1
|
Wang CE, Ogden SK. G Protein-Coupled Receptor Signal Intersection at the Primary Cilium. Bioessays 2025:e70015. [PMID: 40277275 DOI: 10.1002/bies.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Primary cilia are singular projections that extend from the surface of most vertebrate cell types. The surface area of the primary cilium (PC) is estimated to represent only 1/100th of the total membrane surface of an average cell. Despite this, the PC provides essential contributions to inter- and intracellular communication by housing receptors and downstream effectors for myriad cell-signaling cascades. G protein-coupled receptors (GPCRs) commonly enrich along ciliary membranes to control a diverse range of cellular behaviors by signaling through a shared pool of downstream effectors. This suggests the hypothesis that the PC provides an environment that is conducive to complementary or competitive GPCR Signal Crosstalk. In this Hypothesis Bio Essay, we use the Sonic Hedgehog (SHH) pathway as a case study to inform models of how GPCR signals could intersect in primary cilia and suggest general strategies to test each model.
Collapse
Affiliation(s)
- Christina E Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Mao S, Song R, Jin S, Pang S, Jovanovic A, Zimmerman A, Li P, Wu X, Wendland MF, Lin K, Chen WC, Choksi SP, Chen G, Holtzman MJ, Reiter JF, Wan Y, Xuan Z, Xiang YK, Xu CS, Upadhyayula S, Hess HF, He L. Multicilia dynamically transduce Sonic Hedgehog signaling to regulate choroid plexus functions. Cell Rep 2025; 44:115383. [PMID: 40057957 DOI: 10.1016/j.celrep.2025.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/17/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
The choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or intraflagellar transport yields neonatal hydrocephalus, at least in part due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Sonic Hedgehog (Shh) signaling. Interestingly, it is the non-canonical Shh signaling that represses Aqp1 and Atp1a2 expression by the Smoothened (Smo)/Gαi/cyclic AMP (cAMP) pathway. Choroid plexus multicilia exhibit unique ciliary ultrastructure, carrying features of both primary and motile cilia. Unlike most cilia that elongate during maturation, choroid plexus ciliary length decreases during development, causing a decline of Shh signaling intensity in the developing choroid plexus, a derepression of Aqp1 and Atp1a2, and, ultimately, increased CSF production. Hence, the developmental dynamics of choroid plexus multicilia dampens the Shh signaling intensity to promote CSF production.
Collapse
Affiliation(s)
- Suifang Mao
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Rui Song
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Shibo Jin
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Aleksandra Jovanovic
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Adam Zimmerman
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Peng Li
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Xinying Wu
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Michael F Wendland
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Kerry Lin
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Wei-Chi Chen
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gang Chen
- Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ying Wan
- Chongqing Key Laboratory of Cytomics, Chongqing 400038, China
| | - Zhenyu Xuan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA; VA Northern California Health Care System, Mather, CA 95655, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Srigokul Upadhyayula
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Lin He
- Division of Cellular and Developmental Biology, MCB Department, University of California, Berkeley, Berkeley, CA 94705, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Liu Y, Li G, Wang C, Chen J, Chen L. Comparative safety analysis of Hedgehog inhibitor preparations: insights from the FAERS database. Expert Opin Drug Saf 2025:1-8. [PMID: 39934996 DOI: 10.1080/14740338.2025.2466668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Vismodegib and sonidegib are currently the only Hedgehog inhibitors (HHIs) approved by the U.S. Food and Drug Administration (FDA) for the treatment of locally advanced BCC (laBCC). However, there is limited systematic research comparing the adverse drug events (ADEs) associated with these two inhibitors. RESEARCH DESIGN AND METHODS Data were extracted from the Food and Drug Administration Adverse Event Reporting System (FAERS) for the period from 2019 to the second quarter of 2024. Disproportionality analysis was conducted to compare ADEs between vismodegib and sonidegib. RESULTS The occurrence of ADEs was notably higher among patients aged ≥ 65 years (72.98%) and males (60.17%). The most frequently reported ADEs associated with HHIs included skeletal muscle and joint diseases and nervous system disorders, particularly muscle spasms and dysgeusia. Differences in adverse reactions between vismodegib and sonidegib were observed, mainly in nervous system, gastrointestinal system, skin and subcutaneous tissue, and renal and urinary disorders. CONCLUSIONS This analysis, using the FAERS database, enhances understanding of the ADE profiles associated with both vismodegib and sonidegib. Further research is needed to validate the hypotheses generated by this study.
Collapse
Affiliation(s)
- Yijiang Liu
- Department of Pharmacy and Evidence Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- China Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Gen Li
- Department of Pharmacy, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China
| | - Chengliang Wang
- Department of Pharmacy, People's Hospital of Ganzi Tibetan Autonomous Prefecture, Kangding, China
| | - Jia Chen
- Department of Pharmacy, Chengdu Jinniu District People's Hospital, Chengdu, Sichuan, China
| | - Li Chen
- Department of Pharmacy and Evidence Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- China Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, Leioa, UPV/EHU, Spain
| |
Collapse
|
4
|
Ansari SS, Dillard ME, Ghonim M, Zhang Y, Stewart DP, Canac R, Moskowitz IP, Wright WC, Daly CA, Pruett-Miller SM, Steinberg J, Wang YD, Chen T, Thomas PG, Bridges JP, Ogden SK. Receptor Allostery Promotes Context-Dependent Sonic Hedgehog Signaling During Embryonic Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635336. [PMID: 39975106 PMCID: PMC11838287 DOI: 10.1101/2025.01.28.635336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sonic Hedgehog (SHH) signaling functions in temporal- and context-dependent manners to pattern diverse tissues during embryogenesis. The signal transducer Smoothened (SMO) is activated by sterols, oxysterols, and arachidonic acid (AA) through binding pockets in its extracellular cysteine-rich domain (CRD) and 7-transmembrane (7TM) bundle. In vitro analyses suggest SMO signaling is allosterically enhanced by combinatorial ligand binding to these pockets but in vivo evidence of SMO allostery is lacking. Herein, we map an AA binding pocket at the top of the 7TM bundle and show that its disruption attenuates SHH and sterol-stimulated SMO induction. A knockin mouse model of compromised AA binding reveals that homozygous mutant mice are cyanotic, exhibit high perinatal lethality, and show congenital heart disease. Surviving mutants demonstrate pulmonary maldevelopment and fail to thrive. Neurodevelopment is unaltered in these mice, suggesting that context-dependent allosteric regulation of SMO signaling allows for precise tuning of pathway activity during cardiopulmonary development.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mohamed Ghonim
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robin Canac
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Ivan P. Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christina A. Daly
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Paul G. Thomas
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - James P. Bridges
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
5
|
Mao S, Song R, Jin S, Pang S, Jovanovic A, Zimmerman A, Li P, Wu X, Wendland MF, Lin K, Chen WC, Choksi SP, Chen G, Holtzman MJ, Reiter JF, Wan Y, Xuan Z, Xiang YK, Xu CS, Upadhyayula S, Hess HF, He L. Multicilia dynamically transduce Shh signaling to regulate choroid plexus functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.633415. [PMID: 39896593 PMCID: PMC11785054 DOI: 10.1101/2025.01.21.633415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Choroid plexus is a major site for cerebrospinal fluid (CSF) production, characterized by a multiciliated epithelial monolayer that regulates CSF production. We demonstrate that defective choroid plexus ciliogenesis or Intraflagellar transport yields neonatal hydrocephalus, at least in part, due to increased water channel Aqp1 and ion transporter Atp1a2 expression. We demonstrate choroid plexus multicilia as sensory cilia, transducing both canonical and non-canonical Shh signaling. Interestingly, it is the non-canonical Shh signaling that represses Aqp1 and Atp1a2 expression by Smo/Gαi/cAMP pathway. Choroid plexus multicilia exhibit unique ciliary ultrastructure, carrying features of both primary and motile cilia. Unlike most cilia that elongate during maturation, choroid plexus ciliary length decreases during development, causing a decline of Shh signaling intensity in developing choroid plexus, a derepression of Aqp1 and Atp1a2, and ultimately, an increased CSF production. Hence, developmental dynamics of choroid plexus multicilia dampens the Shh signaling intensity to promote CSF production.
Collapse
|
6
|
Zırh S, Bahador Zırh E, Erol S, Karakoç Sökmensüer L, Bozdağ G, Müftüoğlu SF. Investigation of FF-MAS oxysterole's role in follicular development and its relation to hedgehog signal pathway. Sci Rep 2024; 14:24863. [PMID: 39438722 PMCID: PMC11496726 DOI: 10.1038/s41598-024-76281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The Hedgehog signaling pathway plays a crucial role in folliculogenesis; however, the association between FF-MAS oxysterol activity in folliculogenesis and the Hedgehog signaling pathway has not been revealed. The evaluation of FF-MAS activity in polycystic ovary syndrome (PCOS) with folliculogenesis disorder might provide a new approach to tackle follicular and oocyte maturation failure. The question is: does FF-MAS oxysterol affect granulosa cell (GC) proliferation? If so, is this effect facilitated through the Hedgehog pathway? To answer these questions, GCs were isolated from follicle fluids obtained from patients undergoing oocyte retrieval during in vitro fertilization (IVF) treatment. After the isolated GCs were incubated in different cell culture media, the levels of Hedgehog pathway components (SMO, Gli1) were measured by using immunohistochemical methods, cytoELISA, and qRT-PCR. Meanwhile, cell proliferation rates were determined. Significant increases (p < 0.001) in SMO and Gli1 expressions and cell proliferation were observed in the FF-MAS-treated subgroups of both PCOS and male factor participants compared to the FF-MAS deficient subgroup. Remarkably, FF-MAS positively affected the pathway components despite the pathway inhibitor cyclopamine. Although the increase in Hedgehog pathway components was slightly higher in the male factor group (MF), it was not statistically significant. In our study, we demonstrated for the first time the molecular effect of FF-MAS on human GCs in folliculogenesis. Since FF-MAS is already used in assisted reproductive techniques in animals and is known to be synthesized in the human body, it could be considered a new approach in human IVF treatments.
