1
|
Maowa Z, Rahman MS, Hoque MN, Mahmud MAA, Alam MS. Spermatogenic cell apoptosis and impaired spermatogenesis in prepubertal mice: time- and dose-dependent toxicity of silver nanoparticles. Reprod Fertil Dev 2025; 37:RD24161. [PMID: 40300040 DOI: 10.1071/rd24161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/25/2025] [Indexed: 05/01/2025] Open
Abstract
Context The increasing use of nanoparticles (NPs) in various consumer, agricultural, and pharmaceutical applications has raised considerable concern about their potential risks to human health and the environment. Aims This study investigated the progressive toxic effects of silver nanoparticles (AgNPs) in mouse testes after single and repeated exposure. Methods Prepubertal male mice were exposed to AgNPs by gavage at 50, 200, and 500mg/kg body weight. Testis, epididymis, and serum were collected and subjected to histopathological analysis. Key results Daily exposure to AgNPs for 7 and 15days (n =8) decreased sperm count, while increasing abnormal sperm count and testicular atrophy in a dose- and exposure-time-dependent manner. A single exposure to AgNPs at a dose of 200mg/kg body weight (n =8) resulted in testicular histopathological changes and spermatogenic cell apoptosis in a time-dependent manner. The highest number of apoptotic cells was detected 24h after exposure, whereas testicular testosterone (TT) concentrations decreased at 12 and 24h. To explore whether AgNPs suppress TT concentrations by affecting the hypothalamus-pituitary-testicular (HPT) axis, we analyzed serum LH concentrations; however, no significant changes in LH levels were found. Conclusion This study showed that AgNPs cause potential adverse effects on the testis, specifically, spermatogenic cell apoptosis, and impaired spermatogenesis in an exposure time- and dose-dependent manner. The testicular toxicity was not associated with suppression of the HPT axis, possibly involving other mechanisms. Implications These findings contribute to the broader discussion on NP safety and regulatory considerations, particularly regarding their reproductive toxicity.
Collapse
Affiliation(s)
- Zannatul Maowa
- Department of Anatomy and Histology, Gazipur Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Md Sharifur Rahman
- Department of Anatomy and Histology, Gazipur Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Gazipur Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Md Abdullah Al Mahmud
- Department of Anatomy and Histology, Gazipur Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Mohammad Shah Alam
- Department of Anatomy and Histology, Gazipur Agricultural University, Salna, Gazipur 1706, Bangladesh
| |
Collapse
|
2
|
Aloisi M, Poma AMG. Nanoplastics as Gene and Epigenetic Modulators of Endocrine Functions: A Perspective. Int J Mol Sci 2025; 26:2071. [PMID: 40076697 PMCID: PMC11899923 DOI: 10.3390/ijms26052071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Nanoplastics (NPs) represent a major challenge in environmental contamination resulting from the physical, chemical, and biological degradation of plastics. Their characterization requires advanced and expensive methods, which limit routine analyses. The biological effects of NPs depend on their chemical and physical properties, which influence toxicity and interactions with biological systems. Studies in animal models, such as Daphnia magna and Danio rerio, show that NPs induce oxidative stress, inflammation, DNA damage, and metabolic alterations, often related to charge and particle size. NPs affect endocrine functions by acting as endocrine disruptors, interfering with thyroid and sex hormones and showing potential transgenerational effects through epigenetic modifications, including DNA hyper- and hypomethylation. Behavioral and neurofunctional alterations have been observed in Danio rerio and mouse models, suggesting a link between NP exposure and neurotransmitters such as dopamine and serotonin. Despite limited human studies, the presence of NPs in breast milk and placenta underscores the need for further investigation of health effects. Research focusing on genetic and epigenetic markers is encouraged to elucidate the molecular mechanisms and potential risks associated with chronic exposure.
Collapse
|
3
|
Li Y, Wu Q, Li X, Cournoyer P, Choudhuri S, Guo L, Chen S. Toxicity of cannabidiol and its metabolites in TM3 mouse Leydig cells: a comparison with primary human Leydig cells. Arch Toxicol 2024; 98:2677-2693. [PMID: 38630283 PMCID: PMC11272754 DOI: 10.1007/s00204-024-03754-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 07/26/2024]
Abstract
Cannabidiol (CBD), one of the major components extracted from the plant Cannabis sativa L., has been used as a prescription drug to treat seizures in many countries. CBD-induced male reproductive toxicity has been reported in animal models; however, the underlying mechanisms remain unclear. We previously reported that CBD induced apoptosis in primary human Leydig cells, which constitute the primary steroidogenic cell population in the testicular interstitium. In this study, we investigated the effects of CBD and its metabolites on TM3 mouse Leydig cells. CBD, at concentrations below 30 µM, reduced cell viability, induced G1 cell cycle arrest, and inhibited DNA synthesis. CBD induced apoptosis after exposure to high concentrations (≥ 50 µM) for 24 h or a low concentration (20 µM) for 6 days. 7-Hydroxy-CBD and 7-carboxy-CBD, the main CBD metabolites of CBD, exhibited the similar toxic effects as CBD. In addition, we conducted a time-course mRNA-sequencing analysis in both primary human Leydig cells and TM3 mouse Leydig cells to understand and compare the mechanisms underlying CBD-induced cytotoxicity. mRNA-sequencing analysis of CBD-treated human and mouse Leydig cells over a 5-day time-course indicated similar responses in both cell types. Mitochondria and lysosome dysfunction, oxidative stress, and autophagy were the major enriched pathways in both cell types. Taken together, these findings demonstrate comparable toxic effects and underlying mechanisms in CBD-treated mouse and primary human Leydig cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Patrick Cournoyer
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
4
|
Sree BK, Kumar N, Singh S. Reproductive toxicity perspectives of nanoparticles: an update. Toxicol Res (Camb) 2024; 13:tfae077. [PMID: 38939724 PMCID: PMC11200103 DOI: 10.1093/toxres/tfae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION The rapid development of nanotechnologies with their widespread prosperities has advanced concerns regarding potential health hazards of the Nanoparticles. RESULTS Nanoparticles are currently present in several consumer products, including medications, food, textiles, sports equipment, and electrical components. Despite the advantages of Nanoparticles, their potential toxicity has negative impact on human health, particularly on reproductive health. CONCLUSIONS The impact of various NPs on reproductive system function is yet to be determined. Additional research is required to study the potential toxicity of various Nanoparticles on reproductive health. The primary objective of this review is to unravel the toxic effects of different Nanoparticles on the human reproductive functions and recent investigations on the reproductive toxicity of Nanoparticles both in vitro and in vivo.
Collapse
Affiliation(s)
- B Kavya Sree
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| |
Collapse
|
5
|
Yin L, Hu C, Yu XJ. High-content analysis of testicular toxicity of BPA and its selected analogs in mouse spermatogonial, Sertoli cells, and Leydig cells revealed BPAF induced unique multinucleation phenotype associated with the increased DNA synthesis. Toxicol In Vitro 2023; 89:105589. [PMID: 36958674 PMCID: PMC10351343 DOI: 10.1016/j.tiv.2023.105589] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Bisphenol A is an endocrine disruptor that has been shown to have testicular toxicity in animal models. Its structural analog, including bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) have been introduced to the market as BPA alternatives. Previously, we developed high-content analysis (HCA) assays and applied machine learning to compare the testicular toxicity of BPA and its analogs in spermatogonial cells and testicular cell co-culture models. There are diverse cell populations in the testis to support spermatogenesis, but their cell type-specific toxicities are still not clear. The purpose of this study is to examine the selective toxicity of BPA, BPS), BPAF, and TBBPA on these testicular cells, including Sertoli cells, Leydig cells, and spermatogonia cells. We developed a high-content image-based single-cell analysis and measured a broad spectrum of adverse endpoints related to the development of reproductive toxicology, including cell number, nuclear morphology, DNA synthesis, cell cycle progression, early DNA damage response, cytoskeleton structure, DNA methylation status, and autophagy. We introduced an HCA index and spectrum to reveal multiple HCA parameters and observed distinct toxicity profiling of BPA and its analogs among three testicular types. The HCA spectrum shows the dynamic, chemical-specific, dose-dependent changes of each HCA parameter. Each chemical displayed a unique dose-dependent profile within each type of cell. All three types of cells showed the highest response to BPAF at 10 μM across all endpoints measured. BPAF targeted spermatogonial cell (C18) more significantly at 5 μM. BPS more likely targeted Sertoli cell (TM4) and Leydig cell (TM3) and less at spermatogonia cells. TBBPA targeted spermatogonia, Sertoli cells, and less at TM3 cells. BPA is mainly targeted at TM4, followed by TM3 cells, and less at spermatogonial cells. Most importantly, we observed that BPAF induced a dose-dependent increase in spermatogonia cells, not in Sertoli and Leydig cells. In summary, our current HCA assays revealed the cell-type-specific toxicities of BPA and its analogs in different testicular cells. Multinucleation induced by BPAF, along with increased DNA damage and synthesis at low doses, could possibly have a profound long-term effect on reproductive systems.
Collapse
Affiliation(s)
- Lei Yin
- ReproTox Biotech LLC, 800 Bradbury Dr. SE Science & Technology Park, Albuquerque, NM 87106, United States of America
| | - Chelin Hu
- College of Nursing School, University of New Mexico, Albuquerque, NM 87106, United States of America
| | - Xiaozhong John Yu
- College of Nursing School, University of New Mexico, Albuquerque, NM 87106, United States of America.
| |
Collapse
|
6
|
Zhang KY, Li CN, Zhang NX, Gao XC, Shen JM, Cheng DD, Wang YL, Zhang H, Lv JW, Sun JM. UPLC-QE-Orbitrap-Based Cell Metabolomics and Network Pharmacology to Reveal the Mechanism of N-Benzylhexadecanamide Isolated from Maca ( Lepidium meyenii Walp.) against Testicular Dysfunction. Molecules 2023; 28:molecules28104064. [PMID: 37241805 DOI: 10.3390/molecules28104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Testicular dysfunction (TDF) is characterized by testosterone deficiency and is caused by oxidative stress injury in Leydig cells. A natural fatty amide named N-benzylhexadecanamide (NBH), derived from cruciferous maca, has been shown to promote testosterone production. Our study aims to reveal the anti-TDF effect of NBH and explore its potential mechanism in vitro. This study examined the effects of H2O2 on cell viability and testosterone levels in mouse Leydig cells (TM3) under oxidative stress. In addition, cell metabolomics analysis based on UPLC-Q-Exactive-MS/MS showed that NBH was mainly involved in arginine biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, the TCA cycle and other metabolic pathways by affecting 23 differential metabolites, including arginine and phenylalanine. Furthermore, we also performed network pharmacological analysis to observe the key protein targets in NBH treatment. The results showed that its role was to up-regulate ALOX5, down-regulate CYP1A2, and play a role in promoting testicular activity by participating in the steroid hormone biosynthesis pathway. In summary, our study not only provides new insights into the biochemical mechanisms of natural compounds in the treatment of TDF, but also provides a research strategy that integrates cell metabolomics and network pharmacology in order to promote the screening of new drugs for the treatment of TDF.
