1
|
Zhu L, Fu S, Ma L, Chen Z, Zeng Q, Li R, Zhou Y, Qian H, Meng X, Ge J. Reversing an agonist into an inhibitor: Development of mTOR degraders. Eur J Med Chem 2025; 294:117774. [PMID: 40398155 DOI: 10.1016/j.ejmech.2025.117774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
Targeted protein degradation using proteolysis-targeting chimeras (PROTACs) has emerged as a powerful strategy for modulating protein function. In this study, we developed mTOR-targeting PROTACs by conjugating the mTOR agonist MHY-1485 to the Cereblon (CRBN) ligand pomalidomide, demonstrating that even activators can serve as effective warheads for targeted protein degradation. Through systematic screening, we identified PD-M6 as a potent bifunctional molecule capable of degrading mTOR (DC50 = 4.8 μM), reversing the proliferative effects of MHY-1485, and inhibiting cell proliferation (IC50 = 11.3 μM) while inducing autophagy, akin to the mTOR known inhibitor rapamycin. Proteomic analysis further revealed that PD-M6 downregulated key proteins in the mTOR signaling pathway, including LAMTOR1, MAPKAP1, and CASTOR1, which are involved in proteasome-mediated degradation, cell division, apoptosis, and lysosomal signaling. Notably, PD-M6 specifically induced the degradation of LAMTOR1. These findings highlight a novel approach for designing PROTACs from agonists, broadening the scope of targeted protein degradation strategies for therapeutic applications.
Collapse
Affiliation(s)
- Liquan Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China; General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, PR China
| | - Siyi Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Longfei Ma
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zhe Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qian Zeng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ruichen Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yiyu Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Huijuan Qian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, PR China.
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
2
|
Dela Cruz FS, Fox E, DuBois SG, Friedman GK, Croop JM, Kim A, Morgenstern DA, Balis FM, Macy ME, Pressey JG, Watt T, Krystal JI, Vo KT, Mody R, Laetsch TW, Weigel BJ, O'Hara K, He CS, Aluri J, Okpara CE, Glade Bender JL. A Phase 1/2 Study of Lenvatinib in Combination With Everolimus in Recurrent and Refractory Pediatric and Young Adult Solid Tumors. Pediatr Blood Cancer 2025; 72:e31692. [PMID: 40313040 DOI: 10.1002/pbc.31692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 05/03/2025]
Abstract
INTRODUCTION Developing targeted therapies with manageable toxicities remains a high priority for pediatric cancer. We sought to determine the recommended Phase 2 dose (RP2D) and evaluate the antitumor activity of lenvatinib+everolimus in children/young adults with select recurrent/refractory solid tumors. METHODS Patients 2-21 years old were eligible. Phase 1 used a rolling-six design. Phase 2 was limited to patients with Ewing sarcoma (EWS), rhabdomyosarcoma (RMS), or high-grade glioma (HGG), and ≤2 prior VEGF/VEGFR-targeted therapies. Primary endpoints included the determination of maximum tolerated dose (MTD), RP2D, safety/toxicity (Phase 1), and objective response rate (ORR) per RECIST version 1.1 (RANO for HGG) at Week 16 (Phase 2). RESULTS In Phase 1, 23 patients received lenvatinib 11 mg/m2 (dose level [DL] 1, n = 18) or 8 mg/m2 (DL -1, n = 5) combined with everolimus 3 mg/m2 orally once daily. DL1 was declared the MTD/RP2D given dose-limiting toxicities (proteinuria [n = 1]; hypertriglyceridemia and hypercholesterolemia [n = 1]) observed in two of 12 patients treated at DL1. In Phase 2, 41 patients (EWS, n = 10; RMS, n = 20; HGG, n = 11) were treated with the RP2D. Two patients with RMS experienced partial response by Week 16. No other objective responses were observed. Two patients with EWS experienced prolonged disease control (≥23 weeks). No new safety signals were identified. The safety profile was similar to those of treated adults with renal cell carcinoma. CONCLUSION Lenvatinib+everolimus has a manageable safety profile in this pediatric population. Despite unmet efficacy endpoints, the antitumor activity observed in RMS and EWS may warrant further study in select pediatric solid tumors. CLINICALTRIALS GOV NUMBER NCT03245151.
Collapse
Affiliation(s)
- Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth Fox
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory K Friedman
- Department of Pediatrics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James M Croop
- Pediatric Hematology, Oncology, and Stem Cell Transplant, Riley Hospital for Children, Indianapolis, Indiana, USA
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, District of Columbia, USA
| | - Daniel A Morgenstern
- Department of Pediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Frank M Balis
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Margaret E Macy
- Department of Pediatrics, University of Colorado and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Joseph G Pressey
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tanya Watt
- Division of Hematology and Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Julie I Krystal
- Pediatric Hematology-Oncology and Cellular Therapy, Cohen Children's Medical Center, Queens, New York, USA
| | - Kieuhoa T Vo
- Department of Pediatrics, University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, California, USA
| | - Rajen Mody
- Pediatric Hematology Oncology, C. S. Mott Children's Hospital, Ann Arbor, Michigan, USA
| | - Theodore W Laetsch
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brenda J Weigel
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen O'Hara
- Deep Human Biology Learning (DHBL), Eisai Ltd., Hatfield, UK
| | - Cixin S He
- Biostatistics, DHBL, Eisai Inc., Nutley, New Jersey, USA
| | - Jagadeesh Aluri
- Clinical Pharmacology Science, DHBL, Eisai Inc., Nutley, New Jersey, USA
| | | | - Julia L Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
3
|
Fatima R, Soni P, Sharma M, Prasher P, Kaverikana R, Mangalpady SS, Sharifi-Rad J, Calina D. Fisetin as a chemoprotective and chemotherapeutic agent: mechanistic insights and future directions in cancer therapy. Med Oncol 2025; 42:104. [PMID: 40074915 DOI: 10.1007/s12032-025-02664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Cancer remains a leading cause of mortality globally, characterized by the uncontrolled proliferation of abnormal cells, invasion of healthy tissues, and potential metastasis. Natural compounds have become a focus in cancer research due to their potential therapeutic roles. Among these, fisetin, a dietary flavonoid, demonstrates notable anti-cancer properties through various molecular mechanisms. This review evaluates the chemoprotective and chemotherapeutic potential of fisetin, focusing on its mechanisms of action against cancer and its capacity to enhance cancer treatment. A systematic literature search was conducted across PubMed, Web of Science, and Scopus databases using keywords related to fisetin and cancer. The review synthesizes findings from in vitro and in vivo studies examining fisetin's effects on signaling pathways, apoptosis induction, oxidative stress modulation, and synergistic potential with chemotherapeutic agents. Fisetin has shown the ability to suppress tumor growth and metastasis by modulating critical signaling pathways, including PI3K/Akt/mTOR, NF-κB, and MAPK. It induces apoptosis in cancer cells through mitochondrial and endoplasmic reticulum stress responses and demonstrates antioxidative properties by reducing reactive oxygen species. Additionally, fisetin enhances the efficacy of conventional chemotherapies, indicating its role as a potential adjuvant in cancer treatment. Fisetin presents a promising natural compound with diverse anti-cancer effects, impacting cell cycle arrest, apoptosis, and oxidative stress pathways. Further clinical studies are warranted to fully elucidate its therapeutic potential and to optimize its delivery for improved bioavailability in cancer patients.
Collapse
Affiliation(s)
- Rabab Fatima
- Department of Chemistry, UPES, Dehradun, 248007, India
| | - Priyal Soni
- Amity Institute of Pharmacy, Amity University, Lucknow, 226010, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | | | - Rajesh Kaverikana
- Department of Pharmacology, Nitte (Deemed to Be University), NGSM Institute of Pharmaceuticals, Mangaluru, India
| | | | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
4
|
Wang C, Zhang Y, Yang S, Savelkoul HFJ, Jansen CA, Liu G. Zn 2+ inhibits PEDV replication by inducing autophagy through the Akt-mTOR pathway. Vet Microbiol 2025; 301:110343. [PMID: 39708717 DOI: 10.1016/j.vetmic.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that induces diarrhea in pigs, leading to severe economic losses in the global pig industry. Currently, effective antiviral treatments for porcine epidemic diarrhea (PED) are rarely available for clinical use. Zinc (Zn2+), an essential mineral, is known to reduce diarrhea in piglets transitioning from milk to solid feed by modulating immune system activity. In this study, the role of Zn2+ in regulating PEDV infection was investigated to explore its potential for reducing diarrhea. Our findings show that Zn2+ inhibits PEDV replication in Vero-E6 cells by inducing autophagy. Notably, we demonstrated that autophagy negatively regulates PEDV infection, as confirmed by the use of autophagy inhibitor (3-MA) and activator (RAPA). Further analysis revealed that PEDV infection activates the Akt-mTOR signaling pathway, while Zn2+ inhibits this pathway in Vero-E6 cells. Additionally, overexpression of Akt and AktSer473 plasmids in Vero-E6 cells highlights the role of Akt phosphorylation in the Zn2+ induced autophagy that inhibits PEDV replication. In summary, this study identifies a mechanism by which Zn2+ suppresses PEDV infection through the Akt-mTOR pathway by mediating autophagy. These findings provide valuable insights into the potential use of Zn2+ as an effective antiviral agent in vivo.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanshan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
5
|
Kumar D, Kanchan R, Chaturvedi NK. Targeting protein synthesis pathways in MYC-amplified medulloblastoma. Discov Oncol 2025; 16:23. [PMID: 39779613 PMCID: PMC11711608 DOI: 10.1007/s12672-025-01761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
MYC is one of the most deregulated oncogenic transcription factors in human cancers. MYC amplification/or overexpression is most common in Group 3 medulloblastoma and is positively associated with poor prognosis. MYC is known to regulate the transcription of major components of protein synthesis (translation) machinery, leading to promoted rates of protein synthesis and tumorigenesis. MTOR signaling-driven deregulated protein synthesis is widespread in various cancers, including medulloblastoma, which can promote the stabilization of MYC. Indeed, our previous studies demonstrate that the key components of protein synthesis machinery, including mTOR signaling and MYC targets, are overexpressed and activated in MYC-amplified medulloblastoma, confirming MYC-dependent addiction of enhanced protein synthesis in medulloblastoma. Further, targeting this enhanced protein synthesis pathway with combined inhibition of MYC transcription and mTOR translation by small-molecule inhibitors, demonstrates preclinical synergistic anti-tumor potential against MYC-driven medulloblastoma in vitro and in vivo. Thus, inhibiting enhanced protein synthesis by targeting the MYC indirectly and mTOR pathways together may present a highly appropriate strategy for treating MYC-driven medulloblastoma and other MYC-addicted cancers. Evidence strongly proposes that MYC/mTOR-driven tumorigenic signaling can predominantly control the translational machinery to elicit cooperative effects on increased cell proliferation, cell cycle progression, and genome dysregulation as a mechanism of cancer initiation. Several small molecule inhibitors of targeting MYC indirectly and mTOR signaling have been developed and used clinically with immunosuppressants and chemotherapy in multiple cancers. Only a few of them have been investigated as treatments for medulloblastoma and other pediatric tumors. This review explores concurrent targeting of MYC and mTOR signaling against MYC-driven medulloblastoma. Based on existing evidence, targeting of MYC and mTOR pathways together produces functional synergy that could be the basis for effective therapies against medulloblastoma.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA
| | - Ranjana Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, 986395, USA.
