1
|
Hu Z, Yuan J, Zou R, Wang Y, Peng X, Yang X, Xie C. Identification and functional analysis of BAG gene family contributing to verticillium wilt resistance in upland cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112501. [PMID: 40209939 DOI: 10.1016/j.plantsci.2025.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/13/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Cotton fiber is a primary textile material and a significant economic resource globally. Verticillium dahliae, a destructive soil-borne fungal pathogen, severely impacts cotton yields. The Bcl-2-associated athanogene (BAG) protein family, functioning as molecular chaperone co-chaperones, plays a crucial role in plant stress responses. In this study, 24, 12, and 11 BAG genes were identified in upland cotton (Gossypium hirsutum), Asiatic cotton (G. arboreum), and Levant cotton (G. raimondii), respectively. The BAG gene family demonstrates relative conservation throughout cotton evolution. Conserved domain analysis revealed that BAG proteins from these species universally contain the conserved BAG domain, with some members also possessing the UBL domain and CaM-binding motifs. Virus-induced gene silencing (VIGS) was utilized to investigate gene function in upland cotton. Compared to the negative control, following V. dahliae infection, the silencing of GhBAG7.1 and GhBAG6.2 makes the plants more susceptible to infection, showing symptoms earlier. Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) analysis indicated that V. dahliae infection upregulated the expression of GhBAG7.1, GhBAG6.2, and GhBAG4.1 in upland cotton, while GhBAG4.4 expression was downregulated. Furthermore, following the silencing of the GhBAG6.2 gene, V. dahliae infection led to an initial upregulation of disease resistance-related genes (ERF1, PR5, PDF1.2, NPR1, PR1, OPR3), which was followed by a subsequent decrease in their expression. Transcriptomic analysis revealed a transient upregulation of defense-related pathways, including phenylpropanoid biosynthesis, MAPK signaling pathway, and plant-pathogen interactions, at 48- and 96-hours post-inoculation with V. dahliae. The findings provide a foundation for future research on stress-tolerant genes in cotton and offer new genetic resources for breeding disease-resistant cotton varieties.
Collapse
Affiliation(s)
- Zhijuan Hu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Jingjie Yuan
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Run Zou
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Yilan Wang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xuan Peng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; Chongqing Engineering Research Center of Specialty Crop Resources and The College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
2
|
Xia L, Li J, Pang Y, Dai C, Xu M, Du Y, Tian Q, Yi L, Wu B, Chen M, Qiu Y, Cheng C, Wang YT, Song W, Dong Z. Disruption of BAG3-mediated BACE1 stabilization alleviates neuropathology and memory deficits in a mouse model of Alzheimer's disease. SCIENCE ADVANCES 2025; 11:eadt7981. [PMID: 40408490 PMCID: PMC12101485 DOI: 10.1126/sciadv.adt7981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/18/2025] [Indexed: 05/25/2025]
Abstract
β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is the rate-limiting enzyme for amyloid-β (Aβ) generation and is considered promising drug target for Alzheimer's disease (AD). The co-chaperone BAG3 (Bcl-2-associated athanogene 3) plays an important role in maintaining intracellular protein homeostasis by regulating heat shock protein 70 (HSP70). Here, we reported that BAG3 expression was significantly elevated in AD. It interacted with and stabilized BACE1 by delaying its degradation through ubiquitin-proteasome and autophagy-lysosomal pathways. BAG3E455K and BAG3R480A mutations reduced their interaction with BACE1. SPOT peptide arrays revealed that BACE1 carboxyl-terminal peptide fragments bound to the RQ domain of BAG3. This interaction can be disrupted by BACE1-derived peptide (Tat-BACE1480-494), leading to decreased BACE1 stability. In APP23/PS45 double transgenic mice, Tat-BACE1480-494 reduced BACE1 levels, decreased Aβ production, and improved synaptic and cognitive deficits. These findings indicate that BAG3 forms complex with HSP70 and BACE1 to stabilize BACE1, suggesting that Tat-BACE1480-494, may represent an ideal class of neuroprotective therapeutics against AD.
Collapse
Affiliation(s)
- Lei Xia
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chunfang Dai
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
- Department of Children Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Mingliang Xu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yehong Du
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lilin Yi
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mulan Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yiqiong Qiu
- Clinical Laboratory of Changshou District Hospital of Traditional Chinese Medicine, Chongqing 401220, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Tian Wang
- Department of Medicine, Brain Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Weihong Song
- Center for Geriatric Medicine, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
3
|
Yao S, Chen S, Wang A, Liang Z, Liu X, Gao Y, Cai H. BAG2 Inhibits Cervical Cancer Progression by Modulating Type I Interferon Signaling through Stabilizing STING. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e70005. [PMID: 40364789 DOI: 10.1002/advs.202414637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/30/2025] [Indexed: 05/15/2025]
Abstract
Cervical cancer possesses high morbidity and mortality rates, and a comprehensive understanding of its molecular underpinnings is essential for advancing clinical management strategies. The innate immune sensor STING, which activates type I interferon signaling, plays a pivotal role in enhancing anti-tumor activity. Despite increased attention to STING's involvement in cervical cancer, the regulatory mechanisms governing its protein homeostasis remain poorly understood. In this study, it is found that the BAG2-STUB1 complex regulates ubiquitin proteasomal degradation of STING, which affects the development of cervical cancer. Mechanistically, BAG2 inhibits ubiquitination of STING and stabilizes it by interacting with STING. Specifically, BAG2 inhibits STUB1 from attaching the K48-linked ubiquitin chains at K338 and K370 of STING by forming a complex with STUB1. Functionally, enhanced BAG2 expression suppresses cervical cancer progression by activating the type I interferon pathway in a STING-dependent manner. Notably, clinical cervical cancer samples revealed a positive correlation between BAG2 and STING levels, with low BAG2 expression is strongly linked to advanced disease and poor prognosis in cervical cancer. Collectively, these findings elucidate the molecular mechanism by which the BAG2-STUB1 complex regulates STING homeostasis, underscoring BAG2's potential as a diagnostic biomarker and therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Shijie Yao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Siming Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Xuelian Liu
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, China
- Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| |
Collapse
|
4
|
Ruggiero D, Ingenito E, Boccia E, Vestuto V, D'Urso G, Capuano A, Casapullo A, Terracciano S, Bifulco G, Lauro G, Bruno I. Identification of the first-in-class dual inhibitor targeting BAG3 and HSP70 proteins to disrupt multiple chaperone pathways. Eur J Med Chem 2025; 287:117358. [PMID: 39947053 DOI: 10.1016/j.ejmech.2025.117358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
In the complex network of cellular physiology, the maintenance of cellular proteostasis emerges as a critical factor for cell survival, particularly under stress conditions. This homeostasis is largely governed by a sophisticated network of molecular chaperones and co-chaperones, among which Bcl-2-associated athanogene 3 (BAG3), able to interact with the ATPase domain of Heat Shock Protein 70 (HSP70), plays a pivotal role. The BAG3-HSP70 functional module is not only essential for cellular homeostasis but is also involved in the pathogenesis of various diseases, including cancer, neurodegenerative disorders, and cardiac dysfunction, making it an attractive target for therapeutic intervention. Inspired by our continuous interest in the development of new chemical platforms able to interfere with BAG3 protein, herein we report the discovery of compound 16, the first-in-class BAG3/HSP70 dual modulator, obtained by combining the multicomponent Ugi reaction with the alkyne-azide Huisgen procedure in a sequential tandem reaction approach. Through a combination of biophysical analysis, biochemical assays, and cell-based studies, we elucidated the mechanism of action of this inhibitor and assessed its potential as a therapeutic agent. Hence, this study can open new avenues for the development of novel anticancer strategies that leverage the simultaneous disruption of multiple chaperone pathways.
Collapse
Affiliation(s)
- Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Emis Ingenito
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackу University in Olomouc, Krížkovského 511/8, 779 00, Olomouc, Czech Republic.
| | - Eleonora Boccia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Gilda D'Urso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Alessandra Capuano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy.
| |
Collapse
|
5
|
Vendredy L, De Winter V, Van Lent J, Orije J, Authier TDS, Katona I, Asselbergh B, Adriaenssens E, Weis J, Verhoye M, Timmerman V. RNA Interference Targeting Small Heat Shock Protein B8 Failed to Improve Distal Hereditary Motor Neuropathy in the Mouse Model. J Gene Med 2025; 27:e70013. [PMID: 39972648 DOI: 10.1002/jgm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Missense mutations in the HSPB8 gene, encoding the small heat shock protein B8, cause distal hereditary motor neuropathy (dHMN) or an axonal form of Charcot-Marie-Tooth disease (CMT subtype 2L). Mice expressing mutant Hspb8 (Lys141Asn) mimic the human disease, whereas mice lacking Hspb8 show no overt phenotype. We aimed to design an RNA interference treatment strategy that rescues the mutant HSPB8 neuronal and muscle phenotype in patient-derived motor neurons and in a knock-in mouse model of CMT2L/dHMN. METHODS We optimized RNA interference sequences targeting both human HSPB8 and mouse HspB8 transcripts with the aim to alleviate disease symptoms. We used human induced pluripotent stem cells and the Hspb8 knock-in mouse model. We designed lenti- and adeno-associated viral vectors that contained the short-hairpin RNA constructs. We performed expression and microscopy studies, magnetic resonance imaging, behaviour analysis and electrophysiology. RESULTS In CMT2L patient-derived induced pluripotent stem cells differentiated towards motor neurons, reducing the HSPB8 expression with a short-hairpin RNA (shRNA), directed towards the 3' untranslated region (3'UTR), ameliorated the morphology and fragmentation of mitochondria. The AAV9-mediated treatment of the 3'UTR shRNA construct, under neuron-specific regulation, in Hspb8 knock-in mice showed inconclusive results towards functional improvement upon expression studies, magnetic resonance imaging and neuropathological findings. CONCLUSIONS Given the limited beneficial effect of the treatment, the RNA interference-mediated reduction of HSPB8/Hspb8 expression might not be the best therapeutic strategy to treat dHMN/CMT2L, unless a higher viral load and earlier treatment can be applied to the mouse model.