Collapse
Affiliation(s)
- Kai-Yue Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chun-Nan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Nan-Xi Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiao-Chen Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia-Ming Shen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Duan-Duan Cheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yue-Long Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jing-Wei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jia-Ming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
7
|
Minghui F, Ran S, Yuxue J, Minjia S. Toxic effects of titanium dioxide nanoparticles on reproduction in mammals. Front Bioeng Biotechnol 2023; 11:1183592. [PMID: 37251560 PMCID: PMC10213439 DOI: 10.3389/fbioe.2023.1183592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Titanium dioxide nanoparticles (nano-TiO2) are widely used in food, textiles, coatings and personal care products; however, they cause environmental and health concerns. Nano-TiO2 can accumulate in the reproductive organs of mammals in different ways, affect the development of the ovum and sperm, damage reproductive organs and harm the growth and development of offspring. The oxidative stress response in germ cells, irregular cell apoptosis, inflammation, genotoxicity and hormone synthesis disorder are the main mechanisms of nano-TiO2 toxicity. Possible measures to reduce the harmful effects of nano-TiO2 on humans and nontarget organisms have emerged as an underexplored topic requiring further investigation.
Collapse
|
8
|
Klein JP, Mery L, Boudard D, Ravel C, Cottier M, Bitounis D. Impact of Nanoparticles on Male Fertility: What Do We Really Know? A Systematic Review. Int J Mol Sci 2022; 24:576. [PMID: 36614018 PMCID: PMC9820737 DOI: 10.3390/ijms24010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.
Collapse
Affiliation(s)
- Jean-Philippe Klein
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Lionel Mery
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Delphine Boudard
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35000 Rennes, France
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Michèle Cottier
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Dimitrios Bitounis
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| |
Collapse
|
9
|
Impact of chitosan administration on titanium dioxide nanoparticles induced testicular dysfunction. Sci Rep 2022; 12:19667. [PMID: 36385626 PMCID: PMC9669025 DOI: 10.1038/s41598-022-22044-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The potential reproductive toxic effects of oral TiO2 NPs in adult male rats as well as the possible alleviation of chitosan administration was investigated. Animals were allocated to four groups; the first group received deionized water and was assigned as a control group. In the second group, rats received chitosan at a dose of 5 mg/kg BW/day. The third group was designed for administration of TiO2 NPs at a dose of 150 mg/kg BW/day (1/80 LD50). Rats in the fourth group received both TiO2 NPs and chitosan. After 14 days, TiO2 NPs induced testicular lipid peroxidation as well as oxidative stress. Nano-titanium significantly upregulated genes that encode apoptosis and inflammation in testicular tissue. Moreover, it induced histological alteration in the testicular structure with impairment in spermatogenesis via reduction of PCNA immune-staining. Chitosan administration significantly improved the activities of testicular GPx, SOD, and CAT enzymes. In addition, it significantly down-regulated the relative expressions of pro-apoptotic and pro-inflammatory testicular genes. Chitosan was able to improve the testicular architecture as well as spermatogenesis. The current study revealed the capability of chitosan to ameliorate nano-titanium induced testicular toxicity. Thus, attention should be given to the extensive consumption of nano-titanium particles.
Collapse
|
10
|
Aslam I, Roeffaers MBJ. Carbonaceous Nanoparticle Air Pollution: Toxicity and Detection in Biological Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223948. [PMID: 36432235 PMCID: PMC9698098 DOI: 10.3390/nano12223948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 05/27/2023]
Abstract
Among the different air pollutants, particulate matter (PM) is of great concern due to its abundant presence in the atmosphere, which results in adverse effects on the environment and human health. The different components of PM can be classified based on their physicochemical properties. Carbonaceous particles (CPs) constitute a major fraction of ultrafine PM and have the most harmful effects. Herein, we present a detailed overview of the main components of CPs, e.g., carbon black (CB), black carbon (BC), and brown carbon (BrC), from natural and anthropogenic sources. The emission sources and the adverse effects of CPs on the environment and human health are discussed. Particularly, we provide a detailed overview of the reported toxic effects of CPs in the human body, such as respiratory effects, cardiovascular effects, neurodegenerative effects, carcinogenic effects, etc. In addition, we also discuss the challenges faced by and limitations of the available analytical techniques for the qualitative and quantitative detection of CPs in atmospheric and biological samples. Considering the heterogeneous nature of CPs and biological samples, a detailed overview of different analytical techniques for the detection of CPs in (real-exposure) biological samples is also provided. This review provides useful insights into the classification, toxicity, and detection of CPs in biological samples.
Collapse
|
11
|
Moghanlo H, Shariatzadeh SMA. Beneficial effects of Spirulina platensis on mice testis damaged by silver nanoparticles. Andrologia 2022; 54:e14606. [PMID: 36217242 DOI: 10.1111/and.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been used widely in medical applications and various industries. Humans could be exposed to the risk of AgNPs toxicity through different routes. The current study aimed to investigate the role of Spirulina platensis (SP) against the side effects of AgNPs on mice testis. Adult male NMRI mice were divided into four groups: control group, SP group (300 mg/kg bwt), AgNPs (20 nm) group (500 mg/kg bwt), Co-treated group (SP + AgNPs). The groups were treated orally for 35 days. Subsequently, epididymal sperm parameters, sperm DNA integrity, daily sperm production (DSP), sexual hormones level, malondialdehyde (MDA), total antioxidant capacity (TAC) and spermatogenesis indices were measured. In addition, the histopathology of testes was evaluated using tissue processing, haematoxylin-eosin staining and stereology techniques. A significant decrease in the number of spermatogenic cells, Leydig cells and sperm parameters was observed in the AgNPs treated group. Serum levels of testosterone and TAC were decreased significantly following AgNPs treatment. Also, MDA incremented in the serum of AgNPs treated mice. The stereological analysis revealed that AgNPs exposure induced histopathological changes in the seminiferous tubules, degeneration and dissociation of spermatogenic cells. In contrast, SP co-administration significantly counteracted AgNPs reproductive toxicity impacts. SP co-exposure caused an increase in spermatogenesis indices, TAC and also a decrease in MDA. SP improved the histopathological changes of testes tissue and spermatozoa abnormalities. In parallel, SP modulated levels of testosterone, FSH and LH. Spirulina platensis exhibited the protective potential by regulating oxidative stress against AgNPs-induced reproductive toxicity. SP could be a candidate therapy against AgNPs reprotoxic impacts.
Collapse
Affiliation(s)
- Hossein Moghanlo
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| | | |
Collapse
|
12
|
Gamal A, Kortam LE, El Ghareeb AEW, El Rahman HAA. Assessment of the potential toxic effect of magnetite nanoparticles on the male reproductive system based on immunological and molecular studies. Andrologia 2022; 54:e14613. [PMID: 36216500 DOI: 10.1111/and.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Magnetite nanoparticles (MNPs) are the most conventional type of iron oxide nanoparticles used in the food industrial processes, removal of heavy metals, and biomedical applications in vivo or in vitro. Until now, there is no sufficient information that can confirm its effect on the body's immune system and reproductive health in males. The purpose of this research is to estimate the immunotoxic and reproductive toxic effects of MNPs in male rats. This study included 36 adult male albino rats divided into three groups. The experimental groups were intraperitoneally injected with MNPs at doses of 5 and 10 mg/kg body weight 3 times/week for 60 days, while the control group was injected with saline solution. MNPs caused a significant decrease in the body weight change of the high-treated group. MNPs produced changes in the lymphocyte proliferation rate which referred to a significant immunotoxic effect measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-di-phenyltetrazolium bromide reduction method. The testicular tissue of male-treated rats showed some moderate and severe degenerative changes. The sperm parameters of count, motility, and viability were significantly decreased. Sperm morphological abnormalities were detected in all treated animals. MNPs produced a significant decrease in testosterone levels, increased the level of malondialdehyde, impaired the activity of the antioxidant enzymes and induced testicular DNA damage. In conclusion, MNPs affected the normal immune state in male rats and facilitated the generation of reactive oxygen species subsequently triggering testicular oxidative stress damages. All these consequences had a negative impact on male reproductive health.
Collapse
Affiliation(s)
- Aya Gamal
- Department of Zoology, Faculty of Science, Cairo University, Egypt
| | - Laila E Kortam
- Department of Molecular Immunity, Animal Reproduction Research Institute (ARRI), Egypt
| | | | | |
Collapse
|
13
|
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711066. [PMID: 36078782 PMCID: PMC9518444 DOI: 10.3390/ijerph191711066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/17/2023]
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.
Collapse
Affiliation(s)
| | | | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Kulczycka
- Institute of Health Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81448-7182
| |
Collapse
|
14
|
Lokman M, Ashraf E, Kassab RB, Abdel Moneim AE, El-Yamany NA. Aluminum Chloride-Induced Reproductive Toxicity in Rats: the Protective Role of Zinc Oxide Nanoparticles. Biol Trace Elem Res 2022; 200:4035-4044. [PMID: 34741695 DOI: 10.1007/s12011-021-03010-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 12/30/2022]
Abstract
Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. Therefore, this study aimed to investigate the effects of zinc oxide nanoparticle (ZnONP) treatment on Al-induced reproductive toxicity in rats. Thirty-two adult male albino rats were allocated into four equal groups as follows: control, AlCl3 orally administered group (100 mg/kg bwt), ZnONPs injected intraperitoneally (i.p.) group (4 mg/kg bwt), and ZnONPs + AlCl3-treated group. The treatment was daily extended for 42 consecutive days. Oral administration of AlCl3 showed an oxidative damage confirmed by an increase in malondialdehyde and nitric oxide levels and superoxide dismutase activity and accompanied by a decrease in glutathione content and catalase activity. Also, AlCl3 administration increased the pro-inflammatory mediator tumor necrosis factor-alpha. Furthermore, significant declines in the levels of serum male reproductive hormones testosterone, luteinizing hormone, and follicle-stimulating hormone in AlCl3-intoxicated rats were noticed. In parallel, severe histopathological alterations were observed in testis tissues. Additionally, the immunohistochemical analysis showed that AlCl3 administration potentiates cell death in the testicular tissue by elevating the immunostaining intensity signal for the pro-apoptotic protein, cysteinyl aspartate specific protease-3 (caspase-3) and a marked depletion in the cell proliferation expression marker, Ki-67, in germinal cells of AlCl3-treated group. On the other hand, the daily i.p. injection to rats with ZnONPs before AlCl3 was found to ameliorate the reproductive toxicity induced by Al administration through reducing the testicular oxidative stress and improving the inflammatory, apoptotic, and reproductive markers as well as histopathological alterations in the testis. These results suggest that ZnONPs could be used as an alternative agent to minimize the reproductive toxicity associated with Al exposure through its antioxidant, anti-inflammatory, anti-apoptotic, and reproductive modulatory activities.
