| | - Alyshia Hamm
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| | - Krista A. Varady
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| | - Lisa Tussing‐Humphreys
- Department of Kinesiology and NutritionUniversity of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| |
Collapse
|
37
|
Tiwari S, Sapkota N, Han Z. Effect of fasting on cancer: A narrative review of scientific evidence. Cancer Sci 2022; 113:3291-3302. [PMID: 35848874 PMCID: PMC9530862 DOI: 10.1111/cas.15492] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence suggests that fasting could play a key role in cancer treatment by fostering conditions that limit cancer cells' adaptability, survival, and growth. Fasting could increase the effectiveness of cancer treatments and limit adverse events. Yet, we lack an integrated mechanistic model for how these two complicated systems interact, limiting our ability to understand, prevent, and treat cancer using fasting. Here, we review recent findings at the interface of oncology and fasting metabolism, with an emphasis on human clinical studies of intermittent fasting. We recommend combining prolonged periodic fasting with a standard conventional therapeutic approach to promote cancer-free survival, treatment efficacy and reduce side effects in cancer patients.
Collapse
Affiliation(s)
- Sagun Tiwari
- Department of Neurology and RehabilitationSeventh People's Hospital of Shanghai University of TCMShanghaiChina
- Shanghai University of TCMShanghaiChina
- Life Care HospitalBagmatiNepal
| | - Namrata Sapkota
- University of Chinese Academy of SciencesBeijingChina
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Net Fresh HospitalBagmatiNepal
| | - Zhenxiang Han
- Department of Neurology and RehabilitationSeventh People's Hospital of Shanghai University of TCMShanghaiChina
| |
Collapse
|
38
|
Stover PJ, Field MS, Brawley HN, Angelin B, Iversen PO, Frühbeck G. Nutrition and stem cell integrity in aging. J Intern Med 2022; 292:587-603. [PMID: 35633146 DOI: 10.1111/joim.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells (SCs) represent the regenerative capacity of organisms throughout their lifespan. The maintenance of robust SC populations capable of renewing organs and physiological systems is one hallmark of healthy aging. The local environment of SCs, referred to as the niche, includes the nutritional milieu, which is essential to maintain the quantity and quality of SCs available for renewal and regeneration. There is increased recognition that SCs have unique metabolism and conditional nutrient needs compared to fully differentiated cells. However, the contribution of SC nutrition to overall human nutritional requirements is an understudied and underappreciated area of investigation. Nutrient needs vary across the lifespan and are modified by many factors including individual health, disease, physiological states including pregnancy, age, sex, and during recovery from injury. Although current nutrition guidance is generally derived for apparently healthy populations and to prevent nutritional deficiency diseases, there are increased efforts to establish nutrient-based and food-based recommendations based on reducing chronic disease. Understanding the dynamics of SC nutritional needs throughout the life span, including the role of nutrition in extending biological age by blunting biological systems decay, is fundamental to establishing food and nutrient guidance for chronic disease reduction and health maintenance. This review summarizes a 3-day symposium of the Marabou Foundation (www.marabousymposium.org) held to examine the metabolic properties and unique nutritional needs of adult SCs and their role in healthy aging and age-related chronic disease.
