1
|
Wang S, Mahalingam S, Merits A. Alphavirus nsP2: A Multifunctional Regulator of Viral Replication and Promising Target for Anti-Alphavirus Therapies. Rev Med Virol 2025; 35:e70030. [PMID: 40064592 PMCID: PMC11893376 DOI: 10.1002/rmv.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Alphaviruses are re-emerging vector-born pathogens that cause arthralgia or encephalitic diseases on a global scale. While a vaccine against chikungunya virus was recently approved, no vaccines currently exist for other alphaviruses, nor are there antiviral drugs for the treatment of alphavirus infections. Alphaviruses have positive-strand RNA genomes, and their RNA replication is coordinated by activities of the multifunctional nonstructural protein 2 (nsP2), a helicase-protease and a subunit of viral RNA replicase. We provide a comprehensive overview of nsP2 functions and inhibitors of its activities for their potential as effective antivirals. Furthermore, analysis of nsP2 activities suggests that it could be targeted to develop advanced live attenuated vaccines and strategies for controlling alphavirus transmission by mosquito vectors.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of BioengineeringUniversity of TartuTartuEstonia
| | - Suresh Mahalingam
- Institute for Biomedicine and GlycomicsGriffith UniversityGold CoastAustralia
- Global Virus Network (GVN) Centre of Excellence in ArbovirusesGriffith UniversityGold CoastAustralia
- School of Pharmacy and Medical SciencesGriffith UniversityGold CoastAustralia
| | - Andres Merits
- Institute of BioengineeringUniversity of TartuTartuEstonia
| |
Collapse
|
2
|
Weerawarna PM. How Polyproline Type II Conformation at P 2 Residues Influences the Success of Proline-Based Peptidyl Inhibitors Against Coronavirus Main Protease. Biochemistry 2025; 64:533-546. [PMID: 39834237 DOI: 10.1021/acs.biochem.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In the wake of the pandemic, peptidyl protease inhibitors with Pro-based rigid Leu mimetics at the P2 position have emerged as potent drug candidates against the SARS-CoV-2 main protease. This success is intuitively attributed to the enhanced hydrophobic interactions and rigidity of Pro-based rigid Leu mimetics in the literature. However, the tertiary amide of proline P2 derivatives, which hinders the formation of a critical hydrogen bond with the enzyme active site, and the constrained PPII conformation, which contradicts the protease preferred β-strand conformation, represent two overlooked disadvantages associated with these inhibitors over traditional inhibitors and, theoretically, should adversely affect their potency. Interestingly, despite these major disadvantages, they maintain or display improved potency compared to traditional peptidyl protease inhibitors. In this study, we uncover a previously unnoticed preference for P2 residues of the protease inhibitors to adopt the PPII conformation, regardless of residue identity, in the main protease-bound form of key RNA viruses, deviating from the traditional β-strand conformation. We also demonstrate that Pro-based rigid Leu mimetics at P2 enhance binding affinity by favoring the enzyme-preferred PPII conformation and significantly reducing configurational entropy loss upon binding, comparable to that of a typical hydrogen bond. This work also highlights the importance of a multidisciplinary approach to enhance the understanding of structure-activity relationships beyond traditional medicinal chemistry intuition. We believe these findings provide new, deep insights and address a major knowledge gap in the area of peptidyl protease inhibitor design, identifying key drivers behind the success of Pro-based peptidyl protease inhibitors beyond mere rigidity and hydrophobicity.
Collapse
Affiliation(s)
- Pathum Manjula Weerawarna
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
3
|
Andrianov GV, Haroldsen E, Karanicolas J. vScreenML v2.0: Improved Machine Learning Classification for Reducing False Positives in Structure-Based Virtual Screening. Int J Mol Sci 2024; 25:12350. [PMID: 39596415 PMCID: PMC11595162 DOI: 10.3390/ijms252212350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The enthusiastic adoption of make-on-demand chemical libraries for virtual screening has highlighted the need for methods that deliver improved hit-finding discovery rates. Traditional virtual screening methods are often inaccurate, with most compounds nominated in a virtual screen not engaging the intended target protein to any detectable extent. Emerging machine learning approaches have made significant progress in this regard, including our previously described tool vScreenML. The broad adoption of vScreenML was hindered by its challenging usability and dependencies on certain obsolete or proprietary software packages. Here, we introduce vScreenML 2.0 to address each of these limitations with a streamlined Python implementation. Through careful benchmarks, we show that vScreenML 2.0 outperforms other widely used tools for virtual screening hit discovery.
Collapse
Affiliation(s)
- Grigorii V. Andrianov
- Cancer Signaling & Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (G.V.A.); (E.H.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Emeline Haroldsen
- Cancer Signaling & Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (G.V.A.); (E.H.)
| | - John Karanicolas
- Cancer Signaling & Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (G.V.A.); (E.H.)
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Merten EM, Sears JD, Leisner TM, Hardy PB, Ghoshal A, Hossain MA, Asressu KH, Brown PJ, Tse EG, Stashko MA, Li K, Norris-Drouin JL, Herring LE, Mordant AL, Webb TS, Mills CA, Barker NK, Streblow ZJ, Perveen S, Arrowsmith CH, Couñago RM, Arnold JJ, Cameron CE, Streblow DN, Moorman NJ, Heise MT, Willson TM, Popov KI, Pearce KH. Identification of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach. Proc Natl Acad Sci U S A 2024; 121:e2409166121. [PMID: 39388272 PMCID: PMC11494320 DOI: 10.1073/pnas.2409166121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV nonstructural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow-up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a kinact /KI of 6.4 × 103 M-1s-1. LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity in proteomic experiments or against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the identification and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic.
Collapse
Affiliation(s)
- Eric M. Merten
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - John D. Sears
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Tina M. Leisner
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - P. Brian Hardy
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Anirban Ghoshal
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kesatebrhan Haile Asressu
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Peter J. Brown
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Edwin G. Tse
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Michael A. Stashko
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kelin Li
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jacqueline L. Norris-Drouin
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Laura E. Herring
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Angie L. Mordant
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Thomas S. Webb
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Christine A. Mills
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Natalie K. Barker
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR97006
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Rafael Miguez Couñago
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP13083-886, Brazil
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR97006
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mark T. Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Timothy M. Willson
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Konstantin I. Popov
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kenneth H. Pearce
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Molecular Therapeutics Research Program, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
5
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Merten EM, Sears JD, Leisner TM, Hardy PB, Ghoshal A, Hossain MA, Asressu KH, Brown PJ, Stashko MA, Herring L, Mordant AL, Webb TS, Mills CA, Barker NK, Streblow ZJ, Perveen S, Arrowsmith C, Arnold JJ, Cameron CE, Streblow DN, Moorman NJ, Heise M, Willson TM, Popov K, Pearce KH. Discovery of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586341. [PMID: 38562906 PMCID: PMC10983941 DOI: 10.1101/2024.03.22.586341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 x 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.