Collapse
Affiliation(s)
- Maha Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman Ashraf
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Nabil A El-Yamany
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
15
|
Cornu R, Béduneau A, Martin H. Ingestion of titanium dioxide nanoparticles: a definite health risk for consumers and their progeny. Arch Toxicol 2022; 96:2655-2686. [PMID: 35895099 DOI: 10.1007/s00204-022-03334-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/05/2022] [Indexed: 01/13/2023]
Abstract
Titanium dioxide (TiO2) is one of the most commonly used nanomaterials in the world. Additive E171, which is used in the food industry, contains a nanometric particle fraction of TiO2. Oral exposure of humans to these nanoparticles (NPs) is intensive, leading to the question of their impact on health. Daily oral intake by rats of amounts of E171 that are relevant to human intake has been associated with an increased risk of chronic intestinal inflammation and carcinogenesis. Due to their food preferences, children are very exposed to this NP. Furthermore, maternal-foetal transfer of TiO2 NPs during pregnancy, as well as exposure of the offspring by breastfeeding, have been recently described. In France, the use of E171 in the production of foodstuffs was suspended in January 2020 as a precautionary measure. To provide some answers to this public health problem and help global regulatory agencies finalize their decisions, we reviewed in vitro and in vivo studies that address the effects of TiO2 NPs through oral exposure, especially their effects on the gastrointestinal tract, one of the most exposed tissues. Our review also highlights the effects of exposure on the offspring during pregnancy and by breastfeeding.
Collapse
Affiliation(s)
- Raphaël Cornu
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Arnaud Béduneau
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Hélène Martin
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000, Besançon, France.
| |
Collapse
|
16
|
Nicy V, Das M, Gurusubramanian G, Mondal P, Roy VK. Treatment of copper nanoparticles (CuNPs) for two spermatogenic cycles impairs testicular activity via down-regulating steroid receptors and inhibition of germ cell proliferation in a mice model. Nanotoxicology 2022; 16:658-678. [PMID: 36256793 DOI: 10.1080/17435390.2022.2133647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although copper is an indispensable trace metal for biological functions, its excess exposure causes hazardous effects on health. Copper in the form of nanoparticles (CuNPs) is widely used at present and therefore, the living organism is at continuous risk of its adverse effect. The prolonged treatment of CuNPs has not been evaluated yet on the male reproductive system. To demonstrate the combined adverse effects and the mechanism of copper nanoparticles (CuNPs), three doses of CuNPs, 10, 100 and 200 mg/kg were orally given to mice for 70 days. The present study demonstrated that CuNPs decreased the sperm quality parameters, male circulating hormones, induces testicular damages, increased oxidative stress, apoptosis, decreases antioxidant enzymes, germ cell proliferation, and increases the expression of 8-oxoguanine DNA glycosylase-1 (OGG1), apelin receptor (APJ) as well. CuNPs also down-regulated the expression of AR and Erα in the testis. These results suggest that CuNPs manifested their adverse effect on testis via modulating steroid and cytokine (apelin) receptors. The adverse effect of testis was most pronounced at the highest dose (200 mg/kg) of CuNPs, however, other doses show a less toxic effect on various parameters. In conclusion, results indicated that CuNPs may impair spermatogenesis via oxidative stress-mediated DNA damage and germ cell apoptosis at high doses.
Collapse
Affiliation(s)
- Vanrohlu Nicy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Milirani Das
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | - Pradip Mondal
- Department of Zoology, Netaji Mahavidyalaya, Hooghly, West Bengal, India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
17
|
Arslan NP, Keles ON, Gonul-Baltaci N. Effect of Titanium Dioxide and Silver Nanoparticles on Mitochondrial Dynamics in Mouse Testis Tissue. Biol Trace Elem Res 2022; 200:1650-1658. [PMID: 34105085 DOI: 10.1007/s12011-021-02763-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
This study was performed to investigate whether the toxicity of nanoparticles (Ag NPs or TiO2 NPs) affected mitochondrial dynamics (mitochondrial fusion and fission mechanisms) in testicular cells of mice. Animals were assigned into three groups (ten mice per group): control group (distilled water), TiO2 NP group (5 mg/kg per dose), and Ag NP group (5 mg/kg per dose). NPs were administered intravenously (via tail vein) to mice with 3-day intervals. To determine the possible toxic effect of NPs on mitochondrial dynamics, the expression levels of mitochondrial fission (Drp1)- and fusion (Mfn1, Mfn2, OPA1)-related genes were analyzed. The results showed that both Ag NPs and TiO2 NPs entered the testis via the blood-testis barier and accumulated in mouse testis tissue. Experiments showed that administration of Ag NPs neither alters testicular weight and testicular index nor causes significant toxic effect on sperm parameters. RT-PCR analysis demonstrated that Ag NP treatment did not disrupt mitochondrial dynamics in testicular cells. Conversely, administration of TiO2 NPs (anatase, < 25 nm) decreased the sperm motility and the percentages of sperms with swollen tail. Furthermore, RT-PCR and western blot analyses showed that TiO2 NPs disrupted mitochondrial dynamics by causing excess mitochondrial fission (excess expression of Drp1 gene and DRP1 protein). This is the first report on the toxicity of nanoparticles on mitochondrial dynamics (fusion and fission mechanisms) in testicular cells.
Collapse
Affiliation(s)
- Nazli Pinar Arslan
- Vocational School of Health Services, Bingol University, 12000, Bingol, Turkey.
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum, Turkey.
| | - Osman Nuri Keles
- Department of Histology and Embryology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Nurdan Gonul-Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
18
|
Mancuso F, Arato I, Di Michele A, Antognelli C, Angelini L, Bellucci C, Lilli C, Boncompagni S, Fusella A, Bartolini D, Russo C, Moretti M, Nocchetti M, Gambelunghe A, Muzi G, Baroni T, Giovagnoli S, Luca G. Effects of Titanium Dioxide Nanoparticles on Porcine Prepubertal Sertoli Cells: An " In Vitro" Study. Front Endocrinol (Lausanne) 2022; 12:751915. [PMID: 35046890 PMCID: PMC8762334 DOI: 10.3389/fendo.2021.751915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The increasing use of nanomaterials in a variety of industrial, commercial, medical products, and their environmental spreading has raised concerns regarding their potential toxicity on human health. Titanium dioxide nanoparticles (TiO2 NPs) represent one of the most commonly used nanoparticles. Emerging evidence suggested that exposure to TiO2 NPs induced reproductive toxicity in male animals. In this in vitro study, porcine prepubertal Sertoli cells (SCs) have undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposures at both subtoxic (5 µg/ml) and toxic (100 µg/ml) doses of TiO2 NPs. After performing synthesis and characterization of nanoparticles, we focused on SCs morphological/ultrastructural analysis, apoptosis, and functionality (AMH, inhibin B), ROS production and oxidative DNA damage, gene expression of antioxidant enzymes, proinflammatory/immunomodulatory cytokines, and MAPK kinase signaling pathway. We found that 5 µg/ml TiO2 NPs did not induce substantial morphological changes overtime, but ultrastructural alterations appeared at the third week. Conversely, SCs exposed to 100 µg/ml TiO2 NPs throughout the whole experiment showed morphological and ultrastructural modifications. TiO2 NPs exposure, at each concentration, induced the activation of caspase-3 at the first and second week. AMH and inhibin B gene expression significantly decreased up to the third week at both concentrations of nanoparticles. The toxic dose of TiO2 NPs induced a marked increase of intracellular ROS and DNA damage at all exposure times. At both concentrations, the increased gene expression of antioxidant enzymes such as SOD and HO-1 was observed whereas, at the toxic dose, a clear proinflammatory stress was evaluated along with the steady increase in the gene expression of IL-1α and IL-6. At both concentrations, an increased phosphorylation ratio of p-ERK1/2 was observed up to the second week followed by the increased phosphorylation ratio of p-NF-kB in the chronic exposure. Although in vitro, this pilot study highlights the adverse effects even of subtoxic dose of TiO2 NPs on porcine prepubertal SCs functionality and viability and, more importantly, set the basis for further in vivo studies, especially in chronic exposure at subtoxic dose of TiO2 NPs, a condition closer to the human exposure to this nanoagent.
Collapse
Affiliation(s)
- Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Angelini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technology (CAST) and Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Aurora Fusella
- Center for Advanced Studies and Technology (CAST) and Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Angela Gambelunghe
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giacomo Muzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Tiziano Baroni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, Terni, Italy
| |
Collapse
|
19
|
Avet C, Paul EN, Garrel G, Grange-Messent V, L'Hôte D, Denoyelle C, Corre R, Dupret JM, Lanone S, Boczkowski J, Simon V, Cohen-Tannoudji J. Carbon Black Nanoparticles Selectively Alter Follicle-Stimulating Hormone Expression in vitro and in vivo in Female Mice. Front Neurosci 2021; 15:780698. [PMID: 34938157 PMCID: PMC8685435 DOI: 10.3389/fnins.2021.780698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Toxic effects of nanoparticles on female reproductive health have been documented but the underlying mechanisms still need to be clarified. Here, we investigated the effect of carbon black nanoparticles (CB NPs) on the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which are key regulators of gonadal gametogenesis and steroidogenesis. To that purpose, we subjected adult female mice to a weekly non-surgical intratracheal administration of CB NPs at an occupationally relevant dose over 4 weeks. We also analyzed the effects of CB NPs in vitro, using both primary cultures of pituitary cells and the LβT2 gonadotrope cell line. We report here that exposure to CB NPs does not disrupt estrous cyclicity but increases both circulating FSH levels and pituitary FSH β-subunit gene (Fshb) expression in female mice without altering circulating LH levels. Similarly, treatment of anterior pituitary or gonadotrope LβT2 cells with increasing concentrations of CB NPs dose-dependently up-regulates FSH but not LH gene expression or release. Moreover, CB NPs enhance the stimulatory effect of GnRH on Fshb expression in LβT2 cells without interfering with LH regulation. We provide evidence that CB NPs are internalized by LβT2 cells and rapidly activate the cAMP/PKA pathway. We further show that pharmacological inhibition of PKA significantly attenuates the stimulatory effect of CB NPs on Fshb expression. Altogether, our study demonstrates that exposure to CB NPs alters FSH but not LH expression and may thus lead to gonadotropin imbalance.
Collapse
Affiliation(s)
- Charlotte Avet
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Emmanuel N Paul
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Ghislaine Garrel
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Valérie Grange-Messent
- Sorbonne Université, CNRS, Inserm, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France
| | - David L'Hôte
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Chantal Denoyelle
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Raphaël Corre
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | | | - Sophie Lanone
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Jorge Boczkowski
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Violaine Simon
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | | |
Collapse
|
20
|
Respiratory exposure to carbon black nanoparticles may induce testicular structure damage and lead to decreased sperm quality in mice. Reprod Toxicol 2021; 106:32-41. [PMID: 34624488 DOI: 10.1016/j.reprotox.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022]
Abstract
Environmental carbon black nanoparticles (CBNPs) can enter into various organs including testes through the respiratory tract. However, there are few studies describing reproductive toxicity of CBNPs after respiratory exposure. In this study, male KM mice were exposed to CBNPs in their natural breathing state. Four-, 8-, and 12-week-old mice were exposed to 0, 9, 18 and 27 mg/m3 of CBNPs for 4 weeks in order to examine the relationship between CBNP exposure and age. Eight-week-old mice were exposed to CBNPs at the same four concentrations for 1-4 weeks in order to examine the effects of CBNP exposure time. After CBNP exposure, testicular oxidative stress and inflammation increased significantly, and these effects varied with exposure time. Seminiferous tubule diameter (STD), seminiferous epithelium height (SEH), the number of spermatogenic and Leydig cells, sperm motility, and sperm speed decreased significantly, and these effects varied with exposure dose. Data analyses suggested that increased oxidative stress and inflammation in testes damaged testicular morphology, spermatogenesis, and testosterone secretion, and decreased sperm quality. Morphological damage to the testes was also closely related to decreased the sperm quantity. These findings are of significance for evaluating the reproductive toxicity of CBNPs.