Collapse
Affiliation(s)
- Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jasmien Orije
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Bio-Imaging, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tatiana Da Silva Authier
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Neurology, The Houston Methodist Research Institute, Houston, Texas, USA
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Marleen Verhoye
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Bio-Imaging, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Lin H, Ramanan S, Kaplan S, King DH, Bunn D, Johnson GVW. One BAG Does Not Fit All: Differences and Similarities of BAG Family Members in Mediating Central Nervous System Homeostasis. Biol Psychiatry 2025:S0006-3223(25)00020-4. [PMID: 39793689 DOI: 10.1016/j.biopsych.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
There is an increasing awareness that B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) proteins play critical roles in maintaining neural homeostasis and that their dysregulation contributes to neurological disorders. This protein family, which comprises 9 members, is evolutionarily conserved, with each member having at least one BAG domain that binds to the nucleotide-binding domains of Hsp70 family members. Collectively, these proteins are essential for the proper functioning of the central nervous system (CNS). Although numerous studies have focused on a specific BAG protein, an understanding of how BAG family members may act cooperatively to maintain cellular homeostasis is needed. In this review, we give an overview of the BAG domain interactors Hsp72, Hsp70.2, CHIP, and METTL3, which are common to all BAG family members. This is followed by a concise description of each BAG family member, with a focus on its function in the CNS and dysfunction in neurological conditions. Finally, we discuss the intersection of the molecular functions of the different BAG family proteins by delineating similarities and differences and describing how their functions can be either complementary or competing. The information in this review provides a basic conceptual framework for analyzing the roles of a particular BAG family member in the CNS and neurological conditions. This review also provides a basis for examining how BAG family members can play either redundant or antagonistic roles that may modulate experimental outcomes.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Sudarshan Ramanan
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Sofia Kaplan
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Dominic Bunn
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York.
| |
Collapse
|
7
|
Wang P, Chen C, Lin K, Zhang Y, Hu J, Zhu T, Wang X. The BCL2-associated athanogene-3-Interferon-induced transmembrane protein 2 axis enhances pancreatic ductal adenocarcinoma growth via the Mitogen-activated protein kinase signaling pathway. Carcinogenesis 2024; 45:928-939. [PMID: 39210737 DOI: 10.1093/carcin/bgae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly lethal malignancy, exhibits escalating incidence and mortality rates, underscoring the urgent need for the identification of novel therapeutic targets and strategies. The BCL2-associated athanogene-3 (BAG3) protein, a multifunctional regulator involved in various cellular processes, notably plays a crucial role in promoting tumor progression and acts as a potential "bridge" between tumors and the tumor microenvironment. In this study, we demonstrate that PDAC cells secrete BAG3 (sBAG3), which engages the interferon-induced transmembrane protein 2 (IFITM2) receptor to activate the mitogen-activated protein kinase signaling pathway, specifically enhancing phospho-extracellular regulated protein (pERK) activity, thereby propelling PDAC growth. Furthermore, our preliminary investigation into the effects of sBAG3 on co-cultured natural killer cells intriguingly discovered that sBAG3 diminishes natural killer cell cytotoxicity and active molecule expression. In conclusion, our findings confirm the pivotal role of the sBAG3-IFITM2 axis in fostering PDAC progression, highlighting the potential significance of sBAG3 as a dual therapeutic target for both tumor and immune cells.
Collapse
MESH Headings
- Humans
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Cell Proliferation
- MAP Kinase Signaling System/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Animals
- Mice
- Cell Line, Tumor
- Tumor Microenvironment
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Signal Transduction
- Apoptosis
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Kexin Lin
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| |
Collapse
|
8
|
Fleming AC, Rao NR, Wright M, Savas JN, Kiskinis E. The ALS-associated co-chaperone DNAJC7 mediates neuroprotection against proteotoxic stress by modulating HSF1 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626216. [PMID: 39651147 PMCID: PMC11623670 DOI: 10.1101/2024.12.01.626216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The degeneration of neurons in patients with amyotrophic lateral sclerosis (ALS) is commonly associated with accumulation of misfolded, insoluble proteins. Heat shock proteins (HSPs) are central regulators of protein homeostasis as they fold newly synthesized proteins and refold damaged proteins. Heterozygous loss-of- function mutations in the DNAJC7 gene that encodes an HSP co-chaperone were recently identified as a cause for rare forms of ALS, yet the mechanisms underlying pathogenesis remain unclear. Using mass spectrometry, we found that the DNAJC7 interactome in human motor neurons (MNs) is enriched for RNA binding proteins (RBPs) and stress response chaperones. MNs generated from iPSCs with the ALS-associated mutation R156X in DNAJC7 exhibit increased insolubility of its client RBP HNRNPU and associated RNA metabolism alterations. Additionally, DNAJC7 haploinsufficiency renders MNs increasingly susceptible to proteotoxic stress and cell death as a result of an ablated HSF1 stress response pathway. Critically, expression of HSF1 in mutant DNAJC7 MNs is sufficient to rescue their sensitivity to proteotoxic stress, while postmortem ALS patient cortical neurons exhibit a reduction in the expression of HSF1 pathway genes. Taken together, our work identifies DNAJC7 as a crucial mediator of HNRNPU function and stress response pathways in human MNs and highlights HSF1 as a therapeutic target in ALS.
Collapse
|
9
|
Ruggiero D, Ingenito E, Boccia E, Vestuto V, Miranda MR, Terracciano S, Lauro G, Bifulco G, Bruno I. Identification of a New Promising BAG3 Modulator Featuring the Imidazopyridine Scaffold. Molecules 2024; 29:5051. [PMID: 39519692 PMCID: PMC11547576 DOI: 10.3390/molecules29215051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The antiapoptotic BAG3 protein plays a crucial role in cellular proteostasis and it is involved in several signalling pathways governing cell proliferation and survival. Owing to its multimodular structure, it possesses an extensive interactome including the molecular chaperone HSP70 and other specific cellular partners, which make it an eminent factor in several pathologies, particularly in cancer. Despite its potential as a therapeutic target, very few BAG3 modulators have been disclosed so far. Here we describe the identification of a promising BAG3 modulator able to bind the BAG domain of the protein featuring an imidazopyridine scaffold and obtained through the application of the Groebke-Blackburn-Bienaymé chemical synthesis procedure. The disclosed compound 10 showed a relevant cytotoxic activity, and in line with the biological profile of BAG3 disruption, it induced the activation of caspase 3 and 9.
Collapse
Affiliation(s)
- Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
| | - Emis Ingenito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Eleonora Boccia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (D.R.); (E.I.); (E.B.); (V.V.); (M.R.M.); (S.T.); (G.L.)
| |
Collapse
|
10
|
Lian Y, Chen J, Han J, Zhao B, Wu J, Li X, Yue M, Hou M, Wu T, Ye T, Han X, Sun T, Tu M, Zhang K, Liu G, An Y. Deciphering the prognostic and therapeutic significance of BAG1 and BAG2 for predicting distinct survival outcome and effects on liposarcoma. Sci Rep 2024; 14:23084. [PMID: 39366981 PMCID: PMC11452671 DOI: 10.1038/s41598-024-67659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/15/2024] [Indexed: 10/06/2024] Open
Abstract
Liposarcoma (LPS) is the second most common kind of soft tissue sarcoma, and a heterogeneous malignant tumor derived from adipose tissue. Up to now, the prognostic value of BAG1 or BAG2 in LPS has not been defined yet. Expression profiling data of LPS patients were collected from TCGA and GEO database. Survival curves were plotted to verify the outcome differences of patients based on BAG1 or BAG2 expression. Univariate and multivariate Cox regression models were used to analyze the prognostic ability of BAG1 or BAG2. Chaperone's regulators BAG1 and BAG2 were identified as prognostic biomarkers for LPS patients, which exhibited distinct expression patterns and survival outcome prediction performances. Patients with high BAG2 expression and/or low BAG1 expression had worse prognosis. Enrichment analysis showed that BAG1 was involved in negative regulation of TGF-β signaling. Low expression of BAG1 was associated with high abundance of regulatory T cells (Tregs). The 2-gene signature model further confirmed the improved risk assessment performance of BAG1 and BAG2: high risk patients displayed poor prognosis. BAG1 and BAG2 are supposed to be potential prognostic biomarkers for LPS and have impacts on liposarcomagenesis and immune infiltration in distinctive manners, which may function as potential therapy targets (BAG1 agonists/BAG2 inhibitors) for LPS.
Collapse
Affiliation(s)
- Yingying Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiahao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Jialin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xinyu Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tinggai Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Ting Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
- School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
- School of Stomatology, Henan University, Kaifeng, 475004, China.
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
11
|
Cóppola-Segovia V, Reggiori F. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases. J Mol Biol 2024; 436:168493. [PMID: 38360089 DOI: 10.1016/j.jmb.2024.168493] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Protein homeostasis or proteostasis is an equilibrium of biosynthetic production, folding and transport of proteins, and their timely and efficient degradation. Proteostasis is guaranteed by a network of protein quality control systems aimed at maintaining the proteome function and avoiding accumulation of potentially cytotoxic proteins. Terminal unfolded and dysfunctional proteins can be directly turned over by the ubiquitin-proteasome system (UPS) or first amassed into aggregates prior to degradation. Aggregates can also be disposed into lysosomes by a selective type of autophagy known as aggrephagy, which relies on a set of so-called selective autophagy receptors (SARs) and adaptor proteins. Failure in eliminating aggregates, also due to defects in aggrephagy, can have devastating effects as underscored by several neurodegenerative diseases or proteinopathies, which are characterized by the accumulation of aggregates mostly formed by a specific disease-associated, aggregate-prone protein depending on the clinical pathology. Despite its medical relevance, however, the process of aggrephagy is far from being understood. Here we review the findings that have helped in assigning a possible function to specific SARs and adaptor proteins in aggrephagy in the context of proteinopathies, and also highlight the interplay between aggrephagy and the pathogenesis of proteinopathies.
Collapse
Affiliation(s)
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus C, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark.
| |
Collapse
|
12
|
Jiang M, Zhang H, Song Y, Yin F, Hu Z, Li X, Wang Y, Wang Z, Li Y, Wang Z, Zhang Y, Wang S, Lu S, Xu G, Song T, Wang Z, Zhang Z. Discovery of Biphenyl Derivatives to Target Hsp70-Bim Protein-Protein Interaction in Chronic Myeloid Leukemia by Scaffold Hopping Strategy. J Med Chem 2024; 67:12068-12084. [PMID: 39012838 DOI: 10.1021/acs.jmedchem.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Hsp70-Bim protein-protein interaction (PPI) is the most recently identified specific target in chronic myeloid leukemia (CML) therapy. Herein, we developed a new class of Hsp70-Bim PPI inhibitors via scaffold hopping of S1g-10, the most potent Hsp70-Bim PPI inhibitor thus far. Through structure-activity relationship (SAR) study, we obtained a biphenyl scaffold compound JL-15 with a 5.6-fold improvement in Hsp70-Bim PPI suppression (Kd = 123 vs 688 nM) and a 4-fold improvement in water solubility (29.42 vs 7.19 μg/mL) compared to S1g-10. It maintains comparable apoptosis induction capability with S1g-10 against both TKI-sensitive and TKI-resistant CML cell lines in an Hsp70-Bim-dependent manner. Additionally, through SAR, 1H-15N TRSOY-NMR, and molecular docking, we revealed that Lys319 is a "hot spot" in the Hsp70-Bim PPI interface. Collectively, these results provide a novel chemical scaffold and structural insights for the rational design of Hsp70-Bim PPI inhibitors.