Collapse
|
7
|
Xie X, Lan Q, Zhao J, Zhang S, Liu L, Zhang Y, Xu W, Shao M, Peng J, Xia S, Zhu Y, Zhang K, Zhang X, Zhang R, Li J, Dai W, Ge Z, Hu S, Yu C, Wang J, Ma D, Zheng M, Yang H, Xiao G, Rao Z, Lu L, Zhang L, Bai F, Zhao Y, Jiang S, Liu H. Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Signal Transduct Target Ther 2024; 9:54. [PMID: 38443334 PMCID: PMC10914734 DOI: 10.1038/s41392-024-01758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Respiratory disease caused by coronavirus infection remains a global health crisis. Although several SARS-CoV-2-specific vaccines and direct-acting antivirals are available, their efficacy on emerging coronaviruses in the future, including SARS-CoV-2 variants, might be compromised. Host-targeting antivirals provide preventive and therapeutic strategies to overcome resistance and manage future outbreak of emerging coronaviruses. Cathepsin L (CTSL) and calpain-1 (CAPN1) are host cysteine proteases which play crucial roles in coronaviral entrance into cells and infection-related immune response. Here, two peptidomimetic α-ketoamide compounds, 14a and 14b, were identified as potent dual target inhibitors against CTSL and CAPN1. The X-ray crystal structures of human CTSL and CAPN1 in complex with 14a and 14b revealed the covalent binding of α-ketoamide groups of 14a and 14b to C25 of CTSL and C115 of CAPN1. Both showed potent and broad-spectrum anticoronaviral activities in vitro, and it is worth noting that they exhibited low nanomolar potency against SARS-CoV-2 and its variants of concern (VOCs) with EC50 values ranging from 0.80 to 161.7 nM in various cells. Preliminary mechanistic exploration indicated that they exhibited anticoronaviral activity through blocking viral entrance. Moreover, 14a and 14b exhibited good oral pharmacokinetic properties in mice, rats and dogs, and favorable safety in mice. In addition, both 14a and 14b treatments demonstrated potent antiviral potency against SARS-CoV-2 XBB 1.16 variant infection in a K18-hACE2 transgenic mouse model. And 14b also showed effective antiviral activity against HCoV-OC43 infection in a mouse model with a final survival rate of 60%. Further evaluation showed that 14a and 14b exhibited excellent anti-inflammatory effects in Raw 264.7 mouse macrophages and in mice with acute pneumonia. Taken together, these results suggested that 14a and 14b are promising drug candidates, providing novel insight into developing pan-coronavirus inhibitors with antiviral and anti-inflammatory properties.
Collapse
Affiliation(s)
- Xiong Xie
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Jinyi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Maolin Shao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingjing Peng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Keke Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Xianglei Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruxue Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jian Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Wenhao Dai
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Ge
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Shulei Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Changyue Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dakota Ma
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gengfu Xiao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Leike Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| | - Hong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Han D, Lu J, Fan B, Lu W, Xue Y, Wang M, Liu T, Cui S, Gao Q, Duan Y, Xu Y. Lysine-Specific Demethylase 1 Inhibitors: A Comprehensive Review Utilizing Computer-Aided Drug Design Technologies. Molecules 2024; 29:550. [PMID: 38276629 PMCID: PMC10821146 DOI: 10.3390/molecules29020550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) has emerged as a promising therapeutic target for treating various cancers (such as breast cancer, liver cancer, etc.) and other diseases (blood diseases, cardiovascular diseases, etc.), owing to its observed overexpression, thereby presenting significant opportunities in drug development. Since its discovery in 2004, extensive research has been conducted on LSD1 inhibitors, with notable contributions from computational approaches. This review systematically summarizes LSD1 inhibitors investigated through computer-aided drug design (CADD) technologies since 2010, showcasing a diverse range of chemical scaffolds, including phenelzine derivatives, tranylcypromine (abbreviated as TCP or 2-PCPA) derivatives, nitrogen-containing heterocyclic (pyridine, pyrimidine, azole, thieno[3,2-b]pyrrole, indole, quinoline and benzoxazole) derivatives, natural products (including sanguinarine, phenolic compounds and resveratrol derivatives, flavonoids and other natural products) and others (including thiourea compounds, Fenoldopam and Raloxifene, (4-cyanophenyl)glycine derivatives, propargylamine and benzohydrazide derivatives and inhibitors discovered through AI techniques). Computational techniques, such as virtual screening, molecular docking and 3D-QSAR models, have played a pivotal role in elucidating the interactions between these inhibitors and LSD1. Moreover, the integration of cutting-edge technologies such as artificial intelligence holds promise in facilitating the discovery of novel LSD1 inhibitors. The comprehensive insights presented in this review aim to provide valuable information for advancing further research on LSD1 inhibitors.
Collapse
Affiliation(s)
- Di Han
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Jiarui Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Baoyi Fan
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Wenfeng Lu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Yiwei Xue
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Meiting Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Taigang Liu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| | - Shaoli Cui
- School of Forensic, Xinxiang Medical University, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (D.H.); (J.L.)
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang 453003, China
- Xinxiang Key Laboratory of Biomedical Information Research, Xinxiang 453003, China
| |
Collapse
|
9
|
Dwivedi M, Parmar MD, Mukherjee D, Yadava A, Yadav H, Saini NP. Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Curr Med Chem 2024; 31:6110-6139. [PMID: 37818561 DOI: 10.2174/0109298673268458230926105224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Meet Dineshbhai Parmar
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | | | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Nandini Pankaj Saini
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| |
Collapse
|
10
|
Fink EA, Bardine C, Gahbauer S, Singh I, Detomasi TC, White K, Gu S, Wan X, Chen J, Ary B, Glenn I, O'Connell J, O'Donnell H, Fajtová P, Lyu J, Vigneron S, Young NJ, Kondratov IS, Alisoltani A, Simons LM, Lorenzo‐Redondo R, Ozer EA, Hultquist JF, O'Donoghue AJ, Moroz YS, Taunton J, Renslo AR, Irwin JJ, García‐Sastre A, Shoichet BK, Craik CS. Large library docking for novel SARS-CoV-2 main protease non-covalent and covalent inhibitors. Protein Sci 2023; 32:e4712. [PMID: 37354015 PMCID: PMC10364469 DOI: 10.1002/pro.4712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Antiviral therapeutics to treat SARS-CoV-2 are needed to diminish the morbidity of the ongoing COVID-19 pandemic. A well-precedented drug target is the main viral protease (MPro ), which is targeted by an approved drug and by several investigational drugs. Emerging viral resistance has made new inhibitor chemotypes more pressing. Adopting a structure-based approach, we docked 1.2 billion non-covalent lead-like molecules and a new library of 6.5 million electrophiles against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC50 of 29 and 20 μM, respectively. Several series were optimized, resulting in low micromolar inhibitors. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. While the new chemotypes may aid further optimization of MPro inhibitors for SARS-CoV-2, the modest success rate also reveals weaknesses in our approach for challenging targets like MPro versus other targets where it has been more successful, and versus other structure-based techniques against MPro itself.
