1
|
Wang C, Lv S, Zhao H, He G, Liang H, Chen K, Qu M, He Y, Ou C. Hypoxia-inducible factor-1 as targets for neuroprotection : from ferroptosis to Parkinson's disease. Neurol Sci 2025; 46:1111-1120. [PMID: 39466326 DOI: 10.1007/s10072-024-07832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by motor paralysis, tremor,and cognitive impairment. Risk factors such as brain hypoxia caused by aging and abnormal expression of HIF-1α areconsidered to be key to the development of PD, including α-synuclein accumulation and ferroptosis. However, therelationship between HIF-1α signaling and ferroptosis in PD has not been elucidated. The stable expression of HIF-1αinhibits the pathological development of PD. Aging aggravates PD pathology by promoting α-synuclein accumulationand oxidative stress. METHODS The literature on lipid peroxidation, oxidative stress, iron metabolism and other key factors in Parkinson'sdisease in recent years was reviewed through a variety of literature search channels, such as PubMed and Elsevier. RESULTS HIF-1α mediated ferroptosis through oxidative stress and GPX4-GSH system. HIF-1α mediates ferroptosisthrough Keap1-Nrf2-ARE, Grx3 and Grx4. HIF-1α mediates ferroptosis through iron metabolism. CONCLUSION This article reviews the oxygen-dependent regulatory mechanism of HIF-1α and its role in cerebralhypoxia homeostasis. Studies in the past decade have shown that Hif-1α mediated ferroptosis is important in PD.HIF-1α has a dual role, depending on the degree of cellular hypoxia and the environment. The equilibrium complexityneeds to be explained, and the role of ferroptosis needs to be investigated. The literature shows that the stabilizationof HIF-1α with PHD inhibitors and the combination of antioxidants and iron chelators are potential therapeuticdirections. In the future, the optimal use time and dose of inhibitors should be studied to improve the efficacy.
Collapse
Affiliation(s)
- Changyong Wang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Shanyu Lv
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Hongyan Zhao
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Guoguo He
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Hongshuo Liang
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Kemiao Chen
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Minghai Qu
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Yonghua He
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China.
| | - Chaoyan Ou
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China.
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin, Guangxi, 541199, China.
| |
Collapse
|
2
|
Verona F, Di Bella S, Schirano R, Manfredi C, Angeloro F, Bozzari G, Todaro M, Giannini G, Stassi G, Veschi V. Cancer stem cells and tumor-associated macrophages as mates in tumor progression: mechanisms of crosstalk and advanced bioinformatic tools to dissect their phenotypes and interaction. Front Immunol 2025; 16:1529847. [PMID: 39981232 PMCID: PMC11839637 DOI: 10.3389/fimmu.2025.1529847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Cancer stem cells (CSCs) are a small subset within the tumor mass significantly contributing to cancer progression through dysregulation of various oncogenic pathways, driving tumor growth, chemoresistance and metastasis formation. The aggressive behavior of CSCs is guided by several intracellular signaling pathways such as WNT, NF-kappa-B, NOTCH, Hedgehog, JAK-STAT, PI3K/AKT1/MTOR, TGF/SMAD, PPAR and MAPK kinases, as well as extracellular vesicles such as exosomes, and extracellular signaling molecules such as cytokines, chemokines, pro-angiogenetic and growth factors, which finely regulate CSC phenotype. In this scenario, tumor microenvironment (TME) is a key player in the establishment of a permissive tumor niche, where CSCs engage in intricate communications with diverse immune cells. The "oncogenic" immune cells are mainly represented by B and T lymphocytes, NK cells, and dendritic cells. Among immune cells, macrophages exhibit a more plastic and adaptable phenotype due to their different subpopulations, which are characterized by both immunosuppressive and inflammatory phenotypes. Specifically, tumor-associated macrophages (TAMs) create an immunosuppressive milieu through the production of a plethora of paracrine factors (IL-6, IL-12, TNF-alpha, TGF-beta, CCL1, CCL18) promoting the acquisition by CSCs of a stem-like, invasive and metastatic phenotype. TAMs have demonstrated the ability to communicate with CSCs via direct ligand/receptor (such as CD90/CD11b, LSECtin/BTN3A3, EPHA4/Ephrin) interaction. On the other hand, CSCs exhibited their capacity to influence immune cells, creating a favorable microenvironment for cancer progression. Interestingly, the bidirectional influence of CSCs and TME leads to an epigenetic reprogramming which sustains malignant transformation. Nowadays, the integration of biological and computational data obtained by cutting-edge technologies (single-cell RNA sequencing, spatial transcriptomics, trajectory analysis) has significantly improved the comprehension of the biunivocal multicellular dialogue, providing a comprehensive view of the heterogeneity and dynamics of CSCs, and uncovering alternative mechanisms of immune evasion and therapeutic resistance. Moreover, the combination of biology and computational data will lead to the development of innovative target therapies dampening CSC-TME interaction. Here, we aim to elucidate the most recent insights on CSCs biology and their complex interactions with TME immune cells, specifically TAMs, tracing an exhaustive scenario from the primary tumor to metastasis formation.
Collapse
Affiliation(s)
- Francesco Verona
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Sebastiano Di Bella
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Roberto Schirano
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Camilla Manfredi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Francesca Angeloro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Bozzari
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” (AOUP), Palermo, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giorgio Stassi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| |
Collapse
|
3
|
Zhou L, Mao C, Fu T, Ding X, Bertolaccini L, Liu A, Zhang J, Li S. Development of an AI model for predicting hypoxia status and prognosis in non-small cell lung cancer using multi-modal data. Transl Lung Cancer Res 2024; 13:3642-3656. [PMID: 39830777 PMCID: PMC11736583 DOI: 10.21037/tlcr-24-982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Background Prognosis prediction is crucial for non-small cell lung cancer (NSCLC) treatment planning. While tumor hypoxia significantly impacts patient outcomes, identifying hypoxic genomic markers remains challenging. This study sought to identify hypoxic computed tomography (CT) radiomic features and create an artificial intelligence (AI) model for NSCLC through the integration of multi-modal data. Methods In total, 452 NSCLC patients were enrolled in this study, including patients from The Second Affiliated Hospital of Soochow University (SC, n=112), The Cancer Genome Atlas (TCGA)-NSCLC dataset (n=74), the radiogenomics dataset (n=130), and the Gene Expression Omnibus (GEO) datasets (GSE19188: n=82, and GSE87340: n=54). Hypoxia status was classified using optimized cut-off values of hypoxia enrichment scores, which were calculated through single-sample gene set enrichment analysis (ssGSEA) of hypoxic genes. Radiomic features were extracted using three-dimensional (3D)-Slicer software. The least absolute shrinkage and selection operator (LASSO) algorithm was used to identify hypoxic CT radiomic features. A model named ssuBERT (semantic structured unit embedded in Bidirectional Encoder Representations from Transformers) was developed to analyze electronic health records (EHRs). An AI model for overall survival prediction was constructed by integrating CT radiomic features, ssuBERT features, and clinical data, and evaluated using five-fold cross-validation. Results Higher hypoxia levels were correlated with worse survival outcomes. Twenty-eight radiomic features showed significant discriminatory power in detecting hypoxia status with an area under the curve (AUC) of 0.8295. The ssuBERT model achieved a weighted accuracy of 0.945 in recognizing semantic structured units in EHRs. The EHR model exhibited superior predictive performance among the single-modal models with an AUC of 0.7662. However, the multi-modal AI model had the highest average AUC of 0.8449 and an F1 score of 0.7557. Conclusions The AI model demonstrated potential in predicting NSCLC patient prognosis through multi-modal data integration, warranting further validation.
Collapse
Affiliation(s)
- Lina Zhou
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenkai Mao
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Fu
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, China
| | - Xiao Ding
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Luca Bertolaccini
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ao Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junjun Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shicheng Li
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
5
|
Aliyev KA, Asanova ER, Makalish TP, Zyablitskaya EY. Morphological assessment of angiogenesis factor expression in tumor and microenvironment of breast fibroadenoma and ductal carcinoma: An observational cohort study. KUBAN SCIENTIFIC MEDICAL BULLETIN 2024; 31:26-40. [DOI: 10.25207/1608-6228-2024-31-5-26-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background. Angiogenesis plays a crucial role in the progression of breast cancer. Identifying and investigating the key components of this process, focused on phenotype as well as microenvironment of the tumor, is considered highly relevant for understanding tumor biology. Studies into the expression of angiogenesis-related factors by means of immunohistochemical methods appear valuable for both assessing conventional chemotherapy options and identifying new targets in targeted therapy for breast cancer. Objectives. To investigate angiogenesis in breast ductal carcinoma by assessing the expression of vascular endothelial growth factor, angiopoietin-2, and hypoxia-inducible factor alpha in the context of various therapeutic strategies. Methods. An observational cohort study was conducted using biopsy samples from female patients with confirmed diagnoses of “fibroadenoma” and “ductal carcinoma of the breast,” residents of the Republic of Crimea, who applied to oncological hospitals in Simferopol from January 2021 to January 2023. Examination involved histological sections of breast tumor tissue from 68 patients with verified diagnoses of “ductal carcinoma” and “fibroadenoma” (the mean age of the patients was 65 ± 5). The following cohorts were formed in the study: control group, consisting of patients with breast fibroadenoma (n = 20); two subgroups of patients with ductal carcinoma of the breast (n = 48), including Group I — patients with ductal carcinoma of the breast who had not received chemotherapy (n = 23), Group II — patients with ductal carcinoma of the breast, who underwent surgery following one or more courses of chemotherapy (n = 25). The study involved examining the tumor tissue sections obtained from paraffin blocks, assessing the expression of angiogenesis markers via immunohistochemistry using primary antibodies against vascular endothelial growth factor, angiopoietin 2, and hypoxia-inducible factor alpha. Statistical analysis was carried out using Statistica 10.0 (StatSoft, USA). Differences were considered significant at error probability p ≤ 0.05. The value of p < 0.05 was deemed statistically significant for all types of analysis. Results. The expression of hypoxia-inducible and vascular growth factors differed significantly between both groups with breast ductal carcinoma as well as when compared to the control group. The hypoxia-inducible factor having cytoplasmic localization was detected in the control group with benign processes, whereas the nuclear expression was noted in the breast ductal carcinoma groups. Significant differences in the nuclear expression of hypoxia-inducible factor have been established among groups of patients with confirmed ductal carcinoma of the breast: in Group II, which underwent chemotherapy, expression was notably higher in both the tumor stroma and in the stroma of tumor-free areas. The hypoxia-inducible factor expression was significantly greater at the demarcation zone than that observed in samples from surgically treated women in Group I (p = 0.033; p = 0.034, p < 0.001, respectively). In the tumor epithelium of patients with breast ductal carcinoma, vascular endothelial growth factor was expressed significantly more intensively in the group who did not receive chemotherapy compared to the other group (p < 0.001). Conversely, in the tumor stroma, angiopoietin exhibited significantly higher expression levels among patients who underwent chemotherapy compared to those who received no treatment; this was observed in both the tumor areas due to endothelial cell involvement (p = 0.004) and in conditionally healthy regions of the breast (p < 0.001). In the control group represented by fibroadenoma patients, the expression of the studied factors is more pronounced than in the groups with ductal carcinoma of the breast. Conclusion. The obtained data indicate the activation of angiogenesis processes in the group of patients after chemotherapy, as evidenced by the increased expression of hypoxia-inducible factor, vascular endothelial growth factor, and angiopoietin. This result is associated with the high prevalence of resistant forms of breast ductal carcinoma in Group II. The study of the signaling pathways of angiogenesis and its components provides valuable insights into patterns of occurrence and strategies to overcome chemotherapy resistance in ductal carcinoma of the breast.