Collapse
Affiliation(s)
- Selim Zırh
- Faculty of Medicine, Department of Histology and Embryology, Erzincan Binali Yıldırım University, Erzincan, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Elham Bahador Zırh
- Faculty of Medicine, Department of Histology and Embryology, TOBB Economy and Technology University, Ankara, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Süleyman Erol
- Ankara Etlik Lady Zübeyde Gynaecology Education and Research Hospital, Assisted Reproductive Techniques, Ankara, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Lale Karakoç Sökmensüer
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| | - Gürkan Bozdağ
- Faculty of Medicine, Obstetrics and Gynecology, Koç University, Ankara, Turkey
| | - Sevda Fatma Müftüoğlu
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
7
|
Schulte G. International Union of Basic and Clinical Pharmacology CXV: The Class F of G Protein-Coupled Receptors. Pharmacol Rev 2024; 76:1009-1037. [PMID: 38955509 DOI: 10.1124/pharmrev.124.001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
The class F of G protein-coupled receptors (GPCRs) consists of 10 Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched. The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first-class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation, and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to the rapid development of our knowledge about structure-function relationships, providing a great starting point for drug development. Despite the progress, questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. SIGNIFICANCE STATEMENT: The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification, and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.
Collapse
Affiliation(s)
- Gunnar Schulte
- Karolinska Institutet, Department of Physiology & Pharmacology, Receptor Biology & Signaling, Biomedicum, Stockholm, Sweden
| |
Collapse
|
8
|
Ansari SS, Dillard ME, Zhang Y, Austria MA, Boatwright N, Shelton EL, Stewart DP, Johnson A, Wang CE, Young BM, Rankovic Z, Hansen BS, Pruett-Miller SM, Carisey AF, Schuetz JD, Robinson CG, Ogden SK. Sonic Hedgehog activates prostaglandin signaling to stabilize primary cilium length. J Cell Biol 2024; 223:e202306002. [PMID: 38856684 PMCID: PMC11166601 DOI: 10.1083/jcb.202306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Ashley Austria
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Rhodes College Summer Plus Program, Memphis, TN, USA
| | - Naoko Boatwright
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amanda Johnson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christina E. Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brandon M. Young
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
9
|
Lessans S, O'Connell KA, Choe J. Systemic Therapy for Non-Melanoma Skin Cancers: Latest Advances. Curr Oncol Rep 2024; 26:1120-1133. [PMID: 38954315 PMCID: PMC11416419 DOI: 10.1007/s11912-024-01570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW This review provides an update on approved and emerging systemic therapies in the treatment of locally advanced or metastatic non-melanoma skin cancers (squamous cell carcinoma, basal cell carcinoma, Merkel cell carcinoma). RECENT FINDINGS Many studies demonstrate the effectiveness of immunotherapy for all types of non-melanoma skin cancer. For basal cell carcinoma (BCC), hedgehog inhibitors (HHI) remain first-line but with poor tolerability. Numerous clinical trials studying both neoadjuvant and adjuvant use of anti-PD-1 and anti-PD-L1 therapies in advanced NMSC are under investigation. There is a growing number of systemic therapies available to treat non-melanoma skin cancers. The advent of immunotherapy has revolutionized the field and greatly improved survival compared to historical survival rates with cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Spencer Lessans
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katie A O'Connell
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Choe
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Preston Research Building 790, 2220 Pierce Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Sauvé R, Morin S, Yam PT, Charron F. β-arrestins Are Scaffolding Proteins Required for Shh-Mediated Axon Guidance. J Neurosci 2024; 44:e0261242024. [PMID: 38886055 PMCID: PMC11270522 DOI: 10.1523/jneurosci.0261-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
During nervous system development, Sonic hedgehog (Shh) guides developing commissural axons toward the floor plate of the spinal cord. To guide axons, Shh binds to its receptor Boc and activates downstream effectors such as Smoothened (Smo) and Src family kinases (SFKs). SFK activation requires Smo activity and is also required for Shh-mediated axon guidance. Here we report that β-arrestin1 and β-arrestin2 (β-arrestins) serve as scaffolding proteins that link Smo and SFKs in Shh-mediated axon guidance. We found that β-arrestins are expressed in rat commissural neurons. We also found that Smo, β-arrestins, and SFKs form a tripartite complex, with the complex formation dependent on β-arrestins. β-arrestin knockdown blocked the Shh-mediated increase in Src phosphorylation, demonstrating that β-arrestins are required to activate Src kinase downstream of Shh. β-arrestin knockdown also led to the loss of Shh-mediated attraction of rat commissural axons in axon turning assays. Expression of two different dominant-negative β-arrestins, β-arrestin1 V53D which blocks the internalization of Smo and β-arrestin1 P91G-P121E which blocks its interaction with SFKs, also led to the loss of Shh-mediated attraction of commissural axons. In vivo, the expression of these dominant-negative β-arrestins caused defects in commissural axon guidance in the spinal cord of chick embryos of mixed sexes. Thus we show that β-arrestins are essential scaffolding proteins that connect Smo to SFKs and are required for Shh-mediated axon guidance.
Collapse
Affiliation(s)
- Rachelle Sauvé
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Steves Morin
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
11
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Zhang J, Liu Y, Chang J, Zhang R, Liu Z, Liang J, Wang D, Feng J, Zhao W, Xiao H. Shh Gene Regulates the Proliferation and Apoptosis of Dermal Papilla Cells to Affect Its Differential Expression in Secondary Hair Follicle Growth Cycle of Cashmere Goats. Animals (Basel) 2024; 14:2049. [PMID: 39061511 PMCID: PMC11273991 DOI: 10.3390/ani14142049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sonic hedgehog (Shh) is a component of the Hedgehog signaling pathway, playing an important role in regulating cell proliferation, differentiation, apoptosis, and the repair of damaged organisms. To further clarify the expression pattern of Shh gene in the secondary hair follicle growth cycle of cashmere goats and its mechanism of action on secondary hair follicle papilla cells, and improve cashmere quality, in this study, we took Inner Mongolia Albas white cashmere goats as the research objects and collected skin samples at different growth stages to obtain secondary hair follicles, detected Shh and its gene expression by RT-qPCR, Western blot, immunohistochemistry, and other techniques, while we also cultured DPCs in vitro. Shh gene overexpression and interference vectors were constructed, and the effects of Shh gene on the proliferation and apoptosis of DPCs were studied through cell transfection technology. The results showed that there are significant differences in Shh and its gene expression in the secondary hair follicle growth cycle skins of cashmere goats, with the highest expression level in anagen, followed by catagen, and the lowest expression level in telogen. Shh was mainly expressed in the inner root sheath, outer root sheath, and secondary hair follicle papilla. After the overexpression of Shh gene, the proliferation and vitality of the hair papilla cells were enhanced compared to the interference group. After Shh gene interference, the apoptosis rate of the cells increased, indicating that Shh gene can regulate downstream Ptch, Smo, and Gli2 gene expression to promote the proliferation of DPCs, and thus form its expression pattern in the secondary hair follicle growth cycle of cashmere goats.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Yujing Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Jiale Chang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Ru Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Zhaomin Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Jiayue Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Juan Feng
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Wei Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| | - Hongmei Xiao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China
- Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China
| |
Collapse
|
13
|
Duan J, He XH, Li SJ, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol 2024; 20:349-365. [PMID: 38424377 DOI: 10.1038/s41574-024-00957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5-7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.
Collapse
Affiliation(s)
- Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin-Heng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
14
|
Cornell J, Rea S, Neitzel LR, Williams CH, Hong CC. Proton Sensing GPCR's: The missing link to Warburg's Oncogenic Legacy? JOURNAL OF CANCER BIOLOGY 2024; 5:65-75. [PMID: 39641117 PMCID: PMC11619763 DOI: 10.46439/cancerbiology.5.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A century after Otto Warburg's seminal discovery of aerobic glycolysis in cancer cells, a phenomenon dubbed the "Warburg effect", the mechanistic links between this metabolic rewiring and tumorigenesis remain elusive. Warburg postulated that this enhanced glucose fermentation to lactate, even in the presence of oxygen, stemmed from an "irreversible respiratory injury" intrinsic to cancer cells. While oxidative phosphorylation yields higher ATP, the Warburg effect paradoxically persists, suggesting that the excess lactate and acid production are worth the deficit. Since Warburg's discovery, it has been demonstrated that the acidic tumor microenvironment activates a myriad of pro-oncogenic phenotypes ranging from therapeutic resistance to immune escape. Here we propose that proton-sensing G-protein-coupled receptors (GPCRs) act as crucial heirs to Warburg's findings by transducing the acid signal from elevated glycolytic lactate into pro-oncogenic signals. The increased lactate production characteristic of the Warburg effect causes extracellular acidification. This acidic tumor microenvironment can activate proton-sensing GPCRs like GPR68, a proton-sensing receptor shown to stimulate proliferation, migration, and survival pathways in cancer cells. Such pH sensing is accomplished through protonation of key residues such as histidine, which causes a conformational change to activate various downstream signaling cascades including the MAPK, PI3K/Akt, Rho, and β-arrestin pathways implicated in tumor progression and therapeutic resistance. By coupling Warburg's "respiratory injury" to potent mitogenic signaling, proton-sensing GPCRs like GPR68 may unveil a longstanding mystery - why forgo efficient ATP generation? As heirs to Warburg's iconic metabolic observations, these proton sensors could represent novel therapeutic targets to disrupt the synergy between the Warburg effect and oncogenic signaling.