Collapse
MESH Headings
- Humans
- HSP70 Heat-Shock Proteins/metabolism
- HSP70 Heat-Shock Proteins/antagonists & inhibitors
- HSP70 Heat-Shock Proteins/chemistry
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Structure-Activity Relationship
- Molecular Docking Simulation
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Bcl-2-Like Protein 11/metabolism
- Cell Line, Tumor
- Apoptosis/drug effects
- Protein Binding
- Drug Discovery
Collapse
Affiliation(s)
- Maojun Jiang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hong Zhang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yang Song
- Department of Hematology, Central Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fangkui Yin
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhiyuan Hu
- School of Life Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xin Li
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuying Wang
- School of Life Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zheming Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yitong Li
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zihan Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yanxin Zhang
- School of Life Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Siyao Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shaohua Lu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guanghong Xu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Ting Song
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Ziqian Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhichao Zhang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
13
|
Li S, Yang L, Ding X, Sun H, Dong X, Yang F, Wang M, Zhang H, Li Y, Li B, Liu C. USP32 facilitates non-small cell lung cancer progression via deubiquitinating BAG3 and activating RAF-MEK-ERK signaling pathway. Oncogenesis 2024; 13:27. [PMID: 39030175 PMCID: PMC11271578 DOI: 10.1038/s41389-024-00528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
The regulatory significance of ubiquitin-specific peptidase 32 (USP32) in tumor is significant, nevertheless, the biological roles and regulatory mechanisms of USP32 in non-small cell lung cancer (NSCLC) remain unclear. According to our research, USP32 was strongly expressed in NSCLC cell lines and tissues and was linked to a bad prognosis for NSCLC patients. Interference with USP32 resulted in a significant inhibition of NSCLC cell proliferation, migration potential, and EMT development; on the other hand, USP32 overexpression had the opposite effect. To further elucidate the mechanism of action of USP32 in NSCLC, we screened H1299 cells for interacting proteins and found that USP32 interacts with BAG3 (Bcl2-associated athanogene 3) and deubiquitinates and stabilizes BAG3 in a deubiquitinating activity-dependent manner. Functionally, restoration of BAG3 expression abrogated the antitumor effects of USP32 silencing. Furthermore, USP32 increased the phosphorylation level of the RAF/MEK/ERK signaling pathway in NSCLC cells by stabilizing BAG3. In summary, these findings imply that USP32 is critical to the development of NSCLC and could offer a theoretical framework for the clinical diagnosis and management of NSCLC patients in the future.
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, 266071, Qingdao, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6 Tongfu Road, 266034, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, 266000, Qingdao, China.
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
| |
Collapse
|
14
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Feng H, Zhao Q, Zhao N, Liang Z, Huang Y, Zhang X, Zhang L, Liu Y. A Cell-Permeable Photosensitizer for Selective Proximity Labeling and Crosslinking of Aggregated Proteome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306950. [PMID: 38441365 PMCID: PMC11095223 DOI: 10.1002/advs.202306950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/08/2024] [Indexed: 05/16/2024]
Abstract
Intracellular proteome aggregation is a ubiquitous disease hallmark with its composition associated with pathogenicity. Herein, this work reports on a cell-permeable photosensitizer (P8, Rose Bengal derivative) for selective photo induced proximity labeling and crosslinking of cellular aggregated proteome. Rose Bengal is identified out of common photosensitizer scaffolds for its unique intrinsic binding affinity to various protein aggregates driven by the hydrophobic effect. Further acetylation permeabilizes Rose Bengal to selectively image, label, and crosslink aggregated proteome in live stressed cells. A combination of photo-chemical, tandem mass spectrometry, and protein biochemistry characterizations reveals the complexity in photosensitizing pathways (both Type I & II), modification sites and labeling mechanisms. The diverse labeling sites and reaction types result in highly effective enrichment and identification of aggregated proteome. Finally, aggregated proteomics and interaction analyses thereby reveal extensive entangling of proteostasis network components mediated by HSP70 chaperone (HSPA1B) and active participation of autophagy pathway in combating proteasome inhibition. Overall, this work exemplifies the first photo induced proximity labeling and crosslinking method (namely AggID) to profile intracellular aggregated proteome and analyze its interactions.
Collapse
Affiliation(s)
- Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Nan Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yanan Huang
- Department of Chemistry and Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Xin Zhang
- Department of Chemistry and Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
16
|
Huang X, Guo J, Ning A, Zhang N, Sun Y. BAG3 promotes proliferation and migration of arterial smooth muscle cells by regulating STAT3 phosphorylation in diabetic vascular remodeling. Cardiovasc Diabetol 2024; 23:140. [PMID: 38664681 PMCID: PMC11046803 DOI: 10.1186/s12933-024-02216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Diabetic vascular remodeling is the most important pathological basis of diabetic cardiovascular complications. The accumulation of advanced glycation end products (AGEs) caused by elevated blood glucose promotes the proliferation and migration of vascular smooth muscle cells (VSMCs), leading to arterial wall thickening and ultimately vascular remodeling. Therefore, the excessive proliferation and migration of VSMCs is considered as an important therapeutic target for vascular remodeling in diabetes mellitus. However, due to the lack of breakthrough in experiments, there is currently no effective treatment for the excessive proliferation and migration of VSMCs in diabetic patients. Bcl-2-associated athanogene 3 (BAG3) protein is a multifunctional protein highly expressed in skeletal muscle and myocardium. Previous research has confirmed that BAG3 can not only regulate cell survival and apoptosis, but also affect cell proliferation and migration. Since the excessive proliferation and migration of VSMCs is an important pathogenesis of vascular remodeling in diabetes, the role of BAG3 in the excessive proliferation and migration of VSMCs and its molecular mechanism deserve further investigation. METHODS In this study, BAG3 gene was manipulated in smooth muscle to acquire SM22αCre; BAG3FL/FL mice and streptozotocin (STZ) was used to simulate diabetes. Expression of proteins and aortic thickness of mice were detected by immunofluorescence, ultrasound and hematoxylin-eosin (HE) staining. Using human aorta smooth muscle cell line (HASMC), cell viability was measured by CCK-8 and proliferation was measured by colony formation experiment. Migration was detected by transwell, scratch experiments and Phalloidin staining. Western Blot was used to detect protein expression and Co-Immunoprecipitation (Co-IP) was used to detect protein interaction. RESULTS In diabetic vascular remodeling, AGEs could promote the interaction between BAG3 and signal transducer and activator of transcription 3 (STAT3), leading to the enhanced interaction between STAT3 and Janus kinase 2 (JAK2) and reduced interaction between STAT3 and extracellular signal-regulated kinase 1/2 (ERK1/2), resulting in accumulated p-STAT3(705) and reduced p-STAT3(727). Subsequently, the expression of matrix metallopeptidase 2 (MMP2) is upregulated, thus promoting the migration of VSMCs. CONCLUSIONS BAG3 upregulates the expression of MMP2 by increasing p-STAT3(705) and decreasing p-STAT3(727) levels, thereby promoting vascular remodeling in diabetes. This provides a new orientation for the prevention and treatment of diabetic vascular remodeling.
Collapse
MESH Headings
- STAT3 Transcription Factor/metabolism
- Cell Proliferation
- Cell Movement
- Vascular Remodeling
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Animals
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Phosphorylation
- Signal Transduction
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/genetics
- Male
- Cells, Cultured
- Mice, Knockout
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Humans
- Mice, Inbred C57BL
- Glycation End Products, Advanced/metabolism
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Jiayan Guo
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Anqi Ning
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
17
|
Lin H, Sandkuhler S, Dunlea C, Rodwell-Bullock J, King DH, Johnson GVW. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. Autophagy 2024; 20:577-589. [PMID: 37899687 PMCID: PMC10936643 DOI: 10.1080/15548627.2023.2276622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Macroautophagy/autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially associate with specific forms of MAPT. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions was confirmed using in vitro binding assays with purified proteins. We provide direct evidence that the co-chaperone BAG3 promotes the preferential association of NBR1 with monomeric MAPT and SQSTM1 with oligomeric MAPT. Using an in vitro affinity-isolation assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its association with monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and led to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.Abbreviations: AD: Alzheimer disease; BAG3: BCL2-associated athanogene 3; BSA: bovine serum albumin; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; ESCRT: endosomal sorting complexes required for transport; GST: glutathione S-transferases; MAPT: microtubule-associated protein tau; NBR1: NBR1, autophagy cargo receptor; NFT: neurofibrillary tangles; PMI: postmortem interval; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Sarah Sandkuhler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Colleen Dunlea
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Joel Rodwell-Bullock
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
18
|
Song T, Zhang H, Zhao Q, Hu Z, Wang Z, Song Y, Zhang Z. Small molecule inhibitor targeting the Hsp70-Bim protein-protein interaction in estrogen receptor-positive breast cancer overcomes tamoxifen resistance. Breast Cancer Res 2024; 26:33. [PMID: 38409088 PMCID: PMC10895875 DOI: 10.1186/s13058-024-01790-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
INTRODUCTION Estrogen receptor (ER) positive patients compromise about 70% of breast cancers. Tamoxifen, an antagonist of ERα66 (the classic ER), is the most effective and the standard first-line drug. However, its efficacy is limited by the development of acquired resistance. METHODS A specific inhibitor of Hsp70-Bim protein-protein interaction (PPI), S1g-2, together with an inhibitor of Hsp70-Bag3 PPI, MKT-077 and an ATP-competitive inhibitor VER155008, were used as chemical tools. Cell viability assays, co-immunoprecipitation and gene knockdown were used to investigate the role of Hsp70 in tamoxifen resistance. A xenograft model was established in which tamoxifen-resistant breast cancer (MCF-7/TAM-R) cells maintained in the presence of 5 μM tamoxifen were subcutaneously inoculated. The anti-tumor efficiency of S1g-2 was measured after a daily injection of 0.8 mg/kg for 14 days. RESULTS It was revealed that Hsp70-Bim PPI protects ERα-positive breast cancer from tamoxifen-induced apoptosis through binding and stabilizing ERα36, rather than ERα66, resulting in sustained EGFR mRNA and protein expression. Disruption of Hsp70-Bim PPI and downregulation of ERα36 expression in tumor samples are consistent with the in vitro functions of S1g-2, resulting in about a three-fold reduction in tumor volume. CONCLUSIONS The in vivo activity and safety of S1g-2 illustrated that it is a potential strategy for Hsp70-Bim disruption to overcome tamoxifen-resistant ER-positive breast cancer.