Collapse
Affiliation(s)
- Elissa A. Fink
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Graduate Program in BiophysicsUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Conner Bardine
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- Graduate Program in Chemistry and Chemical BiologyUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Stefan Gahbauer
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Isha Singh
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Tyler C. Detomasi
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Kris White
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shuo Gu
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Xiaobo Wan
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Jun Chen
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Beatrice Ary
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Isabella Glenn
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Joseph O'Connell
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Henry O'Donnell
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Jiankun Lyu
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Seth Vigneron
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Nicholas J. Young
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Ivan S. Kondratov
- Enamine Ltd.KyïvUkraine
- V.P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineKyïvUkraine
| | - Arghavan Alisoltani
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Ramon Lorenzo‐Redondo
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Egon A. Ozer
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California‐San DiegoSan DiegoCaliforniaUSA
| | - Yurii S. Moroz
- National Taras Shevchenko University of KyïvKyïvUkraine
- Chemspace LLCKyïvUkraine
| | - Jack Taunton
- Department of Cellular and Molecular PharmacologyUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Adam R. Renslo
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - John J. Irwin
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
| | - Adolfo García‐Sastre
- Department of MicrobiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Global Health and Emerging Pathogens InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Medicine, Division of Infectious DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| | - Brian K. Shoichet
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of California‐San FranciscoSan FranciscoCaliforniaUSA
- QBI COVID‐19 Research Group (QCRG)San FranciscoCaliforniaUSA
| |
Collapse
|
11
|
Abstract
Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
12
|
Viral proteases as therapeutic targets. Mol Aspects Med 2022; 88:101159. [PMID: 36459838 PMCID: PMC9706241 DOI: 10.1016/j.mam.2022.101159] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
Collapse
|
13
|
Joyce RP, Hu VW, Wang J. The history, mechanism, and perspectives of nirmatrelvir (PF-07321332): an orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19-related hospitalizations. Med Chem Res 2022; 31:1637-1646. [PMID: 36060104 PMCID: PMC9425786 DOI: 10.1007/s00044-022-02951-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
The rapid development of effective vaccines to combat the SARS-CoV-2 virus has been an effective counter measure to decrease hospitalization and the mortality rate in many countries. However, with the risk of mutated strains decreasing the efficacy of the vaccine, there has been an increasing demand for antivirals to treat COVID-19. While antivirals, such as remdesivir, have had some success treating COVID-19 patients in hospital settings, there is a need for orally bioavailable, cost-effective antivirals that can be administered in outpatient settings to minimize COVID-19-related hospitalizations and death. Nirmatrelvir (PF-07321332) is an orally bioavailable Mpro (also called 3CLpro) inhibitor developed by Pfizer. It is administered in combination with ritonavir, a potent CYP3A4 inhibitor that decreases the metabolism of nirmatrelvir. This review seeks to outline the history of the rational design, the target selectivity, synthesis, drug resistance, and future perspectives of nirmatrelvir. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ryan P. Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Vivian W. Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
14
|
Zhou Z, Zhang J, Zhou E, Ren C, Wang J, Wang Y. Small molecule NS5B RdRp non-nucleoside inhibitors for the treatment of HCV infection: A medicinal chemistry perspective. Eur J Med Chem 2022; 240:114595. [PMID: 35868125 DOI: 10.1016/j.ejmech.2022.114595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection has become a global health problem with enormous risks. Nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase (RdRp) is a component of HCV, which can promote the formation of the viral RNA replication complex and is also an essential part of the replication complex itself. It plays a vital role in the synthesis of the positive and negative strands of HCV RNA. Therefore, the development of small-molecule inhibitors targeting NS5B RdRp is of great value for treating HCV infection-related diseases. Compared with NS5B RdRp nucleoside inhibitors, non-nucleoside inhibitors have more flexible structures, simpler mechanisms of action, and more predictable efficacy and safety of drugs in humans. Technological advances over the past decade have led to remarkable achievements in developing NS5B RdRp inhibitors. This review will summarize the non-nucleoside inhibitors targeting NS5B RdRp developed in the past decade and describe their structure optimization process and structure-activity relationship.
Collapse
Affiliation(s)
- Zhilan Zhou
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Enda Zhou
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Wang F, Chen C, Wang Z, Han X, Shi P, Zhou K, Liu X, Xiao Y, Cai Y, Huang J, Zhang L, Yang H. The Structure of the Porcine Deltacoronavirus Main Protease Reveals a Conserved Target for the Design of Antivirals. Viruses 2022; 14:v14030486. [PMID: 35336895 PMCID: PMC8949103 DOI: 10.3390/v14030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
The existing zoonotic coronaviruses (CoVs) and viral genetic variants are important microbiological pathogens that cause severe disease in humans and animals. Currently, no effective broad-spectrum antiviral drugs against existing and emerging CoVs are available. The CoV main protease (Mpro) plays an essential role in viral replication, making it an ideal target for drug development. However, the structure of the Deltacoronavirus Mpro is still unavailable. Porcine deltacoronavirus (PDCoV) is a novel CoV that belongs to the genus Deltacoronavirus and causes atrophic enteritis, severe diarrhea, vomiting and dehydration in pigs. Here, we determined the structure of PDCoV Mpro complexed with a Michael acceptor inhibitor. Structural comparison showed that the backbone of PDCoV Mpro is similar to those of alpha-, beta- and gamma-CoV Mpros. The substrate-binding pocket of Mpro is well conserved in the subfamily Coronavirinae. In addition, we also observed that Mpros from the same genus adopted a similar conformation. Furthermore, the structure of PDCoV Mpro in complex with a Michael acceptor inhibitor revealed the mechanism of its inhibition of PDCoV Mpro. Our results provide a basis for the development of broad-spectrum antivirals against PDCoV and other CoVs.
Collapse
Affiliation(s)
- Fenghua Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Xu Han
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Peidian Shi
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Kaixuan Zhou
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Xiaomei Liu
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Yan Cai
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Correspondence: (L.Z.); (H.Y.)
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (F.W.); (C.C.); (Z.W.); (X.H.); (P.S.); (Y.X.); (J.H.)
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China; (K.Z.); (X.L.); (Y.C.)
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- Correspondence: (L.Z.); (H.Y.)
| |
Collapse
|
16
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
17
|
Hannemann H. Viral replicons as valuable tools for drug discovery. Drug Discov Today 2020; 25:1026-1033. [PMID: 32272194 PMCID: PMC7136885 DOI: 10.1016/j.drudis.2020.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
RNA viruses can cause severe diseases such as dengue, Lassa, chikungunya and Ebola. Many of these viruses can only be propagated under high containment levels, necessitating the development of low containment surrogate systems such as subgenomic replicons and minigenome systems. Replicons are self-amplifying recombinant RNA molecules expressing proteins sufficient for their own replication but which do not produce infectious virions. Replicons can persist in cells and are passed on during cell division, enabling quick, efficient and high-throughput testing of drug candidates that act on viral transcription, translation and replication. This review will explore the history and potential for drug discovery of hepatitis C virus, dengue virus, respiratory syncytial virus, Ebola virus and norovirus replicon and minigenome systems.