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Yu X, Zhang D, Hu C, Yu Z, Li Y, Fang C, Qiu Y, Mei Z, Xu L. Combination of Diosmetin With Chrysin Against Hepatocellular Carcinoma Through Inhibiting PI3K/AKT/mTOR/NF-кB Signaling Pathway: TCGA Analysis, Molecular Docking, Molecular Dynamics, In Vitro Experiment. Chem Biol Drug Des 2024; 104:e70003. [PMID: 39448547 DOI: 10.1111/cbdd.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most prevalent malignant tumor. Hepatocellular carcinogenesis is closely linked to apoptosis, autophagy, and inflammation. Diosmetin and chrysin, are two flavonoid compounds, exhibit anti-inflammatory and anticancer properties. In this study, the TCGA database was utilized to identify differentially expressed genes between normal subjects and HCC patients. Molecular docking and molecular dynamics analyses were employed to assess the binding affinity of chrysin and diosmetin to key proteins in the PI3K/AKT/mTOR/NF-κB signaling pathway. Western blotting and RT-qPCR were used to measure the protein and gene expression within this pathway. The results indicated that HCC patients had elevated levels of PI3K, AKT, mTOR, and P65 proteins compared to normal subjects, which adversely affected patient survival. Molecular docking and dynamics studies demonstrated that diosmetin and chrysin are effectively bound to these four proteins. In vitro experiments revealed that the combination of diosmetin and chrysin could induce apoptosis, enhance autophagy, reduce inflammatory mediator production, and improve the tumor cell microenvironment by inhibiting the PI3K/AKT/mTOR/NF-κB signaling pathway. Notably, the synergy score for the combination of diosmetin (25 μM) and chrysin (10 μM) was 16. Thus, the diosmetin-chrysin combination shows promise as an effective therapeutic approach for hepatocellular carcinoma due to its strong synergistic effect.
Collapse
Affiliation(s)
- Xiang Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Di Zhang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chengming Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Zejun Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Cheng Fang
- College of Medicine and Health, Wuhan Polytechnic University, Wuhan, China
| | - Yinsheng Qiu
- School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhinan Mei
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
7
|
Liu X, Zhou C, Cheng B, Xiong Y, Zhou Q, Wan E, He Y. Genipin promotes the apoptosis and autophagy of neuroblastoma cells by suppressing the PI3K/AKT/mTOR pathway. Sci Rep 2024; 14:20231. [PMID: 39215133 PMCID: PMC11364629 DOI: 10.1038/s41598-024-71123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the underlying function and mechanism of genipin in neuroblastoma (NB). Using flow cytometry analysis and cytotoxicity tests, in vitro studies were conducted to assess the effects of genipin on the SK-N-SH cell line. The mechanism of action of genipin was explored through immunofluorescence staining, Western blotting, and caspase-3 activity assays. In addition, we also created a xenograft tumour model to investigate the effects of genipin in vivo. This research confirmed that genipin suppressed cell viability, induced apoptosis, and promoted autophagy, processes that are likely linked to the inhibition of the PI3K/AKT/mTOR signalling pathway. Autophagy inhibition increases the sensitivity of SK-N-SH cells to genipin. Furthermore, combination treatment with a PI3K inhibitor enhanced the therapeutic efficacy of genipin. These results highlight the potential of genipin as a candidate drug for the treatment of NB.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
- Science and Technology Innovation Centre, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary Research, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Can Zhou
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Boli Cheng
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yan Xiong
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Qin Zhou
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Enyu Wan
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yun He
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
8
|
Weidner P, Saar D, Söhn M, Schroeder T, Yu Y, Zöllner FG, Ponelies N, Zhou X, Zwicky A, Rohrbacher FN, Pattabiraman VR, Tanriver M, Bauer A, Ahmed H, Ametamey SM, Riffel P, Seger R, Bode JW, Wade RC, Ebert MPA, Kragelund BB, Burgermeister E. Myotubularin-related-protein-7 inhibits mutant (G12V) K-RAS by direct interaction. Cancer Lett 2024; 588:216783. [PMID: 38462034 DOI: 10.1016/j.canlet.2024.216783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes. Overexpression of MTMR7 reduced RAS GTPase activities and protein levels, ERK1/2 phosphorylation, c-FOS transcription and cancer cell proliferation in vitro. We located the RAS-inhibitory activity of MTMR7 to its charged coiled coil (CC) region and demonstrate direct interaction with the gastrointestinal cancer-relevant K-RASG12V mutant, favouring its GDP-bound state. In mouse models of gastric and intestinal cancer, a cell-permeable MTMR7-CC mimicry peptide decreased tumour growth, Ki67 proliferation index and ERK1/2 nuclear positivity. Thus, MTMR7 mimicry peptide(s) could provide a novel strategy for targeting mutant K-RAS in cancers.
Collapse
Affiliation(s)
- Philip Weidner
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Saar
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Söhn
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Torsten Schroeder
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yanxiong Yu
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Cooperative Core Facility Animal Scanner ZI, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Ponelies
- Orthopaedics & Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaobo Zhou
- Department of Medicine I, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - André Zwicky
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Florian N Rohrbacher
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Vijaya R Pattabiraman
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Alexander Bauer
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hazem Ahmed
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences of ETH, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences of ETH, Zurich, Switzerland
| | - Philipp Riffel
- Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Bioscience of ETH, Zurich, Switzerland
| | - Rebecca C Wade
- Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany; Heidelberg University, Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
| | - Matthias P A Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DKFZ-Hector Institute at the University Medical Center, Mannheim, Germany
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
9
|
Latorre J, de Vera N, Santalucía T, Balada R, Marazuela-Duque A, Vaquero A, Planas AM, Petegnief V. Lack of the Histone Deacetylase SIRT1 Leads to Protection against Endoplasmic Reticulum Stress through the Upregulation of Heat Shock Proteins. Int J Mol Sci 2024; 25:2856. [PMID: 38474102 DOI: 10.3390/ijms25052856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Histone deacetylase SIRT1 represses gene expression through the deacetylation of histones and transcription factors and is involved in the protective cell response to stress and aging. However, upon endoplasmic reticulum (ER) stress, SIRT1 impairs the IRE1α branch of the unfolded protein response (UPR) through the inhibition of the transcriptional activity of XBP-1 and SIRT1 deficiency is beneficial under these conditions. We hypothesized that SIRT1 deficiency may unlock the blockade of transcription factors unrelated to the UPR promoting the synthesis of chaperones and improving the stability of immature proteins or triggering the clearance of unfolded proteins. SIRT1+/+ and SIRT1-/- fibroblasts were exposed to the ER stress inducer tunicamycin and cell survival and expression of heat shock proteins were analyzed 24 h after the treatment. We observed that SIRT1 loss significantly reduced cell sensitivity to ER stress and showed that SIRT1-/- but not SIRT1+/+ cells constitutively expressed high levels of phospho-STAT3 and heat shock proteins. Hsp70 silencing in SIRT1-/- cells abolished the resistance to ER stress. Furthermore, accumulation of ubiquitinated proteins was lower in SIRT1-/- than in SIRT1+/+ cells. Our data showed that SIRT1 deficiency enabled chaperones upregulation and boosted the proteasome activity, two processes that are beneficial for coping with ER stress.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Nuria de Vera
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Tomàs Santalucía
- Department of Fundamental and Clinical Nursing, School of Nursing, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Rafel Balada
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Valérie Petegnief
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
10
|
Cao R, Guo S, Min L, Li P. Roles of Rictor alterations in gastrointestinal tumors (Review). Oncol Rep 2024; 51:37. [PMID: 38186315 PMCID: PMC10807360 DOI: 10.3892/or.2024.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re‑sensitization of therapy‑resistant cancers to be made possible.
Collapse
Affiliation(s)
- Ruizhen Cao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
11
|
Huang H, Yan J, Xu X, Feng Y, Liu H, Liu J, Xie M, Chen L, Xiang D, Peng W, Zeng L, Zeng Y, Chen F, Zhang S, Liu Q. Everolimus inhibits hepatoblastoma by inducing autophagy-dependent ferroptosis. Drug Dev Res 2024; 85:e22140. [PMID: 38349263 DOI: 10.1002/ddr.22140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/15/2024]
Abstract
Everolimus, a known inhibitor of the mammalian target of rapamycin (mTOR), has shown uncertain efficacy in treating hepatoblastoma. This study delves into the potential anti-hepatoblastoma properties of everolimus and its intricate relationship with autophagy and ferroptosis, both in vitro and in vivo. In vivo, tumor tissue from hepatoblastoma patient and human hepatoblastoma cell line HuH-6 were xenografted into nude mice to establish xenograft models for observing the effect of everolimus on tumor growth. In vitro, HuH-6 cells were cultured to evaluate the anti-hepatoblastoma activity of everolimus. Transmission electron microscopy and microtubule-associated proteins 1 light chain 3 (LC3), beclin 1, and p62 protein expressions were employed to investigate autophagy. Additionally, indicators of cell apoptosis, reactive oxygen species (ROS) and proteins associated with ferroptosis were measured to evaluate ferroptosis. The results demonstrate that everolimus treatment effectively induced the formation of autophagosomes in hepatoblastoma cells, upregulated the LC3II/I ratio and beclin 1 expression, and downregulated p62 expression, indicating an enhanced autophagy level both in vitro and in vivo. Furthermore, everolimus treatment induced cell apoptosis, increased ROS level, elevated concentrations of malondialdehyde, 4-hydroxynonenal, and iron content, while reducing the ratio of glutathione/oxidized glutathione, and downregulating the protein expression of glutathione peroxidase 4 and solute carrier family 7 member 11, suggesting its ability to induce ferroptosis in hepatoblastoma cells. Importantly, the induction of ferroptosis by everolimus was significantly reversed in the presence of autophinib, an autophagy inhibitor, indicating the autophagy-dependent of everolimus-induced ferroptosis. Taken together, these findings suggest that everolimus holds promise as an effective anti-hepatoblastoma drug, with its mechanism of action potentially involving the induction of autophagy-dependent ferroptosis in hepatoblastoma cells.