Collapse
Affiliation(s)
- Ting Song
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China.
| | - Hong Zhang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Qicheng Zhao
- Cancer Rehabilitation Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tong Ji University, Shanghai, China
| | - Zhiyuan Hu
- School of Life Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Ziqian Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Yang Song
- Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Zhichao Zhang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China.
| |
Collapse
|
19
|
de Fuenmayor-Fernández de la Hoz CP, Lupo V, Bermejo-Guerrero L, Martín-Jiménez P, Hernández-Laín A, Olivé M, Gallardo E, Esteban-Pérez J, Espinós C, Domínguez-González C. Distal hereditary motor neuronopathy as a new phenotype associated with variants in BAG3. J Neurol 2024; 271:986-994. [PMID: 37907725 DOI: 10.1007/s00415-023-12039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE To describe a new phenotype associated with a novel variant in BAG3: autosomal dominant adult-onset distal hereditary motor neuronopathy. METHODS This study enrolled eight affected individuals from a single family and included a comprehensive evaluation of the clinical phenotype, neurophysiologic testing, muscle MRI, muscle biopsy and western blot of BAG3 protein in skeletal muscle. Genetic workup included whole exome sequencing and segregation analysis of the detected variant in BAG3. RESULTS Seven patients developed slowly progressive and symmetric distal weakness and atrophy of lower limb muscles, along with absent Achilles reflexes. The mean age of onset was 46 years. The neurophysiological examination was consistent with the diagnosis of distal motor neuronopathy. One 57-year-old female patient was minimally symptomatic. The pattern of inheritance was autosomal dominant, with one caveat: one female patient who was an obligate carrier of the variant died at the age of 73 years without exhibiting any muscle weakness. The muscle biopsies revealed neurogenic changes. A novel heterozygous truncating variant c.1513_1514insGGAC (p.Val505GlyfsTer6) in the gene BAG3 was identified in all affected family members. CONCLUSIONS We report an autosomal dominant adult-onset distal hereditary motor neuronopathy with incomplete penetrance in women as a new phenotype related to a truncating variant in the BAG3 gene. Our findings expand the phenotypic spectrum of BAG3-related disorders, which previously included dilated cardiomyopathy, myofibrillar myopathy and adult-onset Charcot-Marie-Tooth type 2 neuropathy. Variants in BAG3 should be considered in the differential diagnosis of distal hereditary motor neuronopathies.
Collapse
Affiliation(s)
| | - Vincenzo Lupo
- Unit of Rare Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Laura Bermejo-Guerrero
- Neuromuscular Disorders Unit, Servicio de Neurología, Department of Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba Sin Número, 28041, Madrid, Spain
| | - Paloma Martín-Jiménez
- Neuromuscular Disorders Unit, Servicio de Neurología, Department of Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba Sin Número, 28041, Madrid, Spain
| | - Aurelio Hernández-Laín
- Neuromuscular Disorders Unit, Department of Pathology (Neuropathology), 12 de Octubre University Hospital, Madrid, Spain
| | - Montse Olivé
- Neuromuscular Disorders Unit, Department of Neurology and Laboratory of Neuromuscular Diseases, Institut de Recerca Hospital de la, Santa Creu I Sant Pau, Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduard Gallardo
- Neuromuscular Disorders Unit, Department of Neurology and Laboratory of Neuromuscular Diseases, Institut de Recerca Hospital de la, Santa Creu I Sant Pau, Barcelona, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Esteban-Pérez
- Neuromuscular Disorders Unit, Servicio de Neurología, Department of Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba Sin Número, 28041, Madrid, Spain
| | - Carmen Espinós
- Unit of Rare Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Biotechnology Department, Faculty of Veterinary and Experimental Sciences, Universidad Católica de Valencia, 46001, Valencia, Spain
| | - Cristina Domínguez-González
- Neuromuscular Disorders Unit, Servicio de Neurología, Department of Neurology, Hospital Universitario 12 de Octubre, Avenida de Córdoba Sin Número, 28041, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Mitochondrial and Neuromuscular Disorders Group, Hospital 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| |
Collapse
|
20
|
Gong B, Huang Y, Wang Z, Wan B, Zeng Y, Lv C. BAG3 as a novel prognostic biomarker in kidney renal clear cell carcinoma correlating with immune infiltrates. Eur J Med Res 2024; 29:93. [PMID: 38297320 PMCID: PMC10832118 DOI: 10.1186/s40001-024-01687-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
PURPOSE BCL-2-associated athanogene 3 (BAG3) is an anti-apoptotic protein that plays an essential role in the onset and progression of multiple cancer types. However, the clinical significance of BAG3 in kidney renal clear cell carcinoma (KIRC) remains unclear. METHODS Using Tumor IMmune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) database, we explored the expression, prognostic value, and clinical correlations of BAG3 in KIRC. In addition, immunohistochemistry (IHC) of HKH cohort further validated the expression of BAG3 in KIRC and its impact on prognosis. Gene Set Cancer Analysis (GSCA) was utilized to scrutinize the prognostic value of BAG3 methylation. Gene Ontology (GO) term analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA) were used to identify potential biological functions of BAG3 in KIRC. Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between BAG3 expression and immune cell infiltration. RESULTS BAG3 mRNA expression and protein expression were significantly downregulated in KIRC tissues compared to normal kidney tissues, associated with adverse clinical-pathological factors and poor clinical prognosis. Multivariate Cox regression analysis indicated that low expression of BAG3 was an independent prognostic factor in KIRC patients. GSEA analysis showed that BAG3 is mainly involved in DNA methylation and the immune-related pathways in KIRC. In addition, the expression of BAG3 is closely related to immune cell infiltration and immune cell marker set. CONCLUSION BAG3 might be a potential therapeutic target and valuable prognostic biomarker of KIRC and is closely related to immune cell infiltration.
Collapse
Affiliation(s)
- Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yuan Huang
- Department of Neurology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Zhenting Wang
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China.
| |
Collapse
|
21
|
Wang J, Ao M, Ma A, Yu J, Guo P, Huang S, Peng X, Yun DJ, Xu ZY. A Mitochondrial Localized Chaperone Regulator OsBAG6 Functions in Saline-Alkaline Stress Tolerance in Rice. RICE (NEW YORK, N.Y.) 2024; 17:10. [PMID: 38252225 PMCID: PMC10803725 DOI: 10.1186/s12284-024-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family genes play prominent roles in regulating plant growth, development, and stress response. Although the molecular mechanism underlying BAG's response to abiotic stress has been studied in Arabidopsis, the function of OsBAG underlying saline-alkaline stress tolerance in rice remains unclear. In this study, OsBAG6, a chaperone regulator localized to mitochondria, was identified as a novel negative regulator of saline-alkaline stress tolerance in rice. The expression level of OsBAG6 was induced by high concentration of salt, high pH, heat and abscisic acid treatments. Overexpression of OsBAG6 in rice resulted in significantly reduced plant heights, grain size, grain weight, as well as higher sensitivity to saline-alkaline stress. By contrast, the osbag6 loss-of-function mutants exhibited decreased sensitivity to saline-alkaline stress. The transcriptomic analysis uncovered differentially expressed genes related to the function of "response to oxidative stress", "defense response", and "secondary metabolite biosynthetic process" in the shoots and roots of OsBAG6-overexpressing transgenic lines. Furthermore, cytoplasmic levels of Ca2+ increase rapidly in plants exposed to saline-alkaline stress. OsBAG6 bound to calcium sensor OsCaM1-1 under normal conditions, which was identified by comparative interactomics, but not in the presence of elevated Ca2+. Released OsCaM1-1 saturated with Ca2+ is then able to regulate downstream stress-responsive genes as part of the response to saline-alkaline stress. OsBAG6 also interacted with energy biosynthesis and metabolic pathway proteins that are involved in plant growth and saline-alkaline stress response mechanisms. This study reveals a novel function for mitochondrial localized OsBAG6 proteins in the saline-alkaline stress response alongside OsCaM1-1.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Min Ao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Xiaoyuan Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 132-798, South Korea
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
22
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
23
|
Liao Y, Yuan C, Huang M, Si W, Li D, Wu W, Zhang S, Wu R, Quan Y, Yu X, Liao S. AZD7762 induces CRBN dependent BAG3 degradation through ubiquitin-proteasome pathway. Anticancer Drugs 2024; 35:46-54. [PMID: 37449977 PMCID: PMC10720835 DOI: 10.1097/cad.0000000000001532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Protein degraders are currently under rapid development as a promising modality for drug discovery. They are compounds that orchestrate interactions between a target protein and an E3 ubiquitin ligase, prompting intracellular protein degradation through proteasomal pathway. More protein degraders identification will greatly promote the development of this field. BAG3 is widely recognized as an excellent therapeutic target in cancer treatments. Exploring protein degraders that target BAG3 degradation has profound implications. Herein, molecular docking was applied to assess binding energy between 81 clinical phase I kinase inhibitors and BAG3. BAG3 protein and mRNA level were detected by western blot and quantitative real-time PCR. CCK8 assay and colony formation assay were applied to detect the cell viability and proliferation rate. Cell death was accessed using flow cytometry combined with PI and Annexin V double staining. AZD7762, a Chk1 kinase inhibitor, was identified to induce BAG3 degradation in a ubiquitin-proteasome pathway. AZD7762-induced BAG3 degradation was not dependent on Chk1 expression or activity. CRBN, an E3 ligase, was identified to bind to BAG3 and mediated BAG3 ubiquitination in the presence of AZD7762. By targeting Chk1 and BAG3, two ideal therapeutic targets in cancer treatment, AZD7762 would be a powerful chemotherapy agent in the future.
Collapse
Affiliation(s)
- Yanli Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| | - Chao Yuan
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| | - Mi Huang
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| | - WenXia Si
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| | - Duanzhuo Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| | - Weibin Wu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| | - Shifa Zhang
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| | - Runkun Wu
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yi Quan
- Department of Oncology, Zhaoqing First People’s Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Xin Yu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| | - Shengjie Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College
| |
Collapse
|
24
|
Wang Z, Zhang H, Li X, Song Y, Wang Y, Hu Z, Gao Q, Jiang M, Yin F, Yuan L, Liu J, Song T, Lu S, Xu G, Zhang Z. Exploiting the "Hot-Spots" of Hsp70 -Bim Protein -Protein Interaction to Optimize the 1-Oxo-1 H-phenalene-2,3-dicarbonitrile Analogues as Specific Hsp70 -Bim Inhibitors. J Med Chem 2023; 66:16377-16387. [PMID: 38011535 DOI: 10.1021/acs.jmedchem.3c01783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Selectively targeting the cancer-specific protein-protein interaction (PPI) between Hsp70 and Bim has been discovered as a promising strategy for treating chronic myeloid leukemia (CML). The first Hsp70-Bim PPI inhibitor, S1g-2, has been identified to overcome the on-target toxicity of known Hsp70 inhibitors when it induces apoptosis of CML cells. Herein, we carried out a hit-to-lead optimization of S1g-2, yielding S1g-10, which exhibited a 10-fold increase in Hsp70/Bim suppressing potency. Furthermore, S1g-10 not only exhibited a 5- to 10-fold stronger antitumor activity in the sub-μM range against CML cells than S1g-2 in vitro, but it also overcame BCR-ABL-independent tyrosine kinase inhibitor resistance in CML in vivo depending on the Hsp70-Bim signaling pathway. Moreover, through structure-activity relationship analysis, TROSY-HSQC NMR, molecular dynamics simulation, and point mutation validation, two hydrophobic pockets composed of eight key residues were demonstrated to produce predominant interactions with either Bim or S1g-10, regarded as the "hot-spots" in the Hsp70-Bim PPI interface.