Collapse
Affiliation(s)
- K. A. Aliyev
- Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
| | - E. R. Asanova
- Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
| | - T. P. Makalish
- Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University
| | | |
Collapse
|
6
|
Kong W, Gao Y, Zhao S, Yang H. Cancer stem cells: advances in the glucose, lipid and amino acid metabolism. Mol Cell Biochem 2024; 479:2545-2563. [PMID: 37882986 DOI: 10.1007/s11010-023-04861-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023]
Abstract
Cancer stem cells (CSCs) are a class of cells with self-renewal and multi-directional differentiation potential, which are present in most tumors, particularly in aggressive tumors, and perform a pivotal role in recurrence and metastasis and are expected to be one of the important targets for tumor therapy. Studies of tumor metabolism in recent years have found that the metabolic characteristics of CSCs are distinct from those of differentiated tumor cells, which are unique to CSCs and contribute to the maintenance of the stemness characteristics of CSCs. Moreover, these altered metabolic profiles can drive the transformation between CSCs and non-CSCs, implying that these metabolic alterations are important markers for CSCs to play their biological roles. The identification of metabolic changes in CSCs and their metabolic plasticity mechanisms may provide some new opportunities for tumor therapy. In this paper, we review the metabolism-related mechanisms of CSCs in order to provide a theoretical basis for their potential application in tumor therapy.
Collapse
Affiliation(s)
- Weina Kong
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, Air Forth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an City, Shaanxi Province, China.
| |
Collapse
|
7
|
Deepak K, Roy PK, Das CK, Mukherjee B, Mandal M. Mitophagy at the crossroads of cancer development: Exploring the role of mitophagy in tumor progression and therapy resistance. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119752. [PMID: 38776987 DOI: 10.1016/j.bbamcr.2024.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Preserving a functional mitochondrial network is crucial for cellular well-being, considering the pivotal role of mitochondria in ensuring cellular survival, especially under stressful conditions. Mitophagy, the selective removal of damaged mitochondria through autophagy, plays a pivotal role in preserving cellular homeostasis by preventing the production of harmful reactive oxygen species from dysfunctional mitochondria. While the involvement of mitophagy in neurodegenerative diseases has been thoroughly investigated, it is becoming increasingly evident that mitophagy plays a significant role in cancer biology. Perturbations in mitophagy pathways lead to suboptimal mitochondrial quality control, catalyzing various aspects of carcinogenesis, including establishing metabolic plasticity, stemness, metabolic reconfiguration of cancer-associated fibroblasts, and immunomodulation. While mitophagy performs a delicate balancing act at the intersection of cell survival and cell death, mounting evidence indicates that, particularly in the context of stress responses induced by cancer therapy, it predominantly promotes cell survival. Here, we showcase an overview of the current understanding of the role of mitophagy in cancer biology and its potential as a target for cancer therapy. Gaining a more comprehensive insight into the interaction between cancer therapy and mitophagy has the potential to reveal novel targets and pathways, paving the way for enhanced treatment strategies for therapy-resistant tumors in the near future.
Collapse
Affiliation(s)
- K Deepak
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Chandan Kanta Das
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Budhaditya Mukherjee
- Infectious Disease and Immunology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
8
|
Sadeghi M, Moslehi A, Kheiry H, Kiani FK, Zarei A, Khodakarami A, Karpisheh V, Masjedi A, Rahnama B, Hojjat-Farsangi M, Raeisi M, Yousefi M, Movasaghpour Akbari AA, Jadidi-Niaragh F. The sensitivity of acute myeloid leukemia cells to cytarabine is increased by suppressing the expression of Heme oxygenase-1 and hypoxia-inducible factor 1-alpha. Cancer Cell Int 2024; 24:217. [PMID: 38918761 PMCID: PMC11197338 DOI: 10.1186/s12935-024-03393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML), a malignancy Often resistant to common chemotherapy regimens (Cytarabine (Ara-c) + Daunorubicin (DNR)), is accompanied by frequent relapses. Many factors are involved in causing chemoresistance. Heme Oxygenase-1 (HO-1) and Hypoxia-Inducible Factor 1-alpha (HIF-1α) are two of the most well-known genes, reported to be overexpressed in AML and promote resistance against chemotherapy according to several studies. The main chemotherapy agent used for AML treatment is Ara-c. We hypothesized that simultaneous targeting of HO-1 and HIF-1α could sensitize AML cells to Ara-c. METHOD In this study, we used our recently developed, Trans-Activator of Transcription (TAT) - Chitosan-Carboxymethyl Dextran (CCMD) - Poly Ethylene Glycol (PEG) - Nanoparticles (NPs), to deliver Ara-c along with siRNA molecules against the HO-1 and HIF-1α genes to AML primary cells (ex vivo) and cell lines including THP-1, KG-1, and HL-60 (in vitro). Subsequently, the effect of the single or combinational treatment on the growth, proliferation, apoptosis, and Reactive Oxygen Species (ROS) formation was evaluated. RESULTS The designed NPs had a high potential in transfecting cells with siRNAs and drug. The results demonstrated that treatment of cells with Ara-c elevated the generation of ROS in the cells while decreasing the proliferation potential. Following the silencing of HO-1, the rate of apoptosis and ROS generation in response to Ara-c increased significantly. While proliferation and growth inhibition were considerably evident in HIF-1α-siRNA-transfected-AML cells compared to cells treated with free Ara-c. We found that the co-inhibition of genes could further sensitize AML cells to Ara-c treatment. CONCLUSIONS As far as we are aware, this study is the first to simultaneously inhibit the HO-1 and HIF-1α genes in AML using NPs. It can be concluded that HO-1 causes chemoresistance by protecting cells from ROS damage. Whereas, HIF-1α mostly exerts prolific and direct anti-apoptotic effects. These findings imply that simultaneous inhibition of HO-1 and HIF-1α can overcome Ara-c resistance and help improve the prognosis of AML patients.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Moslehi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadiseh Kheiry
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Karpisheh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Masjedi
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Badrossadat Rahnama
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Luke SS, Raj MN, Ramesh S, Bhatt NP. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of squalene against inflammation. In Silico Pharmacol 2024; 12:44. [PMID: 38756678 PMCID: PMC11093945 DOI: 10.1007/s40203-024-00217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Squalene (SQ) has been documented in the past for its ability to reduce inflammation, but its mechanism needs more information. In this study, we investigated squalene as an anti-inflammatory drug candidate and the framework involved in treating inflammation (INF) using the network pharmacology concept. The molecular targets of SQ and INF that are available in databases and the overlaps between these targets were demonstrated using InteractiVenn. The protein-protein networks were generated that in turn revealed several key targets and were further processed with Cytoscape. The gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) studies were performed. We also performed molecular docking tests that validated the binding affinity of molecular targets and drugs. A total of 100 SQ targets and 11,417 INF-related targets yielded 93 overlapping targets. Seven core targets, CRHR1, EGFR, ERBB2, HIF1A, SLC6A3, MAP2K1, and F2R were found to be relevant with respective to SQ's anti-inflammatory activity. The underlying mechanism of SQ with regard to INF was interpreted by analyzing various enrichment analyses along with the KEGG pathway. In conclusion, SQ played a vital role in the management of INF by regulating CRHR1, EGFR, ERBB2, HIF1A, SLC6A3, MAP2K1, and F2R. The research outcomes are crucial as they offer significant insights into the use of SQ for combating inflammation. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00217-0.
Collapse
Affiliation(s)
- Shana Sara Luke
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu 603203 India
| | - M. Naveen Raj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu 603203 India
| | - Suraj Ramesh
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu 603203 India
| | - N. Prasanth Bhatt
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nādu 603203 India
| |
Collapse
|
10
|
Muñoz-Galván S, Verdugo-Sivianes EM, Santos-Pereira JM, Estevez-García P, Carnero A. Essential role of PLD2 in hypoxia-induced stemness and therapy resistance in ovarian tumors. J Exp Clin Cancer Res 2024; 43:57. [PMID: 38403587 PMCID: PMC10895852 DOI: 10.1186/s13046-024-02988-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - José M Santos-Pereira
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Purificación Estevez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n 41013, Seville, Spain.