Collapse
Affiliation(s)
- Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Charles H. Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Charles C. Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| |
Collapse
|
15
|
Vo ADP, Kim SK, Yang MY, Ondrus AE, Goddard WA. Fully activated structure of the sterol-bound Smoothened GPCR-Gi protein complex. Proc Natl Acad Sci U S A 2023; 120:e2300919120. [PMID: 38015850 PMCID: PMC10710022 DOI: 10.1073/pnas.2300919120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/22/2023] [Indexed: 11/30/2023] Open
Abstract
Smoothened (SMO) is an oncoprotein and signal transducer in the Hedgehog signaling pathway that regulates cellular differentiation and embryogenesis. As a member of the Frizzled (Class F) family of G protein-coupled receptors (GPCRs), SMO biochemically and functionally interacts with Gi family proteins. However, key molecular features of fully activated, G protein-coupled SMO remain elusive. We present the atomistic structure of activated human SMO complexed with the heterotrimeric Gi protein and two sterol ligands, equilibrated at 310 K in a full lipid bilayer at physiological salt concentration and pH. In contrast to previous experimental structures, our equilibrated SMO complex exhibits complete breaking of the pi-cation interaction between R4516.32 and W5357.55, a hallmark of Class F receptor activation. The Gi protein couples to SMO at seven strong anchor points similar to those in Class A GPCRs: intracellular loop 1, intracellular loop 2, transmembrane helix 6, and helix 8. On the path to full activation, we find that the extracellular cysteine-rich domain (CRD) undergoes a dramatic tilt, following a trajectory suggested by positions of the CRD in active and inactive experimental SMO structures. Strikingly, a sterol ligand bound to a shallow transmembrane domain (TMD) site in the initial structure migrates to a deep TMD pocket found exclusively in activator-bound SMO complexes. Thus, our results indicate that SMO interacts with Gi prior to full activation to break the molecular lock, form anchors with Gi subunits, tilt the CRD, and facilitate migration of a sterol ligand in the TMD to an activated position.
Collapse
Affiliation(s)
- Amy-Doan P. Vo
- Materials and Process Simulation Center, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Soo-Kyung Kim
- Materials and Process Simulation Center, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Moon Young Yang
- Materials and Process Simulation Center, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Alison E. Ondrus
- Department of Chemistry, University of Illinois Chicago, Chicago, IL60607
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL60607
| | - William A. Goddard
- Materials and Process Simulation Center, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
16
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
17
|
Li Y, Ming M, Li C, Liu S, Zhang D, Song T, Tan J, Zhang J. The emerging role of the hedgehog signaling pathway in immunity response and autoimmune diseases. Autoimmunity 2023; 56:2259127. [PMID: 37740690 DOI: 10.1080/08916934.2023.2259127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
The Hedgehog (Hh) family is a prototypical morphogen involved in embryonic patterning, multi-lineage differentiation, self-renewal, morphogenesis, and regeneration. There are studies that have demonstrated that the Hh signaling pathway differentiates developing T cells into MHC-restricted self-antigen tolerant T cells in a concentration-dependent manner in the thymus. Whereas Hh signaling pathway is not required in the differentiation of B cells but is indispensable in maintaining the regeneration of hematopoietic stem cells (HSCs) and the viability of germinal centers (GCs) B cells. The Hh signaling pathway exerts both positive and negative effects on immune responses, which involves activating human peripheral CD4+ T cells, regulating the accumulation of natural killer T (NKT) cells, recruiting and activating macrophages, increasing CD4+Foxp3+ regulatory T cells in the inflammation sites to sustain homeostasis. Hedgehog signaling is involved in the patterning of the embryo, as well as homeostasis of adult tissues. Therefore, this review aims to highlight evidence for Hh signaling in the differentiation, function of immune cells and autoimmune disease. Targeting Hh signaling promises to be a novel, alternative or adjunct approach to treating tumors and autoimmune diseases.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Min Ming
- Department of Immunology, Zunyi Medical University, Zunyi, China
- People's Hospital of Qingbaijiang District, Chengdu, China
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Hoffmann F, Bolz S, Junger K, Klose F, Stehle IF, Ueffing M, Boldt K, Beyer T. Paralog-specific TTC30 regulation of Sonic hedgehog signaling. Front Mol Biosci 2023; 10:1268722. [PMID: 38074101 PMCID: PMC10701685 DOI: 10.3389/fmolb.2023.1268722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024] Open
Abstract
The intraflagellar transport (IFT) machinery is essential for cilia assembly, maintenance, and trans-localization of signaling proteins. The IFT machinery consists of two large multiprotein complexes, one of which is the IFT-B. TTC30A and TTC30B are integral components of this complex and were previously shown to have redundant functions in the context of IFT, preventing the disruption of IFT-B and, thus, having a severe ciliogenesis defect upon loss of one paralog. In this study, we re-analyzed the paralog-specific protein complexes and discovered a potential involvement of TTC30A or TTC30B in ciliary signaling. Specifically, we investigated a TTC30A-specific interaction with protein kinase A catalytic subunit α, a negative regulator of Sonic hedgehog (Shh) signaling. Defects in this ciliary signaling pathway are often correlated to synpolydactyly, which, intriguingly, is also linked to a rare TTC30 variant. For an in-depth analysis of this unique interaction and the influence on Shh, TTC30A or B single- and double-knockout hTERT-RPE1 were employed, as well as rescue cells harboring wildtype TTC30 or the corresponding mutation. We could show that mutant TTC30A inhibits the ciliary localization of Smoothened. This observed effect is independent of Patched1 but associated with a distinct phosphorylated PKA substrate accumulation upon treatment with forskolin. This rather prominent phenotype was attenuated in mutant TTC30B. Mass spectrometry analysis of wildtype versus mutated TTC30A or TTC30B uncovered differences in protein complex patterns and identified an impaired TTC30A-IFT57 interaction as the possible link leading to synpolydactyly. We could observe no impact on cilia assembly, leading to the hypothesis that a slight decrease in IFT-B binding can be compensated, but mild phenotypes, like synpolydactyly, can be induced by subtle signaling changes. Our systematic approach revealed the paralog-specific influence of TTC30A KO and mutated TTC30A on the activity of PRKACA and the uptake of Smoothened into the cilium, resulting in a downregulation of Shh. This downregulation, combined with interactome alterations, suggests a potential mechanism of how mutant TTC30A is linked to synpolydactyly.
Collapse
Affiliation(s)
- Felix Hoffmann
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | - Tina Beyer
- *Correspondence: Felix Hoffmann, ; Tina Beyer,
| |
Collapse
|
19
|
Girich A, Sadriev K, Frolova L, Dolmatov I. Role of smoothened and sfrp genes in Eupentacta fraudatrix regeneration. Wound Repair Regen 2023; 31:464-474. [PMID: 37210604 DOI: 10.1111/wrr.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 05/22/2023]
Abstract
The secreted frizzled-related proteins (sfrp) and smoothened (smo) genes and their possible role in the regeneration of internal organs in the holothurian Eupentacta fraudatrix were studied. In this species, two sfrp genes were identified: sfrp1/2/5, sfrp3/4 and one smo gene. Their expression was analysed during regeneration of the aquapharyngeal bulb (AB) and intestine, and these genes were knock down by RNA interference. It has been shown that the expression of these genes is extremely important for the formation of AB. In all animals subjected to knockdown, at 7 days after evisceration, a full-sized AB rudiment was not formed. As a result of sfrp1/2/5 knockdown, the process of extracellular matrix remodelling in AB is interrupted, that leading to clusters of dense connective tissue formation, which slows down cell migration. When sfrp3/4 is knockdown, the connective tissue of AB anlage is completely disrupted and its symmetry is broken. The effect of smo knockdown was expressed in a significant impairment of AB regeneration, when connections between ambulacras were not formed after evisceration. However, despite severe disturbances in AB regeneration, a normal-sized gut anlage developed in all cases, which suggests that the regeneration of the digestive tube and AB occur independently of each other.