Collapse
Affiliation(s)
- Ziqian Wang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hong Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xin Li
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yang Song
- Department of Hematology, Central Hospital of Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Yuying Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhiyuan Hu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qishuang Gao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Maojun Jiang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fangkui Yin
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Linjie Yuan
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jingjing Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Ting Song
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shaohua Lu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guanghong Xu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
25
|
Budassi F, Marchioro C, Canton M, Favaro A, Sturlese M, Urbinati C, Rusnati M, Romagnoli R, Viola G, Mariotto E. Design, synthesis and biological evaluation of novel 2,4-thiazolidinedione derivatives able to target the human BAG3 protein. Eur J Med Chem 2023; 261:115824. [PMID: 37783101 DOI: 10.1016/j.ejmech.2023.115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023]
Abstract
The Bcl-2-associated athanogene 3 (BAG3) protein plays multiple roles in controlling cellular homeostasis, and it has been reported to be deregulated in many cancers, leading tumor cell apoptosis escape. BAG3 protein is then an emerging target for its oncogenic activities in both leukemia and solid cancers, such as medulloblastoma. In this work a series of forty-four compounds were designed and successfully synthesized by the modification and optimization of a previously reported 2,4-thiazolidinedione derivative 28. Using an efficient cloning and transfection in human embryonic kidney HEK-293T cells, BAG3 was collected and purified by chromatographic techniques such as IMAC and SEC, respectively. Subsequently, through Surface Plasmon Resonance (SPR) all the compounds were evaluated for their binding ability to BAG3, highlighting the compound FB49 as the one having the greatest affinity for the protein (Kd = 45 ± 6 μM) also against the reference compound 28. Further analysis carried out by Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR) spectroscopy further confirmed the highest affinity of FB49 for the protein. In vitro biological investigation showed that compound FB49 is endowed with an antiproliferative activity in the micromolar range in three human tumoral cell lines and more importantly is devoid of toxicity in human peripheral mononuclear cell deriving from healthy donors. Moreover, FB49 was able to block cell cycle in G1 phase and to induce apoptosis as well as autophagy in medulloblastoma HD-MB03 treated cells. In addition, FB49 demonstrated a synergistic effect when combined with a chemotherapy cocktail of Vincristine, Etoposide, Cisplatin, Cyclophosphamide (VECC). In conclusion we have demonstrated that FB49 is a new derivative able to bind human BAG3 with high affinity and could be used as BAG3 modulator in cancers correlated with overexpression of this protein.
Collapse
Affiliation(s)
- Federica Budassi
- Synthetic Chemistry, DDD, Aptuit an Evotec Company, Via Alessandro Fleming 4, 37135, Verona, Italy
| | - Chiara Marchioro
- Laboratory of Pediatric Hematology-Oncology Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| | - Martina Canton
- Laboratory of Pediatric Hematology-Oncology Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| | - Annagiulia Favaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Chiara Urbinati
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa11, 25121, Brescia, Italy
| | - Marco Rusnati
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa11, 25121, Brescia, Italy
| | - Romeo Romagnoli
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Giampietro Viola
- Laboratory of Pediatric Hematology-Oncology Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4F, 35127, Padova, Italy.
| | - Elena Mariotto
- Laboratory of Pediatric Hematology-Oncology Department of Women's and Children's Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy; Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti 4F, 35127, Padova, Italy.
| |
Collapse
|
26
|
Yang Y, Ma S, Ye Z, Zheng Y, Zheng Z, Liu X, Zhou X. Oncogenic DNA methyltransferase 1 activates the PI3K/AKT/mTOR signalling by blocking the binding of HSPB8 and BAG3 in melanoma. Epigenetics 2023; 18:2239607. [PMID: 37523636 PMCID: PMC10392740 DOI: 10.1080/15592294.2023.2239607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 08/02/2023] Open
Abstract
Abnormal DNA methylation has been observed in multiple malignancies, including melanoma. In this study, we initially noticed the overexpression of DNA methyltransferase 1 (DNMT1) in melanoma samples in bioinformatics analysis and, subsequently, validated it in the purchased melanoma cell lines. After treatment with short-hairpin RNAs or Decitabine (a DNA methylation inhibitor), silencing of DNMT1 was demonstrated to suppress cell viability and invasive and migratory potentials as well as to augment apoptosis and autophagy in melanoma cells. To further explore the downstream mechanisms, we revealed that DNMT1 inhibited HSPB8 expression through augmenting HSPB8 methylation, thereby suppressing the binding between HSPB8 and BAG3. Then, we elucidated through a series of gain- and loss- of function assays that the interplay of HSPB8 and BAG3 blocked the PI3K/AKT/mTOR pathway, thereby repressing the malignant phenotypes of melanoma cells and contributing to melanoma cell apoptosis and autophagy. We further established a mouse model of melanoma and substantiated that DNMT1 enhanced the in vivo tumorigenesis of melanoma cells via activation of the PI3K/AKT/mTOR pathway through repressing the binding between HSPB8 and BAG3. Taken together, our data supported that DNMT1 repressed the binding between HSPB8 and BAG3 and activated the PI3K/AKT/mTOR pathway, thus playing a tumour-promoting role in melanoma.
Collapse
Affiliation(s)
- Yemei Yang
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P. R. China
| | - Shengfang Ma
- Department of Dermatology, Baoshihua Hospital of Gansu Province, Lanzhou, P. R. China
| | - Zi Ye
- College of Information and Sciences, The Pennsylvania State University, University of Pennsylvania, Philadelphia, USA
| | - Yushi Zheng
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P. R. China
| | - Zhenjiong Zheng
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P. R. China
| | - Xiongshan Liu
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P. R. China
| | - Xianyi Zhou
- Department of Dermatology and Venerology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P. R. China
| |
Collapse
|
27
|
Ai G, Si J, Cheng Y, Meng R, Wu Z, Xu R, Wang X, Zhai Y, Peng H, Li Y, Dou D, Jing M. The oomycete-specific BAG subfamily maintains protein homeostasis and promotes pathogenicity in an atypical HSP70-independent manner. Cell Rep 2023; 42:113391. [PMID: 37930886 DOI: 10.1016/j.celrep.2023.113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Protein homeostasis is vital for organisms and requires chaperones like the conserved Bcl-2-associated athanogene (BAG) co-chaperones that bind to the heat shock protein 70 (HSP70) through their C-terminal BAG domain (BD). Here, we show an unconventional BAG subfamily exclusively found in oomycetes. Oomycete BAGs feature an atypical N-terminal BD with a short and oomycete-specific α1 helix (α1'), plus a C-terminal small heat shock protein (sHSP) domain. In oomycete pathogen Phytophthora sojae, both BD-α1' and sHSP domains are required for P. sojae BAG (PsBAG) function in cyst germination, pathogenicity, and unfolded protein response assisting in 26S proteasome-mediated degradation of misfolded proteins. PsBAGs form homo- and heterodimers through their unique BD-α1' to function properly, with no recruitment of HSP70s to form the common BAG-HSP70 complex found in other eukaryotes. Our study highlights an oomycete-exclusive protein homeostasis mechanism mediated by atypical BAGs, which provides a potential target for oomycete disease control.
Collapse
Affiliation(s)
- Gan Ai
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Cheng
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Meng
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Zishan Wu
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofei Xu
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100091, China
| | - Ying Zhai
- USDA-ARS, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93648, USA
| | - Hao Peng
- USDA-ARS, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93648, USA
| | - Yurong Li
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Daolong Dou
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Thanthrige N, Weston-Olliver G, Das Bhowmik S, Friedl J, Rowlings D, Kabbage M, Ferguson BJ, Mundree S, Williams B. The cytoprotective co-chaperone, AtBAG4, supports increased nodulation and seed protein content in chickpea without yield penalty. Sci Rep 2023; 13:18553. [PMID: 37899486 PMCID: PMC10613627 DOI: 10.1038/s41598-023-45771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Drought and extreme temperatures significantly limit chickpea productivity worldwide. The regulation of plant programmed cell death pathways is emerging as a key component of plant stress responses to maintain homeostasis at the cellular-level and a potential target for crop improvement against environmental stresses. Arabidopsis thaliana Bcl-2 associated athanogene 4 (AtBAG4) is a cytoprotective co-chaperone that is linked to plant responses to environmental stress. Here, we investigate whether exogenous expression of AtBAG4 impacts nodulation and nitrogen fixation. Transgenic chickpea lines expressing AtBAG4 are more drought tolerant and produce higher yields under drought stress. Furthermore, AtBAG4 expression supports higher nodulation, photosynthetic levels, nitrogen fixation and seed nitrogen content under well-watered conditions when the plants were inoculated with Mesorhizobium ciceri. Together, our findings illustrate the potential use of cytoprotective chaperones to improve crop performance at least in the greenhouse in future uncertain climates with little to no risk to yield under well-watered and water-deficient conditions.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Grace Weston-Olliver
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Johannes Friedl
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - David Rowlings
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brett J Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Sagadevan Mundree
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Brett Williams
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
29
|
Zhang L, Duan Y, Wang W, Li Q, Tian J, Zhu Y, Wang R, Xie Z. Autophagy induced by human adenovirus B7 structural protein VI inhibits viral replication. Virol Sin 2023; 38:709-722. [PMID: 37549881 PMCID: PMC10590704 DOI: 10.1016/j.virs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023] Open
Abstract
Human adenovirus B7 (HAdV-B7) causes severe acute lower respiratory tract infections in children. However, neither the child-specific antivirals or vaccines are available, nor the pathogenesis is clear. Autophagy, as part of innate immunity, plays an important role in resistance to viral infection by degrading the virus and promoting the development of innate and adaptive immunity. This study provided evidence that HAdV-B7 infection induced complete autophagic flux, and the pharmacological induction of autophagy decreased HAdV-B7 replication. In this process, the host protein Bcl2-associated athanogene 3 (BAG3) mediated autophagy to inhibit the replication of HAdV-B7 by binding to the PPSY structural domain of viral protein pVI through its WW structural domain. These findings further our understanding of the host immune response during viral infection and will help to develop broad anti-HAdV therapies.