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: mechanism and therapy. Discov Oncol 2024; 15:2. [PMID: 38165484 PMCID: PMC10761656 DOI: 10.1007/s12672-023-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia, which activates a variety of signaling pathways to enhance tumor cell growth and metabolism, is among the primary features of tumor cells. Hypoxia-inducible factors (HIFs) have a substantial impact on a variety of facets of tumor biology, such as epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and improved radiation resistance. HIFs induce hypoxia-adaptive responses in tumor cells. Many academics have presented preclinical and clinical research targeting HIFs in tumor therapy, highlighting the potential applicability of targeted HIFs. In recent years, the discovery of numerous pharmacological drugs targeting the regulatory mechanisms of HIFs has garnered substantial attention. Additionally, HIF inhibitors have attained positive results when used in conjunction with traditional oncology radiation and/or chemotherapy, as well as with the very promising addition of tumor immunotherapy. Immune checkpoint inhibitors (CPIs), which are employed in a range of cancer treatments over the past decades, are essential in tumor immunotherapy. Nevertheless, the use of immunotherapy has been severely hampered by tumor resistance and treatment-related toxicity. According to research, HIF inhibitors paired with CPIs may be game changers for multiple malignancies, decreasing malignant cell plasticity and cancer therapy resistance, among other things, and opening up substantial new pathways for immunotherapy drug development. The structure, activation mechanisms, and pharmacological sites of action of the HIF family are briefly reviewed in this work. This review further explores the interactions between HIF inhibitors and other tumor immunotherapy components and covers the potential clinical use of HIF inhibitors in combination with CPIs.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China.
| |
Collapse
|
12
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
13
|
Daley BR, Sealover NE, Sheffels E, Hughes JM, Gerlach D, Hofmann MH, Kostyrko K, Mair B, Linke A, Beckley Z, Frank A, Dalgard C, Kortum RL. SOS1 inhibition enhances the efficacy of and delays resistance to G12C inhibitors in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570642. [PMID: 38106234 PMCID: PMC10723384 DOI: 10.1101/2023.12.07.570642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Clinical effectiveness of KRAS G12C inhibitors (G12Cis) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. We found that targeting proximal receptor tyrosine kinase (RTK) signaling using the SOS1 inhibitor (SOS1i) BI-3406 both enhanced the potency of and delayed resistance to G12Ci treatment, but the extent of SOS1i effectiveness was modulated by both SOS2 expression and the specific mutational landscape. SOS1i enhanced the efficacy of G12Ci and limited rebound RTK/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels. Survival of drug-tolerant persister (DTP) cells within the heterogeneous tumor population and/or acquired mutations that reactivate RTK/RAS signaling can lead to outgrowth of tumor initiating cells (TICs) that drive therapeutic resistance. G12Ci drug tolerant persister cells showed a 2-3-fold enrichment of TICs, suggesting that these could be a sanctuary population of G12Ci resistant cells. SOS1i re-sensitized DTPs to G12Ci and inhibited G12C-induced TIC enrichment. Co-mutation of the tumor suppressor KEAP1 limits the clinical effectiveness of G12Cis, and KEAP1 and STK11 deletion increased TIC frequency and accelerated the development of acquired resistance to G12Ci in situ. SOS1i both delayed acquired G12Ci resistance and limited the total number of resistant colonies regardless of KEAP1 and STK11 mutational status. These data suggest that SOS1i could be an effective strategy to both enhance G12Ci efficacy and prevent G12Ci resistance regardless of co-mutations.
Collapse
Affiliation(s)
- Brianna R Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | | | | | - Kaja Kostyrko
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Barbara Mair
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Amanda Linke
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Zaria Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Andrew Frank
- Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD, USA
- Student Bioinformatics Initiative, Center for Military Precision Health, Uniformed Services University of the Health Sciences; Bethesda, MD, USA
| | - Clifton Dalgard
- The American Genome Center, Department of Anatomy, Cell Biology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
14
|
Zhang N, Chen R, Cao X, Wang L. Aberrantly expressed HIF-1α enhances HCC stem cell-like traits via Wnt/β-catenin signaling activation after insufficient radiofrequency ablation. J Cancer Res Ther 2023; 19:1517-1524. [PMID: 38156917 DOI: 10.4103/jcrt.jcrt_1458_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Radiofrequency ablation has become a favorable treatment modality for small hepatocellular carcinoma (HCC) recently; however, insufficient radiofrequency ablation (RFA) was shown to lead to enhanced invasiveness and metastasis of HCC in our previous study, while the underlying molecular mechanism has not been understood. MATERIALS AND METHODS In order to explore the influence of the hypoxic microenvironment on residual cancer and cancer stem cell (CSC)-like characteristics of HCC cells in this process, an in vitro hypoxic model and an insufficient RFA mouse model were established with HCC cancer cell lines. Immunochemistry staining and western blot were used to examine the expression of hypoxia-inducible factor (HIF)-1α and liver CSC markers. The 3D colon formation assay, tumor cell invasion assay, and gene transfection assays were applied to test the change in liver CSC stemness and HCC cell invasion. RESULTS After insufficient RFA treatment, the upregulated HIF-1α expression was associated with an increase in the CSC-like population in residual cancer. In vitro, hypoxic tumor cells showed aggressive CSC-like properties and phenotypes. Wnt/β-catenin signaling activation was shown to be necessary for the acquisition of liver CSC-like characteristics under hypoxic conditions. CONCLUSION Overall, the aberrantly enhanced HIF-1α expression enhanced the liver CSC-like traits via abnormal Wnt/β-catenin signaling activation after insufficient RFA, and the overexpressed HIF-1α would be a vital factor and useful biomarker during the HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
15
|
Abd GM, Laird MC, Ku JC, Li Y. Hypoxia-induced cancer cell reprogramming: a review on how cancer stem cells arise. Front Oncol 2023; 13:1227884. [PMID: 37614497 PMCID: PMC10442830 DOI: 10.3389/fonc.2023.1227884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023] Open
Abstract
Cancer stem cells are a subset of cells within the tumor that possess the ability to self-renew as well as differentiate into different cancer cell lineages. The exact mechanisms by which cancer stem cells arise is still not completely understood. However, current research suggests that cancer stem cells may originate from normal stem cells that have undergone genetic mutations or epigenetic changes. A more recent discovery is the dedifferentiation of cancer cells to stem-like cells. These stem-like cells have been found to express and even upregulate induced pluripotent stem cell markers known as Yamanaka factors. Here we discuss developments in how cancer stem cells arise and consider how environmental factors, such as hypoxia, plays a key role in promoting the progression of cancer stem cells and metastasis. Understanding the mechanisms that give rise to these cells could have important implications for the development of new strategies in cancer treatments and therapies.
Collapse
Affiliation(s)
- Genevieve M. Abd
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Madison C. Laird
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Medical Students, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Department of Orthopedic Surgery, Biomedical. Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
16
|
Miao L, Liu Y, Ali NM, Dong Y, Zhang B, Cui X. Bufalin serves as a pharmaceutic that mitigates drug resistance. Drug Metab Rev 2023:1-10. [PMID: 37114332 DOI: 10.1080/03602532.2023.2206065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Intrinsic or acquired drug resistance of tumor cells is the main cause of tumor chemotherapy failure and tumor-related death. Bufalin (BF) is the main active monomer component extracted from the Traditional Chinese Medicine Toad venom (secretions of glands behind the ears and epidermis of bufo gargarizans and Bufo Melanostictus Schneider). It is a cardiotonic steroid with broad-spectrum anti-cancer effects and has been widely used against various malignant tumors in clinical practice. Pharmacological studies also found that BF has the effect of reversing drug resistance, which provides a new perspective for the application of Traditional Chinese Medicine as a chemosensitizer in cancer therapy. This article provides an extensive search and summary of published research on mitigating drug resistance to BF and reviews its potential mechanisms.
Collapse
Affiliation(s)
- Linxuan Miao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P.R. China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Yan Dong
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
17
|
Yu X, Wang X, Yamazaki A. Mn-Si-based nanoparticles-enhanced inhibitory effect on tumor growth and metastasis in photo-immunotherapy. Colloids Surf B Biointerfaces 2023; 226:113314. [PMID: 37060652 DOI: 10.1016/j.colsurfb.2023.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The anticancer effect of phototherapy has been limited by some factors, including the easy degradation of photo agents, the complex tumor microenvironment, and the limited immune activation capacity, which impedes its efficiency in inhibiting tumor growth and tumor metastasis. Herein, Mn-doped mesoporous silica nanoparticles were synthesized to load the photo agent of IR 780, which were further coated with Mn (IMM). Notably, the combination of IMM and an 808 nm laser irradiation simultaneously inhibited the growth of primary tumors and distant untreated tumors in a bilateral animal model, which could be attributed to the protection of IMM to IR 780, the regulation functions to the tumor microenvironment, as well as the enhanced immune activation capacity. This work highlighted an alternative strategy for enhancing the inhibitory effect on both tumor growth and tumor metastasis in the combinational anticancer therapy of phototherapy and immunotherapy (photo-immunotherapy).
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
18
|
Hypoxia promotes conversion to a stem cell phenotype in prostate cancer cells by activating HIF-1α/Notch1 signaling pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03093-w. [PMID: 36757381 DOI: 10.1007/s12094-023-03093-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE The hypoxic tumor microenvironment and the maintenance of stem cells are relevant to the malignancy of prostate cancer (PCa). However, whether HIF-1α in the hypoxic microenvironment mediates the transformation of prostate cancer to a stem cell phenotype and the mechanism have not been elucidated. MATERIALS AND METHODS Prostate cancer stem cells (PCSCs) from PC-3 cell lines were examined for the expression of CD44, CD133, ALDH1, HIF-1α, Notch1, and HES1. We observed the effect of knockdown HIF-1α in vitro and mice models and evaluated the impact of HIF-1α on the Notch1 pathway as well as stem cell dedifferentiation. The effects on sphere formation, cell proliferation, apoptosis, cell cycle, and invasive metastasis were evaluated. RESULTS In our study, hypoxia upregulated HIF-1α expression and induced a stem cell phenotype through activation of the Notch1 pathway, leading to enhanced proliferation, invasion, and migration of PCa PC-3 cells. The knockdown of HIF-1α significantly inhibited cell dedifferentiation and the ability to proliferate, invade and metastasize. However, the inhibitory effect of knocking down HIF-1α was reversed by Jagged1, an activator of the Notch1 pathway. These findings were further confirmed in vivo, where hypoxia could enhance the tumorigenicity of xenograft tumors by upregulating the expression of HIF-1α to activate the Notch1 pathway. In addition, the expression of HIF-1α and Notch1 was significantly increased in human PCa tissues, and high expression of HIF-1α correlated with the malignancy of PCa. CONCLUSION In a hypoxic environment, HIF-1α promotes PCa cell dedifferentiation to stem-like cell phenotypes by activating the Notch1 pathway and enhancing the proliferation and invasive capacity of PC-3 cells.