Collapse
|
21
|
Liu P, Zhao Y, Wang S, Xing H, Dong WF. Effect of combined exposure to silica nanoparticles and cadmium chloride on female zebrafish ovaries. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103720. [PMID: 34332080 DOI: 10.1016/j.etap.2021.103720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Silica nanoparticles (SiNPs) and cadmium chloride (CdCl2) are two important environmental pollutants. In previous research, found that SiNPs in zebrafish larvae can amplify the cardiovascular damage caused by cadmium. Whether SiNPs in the ovaries can amplify the adverse effects of cadmium on the zebrafish ovaries is worth studying problem. In this study, sexually mature female zebrafish were used as model organisms and exposed to 1 μmol/L CdCl2 and/or 25 μg/mL SiNPs for 30 days. The results showed that the structure and function of ovaries in the sole and combined exposure groups changed significantly, resulting in reduced ovarian quality, decreased number of mature oocytes, and the development of malformed offspring. A deep-sequencing analysis showed that organisms' lipid metabolism and transportation, estrogen metabolism, and response to the maturation, meiosis, and vitellogenin synthesis of oocytes were significantly affected by single exposure or combined exposure. These findings provide further insights into the harm of cooperation of CdCl2 and/or SiNPs to the aquatic ecosystems.
Collapse
Affiliation(s)
- Pai Liu
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Yeming Zhao
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Sheng Wang
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Hao Xing
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China
| | - Wen-Fei Dong
- University of Science and Technology of China, Hefei, 230026, People's Republic of China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), 88 Keling Road, Suzhou, 215163, People's Republic of China.
| |
Collapse
|
22
|
Hong Q, Huo S, Tang H, Qu X, Yue B. Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants. Front Bioeng Biotechnol 2021; 9:694635. [PMID: 34589470 PMCID: PMC8473796 DOI: 10.3389/fbioe.2021.694635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023] Open
Abstract
Biofilms refer to complex bacterial communities that are attached to the surface of animate or inanimate objects, which highly resist the antibiotics or the host immune defense mechanisms. Pathogenic biofilms in medicine are general, chronic, and even costly, especially on medical devices and orthopedic implants. Bacteria within biofilms are the cause of many persistent infections, which are almost impossible to eradicate. Though some progress has been made in comprehending the mechanisms of biofilm formation and persistence, novel alternative compounds or strategies and effective anti-biofilm antibiotics are still lacking. Smart materials of nano size which are able to respond to an external stimulus or internal environment have a great range of applications in clinic. Recently, smart nanomaterials with or without carriage of antibiotics, targeting specific bacteria and biofilm under some stimuli, have shown great potential for pathogenic biofilm and resident bacteria eradication. First, this review briefly summarizes and describes the significance of biofilms and the process of biofilm formation. Then, we focus on some of the latest research studies involving biofilm elimination, which probably could be applied in orthopedic implants. Finally, some outstanding challenges and limitations that need to be settled urgently in order to make smart nanomaterials effectively target and treat implant biofilms are also discussed. It is hoped that there will be more novel anti-biofilm strategies for biofilm infection in the prospective future.
Collapse
Affiliation(s)
| | | | | | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|
24
|
Insight Study on the Comparison between Zinc Oxide Nanoparticles and Its Bulk Impact on Reproductive Performance, Antioxidant Levels, Gene Expression, and Histopathology of Testes in Male Rats. Antioxidants (Basel) 2020; 10:antiox10010041. [PMID: 33396429 PMCID: PMC7823932 DOI: 10.3390/antiox10010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Despite the beneficial effects of zinc oxide nanoparticles (ZnONPs) on different biomedical applications, including their antioxidant and anti-inflammatory ones, it might have cytotoxic and genotoxic impacts on the male reproductive system. Objective: The current study compares the effect of zinc oxide nanoparticles and their bulk form, at different doses, on male rats’ reproductive performance, testicular antioxidants, gene expression, and histopathology. Materials and Methods: Thirty male rats were randomly allocated equally in five groups. The control one was injected with Tween 80 (10%). The zinc oxide nanoparticle (ZnONP) groups received ZnONPs < 50 nm, specifically, 5 mg/kg (ZnONP-1) and 10 mg/kg (ZnONP-2). The bulk zinc oxide (BZnO) groups were administered 5 mg/kg (BZnO-1) and 10 mg/kg (BZnO-2), correspondingly. Rats were injected intraperitoneally with the respected materials, twice/week for eight consecutive weeks. Finally, the male rats’ sexual behavior and their pup’s performance were determined in a monogamous mating system. Rats were then anesthetized and sacrificed for semen characteristics evaluation and tissue collection for antioxidant and hormones analysis, gene expression, and histopathological examination. Results: It was shown that ZnONP-1 improved sexual behavior, semen characteristics, and pup’s performance compared to its bulk form. Similarly, the testicular antioxidants activity, glutathione (GSH), and superoxide dismutase (SOD) increased with a decrease in the malonaldehyde (MDA), interleukin 6 (IL-6), and tumor necrosis factor (TNF-α) levels. It also improves the reproductive hormone levels and mRNA expression of different steroidogenesis-associated genes and anti-apoptotic genes. Conclusion: It can be concluded that zinc oxide nanoparticles, administered at 5 mg/kg, had the most beneficial effect on male reproductive performance, while 10 mg/kg could have a detrimental effect.
Collapse
|
25
|
Keramati Khiarak B, Karimipour M, Ahmadi A, Farjah G. Effects of oral administration of titanium dioxide particles on sperm parameters and in vitro fertilization potential in mice: A comparison between nano- and fine-sized particles. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2020; 11:401-408. [PMID: 33643594 PMCID: PMC7904129 DOI: 10.30466/vrf.2018.89501.2163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/03/2018] [Indexed: 11/01/2022]
Abstract
Titanium dioxide particles (TiO2) as the second most widely used materials in consumer products are composed of nano-sized (<100 nm) particles (NPs) and fine-sized (>100 nm) particles (FPs). Toxicological studies on animals have shown that TiO2 NPs exposure can cross the blood-testis barrier and accumulate in the testis resulting in testicular tissue damage and reduction of sperm count and motility. However, there is no information on the toxic effects of TiO2 FPs on male reproductive fertility. Twenty-four adult male mice were randomly divided into three groups including control, TiO2 NPs, and TiO2 FPs (150 mg kg-1 per day). After intragastric administration for 35 days, testicular tissue alterations (seminiferous tubule diameter and germinal epithelial height), sperm parameters (count, motility, viability, morphology, and DNA quality), in vitro fertilization potential, oxidative stress assays such as malondialdehyde (MDA) content, level of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in testicular tissue were investigated. The results showed that both sizes of TiO2 caused pathologic changes in the testis and significantly increased MDA level and decreased GSH levels and activities of SOD and GPx in testicular tissue. Moreover, the administration of both sizes of TiO2 significantly decreased all of the sperm parameters and in vitro fertility (fertilization rate and pre-implantation embryos development) compared to control. Administration of TiO2 FPs similar to TiO2 NPs through inducing damages to testis led to a marked reduction in sperm quality, in vitro fertilization, and embryos development in male mice.
Collapse
Affiliation(s)
- Bahman Keramati Khiarak
- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Ahmadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Gholamhossein Farjah
- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
26
|
Tsakmakidis IA, Samaras T, Anastasiadou S, Basioura A, Ntemka A, Michos I, Simeonidis K, Karagiannis I, Tsousis G, Angelakeris M, Boscos CM. Iron Oxide Nanoparticles as an Alternative to Antibiotics Additive on Extended Boar Semen. NANOMATERIALS 2020; 10:nano10081568. [PMID: 32784995 PMCID: PMC7466471 DOI: 10.3390/nano10081568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023]
Abstract
This study examined the effect of Fe3O4 nanoparticles on boar semen. Beltsville thawing solution without antibiotics was used to extend ejaculates from 5 boars (4 ejaculates/boar). Semen samples of control group (C) and group with Fe3O4 (Fe; 0.192 mg/mL semen) were incubated under routine boar semen storage temperature (17 °C) for 0.5 h and nanoparticles were removed by a magnetic field. Before and after treatment, aliquots of all groups were cultured using standard microbiological methods. The samples after treatment were stored (17 °C) for 48 h and sperm parameters (computer-assisted sperm analyzer (CASA) variables; morphology; viability; hypo-osmotic swelling test (HOST); DNA integrity) were evaluated at storage times 0, 24, 48 h. Semen data were analyzed by a repeated measures mixed model and microbial data with Student’s t-test for paired samples. Regarding CASA parameters, Fe group did not differ from C at any time point. In group C, total motility after 24 h and progressive motility after 48 h of storage decreased significantly compared to 0 h. In group Fe, linearity (LIN) after 48 h and head abnormalities after 24 h of storage increased significantly compared to 0 h. The microbiological results revealed a significant reduction of the bacterial load in group Fe compared to control at both 24 and 48 h. In conclusion, the use of Fe3O4 nanoparticles during semen processing provided a slight anti-microbiological effect with no adverse effects on sperm characteristics.