Collapse
Affiliation(s)
- P J Stover
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - M S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - H N Brawley
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - B Angelin
- Cardiometabolic Unit, Clinical Department of Endocrinology, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Stockholm, Sweden
| | - P O Iversen
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - G Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Navarra, Spain
| |
Collapse
|
39
|
Muscogiuri G, Barrea L, Cantone MC, Guarnotta V, Mazzilli R, Verde L, Vetrani C, Colao A, Faggiano A. Neuroendocrine Tumors: A Comprehensive Review on Nutritional Approaches. Cancers (Basel) 2022; 14:cancers14184402. [PMID: 36139562 PMCID: PMC9496842 DOI: 10.3390/cancers14184402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroendocrine neoplasms are a heterogeneous group of neoplasms with increasing incidence, high prevalence, and survival worldwide. About 90% of cases are well differentiated forms, the so-called neuroendocrine tumors (NETs), with slow proliferation rates and prolonged survival but frequent development of liver metastases and endocrine syndromes. Both the tumor itself and systemic therapy may have an impact on patient nutrition. Malnutrition has a negative impact on outcome in patients with NETs, as well as obesity. In addition, obesity and metabolic syndrome have been shown to be risk factors for both the development and prognosis of NET. Therefore, dietary assessment based on body composition and lifestyle modifications should be an integral part of the treatment of NET patients. Nutrition plans, properly formulated by a dietician, are an integral part of the multidisciplinary treatment team for patients with NETs because they allow an improvement in quality of life, providing a tailored approach based on nutritional needs and nutritional manageable signs and/or symptoms related to pharmacological treatment. The aim of this review is to condense the latest evidence on the role of the most used dietary models, the Mediterranean diet, the ketogenic diet, and intermittent fasting, in the context of NETs, while considering the clinical and molecular mechanisms by which these dietary models act.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817463779; Fax: +39-081-746-3688
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Direzionale, Isola F2, 80143 Naples, Italy
| | - Maria Celeste Cantone
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, 20157 Milan, Italy
| | - Valentina Guarnotta
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Sezione di Malattie Endocrine, del Ricambio e della Nutrizione, Università di Palermo, 90127 Palermo, Italy
| | - Rossella Mazzilli
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy
| | - Ludovica Verde
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
| | - Claudia Vetrani
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia ed Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università Federico II, 80131 Naples, Italy
- Cattedra Unesco “Educazione alla Salute e allo Sviluppo Sostenibile”, Università Federico II, 80131 Naples, Italy
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
40
|
Tao S, Wang Y, Yu C, Qiu R, Jiang Y, Jia J, Tao Z, Zhang L, Zou B, Tang D. Gut microbiota mediates the inhibition of lymphopoiesis in dietary-restricted mice by suppressing glycolysis. Gut Microbes 2022; 14:2117509. [PMID: 36049025 PMCID: PMC9450896 DOI: 10.1080/19490976.2022.2117509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dietary restriction (DR) is one of the most robust interventions shown to extend health-span and remains on the forefront of anti-aging intervention studies, though conflicting results have been shown on its effect on lifespan both in rodents and primates. The severe inhibitory effects on the lymphoid lineage by DR remains one of its major negative downsides which reduces its overall beneficial effects on organismal health. Yet, the underlying mechanism of how DR suppresses the lymphoid system remains to be explored. Here, we show that antibiotic ablation of gut microbiota significantly rescued the inhibition of lymphopoiesis by DR. Interestingly, glycolysis in lymphocytes was significantly down-regulated in DR mice and pharmacological inhibition of glycolysis reverted this rescue effect of lymphopoiesis in DR mice with ablated gut microbiota. Furthermore, DR remarkably reconstructed gut microbiota with a significant increase in butyrate-producing bacterial taxa and in expression of But, a key gene involved in butyrate synthesis. Moreover, supplemental butyrate feeding in AL mice suppressed glycolysis in lymphoid cells and mimicked the inhibition of lymphopoiesis in AL mice. Together, our study reveals that gut microbiota mediates the inhibition on lymphopoiesis via down-regulation of glycolysis under DR conditions, which is associated with increased butyrate-synthesis. Our study uncovered a candidate that could potentially be targeted for ameliorating the negative effects of DR on lymphopoiesis, and therefore may have important implications for the wider application of DR and promoting healthy aging.