Collapse
Affiliation(s)
- Holger Hannemann
- The Native Antigen Company, Langford Locks, Kidlington OX5 1LH, UK.
| |
Collapse
|
18
|
Nazario de Moraes L, Tommasini Grotto RM, Targino Valente G, de Carvalho Sampaio H, Magro AJ, Fogaça L, Wolf IR, Perahia D, Faria Silva G, Plana Simões R. A novel molecular mechanism to explain mutations of the HCV protease associated with resistance against covalently bound inhibitors. Virus Res 2019; 274:197778. [PMID: 31618615 DOI: 10.1016/j.virusres.2019.197778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
NS3 is an important therapeutic target for direct-acting antiviral (DAA) drugs. However, many patients treated with DAAs have unsustained virologic response (UVR) due to the high mutation rate of HCV. The aim of this work was to shed some light on the puzzling molecular mechanisms of the virus's of patients who showed high viral loads even under treatment with DAA. Bioinformatics tools, molecular modelling analyses were employed to identify mutations associated with HCV resistance to boceprevir and possible structural features related to this phenomenon. We identified two mutations of NS3 that may be associated with HCV resistance: D168N and L153I. The substitution D168N was previously reported in the literature as related with drug failure. Additionally, we identified that its molecular resistance mechanism can be explained by the destabilization of receptor-ligand hydrogen bonds. For the L153I mutation, the resistance mechanism is different from previous models reported in the literature. The L153I substitution decreases the S139 deprotonation susceptibility, and consequently, this mutation impairs the covalent binding between the residue S139 from NS3 and the electrophilic trap on boceprevir, which can induce drug failure. These results were supported by the time course analysis of the mutations of the NS3 protease, which showed that boceprevir was designed for enzymes with an L residue at position 153; however, the sequences with I153 are predominant nowadays. The results presented here could be used to infer about resistance in others DAA, mainly protease inhibitors.
Collapse
Affiliation(s)
- Leonardo Nazario de Moraes
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil
| | - Rejane Maria Tommasini Grotto
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil
| | - Guilherme Targino Valente
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Max Planck Institut for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Heloisa de Carvalho Sampaio
- Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil
| | - Angelo José Magro
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Institute of Biosciences, Street Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, Brazil
| | - Lauana Fogaça
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Institute of Biosciences, Street Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, Brazil
| | - Ivan Rodrigo Wolf
- Sao Paulo State University (UNESP), Institute of Biosciences, Street Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, Brazil
| | - David Perahia
- École Normale Supérieure Paris-Saclay, Laboratory of Biology and Applied Pharmacology, Cachan, 94235, France
| | - Giovanni Faria Silva
- Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil
| | - Rafael Plana Simões
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil.
| |
Collapse
|
19
|
Kammarabutr J, Mahalapbutr P, Nutho B, Kungwan N, Rungrotmongkol T. Low susceptibility of asunaprevir towards R155K and D168A point mutations in HCV NS3/4A protease: A molecular dynamics simulation. J Mol Graph Model 2019; 89:122-130. [PMID: 30884449 DOI: 10.1016/j.jmgm.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/02/2023]
Abstract
Hepatitis C has become an important health problem that requires expensive treatment and leads to liver tumorigenesis. Hepatitis C virus (HCV), which is the main cause of hepatitis C, has a high mutation rate due to the lack of proofreading activity of the RNA polymerase enzyme. The NS3/4A serine protease is an important target for anti-HCV drug discovery and development because of its crucial role in the cleavage of the polypeptides involved in viral replication. In the present study, all-atom molecular dynamics simulation was performed to elucidate the effect of the single point mutations R155K and D168A in the HCV genotype 1 NS3/4A protease on the structural dynamics, molecular interactions and susceptibility of asunaprevir (ASV), a second-generation NS3/4A protease inhibitor. Principal component analysis indicated that these two mutations converted the direction of motion of residues 123, 155 and 168 in the binding pocket to significantly point outwards from ASV, resulting in a loss of the hydrogen bond network of residues R123···R155···D168. The free energy calculations based on different semiempirical QM/MM-GBSA methods revealed that the binding affinity of ASV with the two mutant forms of the NS3/4A protease was significantly decreased in the order of wild-type < R155K < D168A. This work provided useful structural information regarding the atomistic understanding of acquired drug resistance against ASV caused by the R155K and D168A mutations.
Collapse
Affiliation(s)
- Jirayu Kammarabutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Bodee Nutho
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Jin G, Lee J, Lee K. Chemical genetics-based development of small molecules targeting hepatitis C virus. Arch Pharm Res 2017; 40:1021-1036. [PMID: 28856597 DOI: 10.1007/s12272-017-0949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
Collapse
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
21
|
Suleman L. Extracellular Bacterial Proteases in Chronic Wounds: A Potential Therapeutic Target? Adv Wound Care (New Rochelle) 2016; 5:455-463. [PMID: 27785379 DOI: 10.1089/wound.2015.0673] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/01/2015] [Indexed: 12/28/2022] Open
Abstract
Significance: Bacterial biofilms are considered to be responsible for over 80% of persistent infections, including chronic lung infections, osteomyelitis, periodontitis, endocarditis, and chronic wounds. Over 60% of chronic wounds are colonized with bacteria that reside within a biofilm. The exaggerated proteolytic environment of chronic wounds, more specifically elevated matrix metalloproteinases, is thought to be one of the possible reasons as to why chronic wounds fail to heal. However, the role of bacterial proteases within chronic wounds is not fully understood. Recent Advances: Recent research has shown that bacterial proteases can enable colonization and facilitate bacterial immune evasion. The inhibition of bacterial proteases such as Pseudomonas aeruginosa elastase B (LasB) has resulted in the disruption of the bacterial biofilm in vitro. P. aeruginosa is thought to be a key pathogen in chronic wound infection, and therefore, the disruption of these biofilms, potentially through the targeting of P. aeruginosa bacterial proteases, is an attractive therapeutic endeavor. Critical Issues: Disrupting biofilm formation through the inhibition of bacterial proteases may lead to the dissemination of bacteria from the biofilm, allowing planktonic cells to colonize new sites within the wound. Future Directions: Despite a plethora of evidence supporting the role of bacterial proteases as virulence factors in infection, there remains a distinct lack of research into the effect of bacterial proteases in chronic wounds. To assess the viability of targeting bacterial proteases, future research should aim to understand the role of these proteases in a variety of chronic wound subtypes.
Collapse
Affiliation(s)
- Louise Suleman
- Department of Musculoskeletal Biology, Institute of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Meanwell NA. 2015 Philip S. Portoghese Medicinal Chemistry Lectureship. Curing Hepatitis C Virus Infection with Direct-Acting Antiviral Agents: The Arc of a Medicinal Chemistry Triumph. J Med Chem 2016; 59:7311-51. [PMID: 27501244 DOI: 10.1021/acs.jmedchem.6b00915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of direct-acting antiviral agents that can cure a chronic hepatitis C virus (HCV) infection after 8-12 weeks of daily, well-tolerated therapy has revolutionized the treatment of this insidious disease. In this article, three of Bristol-Myers Squibb's HCV programs are summarized, each of which produced a clinical candidate: the NS3 protease inhibitor asunaprevir (64), marketed as Sunvepra, the NS5A replication complex inhibitor daclatasvir (117), marketed as Daklinza, and the allosteric NS5B polymerase inhibitor beclabuvir (142), which is in late stage clinical studies. A clinical study with 64 and 117 established for the first time that a chronic HCV infection could be cured by treatment with direct-acting antiviral agents alone in the absence of interferon. The development of small molecule HCV therapeutics, designed by medicinal chemists, has been hailed as "the arc of a medical triumph" but may equally well be described as "the arc of a medicinal chemistry triumph".