Collapse
Affiliation(s)
- Ioannis A. Tsakmakidis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
- Correspondence: ; Tel.: +30-2310-994-467
| | - Theodoros Samaras
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Sofia Anastasiadou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Athina Basioura
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Aikaterini Ntemka
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Ilias Michos
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Konstantinos Simeonidis
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Isidoros Karagiannis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Georgios Tsousis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Mavroeidis Angelakeris
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Constantin M. Boscos
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| |
Collapse
|
27
|
Ham J, You S, Lim W, Song G. Etoxazole induces testicular malfunction in mice by dysregulating mitochondrial function and calcium homeostasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114573. [PMID: 33618463 DOI: 10.1016/j.envpol.2020.114573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 06/12/2023]
Abstract
Epidemiological relationships between pesticide use and male infertility have been suggested for a long time. Etoxazole (ETX), an oxazoline pesticide, has been extensively used for pest eradication. It is considered relatively safe and has low mammalian toxicity because it specifically inhibits chitin synthesis. However, ETX may have toxic effects on the reproductive system. In this study, we examined the effects of ETX on the reproductive system using mouse testis cell lines (TM3 for Leydig cells and TM4 for Sertoli cells) and C57BL/6 male mice. We confirmed that ETX has anti-proliferative effects on the TM3 and TM4 cell lines. Moreover, ETX induced mitochondrial dysfunction and hampers calcium homeostasis. Western blot analysis of MAPK and Akt signaling cascades was performed to demonstrate the mode of action of ETX at a molecular level. Moreover, ETX induced misregulation of genes related to testicular function. Upon oral administration of ETX in C57BL/6 male mice, testis weight was reduced and transcriptional expression related to testis function was altered. These results indicate that ETX induces testicular toxicity by inducing mitochondrial dysfunction and calcium imbalance and regulating gene expression.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungkwon You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
28
|
Hassan A, Saeed A, Afzal S, Shahid M, Amin I, Idrees M. Applications and hazards associated with carbon nanotubes in biomedical sciences. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1724151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali Hassan
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Afraz Saeed
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
29
|
Ham J, Lim W, Whang KY, Song G. Butylated hydroxytoluene induces dysregulation of calcium homeostasis and endoplasmic reticulum stress resulting in mouse Leydig cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113421. [PMID: 31677866 DOI: 10.1016/j.envpol.2019.113421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Butylated hydroxytoluene (BHT) is a synthetic phenolic antioxidant that has been used as an additive for fat- or oil-containing foods. The exposure index value increases with extended usage of the chemical. Further, estimated total amount of BHT could exceed standard regulation, considering dietary intake or another exposure. Although BHT may induce side effects in reproductive systems, adequate research had not yet been performed to confirm them. In this study, we investigated the effects of BHT on mouse Leydig cells (TM3), which are components of testis. Our results indicated that BHT suppressed cellular proliferation and induced cell cycle arrest in TM3 cells. Moreover, BHT hampered cytosolic and mitochondrial calcium homeostasis in TM3 cells. Furthermore, BHT treatment led to endoplasmic reticulum (ER) stress and DNA fragmentation, simultaneously stimulating intrinsic apoptosis signal transduction. To elucidate the mode of action of BHT on Leydig cells, we performed western blot analysis and confirmed the activation of the PI3K/AKT and MAPK pathways. Collectively, our results demonstrated that BHT has toxic effects on mouse Leydig cells via induction of calcium dysregulation and ER-mitochondria dysfunction.
Collapse
Affiliation(s)
- Jiyeon Ham
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea
| | - Kwang-Youn Whang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Rahimi Kalateh Shah Mohammad G, Karimi E, Oskoueian E, Homayouni-Tabrizi M. Anticancer properties of green-synthesised zinc oxide nanoparticles using Hyssopus officinalis extract on prostate carcinoma cells and its effects on testicular damage and spermatogenesis in Balb/C mice. Andrologia 2019; 52:e13450. [PMID: 31692026 DOI: 10.1111/and.13450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022] Open
Abstract
The unclear bio-safety issue and potential risk of nanoparticles (NPs) on various organelles can be considered as a major challenge. In the present study, we have assessed the green synthesis of ZnO nanoparticles using Hyssop (Hyssopus officinalis) extract and their effects on PC3 cell line and BALB/c mice model. The cytotoxicity of the ZnO-NPs was assessed on PC3 cell line by MTT test after characterisation. Apoptotic effect of ZnO-NPs was determined by in vitro AO/PI staining. The histopathological assessments and determination of LH and FSH levels carried out as in vivo analysis in BALB/c adult male mice. The expression of major genes involved in spermatogenesis and sperm maturation (Adam3, Prm1, Spata19, Tnp2, Gpx5) were also analysed. The obtained result demonstrated that the IC50 for PC3 cell line treated with green-synthesised ZnO-NPs during 24 and 48 hr was reported 8.07 and 5 µg/ml respectively. Meanwhile, the induced apoptosis was recorded 26.6% ± 0.05, 44% ± 0.12 and 80% ± 0.07 of PC3 cells. The results of gene expression analysis revealed that the increase in the concentration of ZnO-NPs significantly (p < .05) down-regulated the Adam3, Prm1, Spata-19, Tnp2 and Gpx5 genes. The overall results of this research elucidated that ZnO-NPs impaired spermatogenesis, sperm maturation process and sperm motility.
Collapse
Affiliation(s)
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Oskoueian
- Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Mashhad, Iran
| | | |
Collapse
|
31
|
Karimi S, Khorsandi L, Nejaddehbashi F. Protective effects of Curcumin on testicular toxicity induced by titanium dioxide nanoparticles in mice. JBRA Assist Reprod 2019; 23:344-351. [PMID: 31091065 PMCID: PMC6798598 DOI: 10.5935/1518-0557.20190031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: In this study, we investigated the preventing effects of Curcumin (Cur)
against titanium dioxide nanoparticle (NTiO2)-induced mouse
testicular damage. Methods: We assessed NTiO2-intoxicated mice received 50mg/kg of
NTiO2 for 35 days. The Cur + NTiO2 group was
pretreated with Cur (200 mg/kg) for 7 days prior to administering
NTiO2. Sperm parameters, testosterone concentration,
histological criteria, morphometric parameters and Johnsen's scoring. Results: NTiO2 significantly reduced testicular weight, testosterone
concentration, morphometric parameters, Johnsen's scoring and sperm quality
(p<0.01), as well as a significant increase in
histological criteria. Pretreatment with Cur reduced testicular weight,
ameliorated morphometric parameters, increased Johnsen's scoring, elevated
testosterone levels, and increased histological criteria such as
vacuolization, detachment, and sloughing of germ cells into the seminiferous
tubules. Cur also improved sperm parameters including sperm count, motility,
and percentage of abnormality. Conclusion: Cur was found to have a potent protective effect against spermatogenesis
defects induced by nanoparticles in mice.
Collapse
Affiliation(s)
- Samaneh Karimi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences
| | - Fereshteh Nejaddehbashi
- Cell and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Biphasic adverse effect of titanium nanoparticles on testicular function in mice. Sci Rep 2019; 9:14373. [PMID: 31591413 PMCID: PMC6779735 DOI: 10.1038/s41598-019-50741-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
The male reproductive system is being recognized as toxic targets of nanoparticles including titanium dioxide nanoparticles (TiNP). Most of these reports are, however, obtained from the results of long-term exposure of TiNP. In this study, we diversely examined the acute effects of TiNP on the male reproductive system. Male C57BL/6J mice were administered a single intravenous injection of TiNP (10, 50 mg/kg), and were sacrificed at 1, 3, and 9 days post-injection. Testicular functions (estimated by sperm motility and sperm number) were measured via computer-assisted sperm analysis (CASA). Results indicated that sperm motility was significantly reduced from 1 day following TiNP injection (in both dose), and this reduction persisted up to 9 days post-TiNP injection (10 mg/kg injection group). Interestingly, we observed no significant decrease in sperm numbers in both the testis and the cauda epididymis in either treatment groups during the course of the experiment. Therefore, we hypothesized that TiNP may target the mature spermatozoa. In addition, sperm suspensions directly incubated with TiNP showed reduced sperm motility, [3H]-thymidine incorporation, and ATP level. Our results indicated that TiNP possesses “biphasic effects”; the obstacles to mature sperms (short term effect) in addition to the impairment in testis (long-term effect).
Collapse
|
33
|
Elsharkawy EE, Abd El-Nasser M, Kamaly HF. Silver nanoparticles testicular toxicity in rat. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103194. [PMID: 31255771 DOI: 10.1016/j.etap.2019.103194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/06/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
To evaluate the potential testicular toxicity induced by silver nanoparticles (AgNPs) in Sprague Dawley rate. The protocol study was designed as follows: G1: 30 adult male rats were kept as control. G2: 30 adult male rats were administered 5.36 mg/kg of AgNPs orally, twice weekly for six months. G3: 30 adult male rats were administered 13.4 mg/kg of AgNPs orally, twice weekly for six months. The results of hormonal assay revealed that a significant decrease in testosterone level while a significant increase in LH level was obtained. The testicular homogenate showed a significant decrease in SOD activity accompanied by a significant increase in MDA level in both G2 and G3 in comparison with the control in a dose-response relationship. Sperm viability indicates a significant decrease in rats in G2 and G3 groups. A significant decrease in DNA chromatin integrity % was obtained in rats of G3 in comparison with G2 and control. The semithin and TEM sections of the testis of G2 and G3 groups showed Sertoli cells have vacuolations with a disturbance in the arrangement and the staining affinity of spermatogenic cells. The spermatogonia appeared with a moderate electron density of the nucleus and cytoplasm. The acrosome and its cap become oval and light electron dens of spermatid cells.
Collapse
Affiliation(s)
- Eman E Elsharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt.
| | - Mahmoud Abd El-Nasser
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Heba F Kamaly
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt
| |
Collapse
|
34
|
Ren L, Zhang J, Wang J, Wei J, Liu J, Li X, Zhu Y, Li Y, Guo C, Duan J, Sun Z, Zhou X. Silica nanoparticles induce spermatocyte cell apoptosis through microRNA-2861 targeting death receptor pathway. CHEMOSPHERE 2019; 228:709-720. [PMID: 31071558 DOI: 10.1016/j.chemosphere.2019.04.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Silica nanoparticles (SiNPs) are found in the environmental particulate matter and have been proved to pose an adverse effect on fertility. However, the relationship between miRNA and apoptosis induced by SiNPs in spermatogenesis and its underlying mechanism remains confusing. Therefore, the present study was designed to investigate the toxic effects of SiNPs on spermatogenic cells mediated through miRNAs. Spermatocyte cells were divided into 0 μg/mL and 5 μg/mL SiNPs groups, and the cells were collected and analyzed after passaging for 1, 10, 20, and 30 generations. miRNA profile and mRNA profile of spermatocyte cells were measured after exposure to SiNPs for 30 generations. Further, mimics and inhibitors of miRNA were used to verify the relationship between miRNA and their predicted target genes in the 30th-generation cells. The results showed that the degree of cell apoptosis in the SiNPs group significantly increased in the 30th generation. After exposure to SiNPs for 30 generations, the expression of 15 miRNAs was altered, including 5 upregulated miRNAs and 10 downregulated miRNAs. Of the 15 miRNAs, miR-138 and miR-2861 were related to the death receptor pathway. The miR-2861 mimic could target to regulate the mRNA expression of fas/fasl/ripk1 and increase the protein expression of Fas/FasL/RIPK1/FADD/caspase-8/caspase-3 of spermatogenic cells in the 30th generation, while the miR-138 inhibitor could not. In conclusion, SiNPs could cause apoptosis of spermatocyte cells by inhibiting the expression of miRNA-2861, thereby resulting in the upregulation of mRNA expression of fas/fasl/ripk1 and activating the death receptor pathway of spermatocyte cells. miRNA-2861 could be considered a biomarker of the toxic effect of SiNPs on spermatocyte cells. The main finding: Silica nanoparticles induce apoptosis in spermatocyte cells through microRNA-2861 inhibition, thereby upregulating mRNA expression of fas/fasl/ripk1 and activating the death receptor pathway of spermatocyte cells.