Collapse
Affiliation(s)
- Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chenghui Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yanjun Jiang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jie Jia
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Peking University People’s Hospital, Beijing, China
| | - Bing Zou
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China,CONTACT Duozhuang Tang Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang, Jiangxi Province330006, China
| |
Collapse
|
41
|
Pereira IC, Mascarenhas IF, Capetini VC, Ferreira PMP, Rogero MM, Torres-Leal FL. Cellular reprogramming, chemoresistance, and dietary interventions in breast cancer. Crit Rev Oncol Hematol 2022; 179:103796. [PMID: 36049616 DOI: 10.1016/j.critrevonc.2022.103796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/16/2022] [Accepted: 08/21/2022] [Indexed: 10/31/2022] Open
Abstract
Breast cancer (BC) diagnosis has been associated with significant risk factors, including family history, late menopause, obesity, poor eating habits, and alcoholism. Despite the advances in the last decades regarding cancer treatment, some obstacles still hinder the effectiveness of therapy. For example, chemotherapy resistance is common in locally advanced or metastatic cancer, reducing treatment options and contributing to mortality. In this review, we provide an overview of BC metabolic changes, including the impact of restrictive diets associated with chemoresistance, the therapeutic potential of the diet on tumor progression, pathways related to metabolic health in oncology, and perspectives on the future in the area of oncological nutrition.
Collapse
Affiliation(s)
- Irislene Costa Pereira
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil; Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Isabele Frazão Mascarenhas
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, Sao Paulo, Brazil
| | - Francisco Leonardo Torres-Leal
- Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil; Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
42
|
Abstract
Obesity and the associated metabolic syndrome is considered a pandemic whose prevalence is steadily increasing in many countries worldwide. It is a complex, dynamic, and multifactorial disorder that presages the development of several metabolic, cardiovascular, and neurodegenerative diseases, and increases the risk of cancer. In patients with newly diagnosed cancer, obesity worsens prognosis, increasing the risk of recurrence and decreasing survival. The multiple negative effects of obesity on cancer outcomes are substantial, and of great clinical importance. Strategies for weight control have potential utility for both prevention efforts and enhancing cancer outcomes. Presently, time-restricted eating (TRE) is a popular dietary intervention that involves limiting the consumption of calories to a specific window of time without any proscribed caloric restriction or alteration in dietary composition. As such, TRE is a sustainable long-term behavioral modification, when compared to other dietary interventions, and has shown many health benefits in animals and humans. The preliminary data regarding the effects of time-restricted feeding on cancer development and growth in animal models are promising but studies in humans are lacking. Interestingly, several short-term randomized clinical trials of TRE have shown favorable effects to reduce cancer risk factors; however, long-term trials of TRE have yet to investigate reductions in cancer incidence or outcomes in the general population. Few studies have been conducted in cancer populations, but a number are underway to examine the effect of TRE on cancer biology and recurrence. Given the simplicity, feasibility, and favorable metabolic improvements elicited by TRE in obese men and women, TRE may be useful in obese cancer patients and cancer survivors; however, the clinical implementation of TRE in the cancer setting will require greater in-depth investigation.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, CA, USA. .,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
43
|
Puca F, Fedele M, Rasio D, Battista S. Role of Diet in Stem and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms23158108. [PMID: 35897685 PMCID: PMC9330301 DOI: 10.3390/ijms23158108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diet and lifestyle factors greatly affect health and susceptibility to diseases, including cancer. Stem cells’ functions, including their ability to divide asymmetrically, set the rules for tissue homeostasis, contribute to health maintenance, and represent the entry point of cancer occurrence. Stem cell properties result from the complex integration of intrinsic, extrinsic, and systemic factors. In this context, diet-induced metabolic changes can have a profound impact on stem cell fate determination, lineage specification and differentiation. The purpose of this review is to provide a comprehensive description of the multiple “non-metabolic” effects of diet on stem cell functions, including little-known effects such as those on liquid-liquid phase separation and on non-random chromosome segregation (asymmetric division). A deep understanding of the specific dietetic requirements of normal and cancer stem cells may pave the way for the development of nutrition-based targeted therapeutic approaches to improve regenerative and anticancer therapies.