Collapse
Affiliation(s)
- Haijin Huang
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of GanNan Medical University, Ganzhou, Jiangxi, China
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xianyun Xu
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Yanping Feng
- Department of Neurological Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Haijin Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jianping Liu
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mingfeng Xie
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of GanNan Medical University, Ganzhou, Jiangxi, China
- Chinese & Western Integrative Medicine Discipline, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of TCM for Prevention and Treatment on Hemangioma, Nanchang, Jiangxi, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deng Xiang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wei Peng
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Linshan Zeng
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yong Zeng
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Feng Chen
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Qian Liu
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of GanNan Medical University, Ganzhou, Jiangxi, China
- Chinese & Western Integrative Medicine Discipline, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of TCM for Prevention and Treatment on Hemangioma, Nanchang, Jiangxi, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Ihlamur M, Akgul B, Zengin Y, Korkut ŞV, Kelleci K, Abamor EŞ. The mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Next-generation Inhibitors and Approaches. Curr Mol Med 2024; 24:478-494. [PMID: 37165594 DOI: 10.2174/1566524023666230509161645] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/12/2023]
Abstract
mTOR is a serine/threonine kinase that plays various roles in cell growth, proliferation, and metabolism. mTOR signaling in cancer becomes irregular. Therefore, drugs targeting mTOR have been developed. Although mTOR inhibitors rapamycin and rapamycin rapalogs (everolimus, rapamycin, temsirolimus, deforolimus, etc.) and new generation mTOR inhibitors (Rapalink, Dual PI3K/mTOR inhibitors, etc.) are used in cancer treatments, mTOR resistance mechanisms may inhibit the efficacy of these drugs. Therefore, new inhibition approaches are developed. Although these new inhibition approaches have not been widely investigated in cancer treatment, the use of nanoparticles has been evaluated as a new treatment option in a few types of cancer. This review outlines the functions of mTOR in the cancer process, its resistance mechanisms, and the efficiency of mTOR inhibitors in cancer treatment. Furthermore, it discusses the next-generation mTOR inhibitors and inhibition strategies created using nanoparticles. Since mTOR resistance mechanisms prevent the effects of mTOR inhibitors used in cancer treatments, new inhibition strategies should be developed. Inhibition approaches are created using nanoparticles, and one of them offers a promising treatment option with evidence supporting its effectiveness.
Collapse
Affiliation(s)
- Murat Ihlamur
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- Department of Electronics and Automation, Biruni University, Istanbul, Turkey
| | - Busra Akgul
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yağmur Zengin
- Biomedical Engineering Institute, Department of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Şenay Vural Korkut
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey
| | - Kübra Kelleci
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- Department of Medical Services and Techniques, Beykoz University, Istanbul, Turkey
| | - Emrah Şefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
13
|
Chen X, Zhang T, Ren X, Wei Y, Zhang X, Zang X, Ju X, Qin C, Xu D. CHKB-AS1 enhances proliferation and resistance to NVP-BEZ235 of renal cancer cells via regulating the phosphorylation of MAP4 and PI3K/AKT/mTOR signaling. Eur J Med Res 2023; 28:588. [PMID: 38093375 PMCID: PMC10720114 DOI: 10.1186/s40001-023-01558-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Targeted therapy is pivotal in renal carcinoma treatment, and the dual-inhibitor NVP-BEZ235 has emerged as a promising candidate in preliminary studies. Its effectiveness against renal carcinoma and the mechanisms underlying potential resistance, however, warrant further exploration. This study aims to elucidate these aspects, enhancing our understanding of NVP-BEZ235's future clinical utility. To investigate resistance mechanisms, renal cancer cell lines were exposed to progressively increasing concentrations of NVP-BEZ235, leading to the development of stable resistance. These resistant cells underwent extensive RNA-sequencing analysis. We implemented gene interference techniques using plasmid vectors and lentivirus and conducted regular IC50 assessments. To pinpoint the role of LncRNAs, we utilized FISH and immunofluorescence staining assays, supplemented by RNA pull-down and RIP assays to delineate interactions between LncRNA and its RNA-binding protein (RBP). Further, Western blotting and qRT-PCR were employed to examine alterations in signaling pathways, with an animal model providing additional validation. Our results show a marked increase in the IC50 of NVP-BEZ235 in resistant cell lines compared to their parental counterparts. A significant revelation was the role of LncRNA-CHKB-AS1 in mediating drug resistance. We observed dysregulated expression of CHKB-AS1 in both clinical samples of clear cell renal cell carcinoma (ccRCC) and cell lines. In vivo experiments further substantiated our findings, showing that CHKB-AS1 overexpression significantly enhanced tumor growth and resistance to NVP-BEZ235 in a subcutaneous tumorigenesis model, as evidenced by increased tumor volume and weight, whereas CHKB-AS1 knockdown led to a marked reduction in these parameters. Critically, CHKB-AS1 was identified to interact with MAP4, a key regulator in the phosphorylation of the PI3k/Akt/mTOR pathway. This interaction contributes to a diminished antitumor effect of NVP-BEZ235, highlighting the intricate mechanism through which CHKB-AS1 modulates drug resistance pathways, potentially impacting therapeutic strategies against renal carcinoma.
Collapse
Affiliation(s)
- Xinglin Chen
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Tongtong Zhang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xiaohan Ren
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Yuang Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China
| | - Xinyue Zang
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Xiran Ju
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, 210029, Jiangsu Province, China.
| | - Dongliang Xu
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
14
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 299] [Impact Index Per Article: 149.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
15
|
Ghalavand M, Moradi-Chaleshtori M, Dorostkar R, Mohammadi-Yeganeh S, Hashemi SM. Exosomes derived from rapamycin-treated 4T1 breast cancer cells induced polarization of macrophages to M1 phenotype. Biotechnol Appl Biochem 2023; 70:1754-1771. [PMID: 37254633 DOI: 10.1002/bab.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/07/2023] [Indexed: 06/01/2023]
Abstract
M2 macrophages are the most prevalent type in the tumor microenvironment and their polarization to M1 type can be used as a potential cancer immunotherapy. Here, we investigated the role of tumor microenvironment and particularly purified exosomes in M2 to M1 macrophage polarization. Rapamycin treatment on triple-negative breast cancer cells (TNBC) was performed. Tumor cells-derived exosomes (called texosomes) were isolated and characterized using scanning electron microscopy, transmission electron microscopy, dynamic light scattering, high-performance liquid chromatography, Fourier transform infrared, and Western blot assays. M2 mouse peritoneal macrophages were treated with rapamycin or rapamycin-texosome. Then, M1/M2 phenotype-specific marker genes and proteins were measured to assess the degree of M2 to M1 polarization. Finally, nitric oxide (NO) production, phagocytosis, and efferocytosis assays were assessed to verify the functionality of the polarized macrophages. Purified rapamycin-texosomes significantly increased the expression of the M1 markers (Irf5, Nos2, and CD86) and decreased M2 markers (Arg, Ym1, and CD206). In addition, the levels of M1-specific cytokines tumor necrosis factor alpha and interleukin 1β (IL-1β) were increased, whereas the levels of M2 specific cytokines IL-10 and transforming growth factor beta were declined. Furthermore, texosome treatment increased NO concentration and phagocytosis and decreased efferocytosis indicating M1 polarization. These findings suggest rapamycin-texosomes can induce M2 to M1 macrophages polarization as a potential immunotherapy for TNBC.
Collapse
Affiliation(s)
- Majdedin Ghalavand
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moradi-Chaleshtori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Almansa-Gómez S, Prieto-Ruiz F, Cansado J, Madrid M. Autophagy Modulation as a Potential Therapeutic Strategy in Osteosarcoma: Current Insights and Future Perspectives. Int J Mol Sci 2023; 24:13827. [PMID: 37762129 PMCID: PMC10531374 DOI: 10.3390/ijms241813827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy, the process that enables the recycling and degradation of cellular components, is essential for homeostasis, which occurs in response to various types of stress. Autophagy plays an important role in the genesis and evolution of osteosarcoma (OS). The conventional treatment of OS has limitations and is not always effective at controlling the disease. Therefore, numerous researchers have analyzed how controlling autophagy could be used as a treatment or strategy to reverse resistance to therapy in OS. They highlight how the inhibition of autophagy improves the efficacy of chemotherapeutic treatments and how the promotion of autophagy could prove positive in OS therapy. The modulation of autophagy can also be directed against OS stem cells, improving treatment efficacy and preventing cancer recurrence. Despite promising findings, future studies are needed to elucidate the molecular mechanisms of autophagy and its relationship to OS, as well as the mechanisms underlying the functioning of autophagic modulators. Careful evaluation is required as autophagy modulation may have adverse effects on normal cells, and the optimization of autophagic modulators for use as drugs in OS is imperative.
Collapse
Affiliation(s)
| | | | - José Cansado
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| | - Marisa Madrid
- Yeast Physiology Group, Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; (S.A.-G.); (F.P.-R.)
| |
Collapse
|
17
|
Shen X, Deng Y, Chen L, Liu C, Li L, Huang Y. Modulation of Autophagy Direction to Enhance Antitumor Effect of Endoplasmic-Reticulum-Targeted Therapy: Left or Right? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301434. [PMID: 37290058 PMCID: PMC10427372 DOI: 10.1002/advs.202301434] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Indexed: 06/10/2023]
Abstract
Strategies that induce dysfunction in the endoplasmic reticulum (ER) hold great promise for anticancer therapy, but remain unsatisfactory due to the compensatory autophagy induction after ER disruption. Moreover, as autophagy can either promote or suppress cell survival, which direction of autophagy better suits ER-targeting therapy remains controversial. Here, a targeted nanosystem is constructed, which efficiently escorts anticancer therapeutics into the ER, triggering substantial ER stress and autophagy. Concurrently, an autophagy enhancer or inhibitor is combined into the same nanoparticle, and their impacts on ER-related activities are compared. In the orthotopic breast cancer mouse model, the autophagy enhancer increases the antimetastasis effect of ER-targeting therapy and suppresses over 90% of cancer metastasis, while the autophagy inhibitor has a bare effect. Mechanism studies reveal that further enhancing autophagy accelerates central protein snail family transcriptional repressor 1 (SNAI1) degradation, suppressing downstream epithelial-mesenchymal transition, while inhibiting autophagy does the opposite. With the same trend, ER-targeting therapy combined with an autophagy enhancer provokes stronger immune response and tumor inhibition than the autophagy inhibitor. Mechanism studies reveal that the autophagy enhancer elevates Ca2+ release from the ER and functions as a cascade amplifier of ER dysfunction, which accelerates Ca2+ release, resulting in immunogenic cell death (ICD) induction and eventually triggering immune responses. Together, ER-targeting therapy benefits from the autophagy-enhancing strategy more than the autophagy-inhibiting strategy for antitumor and antimetastasis treatment.