Collapse
Affiliation(s)
- Alexander Girich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Konstantin Sadriev
- Institute of the World Ocean, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Lidia Frolova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
20
|
Liao H, Huang J, Liu J, Zhu H, Chen Y, Li X, Wen J, Yang Q. Sirt1 regulates microglial activation and inflammation following oxygen-glucose deprivation/reoxygenation injury by targeting the Shh/Gli-1 signaling pathway. Mol Biol Rep 2023; 50:3317-3327. [PMID: 36725745 PMCID: PMC10042964 DOI: 10.1007/s11033-022-08167-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/01/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cerebral ischemic injury leads to over-activation of microglia, which release pro-inflammatory factors that deteriorate neurological function during the acute phase of stroke. Thus, inhibiting microglial over-activation is crucial for reducing ischemic injury. Sirtuin 1 (Sirt1) has been shown to play a critical role in stroke, neurodegenerative diseases and aging. However, the effect of Sirt1 on the regulation of microglial activation following cerebral ischemic injury, as well as the underlying mechanism, remain unknown. Therefore, the purpose of the present study is to mainly investigate the effect of Sirt1 on oxygen-glucose deprivation/reoxygenation (OGD/R)-treated N9 microglia following treatment with the Sirt1 agonists resveratrol and SRT1720 and the Sirt1 antagonist sirtinol. METHODS Cell viability, Apoptosis, activation and inflammatory responses of microglia, expressions and activity of Shh signaling pathway proteins were detected by Cell Counting Kit 8, Flow Cytometry, immunocytochemistry, ELISA, and Western blotting, respectively. RESULTS The results demonstrated that treatment with resveratrol or SRT1720 could inhibit the activation of microglia and inflammation during OGD/R. Moreover, these treatments also led to the translocation of the GLI family zinc finger-1 (Gli-1) protein from the cytoplasm to the nucleus and upregulated the expression of Sonic hedgehog (Shh), Patched homolog-1 (Ptc-1), smoothened frizzled class receptor and Gli-1. By contrast, the inhibition of Sirt1 using sirtinol had the opposite effect. CONCLUSION These findings suggested that Sirt1 may regulate microglial activation and inflammation by targeting the Shh/Gli-1 signaling pathway following OGD/R injury. Schematic representation of Sirt1 regulating the microglial activation and inflammation following oxygen-glucose deprivation/reoxygenation injury via mediation of Shh/Gli-1 signaling pathway.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiagui Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jie Liu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Huimin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
21
|
Wang F, Stappenbeck F, Parhami F. Oxy210, a Semi-Synthetic Oxysterol, Inhibits Profibrotic Signaling in Cellular Models of Lung and Kidney Fibrosis. Pharmaceuticals (Basel) 2023; 16:114. [PMID: 36678611 PMCID: PMC9862207 DOI: 10.3390/ph16010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Oxy210, a semi-synthetic oxysterol derivative, displays cell-selective inhibition of Hedgehog (Hh) and transforming growth factor beta (TGF-β) signaling in epithelial cells, fibroblasts, and macrophages as well as antifibrotic and anti-inflammatory efficacy in models of liver fibrosis. In the present report, we examine the effects of Oxy210 in cellular models of lung and kidney fibrosis, such as human lung fibroblast cell lines IMR-90, derived from healthy lung tissue, and LL97A, derived from an idiopathic pulmonary fibrosis (IPF) patient. In addition, we examine the effects of Oxy210 in primary human renal fibroblasts, pericytes, mesangial cells, and renal tubular epithelial cells, known for their involvement in chronic kidney disease (CKD) and kidney fibrosis. We demonstrate in fibroblasts that the expression of several profibrotic TGF-β target genes, including fibronectin (FN), collagen 1A1 (COL1A1), and connective tissue growth factor (CTGF) are inhibited by Oxy210, both at the basal level and following TGF-β stimulation in a statistically significant manner. The inhibition of COL1A1 gene expression translated directly to significantly reduced COL1A1 protein expression. In human primary small airway epithelial cells (HSAECs) and renal tubular epithelial cells, Oxy210 significantly inhibited TGF-β target gene expression associated with epithelial-mesenchymal transition (EMT). Oxy210 also inhibited the proliferation of fibroblasts, pericytes, and mesangial cells in a dose-dependent and statistically significant manner.
Collapse
Affiliation(s)
| | | | - Farhad Parhami
- MAX BioPharma, Inc., 2870 Colorado Avenue, Santa Monica, CA 90404, USA
| |
Collapse
|
22
|
El-Baz LM, Elaidy SM, Hafez HS, Shoukry NM. Vismodegib, a sonic hedgehog signalling blockade, ameliorates ovalbumin and ovalbumin/lipopolysaccharide-induced airway inflammation and asthma phenotypical models. Life Sci 2022; 310:121119. [DOI: 10.1016/j.lfs.2022.121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
23
|
A Potent Antagonist of Smoothened in Hedgehog Signaling for Epilepsy. Int J Mol Sci 2022; 23:ijms232314505. [PMID: 36498832 PMCID: PMC9739937 DOI: 10.3390/ijms232314505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy is one of the common encephalopathies caused by sudden abnormal discharges of neurons in the brain. About 30% of patients with epilepsy are insensitive and refractory to existing antiseizure medications. The sonic hedgehog signaling pathway is essential to the development and homeostasis of brain. Aberrant sonic hedgehog signaling is increased in refractory epileptic lesions and may involve the etiology of epilepsy. Thus, new inhibitors of Smoothened, a key signal transducer of this signaling pathway are urgently need for refractory epilepsy. We have established a high-throughput screening platform and discovered several active small molecules targeting Smoothened including TT22. Here we show that the novel Smoothened inhibitor TT22 could block the translocation of βarrestin2-GFP to Smoothened, reduce the accumulation of Smoothened on primary cilia, displace Bodipy-cyclopamine binding to Smoothened, and inhibit the expression of downstream Gli transcription factor. Moreover, TT22 inhibits the abnormal seizure-like activity in neurons. Furthermore, we demonstrated that FDA-approved Smoothened inhibitor GDC-0449 and LDE-225 are able to inhibit abnormal seizure-like activity in neurons. Thus, our study suggests that targeting the sonic hedgehog signaling with new small-molecule Smoothened inhibitors might provide a potential new therapeutic avenue for refractory epilepsy.
Collapse
|
24
|
Caña-Bozada V, Morales-Serna FN, Fajer-Ávila EJ, Llera-Herrera R. De novo transcriptome assembly and identification of G-Protein-Coupled-Receptors (GPCRs) in two species of monogenean parasites of fish. Parasite 2022; 29:51. [PMID: 36350193 PMCID: PMC9645230 DOI: 10.1051/parasite/2022052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Genomic resources for Platyhelminthes of the class Monogenea are scarce, despite the diversity of these parasites, some species of which are highly pathogenic to their fish hosts. This work aimed to generate de novo-assembled transcriptomes of two monogenean species, Scutogyrus longicornis (Dactylogyridae) and Rhabdosynochus viridisi (Diplectanidae), providing a protocol for cDNA library preparation with low input samples used in single cell transcriptomics. This allowed us to work with sub-microgram amounts of total RNA with success. These transcriptomes consist of 25,696 and 47,187 putative proteins, respectively, which were further annotated according to the Swiss-Prot, Pfam, GO, KEGG, and COG databases. The completeness values of these transcriptomes evaluated with BUSCO against Metazoa databases were 54.1% and 73%, respectively, which is in the range of other monogenean species. Among the annotations, a large number of terms related to G-protein-coupled receptors (GPCRs) were found. We identified 109 GPCR-like sequences in R. viridisi, and 102 in S. longicornis, including family members specific for Platyhelminthes. Rhodopsin was the largest family according to GRAFS classification. Two putative melatonin receptors found in S. longicornis represent the first record of this group of proteins in parasitic Platyhelminthes. Forty GPCRs of R. viridisi and 32 of S. longicornis that were absent in Vertebrata might be potential drug targets. The present study provides the first publicly available transcriptomes for monogeneans of the subclass Monopisthocotylea, which can serve as useful genomic datasets for functional genomic research of this important group of parasites.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - F. Neptalí Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| |
Collapse
|
25
|
Hedgehog Signaling as a Therapeutic Target for Airway Remodeling and Inflammation in Allergic Asthma. Cells 2022; 11:cells11193016. [PMID: 36230980 PMCID: PMC9562640 DOI: 10.3390/cells11193016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Genome-wide association studies (GWAS) have shown that variants of patched homolog 1 (PTCH1) are associated with lung function abnormalities in the general population. It has also been shown that sonic hedgehog (SHH), an important ligand for PTCH1, is upregulated in the airway epithelium of patients with asthma and is suggested to be involved in airway remodeling. The contribution of hedgehog signaling to airway remodeling and inflammation in asthma is poorly described. To determine the biological role of hedgehog signaling-associated genes in asthma, gene silencing, over-expression, and pharmacologic inhibition studies were conducted after stimulating human airway epithelial cells or not with transforming growth factor β1 (TGFβ1), an important fibrotic mediator in asthmatic airway remodeling that also interacts with SHH pathway. TGFβ1 increased hedgehog-signaling-related gene expression including SHH, GLI1 and GLI2. Knockdown of PTCH1 or SMO with siRNA, or use of hedgehog signaling inhibitors, consistently attenuated COL1A1 expression induced by TGFβ1 stimulation. In contrast, Ptch1 over-expression augmented TGFβ1-induced an increase in COL1A1 and MMP2 gene expression. We also showed an increase in hedgehog-signaling-related gene expression in primary airway epithelial cells from controls and asthmatics at different stages of cellular differentiation. GANT61, an inhibitor of GLI1/2, attenuated TGFβ1-induced increase in COL1A1 protein expression in primary airway epithelial cells differentiated in air–liquid interface. Finally, to model airway tissue remodeling in vivo, C57BL/6 wildtype (WT) and Ptch1+/− mice were intranasally challenged with house dust mite (HDM) or phosphate-buffered saline (PBS) control. Ptch1+/− mice showed reduced sub-epithelial collagen expression and serum inflammatory proteins compared to WT mice in response to HDM challenge. In conclusion, TGFβ1-induced airway remodeling is partially mediated through the hedgehog signaling pathway via the PTCH1-SMO-GLI axis. The Hedgehog signaling pathway is a promising new potential therapeutic target to alleviate airway tissue remodeling in patients with allergic airways disease.