Collapse
|
19
|
Zhang S, Xu H, Li W, Ji J, Jin Q, Chen L, Gan Q, Tao Q, Chai Y. MDM2 promotes cancer cell survival through regulating the expression of HIF-1α and pVHL in retinoblastoma. Pathol Oncol Res 2023; 29:1610801. [PMID: 36741966 PMCID: PMC9892057 DOI: 10.3389/pore.2023.1610801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Hypoxia is an important tumor feature and hypoxia-inducible factor 1 (HIF-1) is a master regulator of cell response to hypoxia. Mouse double minute 2 homolog (MDM2) promotes cancer cell survival in retinoblastoma (RB), with the underlying mechanism remaining elusive. In this study, we investigated the role of MDM2 and its relation to HIF-1α in RB. Expression analysis on primary human RB samples showed that MDM2 expression was positively correlated with that of HIF-1α while negatively correlated with von Hippel-Lindau protein (pVHL), the regulator of HIF-1α. In agreement, RB cells with MDM2 overexpression showed increased expression of HIF-1α and decreased expression of pVHL, while cells with MDM2 siRNA knockdown or MDM2-specific inhibitor showed the opposite effect under hypoxia. Further immuno-precipitation analysis revealed that MDM2 could directly interact with pVHL and promotes its ubiquitination and degradation, which consequently led to the increase of HIF-1α. Inhibition of MDM2 and/or HIF-1α with specific inhibitors induced RB cell death and decreased the stem cell properties of primary RB cells. Taken together, our study has shown that MDM2 promotes RB survival through regulating the expression of pVHL and HIF-1α, and targeting MDM2 and/or HIF-1α represents a potential effective approach for RB treatment.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Hongyan Xu
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Weiming Li
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Jianfeng Ji
- Department of Ultrasound, Joint Support Forces of the Chinese People’s Liberation Army 908 Hospital, Nanchang, Jiangxi, China
| | - Qifang Jin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Gan
- Department of Ophthalmology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Qiang Tao
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China,*Correspondence: Qiang Tao, ; Yong Chai,
| | - Yong Chai
- Department of Ophthalmology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China,*Correspondence: Qiang Tao, ; Yong Chai,
| |
Collapse
|
20
|
Panuzzo C, Pironi L, Maglione A, Rocco S, Stanga S, Riganti C, Kopecka J, Ali MS, Pergolizzi B, Bracco E, Cilloni D. mTORC2 Is Activated under Hypoxia and Could Support Chronic Myeloid Leukemia Stem Cells. Int J Mol Sci 2023; 24:ijms24021234. [PMID: 36674750 PMCID: PMC9865638 DOI: 10.3390/ijms24021234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Hypoxia is a critical condition that governs survival, self-renewal, quiescence, metabolic shift and refractoriness to leukemic stem cell (LSC) therapy. The present study aims to investigate the hypoxia-driven regulation of the mammalian Target of the Rapamycin-2 (mTORC2) complex to unravel it as a novel potential target in chronic myeloid leukemia (CML) therapeutic strategies. After inducing hypoxia in a CML cell line model, we investigated the activities of mTORC1 and mTORC2. Surprisingly, we detected a significant activation of mTORC2 at the expense of mTORC1, accompanied by the nuclear localization of the main substrate phospho-Akt (Ser473). Moreover, the Gene Ontology analysis of CML patients' CD34+ cells showed enrichment in the mTORC2 signature, further strengthening our data. The deregulation of mTOR complexes highlights how hypoxia could be crucial in CML development. In conclusion, we propose a mechanism by which CML cells residing under a low-oxygen tension, i.e., in the leukemia quiescent LSCs, singularly regulate the mTORC2 and its downstream effectors.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
- Correspondence:
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Simone Rocco
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10043 Turin, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy
| |
Collapse
|
21
|
Sun Z, Zeng Y, Yuan T, Chen X, Wang H, Ma X. Comprehensive Analysis and Reinforcement Learning of Hypoxic Genes Based on Four Machine Learning Algorithms for Estimating the Immune Landscape, Clinical Outcomes, and Therapeutic Implications in Patients With Lung Adenocarcinoma. Front Immunol 2022; 13:906889. [PMID: 35757722 PMCID: PMC9226377 DOI: 10.3389/fimmu.2022.906889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients with lung adenocarcinoma (LUAD) exhibit significant heterogeneity in therapeutic responses and overall survival (OS). In recent years, accumulating research has uncovered the critical roles of hypoxia in a variety of solid tumors, but its role in LUAD is not currently fully elucidated. This study aims to discover novel insights into the mechanistic and therapeutic implications of the hypoxia genes in LUAD cancers by exploring the potential association between hypoxia and LUAD. Methods Four machine learning approaches were implemented to screen out potential hypoxia-related genes for the prognosis of LUAD based on gene expression profile of LUAD samples obtained from The Cancer Genome Atlas (TCGA), then validated by six cohorts of validation datasets. The risk score derived from the hypoxia-related genes was proven to be an independent factor by using the univariate and multivariate Cox regression analyses and Kaplan-Meier survival analyses. Hypoxia-related mechanisms based on tumor mutational burden (TMB), the immune activity, and therapeutic value were also performed to adequately dig deeper into the clinical value of hypoxia-related genes. Finally, the expression level of hypoxia genes was validated at protein level and clinical samples from LUAD patients at transcript levels. Results All patients in TCGA and GEO-LUAD group were distinctly stratified into low- and high-risk groups based on the risk score. Survival analyses demonstrated that our risk score could serve as a powerful and independent risk factor for OS, and the nomogram also exhibited high accuracy. LUAD patients in high-risk group presented worse OS, lower TMB, and lower immune activity. We found that the model is highly sensitive to immune features. Moreover, we revealed that the hypoxia-related genes had potential therapeutic value for LUAD patients based on the drug sensitivity and chemotherapeutic response prediction. The protein and gene expression levels of 10 selected hypoxia gene also showed significant difference between LUAD tumors tissues and normal tissues. The validation experiment showed that the gene transcript levels of most of their genes were consistent with the levels of their translated proteins. Conclusions Our study might contribute to the optimization of risk stratification for survival and personalized management of LUAD patients by using the hypoxia genes, which will provide a valuable resource that will guide both mechanistic and therapeutic implications of the hypoxia genes in LUAD cancers.
Collapse
Affiliation(s)
- Zhaoyang Sun
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ting Yuan
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Chen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogene and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Guo CL. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Front Cell Dev Biol 2022; 10:862791. [PMID: 35774228 PMCID: PMC9237464 DOI: 10.3389/fcell.2022.862791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
Organ development, homeostasis, and repair often rely on bidirectional, self-organized cell-niche interactions, through which cells select cell fate, such as stem cell self-renewal and differentiation. The niche contains multiplexed chemical and mechanical factors. How cells interpret niche structural information such as the 3D topology of organs and integrate with multiplexed mechano-chemical signals is an open and active research field. Among all the niche factors, reactive oxygen species (ROS) have recently gained growing interest. Once considered harmful, ROS are now recognized as an important niche factor in the regulation of tissue mechanics and topology through, for example, the HIF-YAP-Notch signaling pathways. These pathways are not only involved in the regulation of stem cell physiology but also associated with inflammation, neurological disorder, aging, tumorigenesis, and the regulation of the immune checkpoint molecule PD-L1. Positive feedback circuits have been identified in the interplay of ROS and HIF-YAP-Notch signaling, leading to the possibility that under aberrant conditions, self-organized, ROS-dependent physiological regulations can be switched to self-perpetuating dysregulation, making ROS a double-edged sword at the interface of stem cell physiology and tumorigenesis. In this review, we discuss the recent findings on how ROS and tissue mechanics affect YAP-HIF-Notch-PD-L1 signaling, hoping that the knowledge can be used to design strategies for stem cell-based and ROS-targeting therapy and tissue engineering.
Collapse
Affiliation(s)
- Chin-Lin Guo
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
23
|
Bailey CM, Liu Y, Liu M, Du X, Devenport M, Zheng P, Liu Y, Wang Y. Targeting HIF-1α abrogates PD-L1-mediated immune evasion in tumor microenvironment but promotes tolerance in normal tissues. J Clin Invest 2022; 132:150846. [PMID: 35239514 PMCID: PMC9057613 DOI: 10.1172/jci150846] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Anti-CTLA-4 + anti-PD-1/PD-L1 combination is the most effective cancer immunotherapy but causes high incidence of immune-related adverse events (irAE). Here we report that targeting of HIF-1α suppressed PD-L1 expression on tumor cells and tumor-infiltrated myeloid cells, but unexpectedly induced PD-L1 in normal tissues by an IFNγ-dependent mechanism. Targeting the HIF-1α-PD-L1 axis in tumor cells reactivated tumor-infiltrating lymphocytes (TILs) and caused tumor rejection. The HIF-1α inhibitor echinomycin potentiated cancer immunotherapeutic effects of anti-CTLA-4 therapy with efficacy comparable to anti-CTLA-4+anti-PD-1 antibodies. However, while anti-PD-1 exacerbated irAE triggered by Ipilimumab, echinomycin protected mice against irAE by increasing PD-L1 levels in normal tissues. Our data suggest that targeting HIF-1α fortifies the immune tolerance function of the PD-1:PD-L1 checkpoint in normal tissues but abrogates its immune evasion function in the tumor microenvironment (TME) to achieve safer and more effective immunotherapy.