Collapse
Affiliation(s)
- Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Yali Duan
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China; Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China; Beijing Coal Group General Hospital, Beijing, 100045, China
| | - Qi Li
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Jiao Tian
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China.
| |
Collapse
|
30
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Cheng A, Xu T, You W, Wang T, Zhang D, Guo H, Zhang H, Pan X, Wang Y, Liu L, Zhang K, Shi J, Yao X, Guo J, Yang Z. A mitotic NADPH upsurge promotes chromosome segregation and tumour progression in aneuploid cancer cells. Nat Metab 2023; 5:1141-1158. [PMID: 37349486 DOI: 10.1038/s42255-023-00832-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Redox metabolites have been observed to fluctuate through the cell cycle in cancer cells, but the functional impacts of such metabolic oscillations remain unknown. Here, we uncover a mitosis-specific nicotinamide adenine dinucleotide phosphate (NADPH) upsurge that is essential for tumour progression. Specifically, NADPH is produced by glucose 6-phosphate dehydrogenase (G6PD) upon mitotic entry, which neutralizes elevated reactive oxygen species (ROS) and prevents ROS-mediated inactivation of mitotic kinases and chromosome missegregation. Mitotic activation of G6PD depends on the phosphorylation of its co-chaperone protein BAG3 at threonine 285, which results in dissociation of inhibitory BAG3. Blocking BAG3T285 phosphorylation induces tumour suppression. A mitotic NADPH upsurge is present in aneuploid cancer cells with high levels of ROS, while nearly unobservable in near-diploid cancer cells. High BAG3T285 phosphorylation is associated with worse prognosis in a cohort of patients with microsatellite-stable colorectal cancer. Our study reveals that aneuploid cancer cells with high levels of ROS depend on a G6PD-mediated NADPH upsurge in mitosis to protect them from ROS-induced chromosome missegregation.
Collapse
Affiliation(s)
- Aoxing Cheng
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tian Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiyi You
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ting Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dongming Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei, China
| | - Haiyan Zhang
- Core Facility Centre for Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xin Pan
- National Center of Biomedical Analysis of China, Beijing, China
| | - Yucai Wang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liu Liu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jue Shi
- Center for Quantitative Systems Biology, Department of Physics and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhenye Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
32
|
Wang J, Tomar D, Martin TG, Dubey S, Dubey PK, Song J, Landesberg G, McCormick MG, Myers VD, Merali S, Merali C, Lemster B, McTiernan CF, Khalili K, Madesh M, Cheung JY, Kirk JA, Feldman AM. Bag3 Regulates Mitochondrial Function and the Inflammasome Through Canonical and Noncanonical Pathways in the Heart. JACC Basic Transl Sci 2023; 8:820-839. [PMID: 37547075 PMCID: PMC10401293 DOI: 10.1016/j.jacbts.2022.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023]
Abstract
B-cell lymphoma 2-associated athanogene-3 (Bag3) is expressed in all animal species, with Bag3 levels being most prominent in the heart, the skeletal muscle, the central nervous system, and in many cancers. Preclinical studies of Bag3 biology have focused on animals that have developed compromised cardiac function; however, the present studies were performed to identify the pathways perturbed in the heart even before the occurrence of clinical signs of dilatation and failure of the heart. These studies show that hearts carrying variants that knockout one allele of BAG3 have significant alterations in multiple cellular pathways including apoptosis, autophagy, mitochondrial homeostasis, and the inflammasome.
Collapse
Affiliation(s)
- JuFang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dhadendra Tomar
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas G. Martin
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Shubham Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Praveen K. Dubey
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Gavin Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Salim Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Carmen Merali
- Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Bonnie Lemster
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Charles F. McTiernan
- Department of Medicine, Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kamel Khalili
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Strich School of Medicine, Maywood, Illinois, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Perez-Bermejo JA, Judge LM, Jensen CL, Wu K, Watry HL, Truong A, Ho JJ, Carter M, Runyon WV, Kaake RM, Pulido EH, Mandegar MA, Swaney DL, So PL, Krogan NJ, Conklin BR. Functional analysis of a common BAG3 allele associated with protection from heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:615-628. [PMID: 39195919 DOI: 10.1038/s44161-023-00288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 05/18/2023] [Indexed: 08/29/2024]
Abstract
Multiple genetic association studies have correlated a common allelic block linked to the BAG3 gene with a decreased incidence of heart failure, but the molecular mechanism remains elusive. In this study, we used induced pluripotent stem cells to test if the only coding variant in this allele block, BAG3C151R, alters protein and cellular function in human cardiomyocytes. Quantitative protein interaction analysis identified changes in BAG3C151R protein partners specific to cardiomyocytes. Knockdown of genes encoding for BAG3-interacting factors in cardiomyocytes followed by myofibrillar analysis revealed that BAG3C151R associates more strongly with proteins involved in the maintenance of myofibrillar integrity. Finally, we demonstrate that cardiomyocytes expressing the BAG3C151R variant have improved response to proteotoxic stress in a dose-dependent manner. This study suggests that BAG3C151R could be responsible for the cardioprotective effect of the haplotype block, by increasing cardiomyocyte protection from stress. Preferential binding partners of BAG3C151R may reveal potential targets for cardioprotective therapies.
Collapse
Affiliation(s)
| | - Luke M Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kenneth Wu
- Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Jaclyn J Ho
- Tenaya Therapeutics, South San Francisco, CA, USA
| | | | | | - Robyn M Kaake
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Po-Lin So
- Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce R Conklin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
34
|
Li C, Pang M, Li Y, Han L, Fan Y, Xin X, Zhang X, Zhang N, Qin Y. Protective effect of vitamin C against tetrachlorobenzoquinone-induced 5-hydroxymethylation-dependent apoptosis in HepG2 cells mainly via the mitochondrial apoptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115097. [PMID: 37271103 DOI: 10.1016/j.ecoenv.2023.115097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Tetrachlorobenzoquinone (TCBQ) is an active metabolite of pentachlorophenol, and stimulates the accumulation of ROS to trigger apoptosis. The preventive effect of vitamin C (Vc) against TCBQ-induced apoptosis in HepG2 cells is unknown. And there is little known about TCBQ-triggered 5-hydromethylcytosine (5hmC)-dependent apoptosis. Here, we confirmed that Vc alleviated TCBQ-induced apoptosis. Through investigating the underlying mechanism, we found TCBQ downregulated 5hmC levels of genomic DNA in a Tet-dependent manner, with a particularly pronounced decrease in the promoter region, using UHPLC-MS-MS analysis and hydroxymethylated DNA immunoprecipitation sequencing. Notably, TCBQ exposure resulted in alterations of 5hmC abundance to ∼91% of key genes at promoters in the mitochondrial apoptosis pathway, along with changes of mRNA expression in 87% of genes. By contrast, 5hmC abundance of genes only exhibited slight changes in the death receptor/ligand pathway. Interestingly, the pretreatment with Vc, a positive stimulator of 5hmC generation, restored 5hmC in the genomic DNA to near-normal levels. More notably, Vc pretreatment further counter-regulated TCBQ-induced alteration of 5hmC abundance in the promoter with 100% of genes, accompanying the reverse modulation of mRNA expressions in 89% of genes. These data from Vc pretreatment supported the relationship between TCBQ-induced apoptosis and the altered 5hmC abundance. Additionally, Vc also suppressed TCBQ-stimulated generation of ROS, and further increased the stability of mitochondria. Our study illuminates a new mechanism of TCBQ-induced 5hmC-dependent apoptosis, and the dual mechanisms of Vc against TCBQ-stimulated apoptosis via reversely regulating 5hmC levels and scavenging ROS. The work also provided a possible strategy for the detoxification of TCBQ.
Collapse
Affiliation(s)
- Cuiping Li
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Mengfan Pang
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Yaping Li
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| | - Lirong Han
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Yajiao Fan
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xuelian Xin
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xian Zhang
- School of Public Health, Hebei University, Baoding 071002, PR China; Key Laboratory of Public Health Safety of Hebei Province, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Ning Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Shandong 253023, PR China
| | - Yan Qin
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding 071002, PR China
| |
Collapse
|
35
|
Lin H, Deaton CA, Johnson GVW. Commentary: BAG3 as a Mediator of Endosome Function and Tau Clearance. Neuroscience 2023; 518:4-9. [PMID: 35550160 PMCID: PMC9646927 DOI: 10.1016/j.neuroscience.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
Tauopathies are a group of heterogeneous neurodegenerative conditions characterized by the deposition of abnormal tau protein in the brain. The underlying mechanisms that contribute to the accumulation of tau in these neurodegenerative diseases are multifactorial; nonetheless, there is a growing awareness that dysfunction of endosome-lysosome pathways is a pivotal factor. BCL2 associated athanogene 3 (BAG3) is a multidomain protein that plays a key role in maintaining neuronal proteostasis. Further, recent data indicate that BAG3 plays an important role in mediating vacuolar-dependent degradation of tau. Overexpression of BAG3 in a tauopathy mouse model decreased pathological tau levels and alleviated synapse loss. High throughput screens of BAG3 interactors have identified key players in the vacuolar system; these include clathrin and regulators of small GTPases. These findings suggest that BAG3 is an important regulator of endocytic pathways. In this commentary, we discuss the potential mechanisms by which BAG3 regulates the vacuolar system and tau proteostasis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, USA
| | - Carol A Deaton
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, USA
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, USA.
| |
Collapse
|
36
|
Jiang H, Liu X, Xiao P, Wang Y, Xie Q, Wu X, Ding H. Functional insights of plant bcl-2-associated ahanogene (BAG) proteins: Multi-taskers in diverse cellular signal transduction pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1136873. [PMID: 37056491 PMCID: PMC10086319 DOI: 10.3389/fpls.2023.1136873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Bcl-2-associated athanogene (BAG) gene family is a highly conserved molecular chaperone cofactor in evolution from yeast to humans and plants playing important roles in a variety of signal pathways. Plant BAG proteins have special structures, especially those containing CaM-binding IQ motifs which are unique to plants. While early studies focused more on the structure and physiological function of plant BAGs, recent studies have revealed many novel functional mechanisms involved in multiple cellular processes. How to achieve signal specificity has become an interesting topic of plant BAG research. In this review, we have provided a historic view of plant BAG research and summarized recent advances in the establishment of BAG as essential components in normal plant growth, environmental stress response, and plant immunity. Based on the relationship between BAG proteins and their newly interacting proteins, this review highlights the functional mechanisms of various cellular signals mediated by plant BAGs. Future work needs to focus on the post-translational modification of BAG proteins, and on understanding how specificity is achieved among BAG signaling pathways.
Collapse
Affiliation(s)
- Hailong Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Xiaoya Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Peixiang Xiao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Yan Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Qihui Xie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| | - Haidong Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| |
Collapse
|
37
|
Brenner CM, Choudhary M, McCormick MG, Cheung D, Landesberg GP, Wang JF, Song J, Martin TG, Cheung JY, Qu HQ, Hakonarson H, Feldman AM. BAG3: Nature's Quintessential Multi-Functional Protein Functions as a Ubiquitous Intra-Cellular Glue. Cells 2023; 12:937. [PMID: 36980278 PMCID: PMC10047307 DOI: 10.3390/cells12060937] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
BAG3 is a 575 amino acid protein that is found throughout the animal kingdom and homologs have been identified in plants. The protein is expressed ubiquitously but is most prominent in cardiac muscle, skeletal muscle, the brain and in many cancers. We describe BAG3 as a quintessential multi-functional protein. It supports autophagy of both misfolded proteins and damaged organelles, inhibits apoptosis, maintains the homeostasis of the mitochondria, and facilitates excitation contraction coupling through the L-type calcium channel and the beta-adrenergic receptor. High levels of BAG3 are associated with insensitivity to chemotherapy in malignant cells whereas both loss of function and gain of function variants are associated with cardiomyopathy.