Collapse
|
26
|
Kumari S, Mitra A, Bulusu G. Structural dynamics of Smoothened (SMO) in the ciliary membrane and its interaction with membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183946. [PMID: 35483421 DOI: 10.1016/j.bbamem.2022.183946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The Smoothened receptor (SMO, a 7 pass transmembrane domain, Class F GPCR family protein) plays a crucial role in the Hedgehog (HH) signaling pathway, which is involved in embryonic development and is implicated in various types of cancer throughout the animal kingdom. In the absence of HH signaling, SMO is inhibited by Patched 1 (PTC1; a 12 pass transmembrane domain protein), which is localized in the primary cilia. HH binding leads to the dislocation of PTC1 from the cilia, thus making way for SMO to localize in the primary cilia, as an essential prerequisite for its activation. We have carried out MARTINI coarse-grained molecular dynamics simulations of SMO in POPC and in ciliary membrane models, respectively, to study the interactions of SMO with cholesterol and other lipid molecules in the ciliary membrane, and to gain molecular-level insights into the role of the primary cilia in shaping the functional dynamics of SMO. We are able to identify the interaction of membrane cholesterols with definite sites and domains within SMO and relate them with known cholesterol-binding sequence and structure motifs. We show that cholesterol interactions with the transmembrane domain TMD, unlike those with the cysteine-rich domain (CRD) and the intracellular domain (ICD), are through residues belonging to known cholesterol-binding motifs. Notably, a few persistent interactions of cholesterol with lower TM cholesterol-binding domains are governed by the presence of multiple cholesterol-binding motifs. These analyses have also helped to identify and define a strict cholesterol consensus motif (CCM), which may well steer cholesterol into the hitherto identified binding sites within the TMD of SMO. We have also reported the interaction of phosphatidylinositol 4-phosphate with the intracellular region of transmembrane (TM) helices (TM1, TM3, TM4, and TM5), intracellular loop1, helix8, and Arg/Lys clusters of the ICD. Structural analysis of SMO domains shows significant changes in the CRD and ICD, during the course of the simulation. Further detailed analysis of the dynamics of the TMD reveals the movements of TM5, TM6, and TM7, linked with the helix8, which are possibly involved in shaping the conformational disposition of the ICD. The movement of these TM helices could possibly be a consequence of interactions involving the extracellular domain and extracellular loops. In addition, our analysis also shows that phosphatidylinositol-4-phosphate (PI4P), along with some ICD cholesterols, are implicated in anchoring SMO in the membrane.
Collapse
Affiliation(s)
- Shweta Kumari
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - Gopalakrishnan Bulusu
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India; Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500 046, India.
| |
Collapse
|
27
|
Kurnia Wijaya J, Djawad K, Wahab S, Nurdin A, Irawan Anwar A. [Translated article] Vismodegib and Sonidegib in Locally Advanced and Metastatic Basal Cell Carcinoma: Update on Hedgehog Pathway Inhibitors. ACTAS DERMO-SIFILIOGRAFICAS 2022. [DOI: 10.1016/j.ad.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Vismodegib y sonidegib en el carcinoma de células basales localmente avanzado y metastásico: actualización acerca de los inhibidores de la vía de Hedgehog. ACTAS DERMO-SIFILIOGRAFICAS 2022; 113:443-450. [DOI: 10.1016/j.ad.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022] Open
|
29
|
Garg C, khan H, Kaur A, Singh TG, Sharma VK, Singh SK. Therapeutic Implications of Sonic Hedgehog Pathway in Metabolic Disorders: Novel Target for Effective Treatment. Pharmacol Res 2022; 179:106194. [DOI: 10.1016/j.phrs.2022.106194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
|
30
|
Del Giovane A, Russo M, Tirou L, Faure H, Ruat M, Balestri S, Sposato C, Basoli F, Rainer A, Kassoussi A, Traiffort E, Ragnini-Wilson A. Smoothened/AMP-Activated Protein Kinase Signaling in Oligodendroglial Cell Maturation. Front Cell Neurosci 2022; 15:801704. [PMID: 35082605 PMCID: PMC8784884 DOI: 10.3389/fncel.2021.801704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
The regeneration of myelin is known to restore axonal conduction velocity after a demyelinating event. Remyelination failure in the central nervous system contributes to the severity and progression of demyelinating diseases such as multiple sclerosis. Remyelination is controlled by many signaling pathways, such as the Sonic hedgehog (Shh) pathway, as shown by the canonical activation of its key effector Smoothened (Smo), which increases the proliferation of oligodendrocyte precursor cells via the upregulation of the transcription factor Gli1. On the other hand, the inhibition of Gli1 was also found to promote the recruitment of a subset of adult neural stem cells and their subsequent differentiation into oligodendrocytes. Since Smo is also able to transduce Shh signals via various non-canonical pathways such as the blockade of Gli1, we addressed the potential of non-canonical Smo signaling to contribute to oligodendroglial cell maturation in myelinating cells using the non-canonical Smo agonist GSA-10, which downregulates Gli1. Using the Oli-neuM cell line, we show that GSA-10 promotes Gli2 upregulation, MBP and MAL/OPALIN expression via Smo/AMP-activated Protein Kinase (AMPK) signaling, and efficiently increases the number of axonal contact/ensheathment for each oligodendroglial cell. Moreover, GSA-10 promotes the recruitment and differentiation of oligodendroglial progenitors into the demyelinated corpus callosum in vivo. Altogether, our data indicate that non-canonical signaling involving Smo/AMPK modulation and Gli1 downregulation promotes oligodendroglia maturation until axon engagement. Thus, GSA-10, by activation of this signaling pathway, represents a novel potential remyelinating agent.
Collapse
Affiliation(s)
- Alice Del Giovane
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Mariagiovanna Russo
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| | - Linda Tirou
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| | - Hélène Faure
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| | - Martial Ruat
- CNRS, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Saclay, France
| | - Sonia Balestri
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Carola Sposato
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Basoli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy
| | | | - Elisabeth Traiffort
- INSERM, U1195, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- *Correspondence: Elisabeth Traiffort,
| | | |
Collapse
|
31
|
The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. Int J Mol Sci 2021; 23:ijms23010171. [PMID: 35008597 PMCID: PMC8745434 DOI: 10.3390/ijms23010171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (Hh) pathway is a sophisticated conserved cell signaling pathway that plays an essential role in controlling cell specification and proliferation, survival factors, and tissue patterning formation during embryonic development. Hh signal activity does not entirely disappear after development and may be reactivated in adulthood within tissue-injury-associated diseases, including idiopathic pulmonary fibrosis (IPF). The dysregulation of Hh-associated activating transcription factors, genomic abnormalities, and microenvironments is a co-factor that induces the initiation and progression of IPF.
Collapse
|
32
|
Liu Y, Zhou F, Ding K, Xue D, Zhu Z, Li C, Li F, Xu Y, Xu F, Le Z, Zhao S, Tao H. Structure-Activity Relationship Studies of Hydantoin-Cored Ligands for Smoothened Receptor. ChemistryOpen 2021; 10:1028-1032. [PMID: 34648230 PMCID: PMC8515922 DOI: 10.1002/open.202100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
An underside binding site was recently identified in the transmembrane domain of smoothened receptor (SMO). Herein, we report efforts in the exploration of new insights into the interactions between the ligand and SMO. The hydantoin core in the middle of the parent compound was found to be highly conservative in chirality, ring size, and substituents. On each benzene at two ends, a plethora of variations, particularly halogen substitutions, were introduced and investigated. Analysis of the structure-activity relationship revealed miscellaneous halogen effects. The ligands with double halogen substituents exhibit remarkably enhanced potency, providing promising candidates that potentially overcome the common drug resistance and useful heavy-atom labeled chemical tools for co-crystallization studies of SMO.