Collapse
Affiliation(s)
- Xinran Shen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Yudi Deng
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Liqiang Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Chendong Liu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Lian Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Yuan Huang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
18
|
El-Ganainy SO, Shehata AM, El-Mallah A, Abdallah D, Mohy El-Din MM. Geraniol suppresses tumour growth and enhances chemosensitivity of 5-fluorouracil on breast carcinoma in mice: involvement of miR-21/PTEN signalling. J Pharm Pharmacol 2023:rgad060. [PMID: 37379815 DOI: 10.1093/jpp/rgad060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Breast cancer is the most diagnosed cancer in females worldwide. Phytochemicals are among the recent compelling approaches showing anticancer activity. Geraniol is a monoterpenoid showing anti-tumoral potential in cell lines. However, its exact mechanism in breast cancer has not been elucidated. In addition, the possible chemosenstizing effect of geraniol when combined with chemotherapeutic drugs in breast carcinoma has not been previously addressed. METHODS Therefore, the aim of the current work is to investigate the potential therapeutic as well as chemosensitizing effects of geraniol on breast carcinoma induced in mice through examination of tumour biomarkers and histopathology profile. KEY FINDINGS Results showed a prominent suppression of tumour growth following geraniol treatment. This was accompanied with miR-21 downregulation that subsequently upregulated PTEN and suppressed mTOR levels. Geraniol was also able to activate apoptosis and inhibit autophagy. Histopathological examination revealed high necrosis areas separating malignant cells in the geraniol-treated group. Combined geraniol and 5-fluorouracil treatment induced more than 82% inhibition of tumour rate, surpassing the effect of each drug alone. CONCLUSIONS It can be concluded that geraniol could represent a promising avenue for breast cancer treatment as well as a potential sensitizing agent when combined with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Asmaa M Shehata
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Dina Abdallah
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
19
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
20
|
Tan C, Ai J, Zhu Y. mTORC1-Dependent Protein and Parkinson's Disease: A Mendelian Randomization Study. Brain Sci 2023; 13:brainsci13040536. [PMID: 37190500 DOI: 10.3390/brainsci13040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The mTOR pathway is crucial in controlling the growth, differentiation, and survival of neurons, and its pharmacological targeting has promising potential as a treatment for Parkinson's disease. However, the function of mTORC1 downstream proteins, such as RPS6K, EIF4EBP, EIF-4E, EIF-4G, and EIF4A, in PD development remains unclear. METHODS We performed a Mendelian randomization study to evaluate the causal relationship between mTORC1 downstream proteins and Parkinson's disease. We utilized various MR methods, including inverse-variance-weighted, weighted median, MR-Egger, MR-PRESSO, and MR-RAPS, and conducted sensitivity analyses to identify potential pleiotropy and heterogeneity. RESULTS The genetic proxy EIF4EBP was found to be inversely related to PD risk (OR = 0.79, 95% CI = 0.67-0.92, p = 0.003), with the results from WM, MR-PRESSO, and MR-RAPS being consistent. The plasma protein levels of EIF4G were also observed to show a suggestive protective effect on PD (OR = 0.85, 95% CI = 0.75-0.97, p = 0.014). No clear causal effect was found for the genetically predicted RP-S6K, EIF-4E, and EIF-4A on PD risk. Sensitivity analyses showed no significant imbalanced pleiotropy or heterogeneity, indicating that the MR estimates were robust and independent. CONCLUSION Our unbiased MR study highlights the protective role of serum EIF4EBP levels in PD, suggesting that the pharmacological activation of EIF4EBP activity could be a promising treatment option for PD.
Collapse
Affiliation(s)
- Cheng Tan
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhu
- West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Lin C, Traets JJH, Vredevoogd DW, Visser NL, Peeper DS. TSC2 regulates tumor susceptibility to TRAIL-mediated T-cell killing by orchestrating mTOR signaling. EMBO J 2023; 42:e111614. [PMID: 36715448 PMCID: PMC9975943 DOI: 10.15252/embj.2022111614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Resistance to cancer immunotherapy continues to impair common clinical benefit. Here, we use whole-genome CRISPR-Cas9 knockout data to uncover an important role for Tuberous Sclerosis Complex 2 (TSC2) in determining tumor susceptibility to cytotoxic T lymphocyte (CTL) killing in human melanoma cells. TSC2-depleted tumor cells had disrupted mTOR regulation following CTL attack, which was associated with enhanced cell death. Wild-type tumor cells adapted to CTL attack by shifting their mTOR signaling balance toward increased mTORC2 activity, circumventing apoptosis, and necroptosis. TSC2 ablation strongly augmented tumor cell sensitivity to CTL attack in vitro and in vivo, suggesting one of its functions is to critically protect tumor cells. Mechanistically, TSC2 inactivation caused elevation of TRAIL receptor expression, cooperating with mTORC1-S6 signaling to induce tumor cell death. Clinically, we found a negative correlation between TSC2 expression and TRAIL signaling in TCGA patient cohorts. Moreover, a lower TSC2 immune response signature was observed in melanomas from patients responding to immune checkpoint blockade. Our study uncovers a pivotal role for TSC2 in the cancer immune response by governing crosstalk between TSC2-mTOR and TRAIL signaling, aiding future therapeutic exploration of this pathway in immuno-oncology.
Collapse
Affiliation(s)
- Chun‐Pu Lin
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Joleen J H Traets
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Tumor Biology and ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and ImmunologyOncode Institute, The Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
22
|
Keller M, Rohlf K, Glotzbach A, Leonhardt G, Lüke S, Derksen K, Demirci Ö, Göçener D, AlWahsh M, Lambert J, Lindskog C, Schmidt M, Brenner W, Baumann M, Zent E, Zischinsky ML, Hellwig B, Madjar K, Rahnenführer J, Overbeck N, Reinders J, Cadenas C, Hengstler JG, Edlund K, Marchan R. Inhibiting the glycerophosphodiesterase EDI3 in ER-HER2+ breast cancer cells resistant to HER2-targeted therapy reduces viability and tumour growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:25. [PMID: 36670508 PMCID: PMC9854078 DOI: 10.1186/s13046-022-02578-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored. METHODS EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo. RESULTS In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3β, and transcription factors, including HIF1α, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo. CONCLUSIONS Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.
Collapse
Affiliation(s)
- Magdalena Keller
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Katharina Rohlf
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Annika Glotzbach
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Gregor Leonhardt
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Simon Lüke
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Katharina Derksen
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Özlem Demirci
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Defne Göçener
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Mohammad AlWahsh
- grid.419243.90000 0004 0492 9407Leibniz Institut Für Analytische Wissenschaften - ISAS E.V, Dortmund, Germany ,grid.411778.c0000 0001 2162 1728Institute of Pathology and Medical Research Center (ZMF), University Medical Center Mannheim, Heidelberg University, Mannheim, Germany ,grid.443348.c0000 0001 0244 5415Department of Pharmacy, AlZaytoonah University of Jordan, Amman, Jordan
| | - Jörg Lambert
- grid.419243.90000 0004 0492 9407Leibniz Institut Für Analytische Wissenschaften - ISAS E.V, Dortmund, Germany
| | - Cecilia Lindskog
- grid.8993.b0000 0004 1936 9457Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marcus Schmidt
- grid.410607.4Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Walburgis Brenner
- grid.410607.4Department of Obstetrics and Gynecology, University Medical Center Mainz, Mainz, Germany
| | - Matthias Baumann
- grid.505582.fPharmacology Department, Lead Discovery Center, Dortmund, Germany
| | - Eldar Zent
- grid.505582.fPharmacology Department, Lead Discovery Center, Dortmund, Germany
| | - Mia-Lisa Zischinsky
- grid.505582.fPharmacology Department, Lead Discovery Center, Dortmund, Germany
| | - Birte Hellwig
- grid.5675.10000 0001 0416 9637Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Katrin Madjar
- grid.5675.10000 0001 0416 9637Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Jörg Rahnenführer
- grid.5675.10000 0001 0416 9637Department of Statistics, TU Dortmund University, Dortmund, Germany
| | - Nina Overbeck
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Jörg Reinders
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Cristina Cadenas
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Jan G. Hengstler
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Karolina Edlund
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| | - Rosemarie Marchan
- grid.419241.b0000 0001 2285 956XLeibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Ardeystrasse 67, 44139 Dortmund, Germany
| |
Collapse
|
23
|
Grzmil M, Wiesmann F, Schibli R, Behe M. Targeting mTORC1 Activity to Improve Efficacy of Radioligand Therapy in Cancer. Cancers (Basel) 2022; 15:cancers15010017. [PMID: 36612012 PMCID: PMC9817840 DOI: 10.3390/cancers15010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radioligand therapy (RLT) represents an effective strategy to treat malignancy by cancer-selective delivery of radioactivity following systemic application. Despite recent therapeutic successes, cancer radioresistance and insufficient delivery of the radioactive ligands, as well as cytotoxicity to healthy organs, significantly impairs clinical efficacy. To improve disease management while minimizing toxicity, in recent years, the combination of RLT with molecular targeted therapies against cancer signaling networks showed encouraging outcomes. Characterization of the key deregulated oncogenic signaling pathways revealed their convergence to activate the mammalian target of rapamycin (mTOR), in which signaling plays an essential role in the regulation of cancer growth and survival. Therapeutic interference with hyperactivated mTOR pathways was extensively studied and led to the development of mTOR inhibitors for clinical applications. In this review, we outline the regulation and oncogenic role of mTOR signaling, as well as recapitulate and discuss mTOR complex 1 (mTORC1) inhibition to improve the efficacy of RLT in cancer.
Collapse
Affiliation(s)
- Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence:
| | - Fabius Wiesmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
24
|
McNamara MC, Hosios AM, Torrence ME, Zhao T, Fraser C, Wilkinson M, Kwiatkowski DJ, Henske EP, Wu CL, Sarosiek KA, Valvezan AJ, Manning BD. Reciprocal effects of mTOR inhibitors on pro-survival proteins dictate therapeutic responses in tuberous sclerosis complex. iScience 2022; 25:105458. [PMID: 36388985 PMCID: PMC9663903 DOI: 10.1016/j.isci.2022.105458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
mTORC1 is aberrantly activated in cancer and in the genetic tumor syndrome tuberous sclerosis complex (TSC), which is caused by loss-of-function mutations in the TSC complex, a negative regulator of mTORC1. Clinically approved mTORC1 inhibitors, such as rapamycin, elicit a cytostatic effect that fails to eliminate tumors and is rapidly reversible. We sought to determine the effects of mTORC1 on the core regulators of intrinsic apoptosis. In TSC2-deficient cells and tumors, we find that mTORC1 inhibitors shift cellular dependence from MCL-1 to BCL-2 and BCL-XL for survival, thereby altering susceptibility to BH3 mimetics that target specific pro-survival BCL-2 proteins. The BCL-2/BCL-XL inhibitor ABT-263 synergizes with rapamycin to induce apoptosis in TSC-deficient cells and in a mouse tumor model of TSC, resulting in a more complete and durable response. These data expose a therapeutic vulnerability in regulation of the apoptotic machinery downstream of mTORC1 that promotes a cytotoxic response to rapamycin.
Collapse
Affiliation(s)
- Molly C. McNamara
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron M. Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margaret E. Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Ting Zhao
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Meghan Wilkinson
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David J. Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P. Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Kristopher A. Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Alexander J. Valvezan
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Ali ES, Mitra K, Akter S, Ramproshad S, Mondal B, Khan IN, Islam MT, Sharifi-Rad J, Calina D, Cho WC. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022; 22:284. [PMID: 36109789 PMCID: PMC9476305 DOI: 10.1186/s12935-022-02706-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The PI3K-Akt-mechanistic (formerly mammalian) target of the rapamycin (mTOR) signaling pathway is important in a variety of biological activities, including cellular proliferation, survival, metabolism, autophagy, and immunity. Abnormal PI3K-Akt-mTOR signalling activation can promote transformation by creating a cellular environment conducive to it. Deregulation of such a system in terms of genetic mutations and amplification has been related to several human cancers. Consequently, mTOR has been recognized as a key target for the treatment of cancer, especially for treating cancers with elevated mTOR signaling due to genetic or metabolic disorders. In vitro and in vivo, rapamycin which is an immunosuppressant agent actively suppresses the activity of mTOR and reduces cancer cell growth. As a result, various sirolimus-derived compounds have now been established as therapies for cancer, and now these medications are being investigated in clinical studies. In this updated review, we discuss the usage of sirolimus-derived compounds and other drugs in several preclinical or clinical studies as well as explain some of the challenges involved in targeting mTOR for treating various human cancers.