Collapse
Affiliation(s)
- Francesca Puca
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 78705, USA;
- Department of Oncology, IRBM Science Park SpA, 00071 Pomezia, Italy
| | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy;
| | - Debora Rasio
- Department of Clinical and Molecular Medicine, La Sapienza University, 00185 Rome, Italy;
| | - Sabrina Battista
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
44
|
Ma N, Chen X, Liu C, Sun Y, Johnston LJ, Ma X. Dietary nutrition regulates intestinal stem cell homeostasis. Crit Rev Food Sci Nutr 2022; 63:11263-11274. [PMID: 35694795 DOI: 10.1080/10408398.2022.2087052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intestinal stem cells (ISCs), which locate at the base of intestinal crypts, are key determinants of governing proliferation and differentiation of the intestinal epithelium. The surrounding cells of ISCs and their related growth factors form ISC niche, supporting ISC function and self-renewal. ISC has an underappreciated but emerging role as a sensor of dietary nutrients, which fate decisions is adjusted in response to nutritional states to regulate gut homeostasis. Here, we review endogenous and exogenous factors, such as caloric restriction, fasting, fat, glucose and trace element. They instruct ISCs via mTORC1, PPAR/CPT1α, PPARγ/β-catenin, Wnt/GSK-3β pathway, respectively, jointly affect intestinal homeostasis. These dietary responses regulate ISC regenerative capacity and may be a potential target for cancer prevention. However, without precise definitions of nutrition intervene, it will be difficult to generate sufficient data to extending our knowledge of the biological response of ISC on nutrients. More accurately modeling organoids or high-throughput automated organoid culture in microcavity arrays have provided unprecedented opportunities for modeling diet-host interactions. These major advances collectively provide new insights into nutritional regulation of ISC proliferation and differentiation and drive us ever closer to breakthroughs for regenerative medicine and disease treatment by nutrition intervention in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunchen Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiwei Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Fasitasari M, Subagio HW, Suprihati S. The role of synbiotics in improving inflammatory status in nasopharyngeal carcinoma patients. J Basic Clin Physiol Pharmacol 2022; 34:263-275. [PMID: 35671251 DOI: 10.1515/jbcpp-2021-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that grows from the epithelial cells of nasopharynx. NPC has the ability to modify its metabolism and leads the patient to suffer from malnutrition and cachexia, therefore aggravates the occurrence of impaired inflammatory response. Currently, available treatments for NPC are chemotherapy, radiotherapy, or chemoradiotherapy. Despite of its efficacy, these regimens have been known to elicit various inflammation-related side effects including infection, diarrhea, and mucositis. It has long been established that increased activity of inflammatory response is associated to low survival rate in both early and advanced stage of cancer. Furthermore, uncontrolled and dysregulated inflammatory response are significantly correlated with malignant progression of cancer. Considering how pivotal inflammation to malignancy progression, there is a need for effective strategies to modulate inflammatory response. Various strategies have been proposed to improve immune response in NPC patients including dietary supplementation of synbiotics. Synbiotics refers to the manipulation of both probiotics and prebiotics to provide a synergistic benefit to the host by promoting the growth of beneficial bacteria while inhibiting the growth of pathogenic bacteria. There is a growing number of evidences related to the potential of synbiotics in modulating the pro-inflammatory response and improve immune systems in a variety of conditions, including cancer. In this study, we will discuss the immunomodulatory effects of synbiotics in the nasopharyngeal carcinoma occurrences.