Collapse
Affiliation(s)
- Christopher M Bailey
- Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States of America
| | - Yan Liu
- Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States of America
| | - Mingyue Liu
- Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States of America
| | - Xuexiang Du
- Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States of America
| | | | - Pan Zheng
- Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States of America
| | - Yang Liu
- Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, United States of America
| | - Yin Wang
- University of Maryland School of Medicine, Baltimore, United States of America
| |
Collapse
|
24
|
Ayyadurai VAS, Deonikar P, McLure KG, Sakamoto KM. Molecular Systems Architecture of Interactome in the Acute Myeloid Leukemia Microenvironment. Cancers (Basel) 2022; 14:756. [PMID: 35159023 PMCID: PMC8833542 DOI: 10.3390/cancers14030756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
A molecular systems architecture is presented for acute myeloid leukemia (AML) to provide a framework for organizing the complexity of biomolecular interactions. AML is a multifactorial disease resulting from impaired differentiation and increased proliferation of hematopoietic precursor cells involving genetic mutations, signaling pathways related to the cancer cell genetics, and molecular interactions between the cancer cell and the tumor microenvironment, including endothelial cells, fibroblasts, myeloid-derived suppressor cells, bone marrow stromal cells, and immune cells (e.g., T-regs, T-helper 1 cells, T-helper 17 cells, T-effector cells, natural killer cells, and dendritic cells). This molecular systems architecture provides a layered understanding of intra- and inter-cellular interactions in the AML cancer cell and the cells in the stromal microenvironment. The molecular systems architecture may be utilized for target identification and the discovery of single and combination therapeutics and strategies to treat AML.
Collapse
Affiliation(s)
- V. A. Shiva Ayyadurai
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | - Prabhakar Deonikar
- Systems Biology Group, International Center for Integrative Systems, Cambridge, MA 02138, USA;
| | | | - Kathleen M. Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
25
|
Domènech M, Hernández A, Plaja A, Martínez-Balibrea E, Balañà C. Hypoxia: The Cornerstone of Glioblastoma. Int J Mol Sci 2021; 22:12608. [PMID: 34830491 PMCID: PMC8620858 DOI: 10.3390/ijms222212608] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is the most aggressive form of brain tumor in adults and is characterized by the presence of hypervascularization and necrosis, both caused by a hypoxic microenvironment. In this review, we highlight that hypoxia-induced factor 1 (HIF-1), the main factor activated by hypoxia, is an important driver of tumor progression in GB patients. HIF-1α is a transcription factor regulated by the presence or absence of O2. The expression of HIF-1 has been related to high-grade gliomas and aggressive tumor behavior. HIF-1 promotes tumor progression via the activation of angiogenesis, immunosuppression, and metabolic reprogramming, promoting cell invasion and survival. Moreover, in GB, HIF-1 is not solely modulated by oxygen but also by oncogenic signaling pathways, such as MAPK/ERK, p53, and PI3K/PTEN. Therefore, the inhibition of the hypoxia pathway could represent an important treatment alternative in a disease with very few therapy options. Here, we review the roles of HIF-1 in GB progression and the inhibitors that have been studied thus far, with the aim of shedding light on this devastating disease.
Collapse
Affiliation(s)
- Marta Domènech
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (M.D.); (A.H.); (A.P.)
| | - Ainhoa Hernández
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (M.D.); (A.H.); (A.P.)
| | - Andrea Plaja
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (M.D.); (A.H.); (A.P.)
| | - Eva Martínez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), ProCURE Program, Catalan Institute of Oncology, 08916 Badalona, Spain;
| | - Carmen Balañà
- B·ARGO (Badalona Applied Research Group of Oncology) Medical Oncology Department, Catalan Institute of Oncology Badalona, 08916 Badalona, Spain; (M.D.); (A.H.); (A.P.)
| |
Collapse
|
26
|
Cao J, Bhatnagar S, Wang J, Qi X, Prabha S, Panyam J. Cancer stem cells and strategies for targeted drug delivery. Drug Deliv Transl Res 2021; 11:1779-1805. [PMID: 33095384 PMCID: PMC8062588 DOI: 10.1007/s13346-020-00863-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) are a small proportion of cancer cells with high tumorigenic activity, self-renewal ability, and multilineage differentiation potential. Standard anti-tumor therapies including conventional chemotherapy, radiation therapy, and molecularly targeted therapies are not effective against CSCs, and often lead to enrichment of CSCs that can result in tumor relapse. Therefore, it is hypothesized that targeting CSCs is key to increasing the efficacy of cancer therapies. In this review, CSC properties including CSC markers, their role in tumor growth, invasiveness, metastasis, and drug resistance, as well as CSC microenvironment are discussed. Further, CSC-targeted strategies including the use of targeted drug delivery systems are examined.
Collapse
Affiliation(s)
- Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shubhmita Bhatnagar
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Jiawei Wang
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Swayam Prabha
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
- Cancer Research & Molecular Biology and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jayanth Panyam
- College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
27
|
La Camera G, Gelsomino L, Malivindi R, Barone I, Panza S, De Rose D, Giordano F, D'Esposito V, Formisano P, Bonofiglio D, Andò S, Giordano C, Catalano S. Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity. Cancer Lett 2021; 521:155-168. [PMID: 34425186 DOI: 10.1016/j.canlet.2021.08.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are emerging key protagonists in intercellular communication between adipocytes and breast cancer (BC) cells. Here, we described a new mechanism by which EVs released by mature adipocytes promoted breast cancer cell malignancy "in vitro" and "in vivo". We found that adipocyte-derived EVs enhanced growth, motility and invasion, stem cell-like properties, as well as specific traits of epithelial-to-mesenchymal transition in both estrogen receptor positive and triple negative BC cells. Of note, adipocyte-derived EVs aid breast tumor cells in lung metastatic colonization after tail-vein injection in mice. These EV-mediated effects occur via the induction of HIF-1α activity, since they were abrogated by the use of the HIF-1α inhibitor KC7F2 or in cells silenced for HIF-1α expression. Moreover, using an "ex vivo" model of obese adipocytes we found that the depletion of EVs counteracted the ability of obese adipocytes to sustain pro-invasive phenotype in BC cells. Interestingly, EVs released by undifferentiated adipocytes failed to induce aggressiveness and HIF-1α expression. These findings shed new light on the role of adipocyte-derived EVs in breast cancer progression, suggesting the possibility to target HIF-1α activity to block the harmful adipocyte-tumor cell dialogue, especially in obese settings.
Collapse
Affiliation(s)
- Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Daniela De Rose
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy; Centro Sanitario, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Vittoria D'Esposito
- Department of Translational Medicine, Federico II University of Naples, 80131, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples, 80131, Naples, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy; Centro Sanitario, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy; Centro Sanitario, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy; Centro Sanitario, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy; Centro Sanitario, Via P. Bucci, University of Calabria, 87036, Arcavacata di Rende (CS), Italy.
| |
Collapse
|
28
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
29
|
Ferreira LP, Gaspar VM, Mendes L, Duarte IF, Mano JF. Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening. Biomaterials 2021; 275:120983. [PMID: 34186236 DOI: 10.1016/j.biomaterials.2021.120983] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Decellularized extracellular matrix (dECM) is emerging as a valuable tool for generating 3D in vitro tumor models that better recapitulate tumor-stroma interactions. However, the development of dECM-3D heterotypic microtumors exhibiting a controlled morphology is yet to be materialized. Precisely controlling microtumors morphologic features is key to avoid an inaccurate evaluation of therapeutics performance during preclinical screening. To address this, herein we employed ultra-low adhesion surfaces for bioengineering organotypic 3D metastatic breast cancer-fibroblast models enriched with dECM microfibrillar fragments, as a bottom-up strategy to include major matrix components and their associated biomolecular cues during the early stages of 3D microtissue spheroids assembly, simulating pre-existing ECM presence in the in vivo setting. This biomimetic approach enabled the self-assembly of dECM-3D tumor-stroma spheroids with tunable size and reproducible morphology. Along time, dECM enriched and stroma-rich microtumors exhibited necrotic core formation, secretion of key biomarkers and higher cancer-cell specific resistance to different chemotherapeutics in comparison to standard spheroids. Exometabolomics profiling of dECM-Spheroid in vitro models further identified important breast cancer metabolic features including glucose/pyruvate consumption and lactate excretion, which suggest an intense glycolytic activity, recapitulating major hallmarks of the native microenvironment. Such organotypic dECM-enriched microtumors overcome the morphologic variability generally associated with cell-laden dECM models, while providing a scalable testing platform that can be foreseeable leveraged for high-throughput screening of candidate therapeutics.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Luís Mendes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Iola F Duarte
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
30
|
Mu R, Zou YK, Tu K, Wang DB, Tang D, Yu Z, Zhao L. Hypoxia Promotes Pancreatic Cancer Cell Dedifferentiation to Stem-Like Cell Phenotypes With High Tumorigenic Potential by the HIF-1α/Notch Signaling Pathway. Pancreas 2021; 50:756-765. [PMID: 34016895 DOI: 10.1097/mpa.0000000000001828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study aimed to investigate the effect and mechanism of hypoxia on pancreatic cancer (PC) cell dedifferentiation and tumorigenic potential. METHODS Inhibition of hypoxia-inducible factor 1α (HIF-1α) and overexpression of Notch1 in PC HS766T cell lines were by lentiviral transfection. The expression of stem cell-specific markers C-X-C motif chemokine receptor 4, CD44, and Nestin was detected by immunofluorescence and Western blot assays. Cell invasion capacity was examined by Transwell assay. Tumorigenic potential was measured in an in situ tumor transplantation experiment. The expression of HIF-1α, Notch signals, and apoptosis signals was examined by Western blot assay. RESULTS Hypoxia promoted PC cells to dedifferentiate into stem-like cells by upregulating HIF-1α and activating Notch signals. Silencing of HIF-1α significantly repressed cell dedifferentiation and invasion, whereas overexpression of Notch1 reversed the effect of HIF-1α repression. In situ tumor transplantation experiment further confirmed that hypoxia promoted tumorigenic ability through upregulating HIF-1α. Moreover, the expression of HIF-1α and Notch1 was significantly increased in human PC tissues, and high expression of HIF-1α was correlated with poor survival rate. CONCLUSIONS Hypoxia promoted PC cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential by activating HIF-1α/Notch signaling pathway, indicating a novel role in regulating PC progression.