Collapse
Affiliation(s)
- Eunus S. Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042 Australia
- Gaco Pharmaceuticals, Dhaka, 1000 Bangladesh
- Present Address: Department of Biochemistry and Molecular Genetics, and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611 USA
| | - Kangkana Mitra
- Faculty of Medicine and Pharmacy, Université Grenoble Alpes, Grenoble, France
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, VA 22030 USA
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400 Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400 Bangladesh
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100 Pakistan
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| |
Collapse
|
26
|
Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of Research into mTOR Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165295. [PMID: 36014530 PMCID: PMC9413691 DOI: 10.3390/molecules27165295] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that belongs to the phosphoinositide 3-kinase (PI3K)-related kinase (PIKK) family. The kinase exists in the forms of two complexes, mTORC1 and mTORC2, and it participates in cell growth, proliferation, metabolism, and survival. The kinase activity is closely related to the occurrence and development of multiple human diseases. Inhibitors of mTOR block critical pathways to produce antiviral, anti-inflammatory, antiproliferative and other effects, and they have been applied to research in cancer, inflammation, central nervous system diseases and viral infections. Existing mTOR inhibitors are commonly divided into mTOR allosteric inhibitors, ATP-competitive inhibitors and dual binding site inhibitors, according to their sites of action. In addition, there exist several dual-target mTOR inhibitors that target PI3K, histone deacetylases (HDAC) or ataxia telangiectasia mutated and Rad-3 related (ATR) kinases. This review focuses on the structure of mTOR protein and related signaling pathways as well as the structure and characteristics of various mTOR inhibitors. Non-rapalog allosteric inhibitors will open new directions for the development of new therapeutics specifically targeting mTORC1. The applications of ATP-competitive inhibitors in central nervous system diseases, viral infections and inflammation have laid the foundation for expanding the indications of mTOR inhibitors. Both dual-binding site inhibitors and dual-target inhibitors are beneficial in overcoming mTOR inhibitor resistance.
Collapse
Affiliation(s)
- Beibei Mao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Qi Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Dong-Sheng Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| | - Peizheng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (B.M.); (P.Z.); (P.Y.)
| |
Collapse
|
27
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
28
|
Lee JH, Yoo ES, Han SH, Jung GH, Han EJ, Choi EY, Jeon SJ, Jung SH, Kim B, Cho SD, Nam JS, Choi C, Che JH, Jung JY. Chrysin Induces Apoptosis and Autophagy in Human Melanoma Cells via the mTOR/S6K Pathway. Biomedicines 2022; 10:biomedicines10071467. [PMID: 35884773 PMCID: PMC9312811 DOI: 10.3390/biomedicines10071467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chrysin is known to exert anti-inflammatory, antioxidant, and anticancer effects. The aim of this study was to investigate the anticancer effects of chrysin in the human melanoma cells A375SM and A375P. The results obtained demonstrated successful inhibition of the viability of these cells by inducing apoptosis and autophagy. This was confirmed by the level of apoptosis-related proteins: Bax and cleaved poly (ADP-ribose) polymerase both increased, and Bcl-2 decreased. Moreover, levels of LC3 and Beclin 1, both autophagy-related proteins, increased in chrysin-treated cells. Autophagic vacuoles and acidic vesicular organelles were observed in both cell lines treated with chrysin. Both cell lines showed different tendencies during chrysin-induced autophagy inhibition, indicating that autophagy has different effects depending on the cell type. In A375SM, the early autophagy inhibitor 3-methyladenine (3-MA) was unaffected; however, cell viability decreased when treated with the late autophagy inhibitor hydroxychloroquine (HCQ). In contrast, HCQ was unaffected in A375P; however, cell viability increased when treated with 3-MA. Chrysin also decreased the phosphorylation of mTOR/S6K pathway proteins, indicating that this pathway is involved in chrysin-induced apoptosis and autophagy for A375SM and A375P. However, studies to elucidate the mechanisms of autophagy and the action of chrysin in vivo are still needed.
Collapse
Affiliation(s)
- Jae-Han Lee
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
| | - Eun-Seon Yoo
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
| | - So-Hee Han
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
| | - Gi-Hwan Jung
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
| | - Eun-Ji Han
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
| | - Eun-Young Choi
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
| | - Su-ji Jeon
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
| | - Soo-Hyun Jung
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
| | - Bumseok Kim
- College of Veterinary Medicine, Bio-Safety Research Institute, Jeonbuk National University, Iksan 54896, Korea;
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, Dental Research Institute, Seoul National University, Seoul 03080, Korea;
| | - Jeong-Seok Nam
- Gwangju Institute of Science and Technology, School of Life Sciences, Gwangju 61005, Korea;
| | - Changsun Choi
- School of Food Science and Technology, Chung-ang University, Ansung 17456, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource Development, Seoul National University College of Medicine, Seoul 03080, Korea;
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Ji-Youn Jung
- Department of Companion, Laboratory Animal Science, Kongju National University, Yesan 32439, Korea; (J.-H.L.); (E.-S.Y.); (S.-H.H.); (G.-H.J.); (E.-J.H.); (E.-Y.C.); (S.-j.J.); (S.-H.J.)
- Correspondence:
| |
Collapse
|
29
|
The anti-apoptotic and anti-autophagic effects of EPO through PI3K/Akt/mTOR signaling pathway in MAC-T cells. Res Vet Sci 2022; 149:1-10. [PMID: 35714559 DOI: 10.1016/j.rvsc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/10/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022]
Abstract
Lipopolysaccharide (LPS) is an important inflammatory and infected factor of bacterial mastitis, which treated bovine mammary epithelial cells (MAC-T) in our previous studies, as mastitis cells model in vitro. Erythropoietin (EPO) is a well-known hematopoietic hormone with antioxidative, anti-apoptotic, and anti-inflammatory roles. We hypothesized that EPO might regulate the apoptosis and autophagy to attenuate the inflammation of mastitis. Western blot, RT-PCR, transmission electron microscope analysis and Annexin V-FITC/PI were used to evaluate the regulation of EPO on apoptosis and autophagy in inflammatory MAC-T cells. These results demonstrated that EPO promoted the proliferation of MAC-T cells. Meanwhile, EPO had a better anti-inflammatory effect in MAC-T cells with LPS treatment. Certainly, EPO also showed anti-apoptotic and anti-autophagic effects. Interestingly, we found that the beneficial effect of EPO on inflammatory MAC-T cells depended on the PI3K/Akt/mTOR signaling pathway, which was involved in the regulation of apoptosis and autophagy. Generally, this study provides an insight for EPO to inhibit apoptosis and autophagy of inflammatory MAC-T cells via PI3K/Akt/mTOR signaling pathway.
Collapse
|
30
|
Gao C, Wang S, Shao W, Zhang Y, Lu L, Jia H, Zhu K, Chen J, Dong Q, Lu M, Zhu W, Qin L. Rapamycin enhances the anti-tumor activity of cabozantinib in cMet inhibitor-resistant hepatocellular carcinoma. Front Med 2022; 16:467-482. [PMID: 34669157 DOI: 10.1007/s11684-021-0869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Cabozantinib, mainly targeting cMet and vascular endothelial growth factor receptor 2, is the second-line treatment for patients with advanced hepatocellular carcinoma (HCC). However, the lower response rate and resistance limit its enduring clinical benefit. In this study, we found that cMet-low HCC cells showed primary resistance to cMet inhibitors, and the combination of cabozantinib and mammalian target of rapamycin (mTOR) inhibitor, rapamycin, exhibited a synergistic inhibitory effect on the in vitro cell proliferation and in vivo tumor growth of these cells. Mechanically, the combination of rapamycin with cabozantinib resulted in the remarkable inhibition of AKT, extracellular signal-regulated protein kinases, mTOR, and common downstream signal molecules of receptor tyrosine kinases; decreased cyclin D1 expression; and induced cell cycle arrest. Meanwhile, rapamycin enhanced the inhibitory effects of cabozantinib on the migration and tubule formation of human umbilical vascular endothelial cells and human growth factor-induced invasion of cMet inhibitor-resistant HCC cells under hypoxia condition. These effects were further validated in xenograft models. In conclusion, our findings uncover a potential combination therapy of cabozantinib and rapamycin to combat cabozantinib-resistant HCC.
Collapse
Affiliation(s)
- Chao Gao
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Shenghao Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Weiqing Shao
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Kejin Zhu
- Kanion Research Institute, Lianyungang, 222002, China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China
| | - Ming Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
31
|
Zhang X, Sun Y, Cheng S, Yao Y, Hua X, Shi Y, Jin X, Pan J, Hu MG, Ying P, Hou X, Xia D. CDK6 increases glycolysis and suppresses autophagy by mTORC1-HK2 pathway activation in cervical cancer cells. Cell Cycle 2022; 21:984-1002. [PMID: 35167417 PMCID: PMC9037534 DOI: 10.1080/15384101.2022.2039981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 01/31/2023] Open
Abstract
Cervical carcinoma is a leading malignant tumor among women worldwide, characterized by the dysregulation of cell cycle. Cyclin-dependent kinase 6 (CDK6) plays important roles in the cell cycle progression, cell differentiation, and tumorigenesis. However, the role of CDK6 in cervical cancer remains controversial. Here, we found that loss of CDK6 in cervical adenocarcinoma HeLa cell line inhibited cell proliferation but induced apoptosis as well as autophagy, accompanied by attenuated expression of mammalian target of rapamycin complex 1 (mTORC1) and hexokinase 2 (HK2), reduced glycolysis, and production of protein, nucleotide, and lipid. Similarly, we showed that CDK6 knockout inhibited the survival of CDK6-high CaSki but not CDK6-low SiHa cervical cancer cells by regulation of glycolysis and autophagy process. Collectively, our studies indicate that CDK6 is a critical regulator of human cervical cancer cells, especially with high CDK6 level, through its ability to regulate cellular apoptosis and metabolism. Thus, inhibition of CDK6 kinase activity could be a powerful therapeutic avenue used to treat cervical cancers.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Yunxia Sun
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siyao Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, China
| | - Yanjing Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Xintao Hua
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, China
| | - Yueyue Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Xiaoqin Jin
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jieli Pan
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology Oncology, Tufts Medical Center, Boston, MA, USA
| | - Pian Ying
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xiaoli Hou
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| |
Collapse
|
32
|
Zhang JF, Xu W, Yang YX, Zhang LL, Wang T. Leucine Alters Blood Parameters and Regulates Hepatic Protein Synthesis via mTOR Activation in Intrauterine Growth Restriction Piglets. J Anim Sci 2022; 100:6562689. [PMID: 35366314 PMCID: PMC9053099 DOI: 10.1093/jas/skac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/12/2022] Open
Abstract
Neonatal piglets often suffer low birth weights and poor growth performance accompanied by the disruption of protein metabolism, when intrauterine growth restriction (IUGR) takes place during pregnancy, leading to a higher mortality and bigger economic loss than expected. Leucine has been proposed to function as a nutritional signal regulating protein synthesis in numerous studies. The aim of this study was to determine the effect of dietary leucine supplementation on the blood parameters and hepatic protein metabolism in IUGR piglets. Weaned piglets were assigned to one of four to treatments in a 2 × 2 factorial arrangement: (1) piglets fed a basal diet with normal birth weight; (2) piglets fed a basal diet plus 0.35% L-leucine with normal birth weight; (3) IUGR piglets fed a basal diet with low birth weight; (4) IUGR piglets fed a basal diet plus 0.35% L-leucine with low birth weight. The results showed that IUGR decreased serum aspartate aminotransferase and alkaline phosphatase activities, increased serum cortisol and prostaglandin E2 levels at 35 days of age (P < 0.05), suggesting the occurrence of liver dysfunction and stress response. Leucine supplementation increased serum alkaline phosphatase activity, and decreased serum cortisol levels at 35 days of age (P < 0.05). IUGR decreased the lysozyme activity and complement 3 level in serum (P < 0.05), which were prevented by dietary leucine supplementation. IUGR piglets showed increased hepatic DNA contents while showing reduced RNA/DNA ratio (P < 0.05). Piglets supplied with leucine had decreased RNA/DNA ratio in the liver (P < 0.05). Leucine supplementation stimulated hepatic protein anabolism through up-regulating protein synthesis related genes expression and activating the phosphorylation of mammalian/mechanistic target of rapamycin (mTOR) (P < 0.05). Moreover, IUGR inhibited the mRNA expression of hepatic protein degradation related genes, indicating a compensatory mechanism for the metabolic response. Dietary leucine supplementation attenuated the suppression of the protein catabolism induced by IUGR in liver. These results demonstrate that dietary leucine supplementation could alter the blood parameters, alleviated the disrupted protein metabolism induced by IUGR via enhanced mTOR phosphorylation to promote protein synthesis in weaned piglets.