Collapse
Affiliation(s)
- Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research & Development , Wallingford, Connecticut 06492, United States
| |
Collapse
|
23
|
Li W, Si H, Li Y, Ge C, Song F, Ma X, Duan Y, Zhai H. 3D-QSAR and molecular docking studies on designing inhibitors of the hepatitis C virus NS5B polymerase. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Ozdemir Isik G, Ozer AN. Prediction of substrate specificity in NS3/4A serine protease by biased sequence search threading. J Biomol Struct Dyn 2016; 35:1102-1114. [DOI: 10.1080/07391102.2016.1171801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gonca Ozdemir Isik
- Department of Bioengineering, Marmara University , Goztepe, Kadikoy, 34722 Istanbul, Turkey
| | - A. Nevra Ozer
- Department of Bioengineering, Marmara University , Goztepe, Kadikoy, 34722 Istanbul, Turkey
| |
Collapse
|
25
|
The discovery of indole derivatives as novel hepatitis C virus inhibitors. Eur J Med Chem 2016; 116:147-155. [DOI: 10.1016/j.ejmech.2016.03.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022]
|
26
|
Yao M, Lu X, Lei Y, Yang J, Zhao H, Qiao Q, Han P, Xu Z, Yin W. Conditional Inducible Triple-Transgenic Mouse Model for Rapid Real-Time Detection of HCV NS3/4A Protease Activity. PLoS One 2016; 11:e0150894. [PMID: 26943641 PMCID: PMC4778798 DOI: 10.1371/journal.pone.0150894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/19/2016] [Indexed: 01/16/2023] Open
Abstract
Hepatitis C virus (HCV) frequently establishes persistent infections that can develop into severe liver disease. The HCV NS3/4A serine protease is not only essential for viral replication but also cleaves multiple cellular targets that block downstream interferon activation. Therefore, NS3/4A is an ideal target for the development of anti-HCV drugs and inhibitors. In the current study, we generated a novel NS3/4A/Lap/LC-1 triple-transgenic mouse model that can be used to evaluate and screen NS3/4A protease inhibitors. The NS3/4A protease could be conditionally inducibly expressed in the livers of the triple-transgenic mice using a dual Tet-On and Cre/loxP system. In this system, doxycycline (Dox) induction resulted in the secretion of Gaussia luciferase (Gluc) into the blood, and this secretion was dependent on NS3/4A protease-mediated cleavage at the 4B5A junction. Accordingly, NS3/4A protease activity could be quickly assessed in real time simply by monitoring Gluc activity in plasma. The results from such monitoring showed a 70-fold increase in Gluc activity levels in plasma samples collected from the triple-transgenic mice after Dox induction. Additionally, this enhanced plasma Gluc activity was well correlated with the induction of NS3/4A protease expression in the liver. Following oral administration of the commercial NS3/4A-specific inhibitors telaprevir and boceprevir, plasma Gluc activity was reduced by 50% and 65%, respectively. Overall, our novel transgenic mouse model offers a rapid real-time method to evaluate and screen potential NS3/4A protease inhibitors.
Collapse
Affiliation(s)
- Min Yao
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
| | - Xin Lu
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
| | - Yingfeng Lei
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
| | - Jing Yang
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
| | - Haiwei Zhao
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
| | - Qinghua Qiao
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
| | - Peijun Han
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
| | - Zhikai Xu
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
- * E-mail: (ZX); (WY)
| | - Wen Yin
- Department of Microbiology, Fourth Military Medical University, Xi’an, China
- Department of Blood Transfusion, Xijng Hospital, Fourth Military Medical University, Xi’an, China
- * E-mail: (ZX); (WY)
| |
Collapse
|
27
|
Zuo WQ, Wang NY, Zhu YX, Liu L, Xiao KJ, Zhang LD, Gao C, Liu ZH, You XY, Shi YJ, Peng CT, Ran K, Tang H, Yu LT. A new series of HCV inhibitors based on a 2-(thieno[2,3b]pyridin-2-yl)-1,3,4-oxadiazole scaffold. RSC Adv 2016. [DOI: 10.1039/c6ra01179a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A new series of HCV inhibitors based on a 2-(thieno[2,3-b]pyridin-2-yl)-1,3,4-oxadiazole scaffold was developed.
Collapse
|
28
|
Wojaczyńska E, Wojaczyński J, Kleniewska K, Dorsz M, Olszewski TK. 2-Azanorbornane--a versatile chiral aza-Diels-Alder cycloadduct: preparation, applications in stereoselective synthesis and biological activity. Org Biomol Chem 2015; 13:6116-48. [PMID: 25901970 DOI: 10.1039/c5ob00173k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The review presents the achievements in the field of preparation of chiral 2-azanorbornyl derivatives and their application in various stereoselective reactions as well as in biomimetic studies.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
29
|
Li J, Kovackova S, Pu S, Rozenski J, De Jonghe S, Einav S, Herdewijn P. Isothiazolo[4,3- b]pyridines as inhibitors of cyclin G associated kinase : synthesis, structure-activity relationship studies and antiviral activity. MEDCHEMCOMM 2015; 6:1666-1672. [PMID: 26925208 PMCID: PMC4763718 DOI: 10.1039/c5md00229j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isothiazolo[4,3-b]pyridines are known to be endowed with potent affinity for cyclin G associated kinase (GAK). In this paper, we expanded the structure-activity relationship study by broadening the structural variety at position 3 of the isothiazolo[4,3-b]pyridine scaffold. The most potent GAK ligands (displaying Kd values of less than 100 nM) within this series carry an alkoxy group at position 3 of the central scaffold. Unfortunately, these ligands display only modest antiviral activity against the hepatitis C virus.