Collapse
Affiliation(s)
- Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; School of Nursing, Peking University, Beijing, 100191, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yupeng Zhu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
35
|
Yousefalizadegan N, Mousavi Z, Rastegar T, Razavi Y, Najafizadeh P. Reproductive toxicity of manganese dioxide in forms of micro- and nanoparticles in male rats. Int J Reprod Biomed 2019; 17:ijrm.v17i5.4603. [PMID: 31435611 PMCID: PMC6653491 DOI: 10.18502/ijrm.v17i5.4603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 01/22/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Manganese Dioxide (MnO2 ) has long been used in industry, and its application has recently been increasing in the form of nanoparticle. Objective: The present study was an attempt to assess the effects of MnO2 nanoparticles on spermatogenesis in male rats. MATERIALS AND METHODS Micro- and nanoparticles of MnO2 were injected (100 mg/kg) subcutaneously to male Wistar rats (150 ± 20 gr) once a week for a period of 4 weeks, and the vehicle group received only normal saline (each group included 8 rats). The effect of these particles on the bodyweight, number of sperms, spermatogonia, spermatocytes, diameter of seminiferous tubes, testosterone, estrogen, follicle stimulating factor, and the motility of sperms were evaluated and then compared among the control and vehicle groups as the criteria for spermatogenesis. RESULTS The results showed that a chronic injection of MnO2 nanoparticles caused a significant decrease in the number of sperms, spermatogonia, spermatocytes, diameter of seminiferous tubes (p < 0.001) and in the motility of sperms. However, no significant difference was observed in the weight of prostate, epididymis, left testicle, estradiol (p = 0.8) and testosterone hormone (p = 0.2). CONCLUSION It seems that the high oxidative power of both particles was the main reason for the disturbances in the function of the testis. It is also concluded that these particles may have a potential reproductive toxicity in adult male rats. Further studies are thus needed to determine its mechanism of action upon spermatogenesis.
Collapse
Affiliation(s)
- Narges Yousefalizadegan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Razavi
- Cellular Molecular Research Center Iran University of Medical Sciences, Tehran, Iran.
| | - Parvaneh Najafizadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
- Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Zhou L, Su X, Li B, Chu C, Sun H, Zhang N, Han B, Li C, Zou B, Niu Y, Zhang R. PM2.5 exposure impairs sperm quality through testicular damage dependent on NALP3 inflammasome and miR-183/96/182 cluster targeting FOXO1 in mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:551-563. [PMID: 30476817 DOI: 10.1016/j.ecoenv.2018.10.108] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Exposure to ambient fine particular matter (PM2.5) has been clearly associated with male reproductive disorders. However, very limited toxicological studies were carried out to investigate the potential mechanisms underlying the PM2.5-induced sperm quality decline. In the present study, we established a real time whole-body PM2.5 exposure mouse model to investigate the effects of PM2.5 on sperm quality and its potential mechanisms. Sixty male C57BL/6 mice were randomly subjected to three groups: filtered air group, unfiltered air group and concentrated air group. Half of the mice from each group were sacrificed for study when the exposure duration accumulated to 8 weeks and the rest of the mice were sacrificed when exposed for 16 weeks. Our results suggested that PM2.5 exposure could induce significant increases in circulating white blood cells and inflammation in lungs. PM2.5 exposure induced apparently DNA damages and histopathologic changes in testes. There were significantly decreased sperm densities of mice, which were paralleled with the down-regulated testosterone levels in testes tissue of mice after exposure to PM2.5 for 16 weeks. The numbers of motile sperms were decreased and sperms with abnormal morphology were increased after PM2.5 exposure in a time-depended and dose-depended manner. PM2.5 exposure significantly increased the expression of the major components of the NACHT, LRR and PYD domains-containing protein3 (NALP3) inflammasome, accompanied by the increased expression of miR-183/96/182 targeting FOXO1 in testes. The present data demonstrated that sperm quality decline induced by PM2.5 could be partly explained by the inflammatory reaction in testes which might be a consequence of systemic inflammation. The molecular mechanism was depended on the activation of NALP3 inflammasome accompanied by miR-183/96/182 targeting FOXO1 in testes.
Collapse
Affiliation(s)
- Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Chen Chu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Hongyue Sun
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Bingjie Zou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Yujie Niu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China; Department of Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, China; Department of Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
37
|
Santonastaso M, Mottola F, Colacurci N, Iovine C, Pacifico S, Cammarota M, Cesaroni F, Rocco L. In vitro genotoxic effects of titanium dioxide nanoparticles (n-TiO 2 ) in human sperm cells. Mol Reprod Dev 2019; 86:1369-1377. [PMID: 30803093 DOI: 10.1002/mrd.23134] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/01/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 -NPs) are one of the most widely engineered nanoparticles used. The study has been focused on TiO 2 -NPs genotoxic effects on human spermatozoa in vitro. TiO 2 -NPs are able to cross the blood-testis barrier induced inflammation, cytotoxicity, and gene expression changes that lead to impairment of the male reproductive system. This study presents new data about DNA damage in human sperms exposed in vitro to two n-TiO 2 concentrations (1 µg/L and 10 µg/L) for different times and the putative role of reactive oxygen species (ROS) as mediators of n-TiO 2 genotoxicity. Primary n-TiO 2 characterization was performed by transmission electron microscopy. The dispersed state of the n-TiO 2 in media was spectrophotometrically determined at 0, 24, 48, and 72 hr from the initial exposure. The genotoxicity has been highlighted by different experimental approaches (comet assay, terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] test, DCF assay, random amplification of polymorphic DNA polymerase chain reaction [RAPD-PCR]). The comet assay showed a statistically significant loss of sperm DNA integrity after 30 min of exposure. Increased threshold of sperm DNA fragmentation was highlighted after 30 min of exposure by the TUNEL Test. Also, the RAPD-PCR analysis showed a variation in the polymorphic profiles of the sperm DNA exposed to n-TiO 2 . The evidence from the DCF assay showed a statistically significant increase in intracellular ROS linked to n-TiO 2 exposure. This research provides the evaluation of n-TiO 2 potential genotoxicity on human sperm that probably occurs through the production of intracellular ROS.
Collapse
Affiliation(s)
- Marianna Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Colacurci
- Department of Woman, Child and General and Special Surgery, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Concetta Iovine
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Fulvio Cesaroni
- Medically Assisted Procreation Center, PMA Center of Cassinate, Cassino, Italy
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
38
|
Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine 2018; 13:8487-8506. [PMID: 30587973 PMCID: PMC6294055 DOI: 10.2147/ijn.s170723] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With the vigorous development of nanometer-sized materials, nanoproducts are becoming widely used in all aspects of life. In medicine, nanoparticles (NPs) can be used as nanoscopic drug carriers and for nanoimaging technologies. Thus, substantial attention has been paid to the potential risks of NPs. Previous studies have shown that numerous types of NPs are able to pass certain biological barriers and exert toxic effects on crucial organs, such as the brain, liver, and kidney. Only recently, attention has been directed toward the reproductive toxicity of nanomaterials. NPs can pass through the blood–testis barrier, placental barrier, and epithelial barrier, which protect reproductive tissues, and then accumulate in reproductive organs. NP accumulation damages organs (testis, epididymis, ovary, and uterus) by destroying Sertoli cells, Leydig cells, and germ cells, causing reproductive organ dysfunction that adversely affects sperm quality, quantity, morphology, and motility or reduces the number of mature oocytes and disrupts primary and secondary follicular development. In addition, NPs can disrupt the levels of secreted hormones, causing changes in sexual behavior. However, the current review primarily examines toxicological phenomena. The molecular mechanisms involved in NP toxicity to the reproductive system are not fully understood, but possible mechanisms include oxidative stress, apoptosis, inflammation, and genotoxicity. Previous studies have shown that NPs can increase inflammation, oxidative stress, and apoptosis and induce ROS, causing damage at the molecular and genetic levels which results in cytotoxicity. This review provides an understanding of the applications and toxicological effects of NPs on the reproductive system.
Collapse
Affiliation(s)
- Ruolan Wang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Bin Song
- Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China, .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China,
| |
Collapse
|
39
|
Sharafutdinova LA, Fedorova AM, Bashkatov SA, Sinel’nikov KN, Valiullin VV. Structural and Functional Analysis of the Spermatogenic Epithelium in Rats Exposed to Titanium Dioxide Nanoparticles. Bull Exp Biol Med 2018; 166:279-282. [DOI: 10.1007/s10517-018-4332-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Indexed: 10/27/2022]
|
40
|
Priyam A, Singh PP, Gehlout S. Role of Endocrine-Disrupting Engineered Nanomaterials in the Pathogenesis of Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2018; 9:704. [PMID: 30542324 PMCID: PMC6277880 DOI: 10.3389/fendo.2018.00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology has enabled the development of innovative technologies and products for several industrial sectors. Their unique physicochemical and size-dependent properties make the engineered nanomaterials (ENMs) superior for devising solutions for various research and development sectors, which are otherwise unachievable by their bulk forms. However, the remarkable advantages mediated by ENMs and their applications have also raised concerns regarding their possible toxicological impacts on human health. The actual issue stems from the absence of systematic data on ENM exposure-mediated health hazards. In this direction, a comprehensive exploration on the health-related consequences, especially with respect to endocrine disruption-related metabolic disorders, is largely lacking. The reasons for the rapid increase in diabetes and obesity in the modern world remain largely unclear, and epidemiological studies indicate that the increased presence of endocrine disrupting chemicals (EDCs) in the environment may influence the incidence of metabolic diseases. Functional similarities, such as mimicking natural hormonal actions, have been observed between the endocrine-disrupting chemicals (EDCs) and ENMs, which supports the view that different types of NMs may be capable of altering the physiological activity of the endocrine system. Disruption of the endocrine system leads to hormonal imbalance, which may influence the development and pathogenesis of metabolic disorders, particularly type 2 diabetes mellitus (T2DM). Evidence from many in vitro, in vivo and epidemiological studies, suggests that ENMs generally exert deleterious effects on the molecular/hormonal pathways and the organ systems involved in the pathogenesis of T2DM. However, the available data from several such studies are not congruent, especially because of discrepancies in study design, and therefore need to be carefully examined before drawing meaningful inferences. In this review, we discuss the outcomes of ENM exposure in correlation with the development of T2DM. In particular, the review focuses on the following sub-topics: (1) an overview of the sources of human exposure to NMs, (2) systems involved in the uptake of ENMs into human body, (3) endocrine disrupting engineered nanomaterials (EDENMs) and mechanisms underlying the pathogenesis of T2DM, (4) evidence of the role of EDENMs in the pathogenesis of T2DM from in vitro, in vivo and epidemiological studies, and (5) conclusions and perspectives.