Collapse
Affiliation(s)
- J F Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - W Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Y X Yang
- Bluestar Adisseo Nanjing Co. Ltd., Nanjing 210000, China
| | - L L Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - T Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Kisla MM, Ates-Alagoz Z. Benzimidazoles Against Certain Breast Cancer Drug Targets: A Review. Mini Rev Med Chem 2022; 22:2463-2477. [PMID: 35345997 DOI: 10.2174/1389557522666220328161217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazoles are widely used scaffolds against various types of cancer including breast cancer. To this end, anticancer agents must be developed using the knowledge of the specific targets of BC. OBJECTIVE In this study, we aim to review the compounds used against some of the biomolecular targets of breast cancer. To this end, we present information about the various targets, with their latest innovative studies. CONCLUSION Benzimidazole ring is an important building block that can target diverse cancer scenarios since it can structurally mimic biomolecules in the human body. Additionally, many studies imply the involvement of this moiety on a plethora of pathways and enzymes related to BC. Herein, our target-based collection of benzimidazole derivatives strongly suggests the utilization of benzimidazole derivatives against BC.
Collapse
Affiliation(s)
- Mehmet Murat Kisla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
34
|
Li B, Zhang X, Ren Q, Gao L, Tian J. NVP-BEZ235 Inhibits Renal Cell Carcinoma by Targeting TAK1 and PI3K/Akt/mTOR Pathways. Front Pharmacol 2022; 12:781623. [PMID: 35082669 PMCID: PMC8784527 DOI: 10.3389/fphar.2021.781623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the promising in vitro and preclinical results, dual PI3K/Akt/mTOR inhibitor NVP-BEZ235, and ATP-competitive mTOR inhibitor PP242 both failed to confirm their inhibitory efficacy against renal cell carcinoma (RCC) in clinical settings. Therefore, a better understanding of the molecular mechanism is essential so as to provide possibilities for their use in combination with other agents. In present study, RCC cell lines (UMRC6, 786-0 and UOK121) were treated with NVP-BEZ235, PP242 or Rapamycin, an mTOR complex 1 (mTORC1)-specific inhibitor. They all suppressed cell proliferation and invasion, induced apoptosis and cell cycle arrest, and the effects were in the order of NVP-BEZ235 > PP242 > Rapamycin. Accordingly, the marked and sustained decrease in speckle-type POZ protein (SPOP) expression and phosphorylation of Akt and mTOR kinases was observed in RCC cells treated with NVP-BEZ235 and PP242, whereas only potent inhibition of mTOR activity was induced in Rapamycin-treated cells. In considering the overactivation of c-Jun and IκB-α in human renal tumor tissue, we next investigated the role of JNK and IKK pathways in the response of RCC cells to these compounds. First of all, transforming growth factor β activated kinase 1 (TAK1)-dependent activation of JNK/ (activator protein-1) AP-1 axis in RCC cells was proved by the repression of AP-1 activity with TAK1 or JNK inhibitor. Second, the profound inhibition of TAK1/JNK/AP-1 pathway was demonstrated in RCC cells treated with NVP-BEZ235 or PP242 but not Rapamycin, which is manifested as a reduction in activity of TAK1, c-Jun and AP-1. Meanwhile, subsequent to TAK1 inactivation, the activation of IκB-α was also reduced by NVP-BEZ235 and PP242. Likewise, in vivo, treatment with NVP-BEZ235 and PP242 suppressed the growth of xenografts generated from 786-0 and A498 cells, along with decreased expression of phospho-TAK1, phospho-c-Jun, and phospho-IκB-α. In contrast, Rapamycin elicited no significant inhibitory effects on tumor growth and phosphorylation of TAK1, c-Jun and IκB-α. We conclude that besides PI3K/Akt/mTOR signaling, NVP-BEZ235, and PP242 simultaneously target TAK1-dependent pathways in RCC cells. Notably, these effects were more marked in the presence of NVP-BEZ235 than PP242, indicating the potential application of NVP-BEZ235 in combination therapy for RCC.
Collapse
Affiliation(s)
- Bihui Li
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China.,Department of Oncology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xing Zhang
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Qianyao Ren
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| | - Li Gao
- Department of Urinary Surgery, The First Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jing Tian
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, China
| |
Collapse
|
35
|
Mohseni AH, Casolaro V, Bermúdez-Humarán LG, Keyvani H, Taghinezhad-S S. Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes 2022; 13:1-17. [PMID: 33615993 PMCID: PMC7899637 DOI: 10.1080/19490976.2021.1886844] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B or Akt (PKB/Akt) signaling pathways are considered as two but somewhat interconnected significant immune pathways which play complex roles in a variety of physiological processes as well as pathological conditions. Aberrant activation of PI3K/Akt/mTOR signaling pathways has been reported to be associated in a wide variety of human diseases. Over the past few years, growing evidence in in vitro and in vivo models suggest that this sophisticated and subtle cascade mediates the orchestration of the immune response in health and disease through exposure to probiotics. An expanding body of literature has highlighted the contribution of probiotics and PI3K/Akt/mTOR signaling pathways in gastrointestinal disorders, metabolic syndrome, skin diseases, allergy, salmonella infection, and aging. However, longitudinal human studies are possibly required to verify more conclusively whether the investigational tools used to understand the regulation of these pathways might provide effective approaches in the prevention and treatment of various disorders. In this Review, we summarize the experimental evidence from recent peer-reviewed studies and provide a brief overview of the causal relationship between the effects of probiotics and their metabolites on the components of PI3K/Akt/mTOR signaling pathways and human disease.
Collapse
Affiliation(s)
- Amir Hossein Mohseni
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salerno, Italy
| | | | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran,Hossein Keyvani Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran, Tel +98 21 88715350
| | - Sedigheh Taghinezhad-S
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran,CONTACT Sedigheh Taghinezhad-S Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| |
Collapse
|
36
|
Selvan SR, Brichetti JA, Thurber DB, Botting GM, Bertenshaw GP. Functional Profiling of Head and Neck/Esophageal Squamous Cell Carcinoma to Predict Cetuximab Response. Cancer Biother Radiopharm 2021. [PMID: 34846938 DOI: 10.1089/cbr.2021.0283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Cetuximab, an epidermal growth factor receptor (EGFR)-targeting antibody, remains the only Food and Drug Administration-approved targeted therapy for squamous cell carcinoma (SCC) of head and neck/esophagus. However, in clinical trials, cetuximab only benefited a subset of patients and frequently caused toxicity. Predicting which patients respond to cetuximab remains unsolved. The authors sought to identify predictive biomarkers in EGFR signaling and autophagy pathways, which may be impacted by cetuximab under certain treatment conditions. Methods: In vitro responses of SCC cell lines to cetuximab under various nutrient conditions were assessed by WST-8 growth assay. Functional profiles of several EGFR signaling biomarkers were investigated by Luminex-based assays and corroborated with immunoblots. Autophagy markers were analyzed with immunoblots. Results: In vitro growth response assays identified cetuximab responder and nonresponder cell lines. Optimal growth conditions and growth factors enhanced responses, and even reversed nonresponsiveness in some cell lines. Strong correlation was found between response in growth assays (reference assay) and dynamic changes in p-Erk1/2 and LC3-II (index assays). Conclusions: This study indicates that nutrient modification may enhance cetuximab response in SCC patients. Biomarker results strengthen the hypothesis that dynamic biomarkers can be used to predict patient response to cetuximab. Future studies are warranted to test in more complex samples including patient-derived tumor tissues.
Collapse
|
37
|
Lu Z, Zhang Y, Xu Y, Wei H, Zhao W, Wang P, Li Y, Hou G. mTOR inhibitor PP242 increases antitumor activity of sulforaphane by blocking Akt/mTOR pathway in esophageal squamous cell carcinoma. Mol Biol Rep 2021; 49:451-461. [PMID: 34731371 DOI: 10.1007/s11033-021-06895-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sulforaphane (SFN) is a kind of isothiocyanate from cruciferous vegetables with extensive anti-tumor activity. Esophageal squamous cell carcinoma (ESCC) is a popular malignancy in East Asia, East and South Africa, while the more efficient medicines and therapeutic strategies are still lack. This study aims to explore the anti-tumor activity of SFN alone and combined with Akt/mTOR pathway inhibitors as well as the potential molecular mechanism in ESCC. METHODS AND RESULTS Cell proliferation, migration, cell cycle phase, apoptosis and protein expression were detected with MTT assay, clone formation experiment, wound healing assays, flow cytometry and Western blot, respectively, after ESCC cells ECa109 and EC9706 treated with SFN alone or combined with Akt/mTOR inhibitors. Xenograft models were used to evaluate the efficiency and mechanism of SFN combined with PP242 in vivo. The results showed that SFN significantly inhibited the viability and induced apoptosis of ECa109 and EC9706 cells by increasing expression of Cleaved-caspase 9. SFN combined with PP242, but not MK2206 and RAD001, synergetic inhibited proliferation of ESCC cells. Moreover, compared to SFN alone, combination of SFN and PP242 had stronger inhibiting efficiency on clone formation, cell migratory, cell cycle phase and growth of xenografts, as well as the more powerful apoptosis-inducing effects on ESCC. The mechanism was that PP242 abrogated the promoting effects of SFN on p-p70S6K (Thr389) and p-Akt (Ser473) in ESCC. CONCLUSIONS Our findings demonstrate that PP242 enhances the anti-tumor activity of SFN by blocking SFN-induced activation of Akt/mTOR pathway in ESCC, which provides a rationale for treating ESCC using SFN combined with Akt/mTOR pathway inhibitors.