Collapse
Affiliation(s)
- Jiahong Li
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium ; KU Leuven, Interface Valorisation Platform, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Sona Kovackova
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium ; KU Leuven, Interface Valorisation Platform, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Szuyuan Pu
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jef Rozenski
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium ; KU Leuven, Interface Valorisation Platform, Kapucijnenvoer 33, 3000 Leuven, Belgium
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Minderbroedersstraat 10, 3000 Leuven, Belgium ; KU Leuven, Interface Valorisation Platform, Kapucijnenvoer 33, 3000 Leuven, Belgium
| |
Collapse
|
30
|
Cannalire R, Barreca ML, Manfroni G, Cecchetti V. A Journey around the Medicinal Chemistry of Hepatitis C Virus Inhibitors Targeting NS4B: From Target to Preclinical Drug Candidates. J Med Chem 2015; 59:16-41. [PMID: 26241789 DOI: 10.1021/acs.jmedchem.5b00825] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a global health burden with an estimated 130-170 million chronically infected individuals and is the cause of serious liver diseases such as cirrhosis and hepatocellular carcinoma. HCV NS4B protein represents a validated target for the identification of new drugs to be added to the combination regimen recently approved. During the last years, NS4B has thus been the object of impressive medicinal chemistry efforts, which led to the identification of promising preclinical candidates. In this context, the present review aims to discuss research published on NS4B functional inhibitors focusing the attention on hit identification, hit-to-lead optimization, ADME profile evaluation, and the structure-activity relationship data raised for each compound family taken into account. The information delivered in this review will be a useful and valuable tool for those medicinal chemists dealing with research programs focused on NS4B and aimed at the identification of innovative anti-HCV compounds.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia , Via A. Fabretti, 48-06123 Perugia, Italy
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia , Via A. Fabretti, 48-06123 Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia , Via A. Fabretti, 48-06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, Università degli Studi di Perugia , Via A. Fabretti, 48-06123 Perugia, Italy
| |
Collapse
|
31
|
Abstract
The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and
Department of Medicinal Chemistry, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
32
|
Discovery of HCV NS5B thumb site I inhibitors: Core-refining from benzimidazole to indole scaffold. Eur J Med Chem 2015; 94:218-28. [DOI: 10.1016/j.ejmech.2015.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022]
|
33
|
Wang NY, Xu Y, Zuo WQ, Xiao KJ, Liu L, Zeng XX, You XY, Zhang LD, Gao C, Liu ZH, Ye TH, Xia Y, Xiong Y, Song XJ, Lei Q, Peng CT, Tang H, Yang SY, Wei YQ, Yu LT. Discovery of imidazo[2,1-b]thiazole HCV NS4B inhibitors exhibiting synergistic effect with other direct-acting antiviral agents. J Med Chem 2015; 58:2764-78. [PMID: 25710739 DOI: 10.1021/jm501934n] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The design, synthesis, and SAR studies of novel inhibitors of HCV NS4B based on the imidazo[2,1-b]thiazole scaffold were described. Optimization of potency with respect to genotype 1b resulted in the discovery of two potent leads 26f (EC50 = 16 nM) and 28g (EC50 = 31 nM). The resistance profile studies revealed that 26f and 28g targeted HCV NS4B, more precisely the second amphipathic α helix of NS4B (4BAH2). Cross-resistance between our 4BAH2 inhibitors and other direct-acting antiviral agents targeting NS3/4A, NS5A, and NS5B was not observed. For the first time, the synergism of a series of combinations based on 4BAH2 inhibitors was evaluated. The results demonstrated that our 4BAH2 inhibitor 26f was synergistic with NS3/4A inhibitor simeprevir, NS5A inhibitor daclatasvir, and NS5B inhibitor sofosbuvir, and it could also reduce the dose of these drugs at almost all effect levels. Our study suggested that favorable effects could be achieved by combining 4BAH2 inhibitors such as 26f with these approved drugs and that new all-oral antiviral combinations based on 4BAH2 inhibitors were worth developing to supplement or even replace current treatment regimens for curing HCV infection.
Collapse
Affiliation(s)
- Ning-Yu Wang
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Xu
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wei-Qiong Zuo
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Kun-Jie Xiao
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Li Liu
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.,‡Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiu-Xiu Zeng
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.,‡Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin-Yu You
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.,‡Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li-Dan Zhang
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.,‡Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chao Gao
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Zhi-Hao Liu
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ting-Hong Ye
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yong Xia
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Xiong
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xue-Jiao Song
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Lei
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Cui-Ting Peng
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.,‡Department of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hong Tang
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Sheng-Yong Yang
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yu-Quan Wei
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Luo-Ting Yu
- §State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Kuhnert M, Köster H, Bartholomäus R, Park AY, Shahim A, Heine A, Steuber H, Klebe G, Diederich WE. Chamäleon-artige Bindungsmodi in der Leitstrukturoptimierung: wechselnde Bindungsgeometrien bei Aspartylprotease-Inhibitoren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Kuhnert M, Köster H, Bartholomäus R, Park AY, Shahim A, Heine A, Steuber H, Klebe G, Diederich WE. Tracing binding modes in hit-to-lead optimization: chameleon-like poses of aspartic protease inhibitors. Angew Chem Int Ed Engl 2015; 54:2849-53. [PMID: 25630461 DOI: 10.1002/anie.201411206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 12/28/2022]
Abstract
Successful lead optimization in structure-based drug discovery depends on the correct deduction and interpretation of the underlying structure-activity relationships (SAR) to facilitate efficient decision-making on the next candidates to be synthesized. Consequently, the question arises, how frequently a binding mode (re)-validation is required, to ensure not to be misled by invalid assumptions on the binding geometry. We present an example in which minor chemical modifications within one inhibitor series lead to surprisingly different binding modes. X-ray structure determination of eight inhibitors derived from one core scaffold resulted in four different binding modes in the aspartic protease endothiapepsin, a well-established surrogate for e.g. renin and β-secretase. In addition, we suggest an empirical metrics that might serve as an indicator during lead optimization to qualify compounds as candidates for structural revalidation.
Collapse
Affiliation(s)
- Maren Kuhnert
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 3, 35032 Marburg (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Guan Y, Sun H, Pan P, Li Y, Li D, Hou T. Exploring resistance mechanisms of HCV NS3/4A protease mutations to MK5172: insight from molecular dynamics simulations and free energy calculations. MOLECULAR BIOSYSTEMS 2015. [DOI: 10.1039/c5mb00394f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mutations at a number of key positions (Ala156, Asp168 and Arg155) of the HCV NS3/4A protease can induce medium to high resistance to MK5172.
Collapse
Affiliation(s)
- Yan Guan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
- Institute of Functional Nano & Soft Materials (FUNSOM)
| | - Huiyong Sun
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Peichen Pan
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Soochow University
- Suzhou
- China
| | - Dan Li
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Tingjun Hou
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
37
|
Ventura GT, da Costa ECB, Capaccia AM, Mohana-Borges R. pH-dependent conformational changes in the HCV NS3 protein modulate its ATPase and helicase activities. PLoS One 2014; 9:e115941. [PMID: 25551442 PMCID: PMC4281115 DOI: 10.1371/journal.pone.0115941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/29/2014] [Indexed: 11/29/2022] Open
Abstract
The hepatitis C virus (HCV) infects 170 to 200 million people worldwide and is, therefore, a major health problem. The lack of efficient treatments that specifically target the viral proteins or RNA and its high chronicity rate make hepatitis C the cause of many deaths and hepatic transplants annually. The NS3 protein is considered an important target for the development of anti-HCV drugs because it is composed of two domains (a serine protease in the N-terminal portion and an RNA helicase/NTPase in the C-terminal portion), which are essential for viral replication and proliferation. We expressed and purified both the NS3 helicase domain (NS3hel) and the full-length NS3 protein (NS3FL) and characterized pH-dependent structural changes associated with the increase in their ATPase and helicase activities at acidic pH. Using intrinsic fluorescence experiments, we have observed that NS3hel was less stable at pH 6.4 than at pH 7.2. Moreover, binding curves using an extrinsic fluorescent probe (bis-ANS) and ATPase assays performed under different pH conditions demonstrated that the hydrophobic clefts of NS3 are significantly more exposed to the aqueous medium at acidic pH. Using fluorescence spectroscopy and anisotropy assays, we have also observed more protein interaction with DNA upon pH acidification, which suggests that the hydrophobic clefts exposure on NS3 might be related to a loss of stability that could lead it to adopt a more open conformation. This conformational change at acidic pH would stimulate both its ATPase and helicase activities, as well as its ability to bind DNA. Taken together, our results indicate that the NS3 protein adopts a more open conformation due to acidification from pH 7.2 to 6.4, resulting in a more active form at a pH that is found near Golgi-derived membranes. This increased activity could better allow NS3 to carry out its functions during HCV replication.