Collapse
Affiliation(s)
- Rui Mu
- From the Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Zunyi Medical University
| | - Yong-Kang Zou
- From the Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Zunyi Medical University
| | - Kui Tu
- From the Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Zunyi Medical University
| | - Dian-Bei Wang
- From the Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Zunyi Medical University
| | - Dan Tang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Zunyi Medical University
| | - Zhou Yu
- Zunyi Medical University, Zunyi, China
| | - Lijin Zhao
- From the Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Zunyi Medical University
| |
Collapse
|
31
|
Chmurska A, Matczak K, Marczak A. Two Faces of Autophagy in the Struggle against Cancer. Int J Mol Sci 2021; 22:2981. [PMID: 33804163 PMCID: PMC8000091 DOI: 10.3390/ijms22062981] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy can play a double role in cancerogenesis: it can either inhibit further development of the disease or protect cells, causing stimulation of tumour growth. This phenomenon is called "autophagy paradox", and is characterised by the features that the autophagy process provides the necessary substrates for biosynthesis to meet the cell's energy needs, and that the over-programmed activity of this process can lead to cell death through apoptosis. The fight against cancer is a difficult process due to high levels of resistance to chemotherapy and radiotherapy. More and more research is indicating that autophagy may play a very important role in the development of resistance by protecting cancer cells, which is why autophagy in cancer therapy can act as a "double-edged sword". This paper attempts to analyse the influence of autophagy and cancer stem cells on tumour development, and to compare new therapeutic strategies based on the modulation of these processes.
Collapse
Affiliation(s)
- Anna Chmurska
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland; (K.M.); (A.M.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland; (K.M.); (A.M.)
| |
Collapse
|
32
|
Fan T, Feng X, Yokota A, Liu W, Tang Y, Yan X, Xiao H, Wang Y, Deng Z, Zhao P, Wang M, Wang H, Ma R, Hu X, Huang G. Arsenic Dispensing Powder Promotes Erythropoiesis in Myelodysplastic Syndromes via Downregulation of HIF1A and Upregulation of GATA Factors. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:461-485. [PMID: 33641653 DOI: 10.1142/s0192415x2150021x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Traditional Chinese Medicine (TCM) is a practical medicine based on thousands of years of medical practice in China. Arsenic dispensing powder (ADP) has been used as a treatment for MDS patients with a superior efficacy on anemia at Xiyuan Hospital of China Academy of Chinese Medical Sciences. In this study, we retrospectively analyzed MDS patients that received ADP treatment in the past 9 years and confirmed that ADP improves patients' anemia and prolongs overall survival in intermediate-risk MDS patients. Then, we used the MDS transgenic mice model and cell line to explore the drug mechanism. In normal and MDS cells, ADP does not show cellular toxicity but promotes differentiation. In mouse MDS models, we observed that ADP showed significant efficacy on promoting erythropoiesis. In the BFU-E and CFU-E assays, ADP could promote erythropoiesis not only in normal clones but also in MDS clones. Mechanistically, we found that ADP could downregulate HIF1A in MDS clones through upregulation of VHL, P53 and MDM2, which is involved in two parallel pathways to downregulate HIF1A. We also confirmed that ADP upregulates GATA factors in normal clones. Thus, our clinical and experimental studies indicate that ADP is a promising drug to promote erythropoiesis in both MDS and normal clones with a superior outcome than current regular therapies. ADP promotes erythropoiesis in myelodysplastic syndromes via downregulation of HIF1A and upregulation of GATA factors.
Collapse
Affiliation(s)
- Teng Fan
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China.,Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomin Feng
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Asumi Yokota
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yuting Tang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Xiaomei Yan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Haiyan Xiao
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yue Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Zhongyang Deng
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Pan Zhao
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Mingjing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Hongzhi Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Rou Ma
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|
33
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
34
|
Fico F, Santamaria-Martínez A. TGFBI modulates tumour hypoxia and promotes breast cancer metastasis. Mol Oncol 2020; 14:3198-3210. [PMID: 33080107 PMCID: PMC7718944 DOI: 10.1002/1878-0261.12828] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Breast cancer metastasis is a complex process that depends not only on intrinsic characteristics of metastatic stem cells, but also on the particular microenvironment that supports their growth and modulates the plasticity of the system. In search for microenvironmental factors supporting cancer stem cell (CSC) growth and tumour progression to metastasis, we here investigated the role of the matricellular protein transforming growth factor beta induced (TGFBI) in breast cancer. We crossed the MMTV‐PyMT model of mammary gland tumorigenesis with a TgfbiΔ/Δ mouse and studied the CSC content of the tumours. We performed RNAseq on wt and ko tumours, and analysed the tumour vasculature and the immune compartment by IHC and FACS. The source of TGFBI expression was determined by qPCR and by bone marrow transplantation experiments. Finally, we performed in silico analyses using the METABRIC cohort to assess the potential prognostic value of TGFBI. We observed that deletion of Tgfbi led to a dramatic decrease in CSC content and lung metastasis. Our results show that lack of TGFBI resulted in tumour vessel normalisation, with improved vessel perfusion and decreased hypoxia, a major factor controlling CSCs and metastasis. Furthermore, human data mining in a cohort of breast cancer patients showed that higher expression of TGFBI correlates with poor prognosis and is associated with the more aggressive subtypes of breast cancer. Overall, these data reveal a novel biological mechanism controlling metastasis that could potentially be exploited to improve the efficacy and delivery of chemotherapeutic agents in breast cancer.
Collapse
Affiliation(s)
- Flavia Fico
- Tumor Ecology Lab, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Switzerland
| | - Albert Santamaria-Martínez
- Tumor Ecology Lab, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Switzerland
| |
Collapse
|
35
|
Wang J, Wang Y, Xing P, Liu Q, Zhang C, Sui Y, Wu C. Development and validation of a hypoxia-related prognostic signature for breast cancer. Oncol Lett 2020; 20:1906-1914. [PMID: 32724434 PMCID: PMC7377061 DOI: 10.3892/ol.2020.11733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/15/2020] [Indexed: 12/30/2022] Open
Abstract
Hypoxia, an important component of the tumor microenvironment, plays a crucial role in the occurrence and progression of cancer. However, to the best of our knowledge, a systematic analysis of a hypoxia-related prognostic signature for breast cancer is lacking and is urgently required. Therefore, in the present study, RNA-seq data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and served as a discovery cohort. Cox proportional hazards regression analysis was performed to construct a 14-gene prognostic signature (PFKL, P4HA2, GRHPR, SDC3, PPP1R15A, SIAH2, NDRG1, BTG1, TPD52, MAFF, ISG20, LALBA, ERRFI1 and VHL). The hypoxia-related signature successfully predicted survival outcomes of the discovery cohort (P<0.001 for the TCGA dataset). Three independent Gene Expression Omnibus databases (GSE10886, GSE20685 and GSE96058) were used as validation cohorts to verify the value of the predictive signature (P=0.007 for GSE10886, P=0.021 for GSE20685, P<0.001 for GSE96058). In the present study, a robust predictive signature was developed for patients with breast cancer, and the findings revealed that the 14-gene hypoxia-related signature could serve as a potential prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuquan Wang
- College of Bioinformatics, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ping Xing
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qianqi Liu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Cong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang Sui
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Changjun Wu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
36
|
Baumeister J, Chatain N, Hubrich A, Maié T, Costa IG, Denecke B, Han L, Küstermann C, Sontag S, Seré K, Strathmann K, Zenke M, Schuppert A, Brümmendorf TH, Kranc KR, Koschmieder S, Gezer D. Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. Leukemia 2020; 34:1062-1074. [PMID: 31728053 DOI: 10.1038/s41375-019-0629-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are a heterogeneous group of hematopoietic malignancies including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2V617F mutation plays a central role in these disorders and can be found in 90% of PV and ~50-60% of ET and PMF. Hypoxia-inducible factor 1 (HIF-1) is a master transcriptional regulator of the response to decreased oxygen levels. We demonstrate the impact of pharmacological inhibition and shRNA-mediated knockdown (KD) of HIF-1α in JAK2V617F-positive cells. Inhibition of HIF-1 binding to hypoxia response elements (HREs) with echinomycin, verified by ChIP, impaired growth and survival by inducing apoptosis and cell cycle arrest in Jak2V617F-positive 32D cells, but not Jak2WT controls. Echinomycin selectively abrogated clonogenic growth of JAK2V617F cells and decreased growth, survival, and colony formation of bone marrow and peripheral blood mononuclear cells and iPS cell-derived progenitor cells from JAK2V617F-positive patients, while cells from healthy donors were unaffected. We identified HIF-1 target genes involved in the Warburg effect as a possible underlying mechanism, with increased expression of Pdk1, Glut1, and others. That was underlined by transcriptome analysis of primary patient samples. Collectively, our data show that HIF-1 is a new potential therapeutic target in JAK2V617F-positive MPN.
Collapse
Affiliation(s)
- Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Annika Hubrich
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lijuan Han
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Caroline Küstermann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Stephanie Sontag
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kristin Seré
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Klaus Strathmann
- Institute for Transfusion Medicine, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Institute of Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Andreas Schuppert
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Kamil R Kranc
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
37
|
Bi Z, Zhang Q, Fu Y, Wadgaonkar P, Zhang W, Almutairy B, Xu L, Rice M, Qiu Y, Thakur C, Chen F. Nrf2 and HIF1α converge to arsenic-induced metabolic reprogramming and the formation of the cancer stem-like cells. Theranostics 2020; 10:4134-4149. [PMID: 32226544 PMCID: PMC7086359 DOI: 10.7150/thno.42903] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
In this report, we demonstrated that inorganic arsenic (iAs) induces generation of the cancer stem-like cells (CSCs) through Nrf2-dependent HIF1α activation, and the subsequent metabolic reprogramming from mitochondrial oxidative phosphorylation to glycolysis in epithelial cells. Methods: Genome-wide ChIP-seq analysis was performed to investigate the global binding of Nrf2 and/or HIF1α on the genome in the cells treated with iAs. Both untargeted metabolomics and UDP-13C-glucose flux were applied to determine metabolic reprogramming in the iAs-induced CSCs. The role of Nrf2 on iAs-induced HIF1α and other stemness gene expression was validated by lentiviral transfection of Nrf2 inhibitor Keap1 and CRISPR-Cas9-mediated Nrf2 gene knockout, respectively. Results: The CSCs induced by iAs exhibit a diminished mitochondrial oxidative phosphorylation and an enhanced glycolysis that is actively shunted to the hexosamine biosynthetic pathway (HBP) and serine/glycine pathway. ChIP-seq data revealed that treatment of the cells with iAs amplified Nrf2 enrichment peaks in intergenic region, promoter and gene body. In contrast, a shift of the HIF1α peaks from distal intergenic region to gene promoter and the first exon was noted. Both Nrf2 and HIF1α are responsible for the iAs-induced expression of the glycolytic genes and the genes important for the stemness of the CSCs. Intriguingly, we also discovered a mutual transcriptional regulation between Nrf2 and HIF1α. Inhibition of Nrf2 by lentiviral infection of Keap1, or knockout of Nrf2 by CRISPR-Cas9 gene editing, not only blocked iAs-induced HIF1α activation, but reduced the expression of the key stemness genes for the formation of CSCs also. Conclusion: We demonstrated that Nrf2 activation is an initiating signal for iAs-induced HIF1α activation, and Nrf2 and HIF1α played a concerted role on inducing metabolic reprogramming and the CSCs.
