1
|
Ichikawa K, Johnson HM, Curtis MA, Biswas N, Singh S, Khachatryan HN, Gater AE, Lin SX, Sperry J. Targeting glioma with heteroaromatic alkaloids: A review of potential therapeutics. Bioorg Med Chem 2025; 121:118051. [PMID: 39999647 DOI: 10.1016/j.bmc.2024.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025]
Abstract
Glioblastoma multiforme (GBM), classified as a grade IV astrocytoma, is the most aggressive and deadly form of glioma, characterized by rapid progression, extensive genetic heterogeneity, and resistance to conventional therapies. Despite advancements in surgical techniques, radiation therapy, and the frontline chemotherapeutic agent temozolomide, the prognosis for GBM patients remains poor, with a median survival of 15 months and a 5-year survival rate of approximately 7 %. The absence of effective long-term treatments underscores the urgent, unmet clinical need for novel therapeutic strategies to improve patient outcomes. Natural products, particularly alkaloids, have garnered attention as a rich source of bioactive compounds with diverse pharmacological properties. Alkaloids, a structurally diverse group of natural products, are renowned for their chemotherapeutic properties and ability to cross the blood-brain barrier (BBB), making them promising candidates for glioma therapy. This review systematically examines all reported heteroaromatic alkaloids with documented anti-glioma activities, highlighting their mechanisms of action where available. By providing a comprehensive resource, it aims to facilitate the identification and optimisation of alkaloid-based compounds for glioma-targeted drug discovery. Additionally, this review emphasizes the importance of incorporating natural products into the drug development pipeline to address the pressing challenges associated with glioma, particularly GBM treatment.
Collapse
Affiliation(s)
- Karen Ichikawa
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Hannah M Johnson
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Nandita Biswas
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hasmik N Khachatryan
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry, National Academy of Science of Armenia, Yerevan 0014, Armenia
| | - Anastasia E Gater
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Simon X Lin
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
2
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
3
|
Chen J, Liang RS, Zhuang BB, Chen HD, Liu S, Zhang GL, Shi SS. Cordycepin inhibits glioma growth by downregulating PD-L1 expression via the NOD-like receptor/NFKB1/STAT1 axis. Chem Biol Interact 2024; 400:111178. [PMID: 39084503 DOI: 10.1016/j.cbi.2024.111178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Glioma is a serious primary malignant tumor of the human central nervous system with a poor prognosis and a high recurrence rate; however, inhibition of immune checkpoints can greatly improve the survival rate of patients. The purpose of this study was to investigate the regulation of PD-L1 by cordycepin and the mechanism of its anti-tumor action. The results of previous studies indicate that cordycepin has good anti-proliferative and anti-migratory activities and can induce apoptosis in U251 and T98G cells in vitro. Here, transcriptome sequencing showed that cordycepin may exert anti-tumor effects through the NOD-like receptor signaling pathway. Further intervention with BMS-1, a small molecule inhibitor of PD-L1, was used to explore whether inhibition of PD-L1 affected the regulation of the NOD-like receptor signaling pathway by cordycepin. Mechanistically, on the one hand, cordycepin regulated the expression of NFKB1 and STAT1 through the NOD-like receptor signaling pathway, thereby inhibiting the expression of PD-L1. In addition, inhibition of PD-L1 enhanced the regulation by cordycepin of the NOD-like receptor signaling pathway. On the other hand, cordycepin directly upregulated expression of STAT1 and downregulated that of PD-L1. In vivo studies further showed that cordycepin could downregulate expression of PD-L1 and NFKB1 and upregulate that of STAT1 in glioma xenograft tumor tissues, consistent with the results of in vitro studies. The results suggest that cordycepin may down-regulate the expression of PD-L1 through NOD-like receptor signaling pathway and NFKB signaling pathway, thereby inhibiting the immune escape of glioma, and can be developed as a PD-L1 inhibitor. Our results therefore provide a theoretical foundation for the use of cordycepin in treatment of glioma and enrich our understanding of its pharmacological mechanism.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China.
| | - Ri-Sheng Liang
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Bing-Bo Zhuang
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Hao-Dong Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Shuang Liu
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Guo-Liang Zhang
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Song-Sheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, 29# Xinquan Road, Fuzhou, 350001, Fujian, China
| |
Collapse
|
4
|
Yu G, Peng J, Li L, Yu W, He B, Xie B. The role and mechanisms of cordycepin in inhibiting cancer cells. Braz J Med Biol Res 2024; 57:e13889. [PMID: 39194034 DOI: 10.1590/1414-431x2024e13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
With the escalating incidence and mortality rates of cancer, there is an ever-growing emphasis on the research of anticancer drugs. Cordycepin, the primary nucleoside antibiotic isolated from Cordyceps militaris, has emerged as a remarkable agent for cancer prevention and treatment. Functioning as a natural targeted antitumor drug, cordycepin assumes an increasingly pivotal role in cancer therapy. This review elucidates the mechanisms of cordycepin in inhibiting tumor cell proliferation, inducing apoptosis, as well as its capabilities in suppressing angiogenesis and metastasis. Moreover, the immunomodulatory effects of cordycepin in cancer treatment are explored. Additionally, the current status, challenges, and future prospects of cordycepin application in clinical trials are briefly discussed. The objective is to provide a valuable reference for the utilization of cordycepin in cancer treatment.