Collapse
Affiliation(s)
- Gustavo Tavares Ventura
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emmerson Corrêa Brasil da Costa
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anne Miranda Capaccia
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
38
|
Viral hepatitis C therapy: pharmacokinetic and pharmacodynamic considerations. Clin Pharmacokinet 2014; 53:409-27. [PMID: 24723109 DOI: 10.1007/s40262-014-0142-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C is a global health problem. To prevent or reduce complications, the hepatitis C virus (HCV) infection needs to be eradicated. There have been several developments in treating these patients since the discovery of the virus. As of 1 January 2014, the drugs that are approved for treatment of chronic HCV infection are peginterferon-α, ribavirin, boceprevir, telaprevir, simeprevir and sofosbuvir. In this review we provide an overview of the clinical pharmacokinetic characteristics of these agents by describing their absorption, distribution, metabolism and excretion. In the pharmacodynamic part we summarize what is known about the relationships between the pharmacokinetics of each drug and efficacy or toxicity. We briefly discuss the pharmacokinetics and pharmacodynamics of chronic hepatitis C treatment in special patient populations, such as patients with liver cirrhosis, renal insufficiency or HCV/HIV coinfection, and children. With this knowledge, physicians, pharmacists, nurse practitioners, etc. should be educated to safely and effectively treat HCV-infected patients.
Collapse
|
39
|
Design and synthesis of spirocyclic compounds as HCV replication inhibitors by targeting viral NS4B protein. Bioorg Med Chem Lett 2014; 24:2288-94. [DOI: 10.1016/j.bmcl.2014.03.080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 12/19/2022]
|
40
|
Song ZJ, Tellers DM, Dormer PG, Zewge D, Janey JM, Nolting A, Steinhuebel D, Oliver S, Devine PN, Tschaen DM. Practical Synthesis of A Macrocyclic HCV Protease Inhibitor: A High-Yielding Macrolactam Formation. Org Process Res Dev 2014. [DOI: 10.1021/op400331j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiguo J. Song
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - David M. Tellers
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - Peter G. Dormer
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - Daniel Zewge
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - Jacob M. Janey
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - Andrew Nolting
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - Dietrich Steinhuebel
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - Steven Oliver
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - Paul N. Devine
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| | - David M. Tschaen
- Department of Process Chemistry, Merck Research Laboratory, P.O. Box
2000, Rahway, New Jersey 07065, United States
| |
Collapse
|
41
|
Ang MJY, Li Z, Lim HA, Ng FM, Then SW, Wee JLK, Joy J, Hill J, Chia CSB. A P2 and P3 substrate specificity comparison between the Murray Valley encephalitis and West Nile virus NS2B/NS3 protease using C-terminal agmatine dipeptides. Peptides 2014; 52:49-52. [PMID: 24333681 DOI: 10.1016/j.peptides.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The Murray Valley encephalitis virus (MVEV) and the West Nile virus (WNV) are mosquito-borne single-stranded RNA Flaviviruses responsible for many cases of viral encephalitis and deaths worldwide. The former is endemic in north Australia and Papua New Guinea while the latter has spread to different parts of the world and was responsible for a recent North American outbreak in 2012, resulting in 243 fatalities. There is currently no approved vaccines or drugs against MVEV and WNV viral infections. A plausible drug target is the viral non-structural NS2B/NS3 protease due to its role in viral replication. This trypsin-like serine protease recognizes and cleaves viral polyproteins at the C-terminal end of an arginine residue, opening an avenue for the development of peptide-based antivirals. This communication compares the P2 and P3 residue preferences of the MVEV and WNV NS2B/NS3 proteases using a series of C-terminal agmatine dipeptides. Our results revealed that both viral enzymes were highly specific toward lysines at the P2 and P3 positions, suggesting that a peptidomimetic viral protease inhibitor developed against one virus should also be active against the other.
Collapse
Affiliation(s)
- Melgious Jin Yan Ang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Zhitao Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Huichang Annie Lim
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Fui Mee Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Siew Wen Then
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - John Liang Kuan Wee
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Joma Joy
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore
| | - C S Brian Chia
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #03-01, Singapore 138669, Singapore.
| |
Collapse
|
42
|
Kakarla R, Liu J, Naduthambi D, Chang W, Mosley RT, Bao D, Steuer HMM, Keilman M, Bansal S, Lam AM, Seibel W, Neilson S, Furman PA, Sofia MJ. Discovery of a novel class of potent HCV NS4B inhibitors: SAR studies on piperazinone derivatives. J Med Chem 2014; 57:2136-60. [PMID: 24476391 DOI: 10.1021/jm4012643] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HTS screening identified compound 2a (piperazinone derivative) as a low micromolar HCV genotype 1 (GT-1) inhibitor. Resistance mapping studies suggested that this piperazinone chemotype targets the HCV nonstructural protein NS4B. Extensive SAR studies were performed around 2a and the amide function and the C-3/C-6 cis stereochemistry of the piperazinone core were essential for HCV activity. A 10-fold increase in GT-1 potency was observed when the chiral phenylcyclopropyl amide side chain of 2a was replaced with p-fluorophenylisoxazole-carbonyl moiety (67). Replacing the C-6 nonpolar hydrophobic moiety of 67 with a phenyl moiety (95) did not diminish the GT-1 potency. A heterocyclic thiophene moiety (103) and an isoxazole moiety (108) were incorporated as isosteric replacements for the C-6 phenyl moiety (95), resulting in significant improvement in GT-1b and 1a potency. However, the piperazonone class of compounds lacks GT-2 activity and, consequently, were not pursued further into development.
Collapse
Affiliation(s)
- Ramesh Kakarla
- Pharmasset, Inc. 303A College Road East, Princeton, New Jersey 08540, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Paintsil E, Cheng YC. Antiviral Agents☆. REFERENCE MODULE IN BIOMEDICAL SCIENCES 2014. [PMCID: PMC7150273 DOI: 10.1016/b978-0-12-801238-3.02387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Antiviral agents are drugs approved in the USA by the Food and Drug Administration (FDA) for the treatment or control of viral infections. Available antiviral agents mainly target stages in the viral life cycle. The target stages in the viral life cycle are; viral attachment to host cell, uncoating, synthesis of viral mRNA, translation of mRNA, replication of viral RNA and DNA, maturation of new viral proteins, budding, release of newly synthesized virus, and free virus in body fluids. Two important factors that can limit the utility of antiviral drugs are toxicity and the development of resistance to the antiviral agent by the virus. In addition, host phenotypic behaviors toward antiviral drugs because of either genomic or epigenetic factors could limit the efficacy of an antiviral agent in an individual. This article summarizes the most relevant pharmacologic and clinical properties of current antiviral agents, and targets for novel antiviral agents.