Collapse
Affiliation(s)
- Zhuoyue Bi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- School of Health Sciences, Wuhan University, 115 Donghu Road, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, 8 Zhudaoquanbei Road, Wuhan 430079, China
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yao Fu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Wenxuan Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
- College of Pharmacy, Al-Dawadmi Campus, Shaqra University, P.O.Box 11961, Riyadh, Kingdom of Saudi Arabia
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - M'Kya Rice
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Yiran Qiu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| |
Collapse
|
38
|
Shen YA, Pan SC, Chu I, Lai RY, Wei YH. Targeting cancer stem cells from a metabolic perspective. Exp Biol Med (Maywood) 2020; 245:465-476. [PMID: 32102562 PMCID: PMC7082881 DOI: 10.1177/1535370220909309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The process of cancer development and progression is driven by distinct subsets of cancer stem cells (CSCs) that contribute the self-renewal capacity as the major impetus to the metastatic dissemination and main impediments in cancer treatment. Given that CSCs are so scarce in the tumor mass, there are debatable points on the metabolic signatures of CSCs. As opposed to differentiated tumor progenies, CSCs display exquisite patterns of metabolism that, depending on the type of cancer, predominately rely on glycolysis, oxidative metabolism of glutamine, fatty acids, or amino acids for ATP production. Metabolic heterogeneity of CSCs, which attributes to differences in type and microenvironment of tumors, confers CSCs to have the plasticity to cope with the endogenous mitochondrial stress and exogenous microenvironment. In essence, CSCs and normal stem cells are like mirror images of each other in terms of metabolism. To achieve reprogramming, CSCs not only need to upregulate their metabolic engine for self-renewal and defense mechanism, but also expedite the antioxidant defense to sustain the redox homeostasis. In the context of these pathways, this review portrays the connection between the metabolic features of CSCs and cancer stemness. Identification of the metabolic features in conferring resistance to anticancer treatment dictated by CSCs can enhance the opportunity to open up a new therapeutic dimension, which might not only improve the effectiveness of cancer therapies but also annihilate the whole tumor without recurrence. Henceforth, we highlight current findings of potential therapeutic targets for the design of alternative strategies to compromise the growth, drug resistance, and metastasis of CSCs by altering their metabolic phenotypes. Perturbing the versatile skills of CSCs by barricading metabolic signaling might bring about plentiful approaches to discover novel therapeutic targets for clinical application in cancer treatments.Impact statementThis minireview highlights the current evidence on the mechanisms of pivotal metabolic pathways that attribute to cancer stem cells (CSCs) with a special focus on developing metabolic strategies of anticancer treatment that can be exploited in preclinical and clinical settings. Specific metabolic inhibitors that can overwhelm the properties of CSCs may impede tumor recurrence and metastasis, and potentially achieve a permanent cure of cancer patients.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Siao-Cian Pan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| | - I Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ruo-Yun Lai
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
39
|
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks. Cells 2020; 9:E337. [PMID: 32024090 PMCID: PMC7072483 DOI: 10.3390/cells9020337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
As a key hub of malignant properties, the cancer microenvironment plays a crucial role intimately connected to tumor properties. Accumulating evidence supports that the lysophospholipid sphingosine-1-phosphate acts as a key signal in the cancer extracellular milieu. In this review, we have a particular focus on glioblastoma, representative of a highly aggressive and deleterious neoplasm in humans. First, we highlight recent advances and emerging concepts for how tumor cells and different recruited normal cells contribute to the sphingosine-1-phosphate enrichment in the cancer microenvironment. Then, we describe and discuss how sphingosine-1-phosphate signaling contributes to favor cancer hallmarks including enhancement of proliferation, stemness, invasion, death resistance, angiogenesis, immune evasion and, possibly, aberrant metabolism. We also discuss the potential of how sphingosine-1-phosphate control mechanisms are coordinated across distinct cancer microenvironments. Further progress in understanding the role of S1P signaling in cancer will depend crucially on increasing knowledge of its participation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| |
Collapse
|
40
|
DeVito NC, Plebanek MP, Theivanthiran B, Hanks BA. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Front Immunol 2019; 10:2876. [PMID: 31921140 PMCID: PMC6914818 DOI: 10.3389/fimmu.2019.02876] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
The vast majority of cancer-related deaths are due to metastasis, a process that requires evasion of the host immune system. In addition, a significant percentage of cancer patients do not benefit from our current immunotherapy arsenal due to either primary or secondary immunotherapy resistance. Importantly, select subsets of dendritic cells (DCs) have been shown to be indispensable for generating responses to checkpoint inhibitor immunotherapy. These observations are consistent with the critical role of DCs in antigen cross-presentation and the generation of effective anti-tumor immunity. Therefore, the evolution of efficient tumor-extrinsic mechanisms to modulate DCs is expected to be a potent strategy to escape immunosurveillance and various immunotherapy strategies. Despite this critical role, little is known regarding the methods by which cancers subvert DC function. Herein, we focus on those select mechanisms utilized by developing cancers to co-opt and tolerize local DC populations. We discuss the reported mechanisms utilized by cancers to induce DC tolerization in the tumor microenvironment, describing various parallels between the evolution of these mechanisms and the process of mesenchymal transformation involved in tumorigenesis and metastasis, and we highlight strategies to reverse these mechanisms in order to enhance the efficacy of the currently available checkpoint inhibitor immunotherapies.
Collapse
Affiliation(s)
- Nicholas C. DeVito
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Michael P. Plebanek
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Bala Theivanthiran
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
| | - Brent A. Hanks
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
41
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|
42
|
Han L, Zan Y, Huang C, Zhang S. NELFE promoted pancreatic cancer metastasis and the epithelial‑to‑mesenchymal transition by decreasing the stabilization of NDRG2 mRNA. Int J Oncol 2019; 55:1313-1323. [PMID: 31638184 PMCID: PMC6831195 DOI: 10.3892/ijo.2019.4890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Negative elongation factor E (NELFE) has been demonstrated to promote cancer progression as an RNA‑binding protein (RBP). However, the expression patterns, biological role and molecular mechanism of NELFE in pancreatic cancer (PC) remain largely unknown. The expression levels of NELFE in 120 pairs of PC tissues and adjacent non‑tumor clinical samples collected from patients with PC were examined via reverse transcription‑quantitative (RT‑q) PCR and immunohistochemistry. The mRNA expression levels of NELFE, N‑Myc downstream‑regulated gene 2 (NDRG2), c‑Myc, survivin and cyclin D1 were detected via RT‑qPCR. The protein expression levels of NELFE, NDRG2, total β‑catenin, nuclear β‑catenin, cytosolic β‑catenin, E‑cadherin, N‑cadherin and Vimentin were measured by western blotting. NELFE and NDRG2 were then knocked‑down by short hairpin (sh)RNA. PC cell proliferation was detected by MTT and colony formation assays. Invasion and migration were detected by transwell assays. The interaction between NELFE and NDRG2 was detected by luciferase reporter assays, mRNA decay assays and RNA immunoprecipitation. NELFE expression was increased in PC tissues compared with the paired non‑cancerous tissues. NELFE expression was upregulated in PC cells when compared with normal pancreatic cells (HPDE6‑C7). The present study revealed that knockdown of NELFE inhibited the proliferation, invasion and migration of PC cells. In addition, transfection of the sh‑NELFE vector inhibited the epithelial‑to‑mesenchymal transition in PC cells by suppressing the expression and nuclear accumulation of β‑catenin. Further mechanistic studies revealed that NELFE activates the Wnt/β‑catenin signaling pathway by decreasing the stabilization of NDRG2 mRNA in PC. To the best of our knowledge, these results revealed the promotional function of NELFE on PC tumorigenesis and metastasis for the first time, helping to provide a promising strategy for the treatment of patients with PC.
Collapse
Affiliation(s)
- Lili Han
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
43
|
Pal M, Chen H, Lee BH, Lee JYH, Yip YS, Tan NS, Tan LP. Epithelial-mesenchymal transition of cancer cells using bioengineered hybrid scaffold composed of hydrogel/3D-fibrous framework. Sci Rep 2019; 9:8997. [PMID: 31222037 PMCID: PMC6586872 DOI: 10.1038/s41598-019-45384-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergoing epithelial-mesenchymal transition (EMT) acquire stem cell-like phenotype associated with malignant behaviour, chemoresistance, and relapse. Current two-dimensional (2D) in-vitro culture models of tumorigenesis are inadequate to replicate the complexity of in-vivo microenvironment. Therefore, the generation of functional three-dimensional (3D) constructs is a fundamental prerequisite to form multi-cellular tumour spheroids for studying basic pathological mechanisms. In this study, we focused on two major points (i) designing and fabrication of 3D hybrid scaffolds comprising electrospun fibers with cancer cells embedded within hydrogels, and (ii) determining the potential roles of 3D hybrid scaffolds associated with EMT in cancer progression and metastasis. Our findings revealed that 3D hybrid scaffold enhances cell proliferation and induces cancer cells to undergo EMT, as demonstrated by significant up-regulation of EMT associated transcriptional factors including Snail1, Zeb1, and Twist2; and mesenchymal markers whereas epithelial marker, E-Cadherin was downregulated. Remarkably, this induction is independent of cancer cell-type as similar results were obtained for breast cancer cells, MDA-MB-231 and gastric cancer cells, MKN74. Moreover, the hybrid scaffolds enrich aggressive cancer cells with stem cell properties. We showed that our 3D scaffolds could trigger EMT of cancer cells which could provide a useful model for studying anticancer therapeutics against metastasis.