Collapse
Affiliation(s)
- Zhaoming Lu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Collaborative Innovation Center of Cancer Chemoprevention, Zhengzhou, 450001, Henan Province, China
| | - Yalin Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yujia Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huiyun Wei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450052, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Li
- Center of Advanced Analysis & Gene Sequencing, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guiqin Hou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
38
|
Agarwal S, Sau S, Iyer AK, Dixit A, Kashaw SK. Multiple strategies for the treatment of invasive breast carcinoma: A comprehensive prospective. Drug Discov Today 2021; 27:585-611. [PMID: 34715356 DOI: 10.1016/j.drudis.2021.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023]
Abstract
In this review, we emphasize on evolving therapeutic strategies and advances in the treatment of breast cancer (BC). This includes small-molecule inhibitors under preclinical and clinical investigation, phytoconstituents with antiproliferative potential, targeted therapies as antibodies and antibody-drug conjugates (ADCs), vaccines as immunotherapeutic agents and peptides as a novel approach inhibiting the interaction of oncogenic proteins. We provide an update of molecules under different phases of clinical investigation which aid in the identification of loopholes or shortcomings that can be overcomed with future breast cancer research.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar, MP, India
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar, MP, India.
| |
Collapse
|
39
|
Lee JE, Woo MG, Jung KH, Kang YW, Shin SM, Son MK, Fang Z, Yan HH, Park JH, Yoon YC, Kim YS, Hong SS. Combination Therapy of the Active KRAS-Targeting Antibody inRas37 and a PI3K Inhibitor in Pancreatic Cancer. Biomol Ther (Seoul) 2021; 30:274-283. [PMID: 34663758 PMCID: PMC9047487 DOI: 10.4062/biomolther.2021.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/05/2022] Open
Abstract
KRAS activating mutations, which are present in more than 90% of pancreatic cancers, drive tumor dependency on the RAS/mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Therefore, combined targeting of RAS/MAPK and PI3K/AKT signaling pathways may be required for optimal therapeutic effect in pancreatic cancer. However, the therapeutic efficacy of combined MAPK and PI3K/AKT signaling target inhibitors is unsatisfactory in pancreatic cancer treatment, because it is often accompanied by MAPK pathway reactivation by PI3K/AKT inhibitor. Therefore, we developed an inRas37 antibody, which directly targets the intra-cellularly activated GTP-bound form of oncogenic RAS mutation and investigated its synergistic effect in the presence of the PI3K inhibitor BEZ-235 in pancreatic cancer. In this study, inRas37 remarkably increased the drug response of BEZ-235 to pancreatic cancer cells by inhibiting MAPK reactivation. Moreover, the co-treatment synergistically inhibited cell proliferation, migration, and invasion and exhibited synergistic anticancer activity by inhibiting the MAPK and PI3K pathways. The combined administration of inRas37and BEZ-235 significantly inhibited tumor growth in mouse models. Our results demonstrated that inRas37 synergistically increased the antitumor activity of BEZ-235 by inhibiting MAPK reactivation, suggesting that inRas37 and BEZ-235 co-treatment could be a potential treatment approach for pancreatic cancer patients with KRAS mutations.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Min Gyu Woo
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Yeo Wool Kang
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Seung-Min Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Mi Kwon Son
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Hong Hua Yan
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Jung Hee Park
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Young-Chan Yoon
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
40
|
Cao RZ, Min L, Liu S, Tian RY, Jiang HY, Liu J, Shao LL, Cheng R, Zhu ST, Guo SL, Li P. Rictor Activates Cav 1 Through the Akt Signaling Pathway to Inhibit the Apoptosis of Gastric Cancer Cells. Front Oncol 2021; 11:641453. [PMID: 34540654 PMCID: PMC8442624 DOI: 10.3389/fonc.2021.641453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
Background Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) protein is a core subunit of mammalian target of rapamycin complex 2, and is associated with cancer progression. However, the biological function of Rictor in cancer, particularly its clinical relevance in gastric cancer (GC) remains largely unknown. Methods Rictor expression and its association with clinicopathologic characteristics in GC were analyzed by immunohistochemistry. Effect of Rictor and Caveolin-1 (Cav 1) on GC cells apoptosis was evaluated via overexpression experiment in vitro. Mechanisms of Rictor and Cav 1 in GC were explored through overexpression and knockdown, by immunofluorescence and western blot analyses. Results Rictor was upregulated in GC, and mainly located in the cytoplasm of cancer cells. Moreover, higher Rictor levels were associated with worse prognosis. Rictor could inhibit GC cell apoptosis and promote cell growth in vitro. The results of immunofluorescence revealed that Cav 1 localized in GC cell membrane but did not co-localize with Rictor. Further, Rictor regulated apoptosis-related proteins, long non-coding RNAs and also activated cellular signaling, thereby positively regulating Cav 1 expression. This effect was attenuated by the Akt inhibitor ly294002. Cav 1 did not significantly affect the ability of Rictor to inhibit tumor cell apoptosis. Conclusions Rictor is upregulated in GC and associated with worse prognosis. It inhibits tumor apoptosis and activates Cav 1 through the Akt signaling pathway to inhibit the apoptosis of GC cells. Rictor is, therefore, a promising prognostic biomarker and possible therapeutic target in GC patients.
Collapse
Affiliation(s)
- Rui-Zhen Cao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China.,Department of Gastroenterology, Ordos Central Hospital, National Clinical Research Center for Digestive Disease-Ordos Subcenter, Ordos, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Ru-Yue Tian
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Hai-Yan Jiang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China.,Department of Gastroenterology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Juan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China.,Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan, China
| | - Lin-Lin Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Rui Cheng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shui-Long Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| |
Collapse
|
41
|
Taxifolin Targets PI3K and mTOR and Inhibits Glioblastoma Multiforme. JOURNAL OF ONCOLOGY 2021; 2021:5560915. [PMID: 34462635 PMCID: PMC8403040 DOI: 10.1155/2021/5560915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/31/2021] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM), the most common malignant primary brain tumor, has a very poor prognosis. With increasing knowledge of tumor molecular biology, targeted therapies are becoming increasingly integral to comprehensive GBM treatment strategies. mTOR is a key downstream molecule of the PI3K/Akt signaling pathway, integrating input signals from growth factors, nutrients, and energy sources to regulate cell growth and cell proliferation through multiple cellular responses. mTOR/PI3K dual-targeted therapy has shown promise in managing various cancers. Here, we report that taxifolin, a flavanone commonly found in milk thistle, inhibited mTOR/PI3K, promoted autophagy, and suppressed lipid synthesis in GBM. In silico analysis showed that taxifolin can bind to the rapamycin binding site of mTOR and the catalytic site of PI3K (p110α). In in vitro experiments, taxifolin inhibited mTOR and PI3K activity in five different glioma cell lines. Lastly, we showed that taxifolin suppressed tumors in mice; stimulated expression of autophagy-related genes LC3B-II, Atg7, atg12, and Beclin-1; and inhibited expression of fatty acid synthesis-related genes C/EBPα, PPARγ, FABP4, and FAS. Our observations suggest that taxifolin is potentially a valuable drug for treating GBM.
Collapse
|
42
|
Kumari C, Abulaish M, Subbarao N. Exploring Molecular Descriptors and Fingerprints to Predict mTOR Kinase Inhibitors using Machine Learning Techniques. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1902-1913. [PMID: 31905145 DOI: 10.1109/tcbb.2020.2964203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mammalian Target of Rapamycin (mTOR) is a Ser/Thr protein kinase, and its role is integral to the autophagy pathway in cancer. Targeting mTOR for therapeutic interventions in cancer through autophagy pathway is challenging due to the dual roles of autophagy in tumor progression. The architecture of mTOR reveals two complexes - mTORC1 and mTORC2, each having multiple protein subunits. mTOR kinase inhibitors target the structurally and functionally similar catalytic subunits of both mTORC1 and mTORC2. In this paper, we have explored two different categories of molecular features - descriptors and fingerprints for developing predictive models using machine learning techniques. Random Forest variable importance measures and autoencoders are used to identify molecular descriptors and fingerprints, respectively. We have built various predictive models using identified features and their combination for predicting mTOR kinase inhibitors. Finally, the best model based on the Mathew correlation co-efficient value over the validation dataset is selected for screening kinase SARfari bioactivity dataset. In this study, we have identified twenty best performing descriptors for predicting mTOR kinase inhibitors. To the best of our knowledge, it is the first study on integrating traditional machine learning and deep learning-based approaches for feature extraction to predict mTOR kinase inhibitors.
Collapse
|
43
|
Sun CY, Li YZ, Cao D, Zhou YF, Zhang MY, Wang HY. Rapamycin and trametinib: a rational combination for treatment of NSCLC. Int J Biol Sci 2021; 17:3211-3223. [PMID: 34421360 PMCID: PMC8375233 DOI: 10.7150/ijbs.62752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/11/2021] [Indexed: 02/02/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is one of the most commonly activated pathways in human cancers, including lung cancer. Targeting mTOR with molecule inhibitors is considered as a useful therapeutic strategy. However, the results obtained from the clinical trials with the inhibitors so far have not met the original expectations, largely because of the drug resistance. Thus, combined or multiple drug therapy can bring about more favorable clinical outcomes. Here, we found that activation of ERK pathway was responsible for rapamycin drug resistance in non-small-cell lung cancer (NSCLC) cells. Accordingly, rapamycin-resistant NSCLC cells were more sensitive to ERK inhibitor (ERKi), trametinib, and in turn, trametinib-resistant NSCLC cells were also susceptible to rapamycin. Combining rapamycin with trametinib led to a potent synergistic antitumor efficacy, which induced G1-phase cycle arrest and apoptosis. In addition, rapamycin synergized with another ERKi, MEK162, and in turn, trametinib synergized with other mTORi, Torin1 and OSI-027. Mechanistically, rapamycin in combination with trametinib resulted in a greater decrease of phosphorylation of AKT, ERK, mTOR and 4EBP1. In xenograft mouse model, co-administration of rapamycin and trametinib caused a substantial suppression in tumor growth without obvious drug toxicity. Overall, our study identifies a reasonable combined strategy for treatment of NSCLC.
Collapse
Affiliation(s)
- Chao-Yue Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Yi-Zhuo Li
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Di Cao
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| |
Collapse
|
44
|
Li J, Wang X, Ma C, Xu S, Xu M, Yang J, Wang R, Xue L. Dual PI3K/mTOR inhibitor NVP‑BEZ235 decreases the proliferation of doxorubicin‑resistant K562 cells. Mol Med Rep 2021; 23:301. [PMID: 34223631 PMCID: PMC7930928 DOI: 10.3892/mmr.2021.11940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Acute myelogenous leukemia (AML) is frequently accompanied by a poor prognosis. The majority of patients with AML will experience recurrence due to multiple drug resistance. Our previous study reported that targeting the mTOR pathway may increase cell sensitivity to doxorubicin (Doxo) and provide an improved therapeutic approach to leukemia. However, the effect and mechanism of action of NVP-BEZ235 (BEZ235), a dual inhibitor of PI3K/mTOR, on Doxo-resistant K562 cells (K562/A) is yet to be elucidated. Therefore, the aim of the present study was to investigate the effects of BEZ235 on K562/A cell proliferation. K562/A cells was investigated using CCK-8, flow cytometry and western blotting, following BEZ235 treatment. It was observed that BEZ235 significantly decreased the viability of K562/A cells. In addition, BEZ235 arrested K562/A cells at the G0/G1 phase, and reduced the protein expression levels of CDK4, CDK6 and cyclin D1. Apoptotic cells were more frequently detected in K562/A cells treated with BEZ235 compared with the control group (12.97±0.91% vs. 7.37±0.42%, respectively; P<0.05). Cells treated with BEZ235 exhibited downregulation of Bcl-2 and upregulation of Bax. Furthermore, BEZ235 treatment markedly decreased the activation of the PI3K/AKT/mTOR pathway and its downstream effectors. Thus, these results demonstrated that BEZ235 inhibited cell viability, induced G0/G1 arrest and increased apoptosis in K562/A cells, suggesting that BEZ235 may reverse Doxo resistance in leukemia cells. Therefore, targeting the PI3K/mTOR pathway may be of value as a novel therapeutic approach to leukemia.