Collapse
|
44
|
Ebrahimi Daryani N, Alavian SM, Somi MH, Torabi-Nami M. Hepatitis C and Why the Treatment is Needed Now? The Summary Report From the Cross-Border Symposium of the 5th Tehran Hepatitis Congress May 2013. HEPATITIS MONTHLY 2013; 13:e16082. [PMCID: PMC3858886 DOI: 10.5812/hepatmon.16082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cross-border symposium on hepatitis C, entitled “why treating now?” was held on 15th May 2013 during the 5th International Tehran Hepatitis Congress. The present report summarizing communicated insights during this symposium is intended to help health care providers to make well-informed decisions when treating patients with chronic hepatitis C (CHC). Since today’s evolving science of hepatitis C management has introduced new treatment options, one should be well-versed about the potential benefits as well as untoward effects or practical challenges when using these regimens. In addition to outline HCV treatment advances, this symposium focused on the central question that why eligible patients with hepatitis C who may mostly benefit from the currently available protease inhibitors, should be treated now rather than be waited for the future therapies. Moreover, an overview of long term local experience with protease inhibitors in our challenging hepatitis C patients was presented during this interactive symposium.
Collapse
Affiliation(s)
- Nasser Ebrahimi Daryani
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Middle East Liver Disease Center (MELD), Tehran, IR Iran
- Corresponding author: Seyed Moayed Alavian, Baqiyatallah University of Medical Sciences, Tehran, IR Iran. Tel: +98-2188945187, Fax: +98-2188945186, E-mail:
| | - Mohammad Hossein Somi
- Research Center for Gastroenterology and Liver Disease, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Mohammad Torabi-Nami
- School of Advanced Medical Science and Technologies, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
45
|
Nitsche C, Schreier VN, Behnam MAM, Kumar A, Bartenschlager R, Klein CD. Thiazolidinone-peptide hybrids as dengue virus protease inhibitors with antiviral activity in cell culture. J Med Chem 2013; 56:8389-403. [PMID: 24083834 DOI: 10.1021/jm400828u] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The protease of dengue virus is a promising target for antiviral drug discovery. We here report a new generation of peptide-hybrid inhibitors of dengue protease that incorporate N-substituted 5-arylidenethiazolidinone heterocycles (rhodanines and thiazolidinediones) as N-terminal capping groups of the peptide moiety. The compounds were extensively characterized with respect to inhibition of various proteases, inhibition mechanisms, membrane permeability, antiviral activity, and cytotoxicity in cell culture. A sulfur/oxygen exchange in position 2 of the capping heterocycle (thiazolidinedione-capped vs rhodanine-capped peptide hybrids) has a significant effect on these properties and activities. The most promising in vitro affinities were observed for thiazolidinedione-based peptide hybrids containing hydrophobic groups with Ki values between 1.5 and 1.8 μM and competitive inhibition mechanisms. Rhodanine-capped peptide hybrids with hydrophobic substituents have, in correlation with their membrane permeability, a more pronounced antiviral activity in cell culture than the thiazolidinediones.
Collapse
Affiliation(s)
- Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob Agents Chemother 2013; 58:110-9. [PMID: 24145533 DOI: 10.1128/aac.01281-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue virus (DENV) causes disease globally, resulting in an estimated 25 to 100 million new infections per year. No effective DENV vaccine is available, and the current treatment is only supportive. Thus, there is an urgent need to develop therapeutic agents to cure this epidemic disease. In the present study, we identified a potential small-molecule inhibitor, BP13944, via high-throughput screening (HTS) of 60,000 compounds using a stable cell line harboring an efficient luciferase replicon of DENV serotype 2 (DENV-2). BP13944 reduced the expression of the DENV replicon reporter in cells, showing a 50% effective concentration (EC50) of 1.03 ± 0.09 μM. Without detectable cytotoxicity, the compound inhibited replication or viral RNA synthesis in all four serotypes of DENV but not in Japanese encephalitis virus (JEV). Sequencing analyses of several individual clones derived from BP13944-resistant RNAs purified from cells harboring the DENV-2 replicon revealed a consensus amino acid substitution (E66G) in the region of the NS3 protease domain. Introduction of E66G into the DENV replicon, an infectious DENV cDNA clone, and recombinant NS2B/NS3 protease constructs conferred 15.2-, 17.2-, and 3.1-fold resistance to BP13944, respectively. Our results identify an effective small-molecule inhibitor, BP13944, which likely targets the DENV NS3 protease. BP13944 could be considered part of a more effective treatment regime for inhibiting DENV in the future.
Collapse
|
47
|
Substrate-based peptidomimetic inhibitors of the Murray Valley encephalitis virus NS2B/NS3 serine protease: A P1–P4 SAR study. Eur J Med Chem 2013; 68:72-80. [DOI: 10.1016/j.ejmech.2013.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 12/30/2022]
|
48
|
Kamlet AS, Préville C, Farley KA, Piotrowski DW. Regioselective hydroarylations and parallel kinetic resolution of Vince lactam. Angew Chem Int Ed Engl 2013; 52:10607-10. [PMID: 23956102 DOI: 10.1002/anie.201304818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Indexed: 01/08/2023]
Abstract
Two regioselective and complementary hydroarylation reactions of an unsymmetrical cyclic olefin have been developed. The products can be transformed in one step into constrained γ-amino acids. Regioselective arylation of Vince lactam is controlled by the choice of phosphine ligand enantiomer and the substituent on the amide nitrogen atom. The method was extended to a general regiodivergent parallel kinetic resolution of the racemic lactam.
Collapse
Affiliation(s)
- Adam S Kamlet
- Worldwide Medicinal Chemistry, Pfizer Inc. Eastern Point Road, Groton, CT 06340 (USA).
| | | | | | | |
Collapse
|
49
|
Kamlet AS, Préville C, Farley KA, Piotrowski DW. Regioselective Hydroarylations and Parallel Kinetic Resolution of Vince Lactam. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Jiang Y, Andrews SW, Condroski KR, Buckman B, Serebryany V, Wenglowsky S, Kennedy AL, Madduru MR, Wang B, Lyon M, Doherty GA, Woodard BT, Lemieux C, Geck Do M, Zhang H, Ballard J, Vigers G, Brandhuber BJ, Stengel P, Josey JA, Beigelman L, Blatt L, Seiwert SD. Discovery of danoprevir (ITMN-191/R7227), a highly selective and potent inhibitor of hepatitis C virus (HCV) NS3/4A protease. J Med Chem 2013; 57:1753-69. [PMID: 23672640 DOI: 10.1021/jm400164c] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HCV serine protease NS3 represents an attractive drug target because it is not only essential for viral replication but also implicated in the viral evasion of the host immune response pathway through direct cleavage of key proteins in the human innate immune system. Through structure-based drug design and optimization, macrocyclic peptidomimetic molecules bearing both a lipophilic P2 isoindoline carbamate and a P1/P1' acylsulfonamide/acylsulfamide carboxylic acid bioisostere were prepared that possessed subnanomolar potency against the NS3 protease in a subgenomic replicon-based cellular assay (Huh-7). Danoprevir (compound 49) was selected as the clinical development candidate for its favorable potency profile across multiple HCV genotypes and key mutant strains and for its good in vitro ADME profiles and in vivo target tissue (liver) exposures across multiple animal species. X-ray crystallographic studies elucidated several key features in the binding of danoprevir to HCV NS3 protease and proved invaluable to our iterative structure-based design strategy.
Collapse
Affiliation(s)
- Yutong Jiang
- Array BioPharma , 3200 Walnut Street, Boulder, Colorado 80301, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|