Collapse
Affiliation(s)
- Yang Liu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fang Zhou
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Kang Ding
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Dongxiang Xue
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Zhihao Zhu
- Department of ChemistryNanchang University999 Xuefu AvenueNanchang330031China
| | - Cuixia Li
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fei Li
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Yueming Xu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fei Xu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Zhiping Le
- Department of ChemistryNanchang University999 Xuefu AvenueNanchang330031China
| | - Suwen Zhao
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Houchao Tao
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| |
Collapse
|
33
|
Malave L, Zuelke DR, Uribe-Cano S, Starikov L, Rebholz H, Friedman E, Qin C, Li Q, Bezard E, Kottmann AH. Dopaminergic co-transmission with sonic hedgehog inhibits abnormal involuntary movements in models of Parkinson's disease and L-Dopa induced dyskinesia. Commun Biol 2021; 4:1071. [PMID: 34552196 PMCID: PMC8458306 DOI: 10.1038/s42003-021-02567-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
L-Dopa induced dyskinesia (LID) is a debilitating side effect of dopamine replacement therapy for Parkinson’s Disease. The mechanistic underpinnings of LID remain obscure. Here we report that diminished sonic hedgehog (Shh) signaling in the basal ganglia caused by the degeneration of midbrain dopamine neurons facilitates the formation and expression of LID. We find that the pharmacological activation of Smoothened, a downstream effector of Shh, attenuates LID in the neurotoxic 6-OHDA- and genetic aphakia mouse models of Parkinson’s Disease. Employing conditional genetic loss-of-function approaches, we show that reducing Shh secretion from dopamine neurons or Smoothened activity in cholinergic interneurons promotes LID. Conversely, the selective expression of constitutively active Smoothened in cholinergic interneurons is sufficient to render the sensitized aphakia model of Parkinson’s Disease resistant to LID. Furthermore, acute depletion of Shh from dopamine neurons through prolonged optogenetic stimulation in otherwise intact mice and in the absence of L-Dopa produces LID-like involuntary movements. These findings indicate that augmenting Shh signaling in the L-Dopa treated brain may be a promising therapeutic approach for mitigating the dyskinetic side effects of long-term treatment with L-Dopa. Lauren Malave et al. examine the impact of sonic hedgehog signaling in the dorsal striatum in L-Dopa induced dyskinesia (LID) animal models. Their results suggest that increasing sonic hedgehog signaling can reduce the severity of LID and abnormal involuntary movements, suggesting future therapeutic approaches to mitigate dyskinetic comorbidities of long-term treatment with L-Dopa.
Collapse
Affiliation(s)
- Lauren Malave
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Dustin R Zuelke
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Santiago Uribe-Cano
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA
| | - Lev Starikov
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.,Blue Rock Therapeutics, Inc, New York, NY, USA
| | - Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,GHU Psychiatrie et Neurosciences, Paris, France.,Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Universite de Paris, Paris, France.,Center of Neurodegeneration, Danube Private University, Krems, Austria
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qin Li
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK
| | - Erwan Bezard
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK.,Universite de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Andreas H Kottmann
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA. .,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA. .,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.
| |
Collapse
|
34
|
Trivedi P, Patel SK, Bellavia D, Messina E, Palermo R, Ceccarelli S, Marchese C, Anastasiadou E, Minter LM, Felli MP. When Viruses Cross Developmental Pathways. Front Cell Dev Biol 2021; 9:691644. [PMID: 34422814 PMCID: PMC8375270 DOI: 10.3389/fcell.2021.691644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
35
|
Babagana M, Oh KS, Chakraborty S, Pacholewska A, Aqdas M, Sung MH. Hedgehog dysregulation contributes to tissue-specific inflammaging of resident macrophages. Aging (Albany NY) 2021; 13:19207-19229. [PMID: 34390567 PMCID: PMC8386529 DOI: 10.18632/aging.203422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Age-associated low-grade sterile inflammation, commonly referred to as inflammaging, is a recognized hallmark of aging, which contributes to many age-related diseases. While tissue-resident macrophages are innate immune cells that secrete many types of inflammatory cytokines in response to various stimuli, it is not clear whether they have a role in driving inflammaging. Here we characterized the transcriptional changes associated with physiological aging in mouse resident macrophage populations across different tissues and sexes. Although the age-related transcriptomic signatures of resident macrophages were strikingly tissue-specific, the differentially expressed genes were collectively enriched for those with important innate immune functions such as antigen presentation, cytokine production, and cell adhesion. The brain-resident microglia had the most wide-ranging age-related alterations, with compromised expression of tissue-specific genes and relatively exaggerated responses to endotoxin stimulation. Despite the tissue-specific patterns of aging transcriptomes, components of the hedgehog (Hh) signaling pathway were decreased in aged macrophages across multiple tissues. In vivo suppression of Hh signaling in young animals increased the expression of pro-inflammatory cytokines, while in vitro activation of Hh signaling in old macrophages, in turn, suppressed the expression of these inflammatory cytokines. This suggests that hedgehog signaling could be a potential intervention axis for mitigating age-associated inflammation and related diseases. Overall, our data represent a resourceful catalog of tissue-specific and sex-specific transcriptomic changes in resident macrophages of peritoneum, liver, and brain, during physiological aging.
Collapse
Affiliation(s)
- Mahamat Babagana
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyu-Seon Oh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sayantan Chakraborty
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alicja Pacholewska
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Present Address: Institute for Translational Epigenetics, University Hospital Cologne, Cologne, Germany
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
36
|
Umberger PA, Ogden SK. SPOP and CUL3 Modulate the Sonic Hedgehog Signal Response Through Controlled Degradation of GLI Family Transcription Factors. Front Cell Dev Biol 2021; 9:710295. [PMID: 34395437 PMCID: PMC8362800 DOI: 10.3389/fcell.2021.710295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
The speckle-type POZ protein (SPOP) functions as a guardian of genome integrity and controls transcriptional regulation by functioning as a substrate adaptor for CUL3/RING-type E3 ubiquitin ligase complexes. SPOP-containing CUL3 complexes target a myriad of DNA-binding proteins involved in DNA repair and gene expression, and as such, are essential modulators of cellular homeostasis. GLI transcription factors are effectors of the Hedgehog (HH) pathway, a key driver of tissue morphogenesis and post-developmental homeostasis that is commonly corrupted in cancer. CUL3-SPOP activity regulates amplitude and duration of HH transcriptional responses by controlling stability of GLI family members. SPOP and GLI co-enrich in phase separated nuclear droplets that are thought to serve as hot spots for CUL3-mediated GLI ubiquitination and degradation. A similar framework exists in Drosophila, in which the Hedgehog-induced MATH (meprin and traf homology) and BTB (bric à brac, tramtrack, broad complex) domain containing protein (HIB) targets the GLI ortholog Cubitus interruptus (Ci) for Cul3-directed proteolysis. Despite this functional conservation, the molecular mechanisms by which HIB and SPOP contribute to Drosophila and vertebrate HH signaling differ. In this mini-review we highlight similarities between the two systems and discuss evolutionary divergence in GLI/Ci targeting that informs our understanding of how the GLI transcriptional code is controlled by SPOP and CUL3 in health and disease.
Collapse
Affiliation(s)
- Patricia A. Umberger
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
37
|
G-protein-coupled receptors as therapeutic targets for glioblastoma. Drug Discov Today 2021; 26:2858-2870. [PMID: 34271165 DOI: 10.1016/j.drudis.2021.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumour in adults. Treatments include surgical resection, radiotherapy, and chemotherapy. Despite this, the prognosis remains poor, with an impacted quality of life during treatment coupled with brain tumour recurrence; thus, new treatments are desperately needed. In this review, we focus on recent advances in G-protein-coupled receptor (GPCR) targets. To date, the most promising targets are the chemokine, cannabinoid, and dopamine receptors, but future work should further examine the melanocortin receptor-4 (MC4R), adhesion, lysophosphatidic acid (LPA) and smoothened (Smo) receptors to initiate new drug-screening strategies and targeted delivery of safe and effective GBM therapies.