Collapse
Affiliation(s)
| | - Pushplata Prasad Singh
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | | |
Collapse
|
41
|
Zhang HY, Chen RL, Shao Y, Wang HL, Liu ZG. Effects of exposure of adult mice to multi-walled carbon nanotubes on the liver lipid metabolism of their offspring. Toxicol Res (Camb) 2018; 7:809-816. [PMID: 30310658 PMCID: PMC6115901 DOI: 10.1039/c8tx00032h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Objective: To explore the toxicity of multi-walled carbon nanotubes (MWCNTs) on the liver lipid metabolism of offspring mice and the possible mechanisms involved. Method: Virgin female (16-18 g) and male (18-20 g) C57BL/6 mice were randomly divided into two groups: Control group and Test group. After anesthesia with chloral hydrate, the mice were administered 50 μL saline or dust solution by intratracheal instillation (Control group: 50 μL saline; Test group: 15 mg kg-1 MWCNTs). Mice were injected with these doses once a week for 13 weeks. Then, male and female mice in the same group were allowed to mate to produce offspring. The pups were fed with normal diet until the end of the experiment (12 weeks old). The offspring mice were sacrificed by decapitation to detect the blood biochemistry and the expression of genes and proteins. Results: Compared with the Control group, MWCNTs significantly reduced the weight of offspring mice (male and female) and led to histopathological changes in the liver tissues. The expression of liver fat synthesis gene significantly increased (P < 0.05 or P < 0.01). The expression of genes and proteins involved in the inflammatory reactions appeared to be abnormal (P < 0.05 or P < 0.01). Conclusion: Exposure of adult mice to MWCNTs can affect the expression of fatty acid synthesis genes in the liver tissues of offspring mice, leading to disruption of liver function and accumulation of lipid droplets in the hepatocytes. The imbalance between M1 and M2 liver macrophage phenotypes may be one of the underlying mechanisms of action of MWCNTs leading to disordered fatty acid synthesis in offspring mice.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- School of biological and pharmaceutical engineering , Wuhan Polytechnic University , 68 Xuefu Southern Road , Wuhan 430023 , China . ; Tel: +86 27 83956899
| | - Ru-Long Chen
- School of biological and pharmaceutical engineering , Wuhan Polytechnic University , 68 Xuefu Southern Road , Wuhan 430023 , China . ; Tel: +86 27 83956899
| | - Yang Shao
- School of biological and pharmaceutical engineering , Wuhan Polytechnic University , 68 Xuefu Southern Road , Wuhan 430023 , China . ; Tel: +86 27 83956899
| | - Hua-Lin Wang
- School of biological and pharmaceutical engineering , Wuhan Polytechnic University , 68 Xuefu Southern Road , Wuhan 430023 , China . ; Tel: +86 27 83956899
| | - Zhi-Guo Liu
- School of biological and pharmaceutical engineering , Wuhan Polytechnic University , 68 Xuefu Southern Road , Wuhan 430023 , China . ; Tel: +86 27 83956899
| |
Collapse
|
42
|
Elnagar AMB, Ibrahim A, Soliman AM. Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2018; 12:249-256. [PMID: 29935072 PMCID: PMC6018179 DOI: 10.22074/ijfs.2018.5389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/17/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported that TiO2 induces oxidative stress and DNA damage. N-acetylcysteine (NAC) has been used to fight oxidative stress-induced damage in different tissues. The objective of this study was to evaluate the toxic effects of orally administered TiO2 nanoparticles and the possible protective effect of NAC on the testes of adult male albino rats. MATERIALS AND METHODS In this experimental study, 50 adult male albino rats were classified into five groups. Group I was the negative control, group II was treated with gum acacia solution , group III was treated with NAC, group IV was treated with TiO2 nanoparticles, and group V was treated with 100 mg/kg of NAC and 1200 mg/kg TiO2 nanoparticles. Total testosterone, glutathione (GSH), and serum malondialdehyde (MDA) levels were estimated. The testes were subjected to histopathological, electron microscopic examinations, and immunohistochemical detection for tumor necrosis factor (TNF)-α. Cells from the left testis were examined to detect the degree of DNA impairment by using the comet assay. RESULTS TiO2 nanoparticles induced histopathological and ultrastructure changes in the testes as well as positive TNF-α immunoreaction in the testicular tissue. Moreover, there was an increase in serum MDA while a decrease in testosterone and GSH levels in TiO2 nanoparticles-treated group. TiO2 resulted in DNA damage. Administration of NAC to TiO2- treated rats led to improvement of the previous parameters with modest protective effects against DNA damage. CONCLUSION TiO2-induced damage to the testes was mediated by oxidative stress. Notably, administration of NAC protected against TiO2's damaging effects.
Collapse
Affiliation(s)
- Amir M Bassam Elnagar
- Department of Histology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt.,Department of Pathology, Insaniah University, Kuala Ketil Kedah, Darul Aman, Malaysia
| | - Abdelnasser Ibrahim
- Forensic Unit, Department of Pathology, National University of Malaysia Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Amro Mohamed Soliman
- Department of Anatomy, National University of Malaysia Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia. Electronic Address:
| |
Collapse
|
43
|
Bara N, Kaul G. Enhanced steroidogenic and altered antioxidant response by ZnO nanoparticles in mouse testis Leydig cells. Toxicol Ind Health 2018; 34:571-588. [PMID: 29768980 DOI: 10.1177/0748233718774220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are important nanomaterials with myriad applications and in widespread use. The main aim of this study was to evaluate the direct effect of ZnO NPs on steroidogenesis by considering mouse testicular Leydig cells (TM3) as an in vitro model system. The uptake, intracellular behaviour, cytotoxicity and morphological changes induced by ZnO NPs (0-200 µg/ml) in a time-dependent manner in the TM3 were assessed. A significant ( p < 0.05) decrease in TM3 viability was observed at 2 µg/ml ZnO NP after a 1-h incubation time period. Increased antioxidant enzyme activity, namely, superoxide dismutase (SOD) and catalase, was regularly observed. Not surprisingly, apoptosis also increased significantly after a 4-h exposure period. Transmission electron micrographs illustrated that ZnO NPs were taken up by Leydig cells and resulted in the formation of autophagosomes, autolysosomes and autophagic vacuoles. Concomitant real-time data indicated that ZnO NPs significantly increased the expression of steroidogenesis-related genes (steroidogenic acute regulatory protein and cytochrome P450 side-chain cleavage enzyme) and significantly ( p < 0.05) decreased antioxidant enzyme gene (SOD) expression after a 4-h incubation period. Moreover, ZnO NPs exposure significantly increased testosterone production at 2 µg/ml concentration after a 12-h incubation period. Our findings confirm the adverse effects of ZnO NPs by being cytotoxic, enhancing apoptosis, causing steroidogenic effect in Leydig cells and increasing autophagic vacuole formation possibly via alteration of antioxidant enzyme activity in TM3 cells.
Collapse
Affiliation(s)
- Nisha Bara
- 1 Animal Biochemistry Division, N.T. Lab-I, ICAR-National Dairy Research Institute (Deemed University) (Government of India), Karnal, Haryana, India
| | - Gautam Kaul
- 1 Animal Biochemistry Division, N.T. Lab-I, ICAR-National Dairy Research Institute (Deemed University) (Government of India), Karnal, Haryana, India
| |
Collapse
|
44
|
Zhang L, Xie X, Zhou Y, Yu D, Deng Y, Ouyang J, Yang B, Luo D, Zhang D, Kuang H. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. Int J Nanomedicine 2018; 13:777-789. [PMID: 29440900 PMCID: PMC5804269 DOI: 10.2147/ijn.s152400] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Titanium dioxide nanoparticles (TiO2 NPs) have recently found applications in a wide variety of consumer goods. TiO2 NPs exposure significantly increases fetal deformities and mortality. However, the potential toxicity of TiO2 NPs on the growth and development of placenta has been rarely studied during mice pregnancy. Purpose The objective of this study was to investigate the effects of maternal exposure of TiO2 NPs on the placentation. Methods Mice were administered TiO2 NPs by gavage at 0, 1 and 10 mg/kg/day from gestational day (GD) 1 to GD 13. Uteri and placentas from these mice were collected and counted the numbers of implanted and resorbed embryo and measured the placental weight on GD 13. Placental morphometry was observed by hematoxylin and eosin staining. The levels of Hand1, Esx1, Eomes, Hand2, Ascl2 and Fra1 mRNA were assessed by qRT-PCR. Uterine NK (uNK) cells were detected by using DBA lectin. Laminin immunohistochemical staining was to identify fetal vessels. Western blotting and transmission electron micrograph (TEM) were used to assess the apoptosis of placenta. Results No treatment-related difference was observed in the numbers of implanted and resorbed embryos and weight of placenta between the groups. However, 1 mg/kg/day TiO2 NPs treatment significantly reduced the ratio of placenta/body weight on GD 13. The proportion of spongiotrophoblast in the 10 mg/kg/day dose group became higher than that in the control group, yet that of labyrinth was significantly lower in 10 mg/kg/day mice. The expression levels of Hand1, Esx1, Eomes, Hand2, Ascl2 and Fra1 mRNA markedly decreased in TiO2 NP treated placentas. Furthermore, TiO2 NPs treatment impaired the formation of intricate networks of fetal vessels and reduced the number of uNK cells, and inhibited proliferation and induced apoptosis of placenta by nuclear pyknosis, the activation of caspase-3 and upregulation of Bax protein and downregulation of Bcl-2 protein on GD 13. Conclusion Gestational exposure to TiO2 NPs significantly impairs the growth and development of placenta in mice, with a mechanism that seems to be involved in the dysregulation of vascularization, proliferation and apoptosis. Therefore, our results suggested the need for great caution while handling of the nanomaterials by workers and specially pregnant consumers.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang
| | - Xingxing Xie
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang
| | - Yigang Zhou
- Department of Color Ultrasonic Room, No 96716 Hospital of PLA
| | - Dainan Yu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang
| | - Yu Deng
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang
| | - Jiexiu Ouyang
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang
| | - Dan Luo
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang
| | - Dalei Zhang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang.,Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
45
|
Miura N, Ohtani K, Hasegawa T, Yoshioka H, Hwang GW. High sensitivity of testicular function to titanium nanoparticles. J Toxicol Sci 2017; 42:359-366. [PMID: 28496042 DOI: 10.2131/jts.42.359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Titanium dioxide nanoparticles (TiNPs) present toxicity in organs such as the liver, lung, and intestine. The testis has also been reported as a target organ of TiNPs. We recently reported that TiNPs had no genotoxic effect in the liver and bone marrow, while showing clear testicular dysfunction. In this paper, therefore, we systematically compared the sensitivity of hepatic function using biochemical markers and testicular function against TiNPs. Male C57BL/6J mice were injected intravenously with TiNPs (Aeroxide-P25, at doses of 0.1, 1, 2, and 10 mg/kg body weight) once per week for 4 consecutive weeks. Mice were sacrificed three days after the last injection. Body weights, liver weights, and testicular-related organ weights were not found to be changed by TiNP treatment. Moreover, TiNPs caused no hepatic damage, as evaluated by alanine aminotransferase and aspartate aminotransferase indexes. The testicular function, however, was clearly impaired by TiNP treatment; reduction in two sperm motion parameters (motile percent and progressive percent) and sperm numbers in cauda epididymides was seen. We observed Ti accumulation in the liver but not in the testis, as well as no change in plasma levels of sex hormones related to spermatogenesis. Our findings indicate that the testis is highly sensitive to TiNPs, as compared to the liver. We believe that, when considering the biological effects of TiNPs, testicular function (especially motility ability) may be a sensitive indicator.