Collapse
Affiliation(s)
- Caitlyn M. Brenner
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
| | - Muaaz Choudhary
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
| | - Michael G. McCormick
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - David Cheung
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Gavin P. Landesberg
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jianliang Song
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Thomas G. Martin
- Department of Molecular, Cellular and Developmental Biology, Colorado University School of Medicine, Aurora, CO 80045, USA
| | - Joseph Y. Cheung
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
- Division of Human Genetics and Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 191104, USA
- Department of Pediatrics, Division of Human Genetics and Division of Pulmonary Medicine, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, MERB 752, Philadelphia, PA 19140, USA; (C.M.B.); (M.C.)
- Center for Neurovirology and Gene Editing, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
38
|
Alharbi BM, Albinhassan TH, Alzahrani RA, Bouchama A, Mohammad S, Alomari AA, Bin-Jumah MN, AlSuhaibani ES, Malik SS. Profiling the Hsp70 Chaperone Network in Heat-Induced Proteotoxic Stress Models of Human Neurons. BIOLOGY 2023; 12:416. [PMID: 36979108 PMCID: PMC10045125 DOI: 10.3390/biology12030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Heat stroke is among the most hazardous hyperthermia-related illnesses and an emerging threat to humans from climate change. Acute brain injury and long-lasting brain damage are the hallmarks of this condition. Hyperthermic neurological manifestations are remarkable for their damage correlation with stress amplitude and long-term persistence. Hyperthermia-induced protein unfolding, and nonspecific aggregation accumulation have neurotoxic effects and contribute to the pathogenesis of brain damage in heat stroke. Therefore, we generated heat-induced, dose-responsive extreme and mild proteotoxic stress models in medulloblastoma [Daoy] and neuroblastoma [SH-SY5Y] and differentiated SH-SY5Y neuronal cells. We show that heat-induced protein aggregation is associated with reduced cell proliferation and viability. Higher protein aggregation in differentiated neurons than in neuroblastoma precursors suggests a differential neuronal vulnerability to heat. We characterized the neuronal heat shock response through RT-PCR array analysis of eighty-four genes involved in protein folding and protein quality control (PQC). We identify seventeen significantly expressed genes, five of which are Hsp70 chaperones, and four of their known complementing function proteins. Protein expression analysis determined the individual differential contribution of the five Hsp70 chaperones to the proteotoxic stress response and the significance of only two members under mild conditions. The co-expression analysis reveals significantly high co-expression between the Hsp70 chaperones and their interacting partners. The findings of this study lend support to the hypothesis that hyperthermia-induced proteotoxicity may underlie the brain injury of heat stroke. Additionally, this study presents a comprehensive map of the Hsp70 network in these models with potential clinical and translational implications.
Collapse
Affiliation(s)
- Bothina Mohammed Alharbi
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Tahani H. Albinhassan
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Razan Ali Alzahrani
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Sameer Mohammad
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | - Awatif Abdulaziz Alomari
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | | | - Shuja Shafi Malik
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| |
Collapse
|
39
|
Lin H, Sandkuhler S, Dunlea C, King DH, Johnson GVW. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527546. [PMID: 36798173 PMCID: PMC9934686 DOI: 10.1101/2023.02.08.527546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially engage specific forms of MAPT and facilitate their clearance. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions were confirmed using in vitro binding assays with purified proteins. We provide direct evidence that NBR1 preferentially binds to monomeric MAPT, while SQSTM1 interacts predominantly with oligomeric MAPT, and that the co-chaperone BAG3 regulates the specificity of these interactions. Using an in vitro pulldown assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its binding to monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer's disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and lead to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Sarah Sandkuhler
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Colleen Dunlea
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14620 USA
| |
Collapse
|
40
|
Wang P, Siao W, Zhao X, Arora D, Wang R, Eeckhout D, Van Leene J, Kumar R, Houbaert A, De Winne N, Mylle E, Vandorpe M, Korver RA, Testerink C, Gevaert K, Vanneste S, De Jaeger G, Van Damme D, Russinova E. Adaptor protein complex interaction map in Arabidopsis identifies P34 as a common stability regulator. NATURE PLANTS 2023; 9:355-371. [PMID: 36635451 PMCID: PMC7615410 DOI: 10.1038/s41477-022-01328-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Adaptor protein (AP) complexes are evolutionarily conserved vesicle transport regulators that recruit coat proteins, membrane cargoes and coated vesicle accessory proteins. As in plants endocytic and post-Golgi trafficking intersect at the trans-Golgi network, unique mechanisms for sorting cargoes of overlapping vesicular routes are anticipated. The plant AP complexes are part of the sorting machinery, but despite some functional information, their cargoes, accessory proteins and regulation remain largely unknown. Here, by means of various proteomics approaches, we generated the overall interactome of the five AP and the TPLATE complexes in Arabidopsis thaliana. The interactome converged on a number of hub proteins, including the thus far unknown adaptin binding-like protein, designated P34. P34 interacted with the clathrin-associated AP complexes, controlled their stability and, subsequently, influenced clathrin-mediated endocytosis and various post-Golgi trafficking routes. Altogether, the AP interactome network offers substantial resources for further discoveries of unknown endomembrane trafficking regulators in plant cells.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wei Siao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Xiuyang Zhao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Rahul Kumar
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Anaxi Houbaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Michael Vandorpe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Ruud A Korver
- Plant Physiology and Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Christa Testerink
- Plant Physiology and Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| |
Collapse
|
41
|
Singh MV, Dokun AO. Diabetes mellitus in peripheral artery disease: Beyond a risk factor. Front Cardiovasc Med 2023; 10:1148040. [PMID: 37139134 PMCID: PMC10149861 DOI: 10.3389/fcvm.2023.1148040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
Peripheral artery disease (PAD) is one of the major cardiovascular diseases that afflicts a large population worldwide. PAD results from occlusion of the peripheral arteries of the lower extremities. Although diabetes is a major risk factor for developing PAD, coexistence of PAD and diabetes poses significantly greater risk of developing critical limb threatening ischemia (CLTI) with poor prognosis for limb amputation and high mortality. Despite the prevalence of PAD, there are no effective therapeutic interventions as the molecular mechanism of how diabetes worsens PAD is not understood. With increasing cases of diabetes worldwide, the risk of complications in PAD have greatly increased. PAD and diabetes affect a complex web of multiple cellular, biochemical and molecular pathways. Therefore, it is important to understand the molecular components that can be targeted for therapeutic purposes. In this review, we describe some major developments in enhancing the understanding of the interactions of PAD and diabetes. We also provide results from our laboratory in this context.
Collapse
Affiliation(s)
- Madhu V. Singh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ayotunde O. Dokun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Centre, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Correspondence: Ayotunde O. Dokun
| |
Collapse
|
42
|
Chierichetti M, Cerretani M, Ciammaichella A, Crippa V, Rusmini P, Ferrari V, Tedesco B, Casarotto E, Cozzi M, Mina F, Pramaggiore P, Galbiati M, Piccolella M, Bresciani A, Cristofani R, Poletti A. Identification of HSPB8 modulators counteracting misfolded protein accumulation in neurodegenerative diseases. Life Sci 2022; 322:121323. [PMID: 36574942 DOI: 10.1016/j.lfs.2022.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
AIMS The small Heat Shock Protein B8 (HSPB8) is the core component of the chaperone-assisted selective autophagy (CASA) complex. This complex selectively targets, transports, and tags misfolded proteins for their recognition by autophagic receptors and insertion into autophagosome for clearance. CASA is essential to maintain intracellular proteostasis, especially in heart, muscle, and brain often exposed to various types of cell stresses. In neurons, HSPB8 protects against neurotoxicity caused by misfolded proteins in several models of neurodegenerative diseases; by facilitating autophagy, HSPB8 assists misfolded protein degradation also counteracting proteasome overwhelming and inhibition. MATERIALS AND METHODS To enhance HSPB8 protective activity, we screened a library of approximately 120,000 small molecules to identify compounds capable of increasing HSPB8 gene transcription, translation, or protein stability. We found 83 compounds active in preliminary dose-response assays and further classified them in 19 chemical classes by medicinal chemists' visual inspection. Of these 19 prototypes, 14 induced HSPB8 mRNA and protein levels in SH-SY5Y cells. KEY FINDINGS Out of these 14, 3 successfully reduced the aggregation propensity of a disease-associated mutant misfolded Superoxide Dismutase 1 (SOD1) protein in a flow cytometry-based "aggregation assay" [Flow cytometric analysis of Inclusions and Trafficking" (FloIT)] and induced the expression (mRNA and protein) of some autophagy receptors. Notably, the 3 hits were inactive in HSPB8-depleted cells, confirming that their protective activity is mediated by and requires HSPB8. SIGNIFICANCE Thus, these compounds may be highly relevant for a therapeutic approach in several human disorders, including neurodegenerative diseases, in which enhancement of CASA exerts beneficial activities.
Collapse
Affiliation(s)
- Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mauro Cerretani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Alina Ciammaichella
- Department of Drug Discovery, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina Km 30,600, 00071 Pomezia, Roma, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
43
|
Krohn L, Heilbron K, Blauwendraat C, Reynolds RH, Yu E, Senkevich K, Rudakou U, Estiar MA, Gustavsson EK, Brolin K, Ruskey JA, Freeman K, Asayesh F, Chia R, Arnulf I, Hu MTM, Montplaisir JY, Gagnon JF, Desautels A, Dauvilliers Y, Gigli GL, Valente M, Janes F, Bernardini A, Högl B, Stefani A, Ibrahim A, Šonka K, Kemlink D, Oertel W, Janzen A, Plazzi G, Biscarini F, Antelmi E, Figorilli M, Puligheddu M, Mollenhauer B, Trenkwalder C, Sixel-Döring F, Cochen De Cock V, Monaca CC, Heidbreder A, Ferini-Strambi L, Dijkstra F, Viaene M, Abril B, Boeve BF, Scholz SW, Ryten M, Bandres-Ciga S, Noyce A, Cannon P, Pihlstrøm L, Nalls MA, Singleton AB, Rouleau GA, Postuma RB, Gan-Or Z. Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects. Nat Commun 2022; 13:7496. [PMID: 36470867 PMCID: PMC9722930 DOI: 10.1038/s41467-022-34732-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/03/2022] [Indexed: 12/11/2022] Open
Abstract
Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention.