Collapse
Affiliation(s)
- Jie Li
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaozi Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Chuanbao Ma
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shasha Xu
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Mengyao Xu
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Jie Yang
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Ruicang Wang
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Liying Xue
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
45
|
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16:44. [PMID: 34215308 PMCID: PMC8252260 DOI: 10.1186/s13024-021-00428-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin (mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles by inhibiting both insulin signaling and autophagic removal of β-amyloid (Aβ) and phospho-tau (ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase residing at the core in either of two multiprotein complexes termed mTORC1 and mTORC2. Recent data suggest that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD), Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor, there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age dependent conditions.
Collapse
Affiliation(s)
- Henry Querfurth
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA.
| | - Han-Kyu Lee
- Department of Neurology, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Tian-Zhao D, Yang Y, Xing-Xuan W, Yu-Xin C, Xue-Lian W. Profiling of circular RNAs and circTPCN/miR-634/mTOR regulatory pathway in cervical cancer. Genomics 2021; 113:2253-2263. [PMID: 34029698 DOI: 10.1016/j.ygeno.2021.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/30/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023]
Abstract
Circular RNAs (circRNAs) are highly stable forms of endogenous non-coding RNA molecules with diverse biological functions. Some of them have been demonstrated to play crucial roles in the initiation or development of cancers through regulation of gene expression. However, the profiles and the roles of circRNAs in tumorigenesis of cervical cancer remain largely unknown. In the current study, we investigated the expression profiles of circRNAs and their potential oncogenic mechanisms in cervical cancer. The expression patterns, obtained using a microarray assay, revealed a total of 192 differentially expressed circRNAs, of which 106 were upregulated and 86 were downregulated, in cervical cancer samples compared with normal cervical samples. The differential expression of circRNAs was validated using quantitative real-time polymerase chain reaction. Two circRNAs (circTPCN and circFAM185A) were confirmed to be significantly upregulated in cervical cancer samples, indicating that they represent potential biomarkers of cervical cancer. The role and the potential molecular mechanism of circTPCN in cervical cancer tumorigenesis were further investigated. Knockdown of circTPCN significantly suppressed proliferation, migration, and invasion and increased apoptosis of cervical cancer cells in vitro. Molecular analysis revealed that circTPCN acted as a sponge of miR-634 to enhance mTOR expression. Thus, the circTPCN/miR-634/mTOR regulatory pathway might be involved in cervical cancer tumorigenesis, and circTPCN is a potential therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Du Tian-Zhao
- Department of Microbiology and Parasitology, China Medical University, Shenyang 110122, China; Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Yang Yang
- Department of Microbiology and Parasitology, China Medical University, Shenyang 110122, China
| | - Wang Xing-Xuan
- Department of Microbiology and Parasitology, China Medical University, Shenyang 110122, China
| | - Che Yu-Xin
- Department of Microbiology and Parasitology, China Medical University, Shenyang 110122, China
| | - Wang Xue-Lian
- Department of Microbiology and Parasitology, China Medical University, Shenyang 110122, China.
| |
Collapse
|
47
|
Wang W, Yan T, Guo W, Niu J, Zhao Z, Sun K, Zhang H, Yu Y, Ren T. Constitutive GLI1 expression in chondrosarcoma is regulated by major vault protein via mTOR/S6K1 signaling cascade. Cell Death Differ 2021; 28:2221-2237. [PMID: 33637972 PMCID: PMC8257592 DOI: 10.1038/s41418-021-00749-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Hedgehog signaling plays a pivotal role in embryonic pattern formation and diverse aspects of the postnatal biological process. Perturbation of the hedgehog pathway and overexpression of GLI1, a downstream transcription factor in the hedgehog pathway, are highly relevant to several malignancies including chondrosarcoma (CS). We previously found that knocking down expression of GLI1 attenuates the disrupted Indian hedgehog (IHH) signal pathway and suppresses cell survival in human CS cells. However, the underlying mechanisms regulating the expression of GLI1 are still unknown. Here, we demonstrated the implication of GLI1 in SMO-independent pathways in CS cells. A GLI1 binding protein, major vault protein (MVP), was identified using the affinity purification method. MVP promoted the nuclear transport and stabilization of GLI1 by compromising the binding affinity of GLI1 with suppressor of fused homolog (SUFU) and increased GLI1 expression via mTOR/S6K1 signaling cascade. Functionally, knockdown of MVP suppressed cell growth and induced apoptosis. Simultaneous inhibition of MVP and GLI1 strongly inhibits the growth of CS in vitro and in vivo. Moreover, IHC results showed that MVP, GLI1, and P-p70S6K1 were highly expressed and positively correlated with each other in 71 human CS tissues. Overall, our findings revealed a novel regulating mechanism for HH-independent GLI1 expression and provide a rationale for combination therapy in patients with advanced CS.
Collapse
Affiliation(s)
- Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Zhiqing Zhao
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| |
Collapse
|
48
|
Tseng YH, Yang RC, Chiou SS, Shieh TM, Shih YH, Lin PC. Curcumin induces apoptosis by inhibiting BCAT1 expression and mTOR signaling in cytarabine‑resistant myeloid leukemia cells. Mol Med Rep 2021; 24:565. [PMID: 34109436 PMCID: PMC8201441 DOI: 10.3892/mmr.2021.12204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
Cytarabine is a key chemotherapy drug for treating leukemia; however, chemotherapy‑induced multidrug resistance is a major cause of therapy failure or tumor recurrence. Current medical treatment strategies still cannot address the issue of multidrug resistance phenotypes in the treatment of leukemia. Curcumin counteracts tumor development by inducing apoptosis in cytarabine‑resistant acute myeloid leukemia cells. Branched‑chain amino acid transaminase 1 (BCAT1), an aminotransferase enzyme, acts on branched‑chain amino acids. Moreover, the aberrant expression of BCAT1 has been observed in numerous cancer cells, and BCAT1 serves a critical role in the progression of myeloid leukemia. BCAT1 can interfere with cancer cell proliferation by regulating mTOR‑mediated mitochondrial biogenesis and function. The present study aimed to investigate whether curcumin induces apoptosis by regulating BCAT1 expression and mTOR signaling in cytarabine‑resistant myeloid leukemia cells. Four leukemia cell lines and three primary myeloid leukemia cells were treated with curcumin, and the expression and activity of BCAT1 and mTOR were investigated by reverse transcription‑quantitative PCR, western blotting and α‑KG quantification assay. The results demonstrated that curcumin inhibited BCAT1 expression in Kasumi‑1, KG‑1, HL60, cytarabine‑resistant HL60, and cytarabine‑resistant primary myeloid leukemia cells. Notably, tetrahydrocurcumin, a major metabolite of curcumin, and cytarabine had no inhibitory effect on BCAT1 expression. Furthermore, BCAT1 and mTOR signaling may modulate each other in cytarabine‑resistant HL60 cells. The present results indicated that curcumin may induce apoptosis by inhibiting the BCAT1 and mTOR pathways. Thus, understanding the mechanism underlying curcumin‑induced apoptosis in cytarabine‑resistant cells can support the development of novel drugs for leukemia.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C
| | - Rei-Cheng Yang
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C
| | - Shyh-Shin Chiou
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Pei-Chin Lin
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C
| |
Collapse
|
49
|
Shi X, Zhang Y, Xie X, Pang M, Laster K, Li J, Ma X, Liu K, Dong Z, Kim DJ. Ipriflavone Suppresses Growth of Esophageal Squamous Cell Carcinoma Through Inhibiting mTOR In Vitro and In Vivo. Front Oncol 2021; 11:648809. [PMID: 34178634 PMCID: PMC8222593 DOI: 10.3389/fonc.2021.648809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Ipriflavone, a synthetic isoflavone that inhibits osteoclastic bone resorption, has been used clinically for the treatment of osteoporosis. However, the anticancer activity of Ipriflavone and its molecular mechanisms in the context of esophageal squamous cell carcinoma (ESCC) have not been investigated. In this study, we report that Ipriflavone is a novel mammalian target of rapamycin (mTOR) inhibitor that suppresses cell proliferation and induces cell apoptosis in ESCC cells. Ipriflavone inhibited anchorage-dependent and -independent growth of ESCC cells. Ipriflavone induced G1 phase cell cycle arrest and intrinsic cell apoptosis by activating caspase 3 and increasing the expression of cytochrome c. Based on the results of in vitro screening and cell-based assays, Ipriflavone inhibited mTOR signaling pathway through directly targeting mTOR. Knockdown of mTOR strongly inhibited the growth of ESCC cells, and the cell growth inhibitory effect exerted by Ipriflavone was found to be dependent upon mTOR signaling pathway. Remarkably, Ipriflavone strongly inhibited ESCC patient-derived xenograft tumor growth in an in vivo mouse model. Our findings suggest that Ipriflavone is an mTOR inhibitor that could be potentially useful for treating ESCC.
Collapse
Affiliation(s)
- Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yuanyuan Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Xiaomeng Xie
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Mengjun Pang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xinli Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
50
|
Danesh Pazhooh R, Rahnamay Farnood P, Asemi Z, Mirsafaei L, Yousefi B, Mirzaei H. mTOR pathway and DNA damage response: A therapeutic strategy in cancer therapy. DNA Repair (Amst) 2021; 104:103142. [PMID: 34102579 DOI: 10.1016/j.dnarep.2021.103142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a conserved serine/threonine-protein kinase, comprising two subunit protein complexes: mTORC1 and mTORC2. In response to insult and cancer, the mTOR pathway plays a crucial role in regulating growth, metabolism, cell survival, and protein synthesis. Key subunits of mTORC1/2 catalyze the phosphorylation of various molecules, including eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase β-1 (S6K1). The DNA damage response (DDR) maintains genomic stability and provides an opportunity for treating tumors with defects caused by DNA damaging agents. Many mTOR inhibitors are utilized for the treatment of cancers. However, several clinical trials are still assessing the efficacy of mTOR inhibitors. This paper discusses the role of the mTOR signaling pathway and its regulators in developing cancer. In the following, we will review the interaction between DDR and mTOR signaling and the innovative therapies applied in preclinical and clinical trials for treating cancers.
Collapse
Affiliation(s)
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|