Collapse
Affiliation(s)
- Nobuhiko Miura
- Industrial Toxicology and Health Effects Research Group, National Institute of Occupational Safety and Health Japan
| | - Katsumi Ohtani
- Occupational Epidemiology Research Group, National Institute of Occupational Safety and Health Japan
| | - Tatsuya Hasegawa
- Division of Human Environmental Science, Yamanashi Fuji Research Institute, Yamanashi Prefectural Government
| | | | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
46
|
Simon V, Avet C, Grange-Messent V, Wargnier R, Denoyelle C, Pierre A, Dairou J, Dupret JM, Cohen-Tannoudji J. Carbon Black Nanoparticles Inhibit Aromatase Expression and Estradiol Secretion in Human Granulosa Cells Through the ERK1/2 Pathway. Endocrinology 2017; 158:3200-3211. [PMID: 28977593 DOI: 10.1210/en.2017-00374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Secretion of 17-β-estradiol (E2) by human granulosa cells can be disrupted by various environmental toxicants. In the current study, we investigated whether carbon black nanoparticles (CB NPs) affect the steroidogenic activity of cultured human granulosa cells. The human granulosa cell line KGN and granulosa cells from patients undergoing in vitro fertilization were treated with increasing concentrations of CB NPs (1 to 100 µg/mL) together or not with follicle-stimulating hormone (FSH). We observed that CB NPs are internalized in KGN cells without affecting cell viability. CB NPs could be localized in the cytoplasm, within mitochondria and in association with the outer face of the endoplasmic reticulum membrane. In both cell types, CB NPs reduced in a dose-dependent manner the activity of aromatase enzyme, as reflected by a decrease in E2 secretion. A significant decrease was observed in response to CB NPs concentrations from 25 and 50 µg/mL in KGN cell line and primary cultures, respectively. Furthermore, CB NPs decreased aromatase protein levels in both cells and reduced aromatase transcript levels in KGN cells. CB NPs rapidly activated extracellular signal-regulated kinase 1 and 2 in KGN cells and pharmacological inhibition of this signaling pathway using PD 98059 significantly attenuated the inhibitory effects of CB NPs on CYP19A1 gene expression and aromatase activity. CB NPs also inhibited the stimulatory effect of FSH on aromatase expression and activity. Altogether, our study on cultured ovarian granulosa cells reveals that CB NPs decrease estrogens production and highlights possible detrimental effect of these common NPs on female reproductive health.
Collapse
Affiliation(s)
- Violaine Simon
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Charlotte Avet
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Valérie Grange-Messent
- Sorbonne Universités, Université Pierre et Marie Curie UM CR18, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine, Neuroplasticité des Comportements de Reproduction, Paris 75005, France
| | - Richard Wargnier
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Chantal Denoyelle
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Alice Pierre
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| | - Julien Dairou
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Biologie Fonctionnelle et Adaptative UMR 8251, Réponses Moléculaires et Cellulaires aux Xénobiotiques, Paris 75013, France
| | - Jean-Marie Dupret
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, Biologie Fonctionnelle et Adaptative UMR 8251, Réponses Moléculaires et Cellulaires aux Xénobiotiques, Paris 75013, France
| | - Joëlle Cohen-Tannoudji
- Sorbonne Paris Cité, Université Paris-Diderot, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8251, Institut National de la Santé et de la Recherche Médicale (INSERM) U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris 75013, France
| |
Collapse
|
47
|
Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, Rehman ZU, Farmanullah F, Huo LJ. Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review. Front Pharmacol 2017; 8:606. [PMID: 28928662 PMCID: PMC5591883 DOI: 10.3389/fphar.2017.00606] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, nanotechnologies demonstrated various applications in different fields, including detection, sensing, catalysis, electronics, and biomedical sciences. However, public concerns regarding the well-being of human may hinder the wide utilization of this promising innovation. Although, humans are exposed to airborne nanosized particles from an early age, exposure to such particles has risen dramatically within the last century due to anthropogenic sources of nanoparticles. The wide application of nanomaterials in industry, consumer products, and medicine has raised concerns regarding the potential toxicity of nanoparticles in humans. In this review, the effects of nanomaterials on the reproductive system in animal models are discussed. Females are particularly more vulnerable to nanoparticle toxicity, and toxicity in this population may affect reproductivity and fetal development. Moreover, various types of nanoparticles have negative impacts on male germ cells, fetal development, and the female reproductive system. These impacts are associated with nanoparticle modification, composition, concentration, route of administration, and the species of the animal. Therefore, understanding the impacts of nanoparticles on animal growth and reproduction is essential. Many studies have examined the effects of nanoparticles on primary and secondary target organs, with a concentration on the in vivo and in vitro effects of nanoparticles on the male and female reproductive systems at the clinical, cellular, and molecular levels. This review provides important information regarding organism safety and the potential hazards of nanoparticle use and supports the application of nanotechnologies by minimizing the adverse effects of nanoparticles in vulnerable populations.
Collapse
Affiliation(s)
- Rahim Dad Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Farhan Anwar Khan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Zia-Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - F Farmanullah
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
48
|
Kotil T, Akbulut C, Yön ND. The effects of titanium dioxide nanoparticles on ultrastructure of zebrafish testis (Danio rerio). Micron 2017; 100:38-44. [PMID: 28486138 DOI: 10.1016/j.micron.2017.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Nanotechnology investigates materials at nanoscale level (0.1-100nm in diameter). There are many commercially nanoproducts such as silver, silicon, titanium, zinc, and gold. They are used in a variety of applications and released to the environment. Titanium dioxide (TiO2) is one of the most commonly used nanoparticles (NP). In this study, the ultrastructural effects of TiO2-NP on zebrafish testis tissue were evaluated. MATERIAL AND METHOD Zebrafish were divided into four groups (N=60) as one control and 3 experimental groups (1mg/L, 2mg/L and 4mg/L TiO2). Testis tissues were dissected after 5days of the exposure. Tissues were fixed with 2.5% glutaraldehyde at 4°C. After routine electron microscopy tissue processing, the testis were embedded in epon resin. Ultrathin sections were counterstained with 1% uranyl acetate and lead citrate and examined using a transmission electron microscope. RESULTS Mitochodrial degeneration with swelling and cristae loss were detected in Sertoli cells and spermatogonial cells of TiO2-NP treated groups in a dose-dependent manner. Moreover, autophagic vacuole accumulation were seen in Sertoli cell cytoplasms of the experimental groups. Necrosis was also detected in the 4mg TiO2-NP-treated group. CONCLUSION TiO2-NP has been used in crop production, food additives, medicine, toothpastes, sunscreens, cosmetics, and in waste water treatment, which contaminated the environment. Our findings showed TiO2-NP-induced autophagy and necrosis at higher doses in Sertoli cells, which consequently negatively affected spermatogenic cells and testicular morphology of Zebrafish. It is important to give much more attention to the use of this NP to minimise the possible effects on nature and organisms.
Collapse
Affiliation(s)
- Tuğba Kotil
- Istanbul University, Istanbul Faculty of Medicine, Department of Histology and Embryology, Çapa, Istanbul, Turkey.
| | - Cansu Akbulut
- Sakarya University, Department of Biology, Serdivan, Sakarya, Turkey
| | - Nazan Deniz Yön
- Sakarya University, Department of Biology, Serdivan, Sakarya, Turkey
| |
Collapse
|
49
|
Hong F, Yu X, Wu N, Zhang YQ. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res (Camb) 2017; 6:115-133. [PMID: 30090482 PMCID: PMC6061230 DOI: 10.1039/c6tx00338a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/09/2016] [Indexed: 01/29/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are inorganic materials with a diameter of 1-100 nm. In recent years, TiO2 NPs have been used in a wide range of products, including food, toothpaste, cosmetics, medicine, paints and printing materials, due to their unique properties (high stability, anti-corrosion, and efficient photocatalysis). Following exposure via various routes including inhalation, injection, dermal deposition and gastrointestinal tract absorption, NPs can be found in various organs in the body potentially inducing toxic effects. Thus more attention to the safety of TiO2 NPs is necessary. Therefore, the present review aims to provide a comprehensive evaluation of the toxic effects induced by TiO2 NPs in the lung, liver, stomach, intestine, kidney, spleen, brain, hippocampus, heart, blood vessels, ovary and testis of mice and rats in in vivo experiments, and evaluate their potential toxic mechanisms. The findings will provide an important reference for human risk evaluation and management following TiO2 NP exposure.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Xiaohong Yu
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Yu-Qing Zhang
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| |
Collapse
|
50
|
Ye L, Hong F, Ze X, Li L, Zhou Y, Ze Y. Toxic effects of TiO 2 nanoparticles in primary cultured rat sertoli cells are mediated via a dysregulated Ca 2+ /PKC/p38 MAPK/NF-κB cascade. J Biomed Mater Res A 2017; 105:1374-1382. [PMID: 28188686 DOI: 10.1002/jbm.a.36021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/21/2017] [Accepted: 01/26/2017] [Indexed: 11/11/2022]
Abstract
Although numerous studies have demonstrated that titanium dioxide nanoparticles (TiO2 NPs) can be accumulated in various animal organs and can cause toxicity, there is currently only limited data regarding reproductive toxicity especially on the toxic mechanisms of TiO2 NPs in Sertoli cells. In order to investigate the mechanism of reproductive toxicity, primary cultured rat Sertoli cells were exposed to 5, 15, or 30 μg/mL TiO2 NPs for 24 h, and TiO2 NPs internalization, expression of PKC (p-PKC) and p38 MAPK (p-p38 MAPK) as well as calcium homeostasis were examined. Our findings demonstrated that TiO2 NPs crossed the membrane into the cytoplasm or nucleus, and significantly suppressed cell viability of primary cultured rat Sertoli cells in a concentration-dependent manner. Furthermore, immunological dysfunction caused by TiO2 NPs was involved in the increased expression of NF-κB, TNF-α, and IL-1β, and decreased IκB expression. TiO2 NPs significantly decreased Ca2+ -ATPase and Ca2+ /Mg2+ -ATPase activity and enhanced intracellular Ca2+ levels, and up-regulated the expression of p-PKC and p-p38 MAPK in a dose-dependent manner in primary cultured rat Sertoli cells. Taken together, these findings indicate that TiO2 NPs may induce immunological dysfunction of primary cultured rat Sertoli cells by stimulating the Ca2+ /PKC/p38 MAPK cascade, which triggers NF-κB activation and ultimately induces the expression of inflammatory cytokines in primary cultured rat Sertoli cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1374-1382, 2017.
Collapse
Affiliation(s)
- Lingqun Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.,Jiangsu Key Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, 223300, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Xiao Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Lingjuan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yaoming Zhou
- Jiangsu Food and Pharmaceutical Science College, Huaian, 223303, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|