Collapse
|
38
|
Levis NA, Kelly PW, Harmon EA, Ehrenreich IM, McKay DJ, Pfennig DW. Transcriptomic bases of a polyphenism. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:482-495. [PMID: 34142757 DOI: 10.1002/jez.b.23066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/22/2021] [Accepted: 05/22/2021] [Indexed: 11/06/2022]
Abstract
Polyphenism-in which multiple distinct phenotypes are produced from a single genotype owing to differing environmental conditions-is commonplace, but its molecular bases are poorly understood. Here, we examine the transcriptomic bases of a polyphenism in Mexican spadefoot toads (Spea multiplicata). Depending on their environment, their tadpoles develop into either a default "omnivore" morph or a novel "carnivore" morph. We compared patterns of gene expression among sibships that exhibited high versus low production of carnivores when reared in conditions that induce the carnivore morph versus those that do not. We found that production of the novel carnivore morph actually involved changes in fewer genes than did the maintenance of the default omnivore morph in the inducing environment. However, only body samples showed this pattern; head samples showed the opposite pattern. We also found that changes to lipid metabolism (especially cholesterol biosynthesis) and peroxisome contents and function might be crucial for establishing and maintaining differences between the morphs. Thus, our findings suggest that carnivore phenotype might have originally evolved following the breakdown of robustness mechanisms that maintain the default omnivore phenotype, and that the carnivore morph is developmentally regulated by lipid metabolism and peroxisomal form, function, and/or signaling. This study also serves as a springboard for further exploration into the nature and causes of plasticity in an emerging model system.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA.,Current affiliation: Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Patrick W Kelly
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily A Harmon
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, University of Southern, Los Angeles, California, USA
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Wang L, Li H, Li Z, Li M, Tang Q, Wu C, Lu Z. Smoothened loss is a characteristic of neuroendocrine prostate cancer. Prostate 2021; 81:508-520. [PMID: 33955576 PMCID: PMC8251989 DOI: 10.1002/pros.24122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Hedgehog (Hh) signaling promotes castration-resistant prostate cancer by supporting androgen-independent prostate cancer cell development and growth; however, its role in neuroendocrine prostate cancer (NEPC) has not yet been explored. In this study, we assessed the expression of key genes involved in Hh signaling in prostate cancer and investigated the potential role of smoothened (SMO) in the pathogenesis of NEPC. METHODS Six public datasets, each containing cases of prostate adenocarcinoma (AdPC) and NEPC, were analyzed to compare the differential messenger RNA (mRNA) expression of six classic Hh signaling genes. The SMO, synaptophysin, chromogranin A (CHGA) and androgen receptor (AR) proteins were evaluated in human tissues from 5 cases of NEPC, 2 cases of AdPC mixed with NEPC, 2 cases of AdPC with neuroendocrine differentiation and 22 cases of high-grade AdPC as determined by an immunohistochemistry assay. Gene set enrichment analysis (GSEA) was performed to identify relevant genetic signatures associated with SMO expression based on the public datasets. Stable SMO-knockdown LNCaP and C4-2B cells were established with a lentiviral system, and the expression of SMO, Gli1, AR, prostate-specific antigen (PSA), and REST was assessed by real-time polymerase chain reaction and western blot. Secreted PSA in the conditioned medium was assessed by ELISA. Gli1 was ectopically expressed performed by the transfection of Gli1 complementary DNA into SMO-knockdown LNCaP cells, and western blot was used to assess of AR and PSA expression. RESULTS The mRNA level of SMO was dramatically downregulated in NEPC samples compared with AdPC samples in all 6 public datasets. SMO protein loss was observed in 100% of NEPC samples but in only 9% (2 of 22) of high-grade AdPC samples. GSEA results showed that SMO loss was closely correlated with AR signaling activity. Stable SMO knockdown significantly attenuated AR signaling activity and suppressed AR expression, while Gli1 overexpression partially reversed the inhibitory effects of SMO knockdown on AR signaling activity and AR expression in LNCaP and C4-2B cells. CONCLUSION These results demonstrate that SMO loss is a characteristic of NEPC and that detecting SMO by IHC could aid pathologists in NEPC diagnosis. SMO loss may promote NEPC pathogenesis by modulating AR signaling.
Collapse
Affiliation(s)
- Lili Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haiying Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhang Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Qi Tang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Chunxiao Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
40
|
Fan J, Li H, Kuang L, Zhao Z, He W, Liu C, Wang Y, Cheng SY, Chen W. Identification of a potent antagonist of smoothened in hedgehog signaling. Cell Biosci 2021; 11:46. [PMID: 33653381 PMCID: PMC7923671 DOI: 10.1186/s13578-021-00558-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hedgehog signaling is essential to the regulation of embryonic development, tissue homeostasis, and stem cell self-renewal, making it a prime target for developing cancer therapeutics. Given the close link between aberrant Hedgehog signaling and cancers, many small molecular compounds have been developed to inhibit Smoothened, a key signal transducer of this pathway, for treating cancer and several such compounds have been approved by the United States Food and Drug Administration (GDC-0449 and LDE-225). However, acquired drug resistance has emerged as an important obstacle to the effective use of these first generation Hedgehog pathway blockers. Thus, new Smoothened inhibitors that can overcome such resistance is an urgent need going forward. Results We established the Smoothened/βarrestin2-GFP high-throughput screening platform based on the mechanistic discovery of Hedgehog signaling pathway, and discovered several active small molecules targeting Smoothened including 0025A. Here we show that 0025A can block the translocation of βarrestin2-GFP to Smoothened, displace Bodipy-cyclopamine binding to wild-type Smoothened or mutant Smoothened-D473H, reduce the accumulation of Smo on primary cilia and the expression of Gli upon Hedgehog stimulation. In addition, we show that 0025A can effectively suppress hair follicle morphogenesis and hair growth in mice. Conclusions Our results demonstrate that 0025A is a potent antagonist targeting Smoothened wild-type and mutant receptors in the Hedgehog signaling pathway and may provide a new therapy for refractory cancers.
Collapse
Affiliation(s)
- Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Haowen Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Lun Kuang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zichen Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Chen Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| | - Wei Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| |
Collapse
|
41
|
Hall ET, Dillard ME, Stewart DP, Zhang Y, Wagner B, Levine RM, Pruett-Miller SM, Sykes A, Temirov J, Cheney RE, Mori M, Robinson CG, Ogden SK. Cytoneme delivery of Sonic Hedgehog from ligand-producing cells requires Myosin 10 and a Dispatched-BOC/CDON co-receptor complex. eLife 2021; 10:61432. [PMID: 33570491 PMCID: PMC7968926 DOI: 10.7554/elife.61432] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Morphogens function in concentration-dependent manners to instruct cell fate during tissue patterning. The cytoneme morphogen transport model posits that specialized filopodia extend between morphogen-sending and responding cells to ensure that appropriate signaling thresholds are achieved. How morphogens are transported along and deployed from cytonemes, how quickly a cytoneme-delivered, receptor-dependent signal is initiated, and whether these processes are conserved across phyla are not known. Herein, we reveal that the actin motor Myosin 10 promotes vesicular transport of Sonic Hedgehog (SHH) morphogen in mouse cell cytonemes, and that SHH morphogen gradient organization is altered in neural tubes of Myo10-/- mice. We demonstrate that cytoneme-mediated deposition of SHH onto receiving cells induces a rapid, receptor-dependent signal response that occurs within seconds of ligand delivery. This activity is dependent upon a novel Dispatched (DISP)-BOC/CDON co-receptor complex that functions in ligand-producing cells to promote cytoneme occurrence and facilitate ligand delivery for signal activation.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Miriam E Dillard
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Daniel P Stewart
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Ben Wagner
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, United States
| | - Rachel M Levine
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, United States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, United States
| | - April Sykes
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, United States
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Richard E Cheney
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, United States
| | - Motomi Mori
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, United States
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, United States
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
42
|
Jin L, Huang H, Ni J, Shen J, Liu Z, Li L, Fu S, Yan J, Hu B. Shh-Yap signaling controls hepatic ductular reactions in CCl 4 -induced liver injury. ENVIRONMENTAL TOXICOLOGY 2021; 36:194-203. [PMID: 32996673 DOI: 10.1002/tox.23025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Carbon tetrachloride (CCl4 ) exposure can induce hepatic ductular reactions. To date, however, the related mechanism remains largely unknown. Sonic hedgehog (Shh) and Yes-associated protein (Yap) signaling are correlated with liver injury and regeneration. Herein, we investigated the role of Shh and Yap signaling in the fate of ductular reaction cells in CCl4 -treated livers and the possible mechanisms. Wild-type and Shh-EGFP-Cre male mice were exposed to CCl4 (2 mL/kg), and then treated with or without the Shh signaling inhibitor Gant61. The level of liver injury, proliferation of ductular reaction cells, and expression levels of mRNA and protein related to the Shh and Yap signaling components were assessed. Results showed that CCl4 treatment induced liver injury and promoted activation and proliferation of ductular reaction cells. In addition, CCl4 induced the expression of Shh ligands in hepatocytes, accompanied by activation of Shh and Yap1 signaling in the liver. Furthermore, administration of Gant61 ameliorated liver regeneration, inhibited hepatic ductular reactions, and decreased Shh and Yap1 signaling activity. Thus, Shh-Yap1 signaling appears to play an integral role in the proliferation of ductular reaction cells in CCl4 -induced liver injury. This study should improve our understanding of the mechanism of CCl4 -induced liver injury and ductular reactions and provide support for future investigations on liver disease therapy.
Collapse
Affiliation(s)
- Lifang Jin
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Huarong Huang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Jian Ni
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiayuan Shen
- Department of pathology, affiliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Zuping Liu
- Department of pathology, affiliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Lijing Li
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shengmin Fu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Junyan Yan
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
43
|
Qi X, Friedberg L, De Bose-Boyd R, Long T, Li X. Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling. Nat Chem Biol 2020; 16:1368-1375. [PMID: 32929279 PMCID: PMC7669734 DOI: 10.1038/s41589-020-0646-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Smoothened (SMO), a class Frizzled G protein-coupled receptor (class F GPCR), transduces the Hedgehog signal across the cell membrane. Sterols can bind to its extracellular cysteine-rich domain (CRD) and to several sites in the seven transmembrane helices (7-TMs) of SMO. However, the mechanism by which sterols regulate SMO via multiple sites is unknown. Here we determined the structures of SMO-Gi complexes bound to the synthetic SMO agonist (SAG) and to 24(S),25-epoxycholesterol (24(S),25-EC). A novel sterol-binding site in the extracellular extension of TM6 was revealed to connect other sites in 7-TMs and CRD, forming an intramolecular sterol channel from the middle side of 7-TMs to CRD. Additional structures of two gain-of-function variants, SMOD384R and SMOG111C/I496C, showed that blocking the channel at its midpoints allows sterols to occupy the binding sites in 7-TMs, thereby activating SMO. These data indicate that sterol transport through the core of SMO is a major regulator of SMO-mediated signaling.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lucas Friedberg
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan De Bose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tao Long
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
44
|
The Role of Smoothened in Cancer. Int J Mol Sci 2020; 21:ijms21186863. [PMID: 32962123 PMCID: PMC7555769 DOI: 10.3390/ijms21186863] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Smoothened (SMO) belongs to the Hedgehog (HH) signaling pathway, which regulates cell growth, migration, invasion and stem cells in cancer. The HH signaling pathway includes both canonical and noncanonical pathways. The canonical HH pathway functions through major HH molecules such as HH ligands, PTCH, SMO and GLI, whereas the noncanonical HH pathway involves the activation of SMO or GLI through other pathways. The role of SMO has been discussed in different types of cancer, including breast, liver, pancreatic and colon cancers. SMO expression correlates with tumor size, invasiveness, metastasis and recurrence. In addition, SMO inhibitors can suppress cancer formation, reduce the proliferation of cancer cells, trigger apoptosis and suppress cancer stem cell activity. A better understanding of the role of SMO in cancer could contribute to the development of novel therapeutic approaches.