Collapse
Affiliation(s)
- Mintu Pal
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Biological Sciences and Technology Division, Biotechnology Group, CSIR-North East Institute of Science & Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, 785006, India
| | - Huizhi Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bae Hoon Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Justin Yin Hao Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Yun Sheng Yip
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
44
|
Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett 2019; 208:19-29. [DOI: 10.1016/j.imlet.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
|
45
|
Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer 2019; 18:57. [PMID: 30925935 PMCID: PMC6441221 DOI: 10.1186/s12943-019-0982-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hypoxic tumor microenvironment is a common feature of solid tumors and is associated with aggressiveness and poor patient outcomes. A continuous interference between cancer cells and stromal cells within the hypoxic microenvironment has been uncovered for its importance in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted material from cells, are now elucidated to perform a variety of functions that involve interactions within the cellular microenvironment due to their ability to carry numerous cargoes, including lipids, proteins, nucleic acids, and metabolites. Exosome-mediated continuous interference between cancer cells and stroma are believed to regulate hypoxia-adaptation and to rebuild the microenvironment in return. In this review, we will discuss the knowledge in literature with respect to the exosome-mediated multi-directional and mutual signal transmission among the variety of cell types within hypoxic cancer microenvironment.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Yaying Hao
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Chuanshi He
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Ling Li
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China.
| | - Guiquan Zhu
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
46
|
Fabbri L, Bost F, Mazure NM. Primary Cilium in Cancer Hallmarks. Int J Mol Sci 2019; 20:E1336. [PMID: 30884815 PMCID: PMC6471594 DOI: 10.3390/ijms20061336] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
The primary cilium is a solitary, nonmotile and transitory appendage that is present in virtually all mammalian cells. Our knowledge of its ultrastructure and function is the result of more than fifty years of research that has dramatically changed our perspectives on the primary cilium. The mutual regulation between ciliogenesis and the cell cycle is now well-recognized, as well as the function of the primary cilium as a cellular "antenna" for perceiving external stimuli, such as light, odorants, and fluids. By displaying receptors and signaling molecules, the primary cilium is also a key coordinator of signaling pathways that converts extracellular cues into cellular responses. Given its critical tasks, any defects in primary cilium formation or function lead to a wide spectrum of diseases collectively called "ciliopathies". An emerging role of primary cilium is in the regulation of cancer development. In this review, we seek to describe the current knowledge about the influence of the primary cilium in cancer progression, with a focus on some of the events that cancers need to face to sustain survival and growth in hypoxic microenvironment: the cancer hallmarks.
Collapse
Affiliation(s)
- Lucilla Fabbri
- Université Côte d'Azur (UCA), INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice, France.
| | - Frédéric Bost
- Université Côte d'Azur (UCA), INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice, France.
| | - Nathalie M Mazure
- Université Côte d'Azur (UCA), INSERM U1065, C3M, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice, France.
| |
Collapse
|
47
|
Nazio F, Bordi M, Cianfanelli V, Locatelli F, Cecconi F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ 2019; 26:690-702. [PMID: 30728463 PMCID: PMC6460398 DOI: 10.1038/s41418-019-0292-y] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy and mitophagy act in cancer as bimodal processes, whose differential functions strictly depend on cancer ontogenesis, progression, and type. For instance, they can act to promote cancer progression by helping cancer cells survive stress or, instead, when mutated or abnormal, to induce carcinogenesis by influencing cell signaling or promoting intracellular toxicity. For this reason, the study of autophagy in cancer is the main focus of many researchers and several clinical trials are already ongoing to manipulate autophagy and by this way determine the outcome of disease therapy. Since the establishment of the cancer stem cell (CSC) theory and the discovery of CSCs in individual cancer types, autophagy and mitophagy have been proposed as key mechanisms in their homeostasis, dismissal or spread, even though we still miss a comprehensive view of how and by which regulatory molecules these two processes drive cell fate. In this review, we will dive into the deep water of autophagy, mitophagy, and CSCs and offer novel viewpoints on possible therapeutic strategies, based on the modulation of these degradative systems.
Collapse
Affiliation(s)
- Francesca Nazio
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Matteo Bordi
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
- Department of Biology, University of Tor Vergata, 00133, Rome, Italy
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Franco Locatelli
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
- Department of Gynecology/Obstetrics and Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Francesco Cecconi
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
- Department of Biology, University of Tor Vergata, 00133, Rome, Italy.
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
48
|
Kogan AA, Lapidus RG, Baer MR, Rassool FV. Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment. Adv Cancer Res 2019; 141:213-253. [PMID: 30691684 DOI: 10.1016/bs.acr.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) derives from the clonal expansion of immature myeloid cells in the bone marrow, and results in the disruption of normal hematopoiesis and subsequent bone marrow failure. The bone marrow microenvironment (BME) and its immune and other supporting cells are regarded to facilitate the survival, differentiation and proliferation of leukemia stem cells (LSCs), which enables AML cells to persist and expand despite treatment. Recent studies have identified epigenetic modifications among AML cells and BME constituents in AML, and have shown that epigenetic therapy can potentially reprogram these alterations. In this review, we summarize the interactions between the BME and LSCs, and discuss changes in how the BME and immune cells interact with AML cells. After describing the epigenetic modifications seen across chromatin, DNA, the BME, and the immune microenvironment, we explore how demethylating agents may reprogram these pathological interactions, and potentially re-sensitize AML cells to treatment.
Collapse
Affiliation(s)
- Aksinija A Kogan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rena G Lapidus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria R Baer
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.
| |
Collapse
|
49
|
You GR, Cheng AJ, Lee LY, Huang YC, Liu H, Chen YJ, Chang JT. Prognostic signature associated with radioresistance in head and neck cancer via transcriptomic and bioinformatic analyses. BMC Cancer 2019; 19:64. [PMID: 30642292 PMCID: PMC6332600 DOI: 10.1186/s12885-018-5243-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background Radiotherapy is an indispensable treatment modality in head and neck cancer (HNC), while radioresistance is the major cause of treatment failure. The aim of this study is to identify a prognostic molecular signature associated with radio-resistance in HNC for further clinical applications. Methods Affymetrix cDNA microarrays were used to globally survey different transcriptomes between HNC cell lines and isogenic radioresistant sublines. The KEGG and Partek bioinformatic analytical methods were used to assess functional pathways associated with radioresistance. The SurvExpress web tool was applied to study the clinical association between gene expression profiles and patient survival using The Cancer Genome Atlas (TCGA)-head and neck squamous cell carcinoma (HNSCC) dataset (n = 283). The Kaplan-Meier survival analyses were further validated after retrieving clinical data from the TCGA-HNSCC dataset (n = 502) via the Genomic Data Commons (GDC)-Data-Portal of National Cancer Institute. A panel maker molecule was generated to assess the efficacy of prognostic prediction for radiotherapy in HNC patients. Results In total, the expression of 255 molecules was found to be significantly altered in the radioresistant cell sublines, with 155 molecules up-regulated 100 down-regulated. Four core functional pathways were identified to enrich the up-regulated genes and were significantly associated with a worse prognosis in HNC patients, as the modulation of cellular focal adhesion, the PI3K-Akt signaling pathway, the HIF-1 signaling pathway, and the regulation of stem cell pluripotency. Total of 16 up-regulated genes in the 4 core pathways were defined, and 11 over-expressed molecules showed correlated with poor survival (TCGA-HNSCC dataset, n = 283). Among these, 4 molecules were independently validated as key molecules associated with poor survival in HNC patients receiving radiotherapy (TCGA-HNSCC dataset, n = 502), as IGF1R (p = 0.0454, HR = 1.43), LAMC2 (p = 0.0235, HR = 1.50), ITGB1 (p = 0.0336, HR = 1.46), and IL-6 (p = 0.0033, HR = 1.68). Furthermore, the combined use of these 4 markers product an excellent result to predict worse radiotherapeutic outcome in HNC (p < 0.0001, HR = 2.44). Conclusions Four core functional pathways and 4 key molecular markers significantly contributed to radioresistance in HNC. These molecular signatures may be used as a predictive biomarker panel, which can be further applied in personalized radiotherapy or as radio-sensitizing targets to treat refractory HNC. Electronic supplementary material The online version of this article (10.1186/s12885-018-5243-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Rung You
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Li-Yu Lee
- Department of Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yu-Chen Huang
- Department of Oral Maxillofacial Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Joseph T Chang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan. .,Department of Radiation Oncology, Xiamen Chang Gung Memorial Hospital, Xiamen, Fujian, China.
| |
Collapse
|
50
|
Chen S, Zhang J, Chen J, Wang Y, Zhou S, Huang L, Bai Y, Peng C, Shen B, Chen H, Tian Y. RER1 enhances carcinogenesis and stemness of pancreatic cancer under hypoxic environment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:15. [PMID: 30630537 PMCID: PMC6327509 DOI: 10.1186/s13046-018-0986-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Background Increasing incidence and mortality rates of pancreatic cancer (PC) highlight an urgent need for novel and efficient drugs. Retention in endoplasmic reticulum 1 (RER1) is an important retention factor in the endoplasmic reticulum (ER). However, it remains elusive whether RER1 is involved in the retention of disease-related proteins. Methods We analyzed the expression level of RER1 in PC and adjacent tissues, and also employed Kaplan–Meier’s analysis to identify the correlation between RER1 expression and overall survival rate. Cell proliferation, colony formation, tumor formation, scratch test, and transwell invasion assays were performed in RER1 knockdown cells and negative control cells. Results We hereby reported the important functions of RER1 in tumorigenesis and metastasis of PC, evidenced by inhibitory effects of RER1 knockdown on PC cell proliferation, migration and aggressiveness. Tumor formation was also significantly repressed in RER1 knockdown cells compared to control. Hypoxia-inducible factor (HIF)-1α was found to be an upstream regulator of RER1. Knockdown HIF-1α cells exhibited similar repressive impact on cell proliferation as RER1, and showed diminished migratory and invasive abilities under hypoxic condition. Conclusion The present study has demonstrated that RER1 enhances the progression of PC through promoting cell proliferation, migration and aggressiveness.
Collapse
Affiliation(s)
- Shi Chen
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.,Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jiaqiang Zhang
- Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jiangzhi Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yaodong Wang
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Songqiang Zhou
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Long Huang
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Yannan Bai
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Chenghong Peng
- Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Baiyong Shen
- Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Huixing Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| | - Yifeng Tian
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|