Collapse
Affiliation(s)
- Minidian Fasitasari
- Department of Nutrition, Medical Faculty of Universitas Islam Sultan Agung, Semarang, Indonesia
| | | | - Suprihati Suprihati
- Department of Otolaryngology, Medical Faculty of Universitas Diponegoro, Semarang, Indonesia
| |
Collapse
|
46
|
Zhou X, Jin W, Sun H, Li C, Jia J. Perturbation of autophagy: An intrinsic toxicity mechanism of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153629. [PMID: 35131247 DOI: 10.1016/j.scitotenv.2022.153629] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have been widely used for various purposes due to their unique physicochemical properties. Such widespread applications greatly increase the possibility of human exposure to NPs in various ways. Once entering the human body, NPs may interfere with cellular homeostasis and thus affect the physiological system. As a result, it is necessary to evaluate the potential disturbance of NPs to multiple cell functions, including autophagy. Autophagy is an important cell function to maintain cellular homeostasis, and minimizing the disturbance caused by NP exposures to autophagy is critical to nanosafety. Herein, we summarized the recent research progress in nanotoxicity with particular focuses on the perturbation of NPs to cell autophagy. The basic processes of autophagy and complex relationships between autophagy and major human diseases were further discussed to emphasize the importance of keeping autophagy under control. Moreover, the most recent advances on perturbation of different types of NPs to autophagy were also reviewed. Last but not least, we also discussed major research challenges and potential coping strategies and proposed a safe-by-design strategy towards safer applications of NPs.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Hainan Sun
- Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
47
|
Di Tano M, Longo VD. Fasting and cancer: from yeast to mammals. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:81-106. [PMID: 36283768 DOI: 10.1016/bs.ircmb.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fasting and fasting mimicking diets extend lifespan and healthspan in mouse models and decrease risk factors for cancer and other age-related pathologies in humans. Normal cells respond to fasting and the consequent decrease in nutrients by down-regulating proto-oncogene pathways to enter a stress-resistant mode, which protects them from different cancer therapies. In contrast, oncogene mutations and the constitutive activation of pathways including RAS, AKT, and PKA allow cancer cells to disobey fasting-dependent anti-growth signal. Importantly, in different tumor types, fasting potentiates the toxicity of various therapies by increasing reactive oxygen species and oxidative stress, which ultimately leads to DNA damage and cell death. This effect is not limited to chemotherapy, since periodic fasting/FMD cycles potentiate the effects of tyrosine kinase inhibitors, hormone therapy, radiotherapy, and pharmacological doses of vitamin C. In addition, the anticancer effects of fasting/FMD can also be tumor-independent and involve an immunotherapy-like activation of T cell-dependent attack of tumor cells. Supported by a range of pre-clinical studies, clinical trials are beginning to confirm the safety and efficacy of fasting/FMD cycles in improving the potential of different cancer therapies, while decreasing side effects to healthy cells and tissues.
Collapse
Affiliation(s)
- Maira Di Tano
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
48
|
KIANI AYSHAKARIM, MEDORI MARIACHIARA, BONETTI GABRIELE, AQUILANTI BARBARA, VELLUTI VALERIA, MATERA GIUSEPPINA, IACONELLI AMERIGO, STUPPIA LIBORIO, CONNELLY STEPHENTHADDEUS, HERBST KARENL, BERTELLI MATTEO. Modern vision of the Mediterranean diet. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E36-E43. [PMID: 36479477 PMCID: PMC9710405 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Mediterranean diet is the most well-known and researched dietary pattern worldwide. It is characterized by the consumption of a wide variety of foods, such as extra-virgin olive oil (EVOO), legumes, cereals, nuts, fruits, vegetables, dairy products, fish, and wine. Many of these foods provide several phytonutrients, among which polyphenols and vitamins play an important role. Data from several studies have strongly established that nutrition is a key factor in promoting a healthy lifestyle and preventing many chronic diseases. In particular, a large number of studies have established the protective effects of the Mediterranean diet against several chronic diseases, among which are diabetes, cardiovascular diseases, cancer, aging disorders, and against overall mortality. Animal and human translational studies have revealed the biological mechanisms regulating the beneficial effects of the traditional Mediterranean diet. Indeed, several studies demonstrated that this nutritional pattern has lipid-lowering, anticancer, antimicrobial, and anti-oxidative effects. Moreover, the Mediterranean diet is considered environmentally sustainable. In this review, we describe the composition of the Mediterranean diet, assess its beneficial effects, and analyze their epigenomic, genomic, metagenomic, and transcriptomic aspects. In the future it will be important to continue exploring the molecular mechanisms through which the Mediterranean diet exerts its protective effects and to standardize its components and serving sizes to understand more precisely its effects on human health.