Collapse
|
45
|
Nagai-Tanima M, Hong S, Hu P, Carrington B, Sood R, Roessler E, Muenke M. Rare hypomorphic human variation in the heptahelical domain of SMO contributes to holoprosencephaly phenotypes. Hum Mutat 2020; 41:2105-2118. [PMID: 32906187 DOI: 10.1002/humu.24103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Holoprosencephaly (HPE) is the most common congenital anomaly affecting the forebrain and face in humans and occurs as frequently as 1:250 conceptions or 1:10,000 livebirths. Sonic Hedgehog signaling molecule is one of the best characterized HPE genes that plays crucial roles in numerous developmental processes including midline neural patterning and craniofacial development. The Frizzled class G-protein coupled receptor Smoothened (SMO), whose signaling activity is tightly regulated, is the sole obligate transducer of Hedgehog-related signals. However, except for previous reports of somatic oncogenic driver mutations in human cancers (or mosaic tumors in rare syndromes), any potential disease-related role of SMO genetic variation in humans is largely unknown. To our knowledge, ours is the first report of a human hypomorphic variant revealed by functional testing of seven distinct nonsynonymous SMO variants derived from HPE molecular and clinical data. Here we describe several zebrafish bioassays developed and guided by a systems biology analysis. This analysis strategy, and detection of hypomorphic variation in human SMO, demonstrates the necessity of integrating the genomic variant findings in HPE probands with other components of the Hedgehog gene regulatory network in overall medical interpretations.
Collapse
Affiliation(s)
- Momoko Nagai-Tanima
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Blake Carrington
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Qi X, Li X. Mechanistic Insights into the Generation and Transduction of Hedgehog Signaling. Trends Biochem Sci 2020; 45:397-410. [PMID: 32311334 PMCID: PMC7174405 DOI: 10.1016/j.tibs.2020.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
Cell differentiation and proliferation require Hedgehog (HH) signaling and aberrant HH signaling causes birth defects or cancers. In this signaling pathway, the N-terminally palmitoylated and C-terminally cholesterylated HH ligand is secreted into the extracellular space with help of the Dispatched-1 (DISP1) and Scube2 proteins. The Patched-1 (PTCH1) protein releases its inhibition of the oncoprotein Smoothened (SMO) after binding the HH ligand, triggering downstream signaling events. In this review, we discuss the recent structural and biochemical studies on four major components of the HH pathway: the HH ligand, DISP1, PTCH1, and SMO. This research provides mechanistic insights into how HH signaling is generated and transduced from the cell surface into the intercellular space and will aid in facilitating the treatment of HH-related diseases.
Collapse
Affiliation(s)
- Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Kozielewicz P, Turku A, Schulte G. Molecular Pharmacology of Class F Receptor Activation. Mol Pharmacol 2020; 97:62-71. [PMID: 31591260 DOI: 10.1124/mol.119.117986] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
The class Frizzled (FZD) or class F of G protein-coupled receptors consists of 10 FZD paralogues and Smoothened (SMO). FZDs coordinate wingless/Int-1 signaling and SMO mediates Hedgehog signaling. Class F receptor signaling is intrinsically important for embryonic development and its dysregulation leads to diseases, including diverse forms of tumors. With regard to the importance of class F signaling in human disease, these receptors provide an attractive target for therapeutics, exemplified by the use of SMO antagonists for the treatment of basal cell carcinoma. Here, we review recent structural insights in combination with a more detailed functional understanding of class F receptor activation, G protein coupling, conformation-based functional selectivity, and mechanistic details of activating cancer mutations, which will lay the basis for further development of class F-targeting small molecules for human therapy. SIGNIFICANCE STATEMENT: Stimulated by recent insights into the activation mechanisms of class F receptors from structural and functional analysis of Frizzled and Smoothened, we aim to summarize what we know about the molecular details of ligand binding, agonist-driven conformational changes, and class F receptor activation. A better understanding of receptor activation mechanisms will allow us to engage in structure- and mechanism-driven drug discovery with the potential to develop more isoform-selective and potentially pathway-selective drugs for human therapy.
Collapse
Affiliation(s)
- Pawel Kozielewicz
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ainoleena Turku
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Schulte
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Secreted tyrosine kinase Vlk negatively regulates Hedgehog signaling by inducing lysosomal degradation of Smoothened. Biochem J 2020; 477:121-136. [PMID: 31845979 DOI: 10.1042/bcj20190784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Vlk is a secreted tyrosine kinase that plays crucial roles during vertebrate embryonic development including skeletal formation. Genetic studies suggest that Vlk can modulate the Hedgehog signaling pathway during skeletal development. Despite its potential roles as an extracellular regulator of signaling pathways, little is known regarding the molecular functions of Vlk. Here we show that Vlk can negatively regulate the Hedgehog signaling pathway. We found that Vlk can induce lysosomal degradation of Smoothened, a crucial transmembrane signal transducer of the Hedgehog pathway, through the interaction with the extracellular domain of Smoothened (Smo-ECD). In addition, we observed that Vlk can attenuate Hedgehog signaling-induced ciliary localization of Smoothened. Furthermore, Vlk-mediated suppression of Hedgehog signaling can be diminished by tyrosine-to-phenylalanine substitutions in Smo-ECD. Taken together, these results suggest that Vlk may function as a signaling regulator in extracellular space to modulate the Hedgehog pathway.
Collapse
|
49
|
SMO-M2 mutation does not support cell-autonomous Hedgehog activity in cerebellar granule cell precursors. Sci Rep 2019; 9:19623. [PMID: 31873117 PMCID: PMC6928071 DOI: 10.1038/s41598-019-56057-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
Growth and patterning of the cerebellum is compromised if granule cell precursors do not properly expand and migrate. During embryonic and postnatal cerebellar development, the Hedgehog pathway tightly regulates granule cell progenitors to coordinate appropriate foliation and lobule formation. Indeed, granule cells impairment or defects in the Hedgehog signaling are associated with developmental, neurodegenerative and neoplastic disorders. So far, scant and inefficient cellular models have been available to study granule cell progenitors, in vitro. Here, we validated a new culture method to grow postnatal granule cell progenitors as hedgehog-dependent neurospheres with prolonged self-renewal and ability to differentiate into granule cells, under appropriate conditions. Taking advantage of this cellular model, we provide evidence that Ptch1-KO, but not the SMO-M2 mutation, supports constitutive and cell-autonomous activity of the hedgehog pathway.
Collapse
|
50
|
Jiayuan S, Junyan Y, Xiangzhen W, Zuping L, Jian N, Baowei H, Lifang J. Gant61 ameliorates CCl 4-induced liver fibrosis by inhibition of Hedgehog signaling activity. Toxicol Appl Pharmacol 2019; 387:114853. [PMID: 31816328 DOI: 10.1016/j.taap.2019.114853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023]
Abstract
As an intercellular signaling molecule, Hedgehog (Hh) plays a critical role in liver fibrosis/regeneration. Transcription effectors Gli1 and Gli2 are key components of the Hh signaling pathway. However, whether inhibition of Gli1/2 activity can affect liver fibrogenesis is largely unknown. In the present study, we investigated the effect of Gant61 (a Gli1/2 transcription factor inhibitor) on liver fibrosis and its possible mechanism. Wild-type and Shh-EGFP-Cre male mice were exposed to CCl4, and then treated with or without Gant61 for four weeks. The level of liver injury/fibrosis and expression levels of mRNA and protein related to the Hh ligand/pathway were assessed. In our study, CCl4 treatment induced liver injury/fibrosis and promoted activation of hepatic stellate cells (HSCs). In addition, CCl4 induced the expression of Shh ligands in and around the fibrotic lesion, accompanied by induction of mRNA and protein expression of Hh components (Smo, Gli1 and Gli2). However, administration of Gant61 decreased liver fibrosis by reduction in HSC number, down-regulation of mRNA and protein expression of Hh components (Smo, Gli1 and Gli2), and cell-cycle arrest of HSCs. Our data highlight the importance of the Shh pathway for the development of liver fibrosis, and also suggest Glis as potential therapeutic targets for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shen Jiayuan
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China; Department of pathology, Affliliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Yan Junyan
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | | | - Liu Zuping
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China; Department of pathology, Affliliated hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Ni Jian
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hu Baowei
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China.
| | - Jin Lifang
- College of Life Science, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|