Collapse
Affiliation(s)
- Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | | | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Regina H Reynolds
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Konstantin Senkevich
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Uladzislau Rudakou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Emil K Gustavsson
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Kajsa Brolin
- Lund University, Translational Neurogenetics Unit, Department of Experimental Medical Science, Lund, Sweden
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Kathryn Freeman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Isabelle Arnulf
- Sleep Disorders Unit, Pitié Salpêtrière Hospital, APHP-Sorbonne, Paris Brain Insitute and Sorbonne University, Paris, France
| | - Michele T M Hu
- Oxford Parkinson's Disease Centre (OPDC), University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jacques Y Montplaisir
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Gagnon
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
- Department of Psychology, Université du Québec à Montréal, Montreal, QC, Canada
| | - Alex Desautels
- Centre d'Études Avancées en Médecine du Sommeil, Hôpital du Sacré-Cœur de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Institute Neuroscience Montpellier Inserm, Montpellier, France
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Francesco Janes
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
| | - Andrea Bernardini
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
| | - Birgit Högl
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Abubaker Ibrahim
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Wolfgang Oertel
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps-University, Marburg, Germany
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Elena Antelmi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Figorilli
- Department of Medical Sciences and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Department of Medical Sciences and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, University Medical Centre Goettingen, Goettingen, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, University Medical Centre Goettingen, Goettingen, Germany
| | - Friederike Sixel-Döring
- Department of Neurology, Philipps-University, Marburg, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Valérie Cochen De Cock
- Sleep and Neurology Unit, Beau Soleil Clinic, Montpellier, France
- EuroMov Digital Health in Motion, University of Montpellier IMT Mines Ales, Montpellier, France
| | - Christelle Charley Monaca
- University Lille North of France, Department of Clinical Neurophysiology and Sleep Center, CHU Lille, Lille, France
| | - Anna Heidbreder
- Institute of Sleep Medicine and Neuromuscular Disorders, University of Münster, Münster, Germany
| | - Luigi Ferini-Strambi
- Department of Neurological Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Femke Dijkstra
- Laboratory for Sleep Disorders, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Mineke Viaene
- Laboratory for Sleep Disorders, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, St. Dimpna Regional Hospital, Geel, Belgium
| | - Beatriz Abril
- Sleep disorder Unit, Carémeau Hospital, University Hospital of Nîmes, Nîmes, France
| | | | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Alastair Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
- Department of Clinical and Movement Neurosciences, University College London, Institute of Neurology, London, UK
| | | | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mike A Nalls
- Data Tecnica International, Glen Echo, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ronald B Postuma
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
44
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
45
|
Heat-Induced Proteotoxic Stress Response in Placenta-Derived Stem Cells (PDSCs) Is Mediated through HSPA1A and HSPA1B with a Potential Higher Role for HSPA1B. Curr Issues Mol Biol 2022; 44:4748-4768. [PMID: 36286039 PMCID: PMC9600182 DOI: 10.3390/cimb44100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
Placenta-derived stem cells (PDSCs), due to unique traits such as mesenchymal and embryonic characteristics and the absence of ethical constraints, are in a clinically and therapeutically advantageous position. To aid in stemness maintenance, counter pathophysiological stresses, and withstand post-differentiation challenges, stem cells require elevated protein synthesis and consequently augmented proteostasis. Stem cells exhibit source-specific proteostasis traits, making it imperative to study them individually from different sources. These studies have implications for understanding stem cell biology and exploitation in the augmentation of therapeutic applications. Here, we aim to identify the primary determinants of proteotoxic stress response in PDSCs. We generated heat-induced dose-responsive proteotoxic stress models of three stem cell types: placental origin cells, the placenta-derived mesenchymal stem cells (pMSCs), maternal origin cells, the decidua parietalis mesenchymal stem cells (DPMSCs), and the maternal–fetal interface cells, decidua basalis mesenchymal stem cells (DBMSCs), and measured stress induction through biochemical and cell proliferation assays. RT-PCR array analysis of 84 genes involved in protein folding and protein quality control led to the identification of Hsp70 members HSPA1A and HSPA1B as the prominent ones among 17 significantly expressed genes and with further analysis at the protein level through Western blotting. A kinetic analysis of HSPA1A and HSPA1B gene and protein expression allowed a time series evaluation of stress response. As identified by protein expression, an active stress response is in play even at 24 h. More prominent differences in expression between the two homologs are detected at the translational level, alluding to a potential higher requirement for HSPA1B during proteotoxic stress response in PDSCs.
Collapse
|
46
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
47
|
Pariollaud M, Ibrahim LH, Irizarry E, Mello RM, Chan AB, Altman BJ, Shaw RJ, Bollong MJ, Wiseman RL, Lamia KA. Circadian disruption enhances HSF1 signaling and tumorigenesis in Kras-driven lung cancer. SCIENCE ADVANCES 2022; 8:eabo1123. [PMID: 36170373 PMCID: PMC9519049 DOI: 10.1126/sciadv.abo1123] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/12/2022] [Indexed: 05/04/2023]
Abstract
Disrupted circadian rhythmicity is a prominent feature of modern society and has been designated as a probable carcinogen by the World Health Organization. However, the biological mechanisms that connect circadian disruption and cancer risk remain largely undefined. We demonstrate that exposure to chronic circadian disruption [chronic jetlag (CJL)] increases tumor burden in a mouse model of KRAS-driven lung cancer. Molecular characterization of tumors and tumor-bearing lung tissues revealed that CJL enhances the expression of heat shock factor 1 (HSF1) target genes. Consistently, exposure to CJL disrupted the highly rhythmic nuclear trafficking of HSF1 in the lung, resulting in an enhanced accumulation of HSF1 in the nucleus. HSF1 has been shown to promote tumorigenesis in other systems, and we find that pharmacological or genetic inhibition of HSF1 reduces the growth of KRAS-mutant human lung cancer cells. These findings implicate HSF1 as a molecular link between circadian disruption and enhanced tumorigenesis.
Collapse
Affiliation(s)
- Marie Pariollaud
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lara H. Ibrahim
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emanuel Irizarry
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebecca M. Mello
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alanna B. Chan
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brian J. Altman
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael J. Bollong
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katja A. Lamia
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Hsp70–Bag3 Module Regulates Macrophage Motility and Tumor Infiltration via Transcription Factor LITAF and CSF1. Cancers (Basel) 2022; 14:cancers14174168. [PMID: 36077705 PMCID: PMC9454964 DOI: 10.3390/cancers14174168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Patients’ normal cells, such as lymphocytes, fibroblasts, or macrophages, can either suppress or facilitate tumor growth. Macrophages can infiltrate tumors and secrete molecules that enhance the proliferation of cancer cells and their invasion into neighboring tissues and blood. Here, we investigated the mechanism of action of a novel small molecule that suppresses the infiltration of macrophages into tumors and demonstrates potent anticancer activity. We identified the entire pathway that links the intracellular protein Hsp70, which is inhibited by this small molecule, with the macrophage motility system. This study will lay the basis for a novel approach to cancer treatment via targeting tumor-associated macrophages. Abstract The molecular chaperone Hsp70 has been implicated in multiple stages of cancer development. In these processes, a co-chaperone Bag3 links Hsp70 with signaling pathways that control cancer development. Recently, we showed that besides affecting cancer cells, Hsp70 can also regulate the motility of macrophages and their tumor infiltration. However, the mechanisms of these effects have not been explored. Here, we demonstrated that the Hsp70-bound co-chaperone Bag3 associates with a transcription factor LITAF that can regulate the expression of inflammatory cytokines and chemokines in macrophages. Via this interaction, the Hsp70–Bag3 complex regulates expression levels of LITAF by controlling its proteasome-dependent and chaperone-mediated autophagy-dependent degradation. In turn, LITAF regulates the expression of the major chemokine CSF1, and adding this chemokine to the culture medium reversed the effects of Bag3 or LITAF silencing on the macrophage motility. Together, these findings uncover the Hsp70–Bag3–LITAF–CSF1 pathway that controls macrophage motility and tumor infiltration.
Collapse
|
49
|
Liu Q, Liu J, Huang X. Unraveling the mystery: How bad is BAG3 in hematological malignancies? Biochim Biophys Acta Rev Cancer 2022; 1877:188781. [PMID: 35985611 DOI: 10.1016/j.bbcan.2022.188781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
BAG3, also known as BIS and CAIR-1, interacts with Hsp70 via its BAG domain and with other molecules through its WW domain, PXXP repeats and IPV motifs. BAG3 can participate in major cellular pathways including apoptosis, autophagy, cytoskeleton structure, and motility by regulating the expression, location, and activity of its chaperone proteins. As a multifunctional protein, BAG3 is highly expressed in skeletal muscle, cardiomyocytes and multiple tumors, and its intracellular expression can be stimulated by stress. The functions and mechanisms of BAG3 in hematological malignancies have recently been a topic of interest. BAG3 has been confirmed to be involved in the development and chemoresistance of hematological malignancies and to act as a prognostic indicator. Modulation of BAG3 and its corresponding proteins has thus emerged as a promising therapeutic and experimental target. In this review, we consider the characteristics of BAG3 in hematological malignancies as a reference for further clinical and fundamental investigations.
Collapse
Affiliation(s)
- Qinghan Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Jinde Liu
- Department of Respiratory, Dandong Central Hospital, Dandong, Liaoning, China
| | - Xinyue Huang
- The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
50
|
Diao H, Wu K, Lan D, Wang D, Zhao J, Huang B, Shao X, Wang R, Tan H, Tang X, Yan M, Zhang Y. BAG3 Alleviates Atherosclerosis by Inhibiting Endothelial-to-Mesenchymal Transition via Autophagy Activation. Genes (Basel) 2022; 13:genes13081338. [PMID: 35893075 PMCID: PMC9332509 DOI: 10.3390/genes13081338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic systemic inflammatory disease that causes severe cardiovascular events. B cell lymphoma 2-associated athanogene (BAG3) was proven to participate in the regulation of tumor angiogenesis, neurodegenerative diseases, and cardiac diseases, but its role in atherosclerosis remains unclear. Here, we aim to investigate the role of BAG3 in atherosclerosis and elucidate the potential molecular mechanism. In this study, ApoE-/- mice were given a tail-vein injection of BAG3-overexpressing lentivirus and fed a 12-week high-fat diet (HFD) to investigate the role of BAG3 in atherosclerosis. The overexpression of BAG3 reduced plaque areas and improved atherosclerosis in ApoE-/- mice. Our research proves that BAG3 promotes autophagy in vitro, contributing to the suppression of EndMT in human umbilical vein endothelial cells (HUVECs). Mechanically, autophagy activation is mediated by BAG3 via the interaction between BAG3 and its chaperones HSP70 and HSPB8. In conclusion, BAG3 facilitates autophagy activation via the formation of the chaperone-assisted selective autophagy (CASA) complex interacting with HSP70 and HSPB8, leading to the inhibition of EndMT during the progression of atherosclerosis and indicating that BAG3 is a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Kaili Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Dingming Lan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Jingjing Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Bingying Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Ruonan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Huiling Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.D.); (K.W.); (D.L.); (D.W.); (J.Z.); (B.H.); (X.S.); (R.W.); (H.T.); (X.T.); (M.Y.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|