Collapse
Affiliation(s)
| | | | | | - BARBARA AQUILANTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - VALERIA VELLUTI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - GIUSEPPINA MATERA
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - AMERIGO IACONELLI
- UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - LIBORIO STUPPIA
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - STEPHEN THADDEUS CONNELLY
- San Francisco Veterans Affairs Health Care System, Department of Oral & Maxillofacial Surgery, University of California, San Francisco, CA, USA
| | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
49
|
Dormancy in Breast Cancer, the Role of Autophagy, lncRNAs, miRNAs and Exosomes. Int J Mol Sci 2022; 23:ijms23095271. [PMID: 35563661 PMCID: PMC9105119 DOI: 10.3390/ijms23095271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women for which numerous diagnostic and therapeutic options have been developed. Namely, the targeted treatment of BC, for the most part, relies on the expression of growth factors and hormone receptors by these cancer cells. Despite this, close to 30% of BC patients may experience relapse due to the presence of minimal residual disease (MRD) consisting of surviving disseminated tumour cells (DTCs) from the primary tumour which can colonise a secondary site. This can lead to either detectable metastasis or DTCs entering a dormant state for a prolonged period where they are undetectable. In the latter, cells can re-emerge from their dormant state due to intrinsic and microenvironmental cues leading to relapse and metastatic outgrowth. Pre- and clinical studies propose that targeting dormant DTCs may inhibit metastasis, but the choice between keeping them dormant or forcing their “awakening” is still controversial. This review will focus on cancer cells’ microenvironmental cues and metabolic and molecular properties, which lead to dormancy, relapse, and metastatic latency in BC. Furthermore, we will focus on the role of autophagy, long non-coding RNAs (lncRNAs), miRNAs, and exosomes in influencing the induction of dormancy and awakening of dormant BC cells. In addition, we have analysed BC treatment from a viewpoint of autophagy, lncRNAs, miRNAs, and exosomes. We propose the targeted modulation of these processes and molecules as modern aspects of precision medicine for BC treatment, improving both novel and traditional BC treatment options. Understanding these pathways and processes may ultimately improve BC patient prognosis, patient survival, and treatment response.
Collapse
|
50
|
Rachakatla A, Kalashikam RR. Calorie Restriction-Regulated Molecular Pathways and Its Impact on Various Age Groups: An Overview. DNA Cell Biol 2022; 41:459-468. [PMID: 35451872 DOI: 10.1089/dna.2021.0922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Calorie restriction (CR) if planned properly with regular exercise at different ages can result in healthy weight loss. CR can also have different beneficial effects on improving lifespan and decreasing the age-associated diseases by regulating physiological, biochemical, and molecular markers. The different pathways regulated by CR include:(1) AMP-activated protein kinase (AMPK), which involves PGC-1α, SIRT1, and SIRT3. AMPK also effects myocyte enhancer factor 2 (MEF2), peroxisome proliferator-activated receptor delta, and peroxisome proliferator-activated receptor alpha, which are involved in mitochondrial biogenesis and lipid oxidation; (2) Forkhead box transcription factor's signaling is related to the DNA repair, lipid metabolism, protection of protein structure, autophagy, and resistance to oxidative stress; (3) Mammalian target of rapamycin (mTOR) signaling, which involves key factors, such as S6 protein kinase-1 (S6K1), mTOR complex-1 (mTORC1), and 4E-binding protein (4E-BP). Under CR conditions, AMPK activation and mTOR inhibition helps in the activation of Ulk1 complex along with the acetyltransferase Mec-17, which is necessary for autophagy; (4) Insulin-like growth factor-1 (IGF-1) pathway downregulation protects against cancer and slows the aging process; (5) Nuclear factor kappa B pathway downregulation decreases the inflammation; and (6) c-Jun N-terminal kinase and p38 kinase regulation as a response to the stress. The acute and chronic CR both shows antidepression and anxiolytic action by effecting ghrelin/GHS-R1a signaling. CR also regulates GSK3β kinase and protects against age-related brain atrophy. CR at young age may show many deleterious effects by effecting different mechanisms. Parental CR before or during conception will also affect the health and development of the offspring by causing many epigenetic modifications that show transgenerational transmission. Maternal CR is associated with intrauterine growth retardation effecting the offspring in their adulthood by developing different metabolic syndromes. The epigenetic changes with response to paternal food supply also linked to offspring health. CR at middle and old age provides a significant preventive impact against the development of age-associated diseases.
Collapse
|