Collapse
Affiliation(s)
- Gong Yu
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiahua Peng
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lu Li
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Bin Xie
- School of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Soraksa N, Heebkaew N, Promjantuek W, Kunhorm P, Kaokean P, Chaicharoenaudomung N, Noisa P. Cordycepin, a bioactive compound from Cordyceps spp., moderates Alzheimer's disease-associated pathology via anti-oxidative stress and autophagy activation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:583-603. [PMID: 37735930 DOI: 10.1080/10286020.2023.2258797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's causes cognitive dysfunction. This study investigated the neuro-promoting effects of cordycepin on amyloid-beta precursor protein (APP) synthesis in human neuroblastoma SH-SY5Y cells. Cordycepin was found to boost SH-SY5Y cell proliferation and decreased AD pathology. APP, PS1, and PS2 were downregulated whereas ADAM10 and SIRT1 were upregulated by cordycepin. Cordycepin also reduced APP secretion in a dose-dependent manner. Cordycepin alleviated oxidative stress by the upregulation of GPX and SOD, as well as autophagy genes (LC3, ATG5, and ATG12). Cordycepin activity was also found to be SIRT1-dependent. Therefore, cordycepin may relieve the neuronal degeneration caused by APP overproduction, and oxidative stress.
Collapse
Affiliation(s)
- Natchadaporn Soraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Palakorn Kaokean
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nipha Chaicharoenaudomung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Govindasamy B, Muthu M, Gopal J, Chun S. A review on the impact of TRAIL on cancer signaling and targeting via phytochemicals for possible cancer therapy. Int J Biol Macromol 2023; 253:127162. [PMID: 37788732 DOI: 10.1016/j.ijbiomac.2023.127162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Anticancer therapies have been the continual pursuit of this age. Cancer has been ravaging all across the globe breathing not just threats but demonstrating them. Remedies for cancer have been frantically sought after. Few have worked out, yet till date, the available cancer therapies have not delivered a holistic solution. In a world where the search for therapies is levitating towards natural remedies, solutions based on phytochemicals are highly prospective attractions. A lot has been achieved with inputs from plant resources, providing numerous natural remedies. In the current review, we intensely survey the progress achieved in the treatment of cancer through phytochemicals-based programmed cell death of cancer cells. More specifically, we have further reviewed and discussed the role of phytochemicals in activating apoptosis via Tumor Necrosis Factor-Alpha-Related Apoptosis-Inducing Ligand (TRAIL), which is a cell protein that can attach to certain molecules in cancer cells, killing cancer cells. The objective of this review is to enlist the various phytochemicals that are available for specifically contributing towards triggering the TRAIL cell protein-mediated cancer therapy and to point out the research gaps that require future research motivation. This is the first review of this kind in this research direction.
Collapse
Affiliation(s)
- Balasubramani Govindasamy
- Department of Product Development, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Sechul Chun
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Chaicharoenaudomrung N, Kunhorm P, Noisa P. Cordycepin Enhances the Cytotoxicity of Human Natural Killer Cells against Cancerous Cells. Biol Pharm Bull 2023; 46:1260-1268. [PMID: 37661405 DOI: 10.1248/bpb.b23-00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cancer treatment with natural killer (NK) cell immunotherapy is promising. NK cells can recognize and kill cancer cells without sensitization, making them a potential cancer treatment alternative. To improve clinical efficacy and safety, more research is needed. Enhancing NK cell function improves therapeutic efficacy. Due to its potent apoptosis induction, Cordycepin, a bioactive compound from Cordyceps spp., inhibits cancer cell growth. Cordycepin has immunoregulatory properties, making it a promising candidate for combination therapy with NK cell-based immunotherapy. Cordycepin may enhance NK cell function and have clinical applications, but more research is needed. In this study, cordycepin treatment of NK-92 MI cells increased THP-1 and U-251 cell cytotoxicity. Cordycepin also significantly increased the mRNA expression of cytokine-encoding genes, including tumour necrosis factor (TNF), interferon gamma (IFNG), and interleukin 2 (IL2). NK-92 MI cells notably secreted more IFNG and granzyme B. Cordycepin also decreased CD27 and increased CD11b, CD16, and NKG2D in NK-92 MI cells, which improved its anti-cancer ability. In conclusion, cordycepin could enhance NK cell cytotoxicity against cancerous cells for the first time, supporting its use as an alternative immunoactivity agent against cancer cells. Further studies are needed to investigate its efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology
| |
Collapse
|
8
|
Kaokaen P, Sorraksa N, Phonchai R, Chaicharoenaudomrung N, Kunhorm P, Noisa P. Enhancing Neurological Competence of Nanoencapsulated Cordyceps/Turmeric Extracts in Human Neuroblastoma SH-SY5Y Cells. Cell Mol Bioeng 2022; 16:81-93. [PMID: 36660588 PMCID: PMC9842810 DOI: 10.1007/s12195-022-00752-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Neurological diseases, including Alzheimer's, Parkinson's diseases, and brain cancers, are reportedly caused by genetic aberration and cellular malfunction. Herbs with bioactive compounds that have anti-oxidant effects such as cordyceps and turmeric, are of interest to clinical applications due to their minimal adverse effects. The aim of study is to develop the nanoencapsulated cordyceps and turmeric extracts and investigate their capability to enhance the biological activity and improve neuronal function. Methods Human neuroblastoma SH-SY5Y cells were utilized as a neuronal model to investigate the properties of nanoencapsulated cordyceps or turmeric extracts, called CMP and TEP, respectively. SH-SY5Y cells were treated with either CMP or TEP and examined the biological consequences, including neuronal maturation and neuronal function. Results The results showed that both CMP and TEP improved cellular uptake efficiency within 6 h by 2.3 and 2.8 times, respectively. Besides, they were able to inhibit cellular proliferation of SH-SY5Y cells up to 153- and 218-fold changes, and increase the expression of mature neuronal markers (TUJ1, PAX6, and NESTIN). Upon the treatment of CMP and TEP, the expression of dopaminergic-specific genes (LMX1B, FOXA2, EN1, and NURR1), and the secretion level of dopamine were significantly improved up to 3.3-fold and 3.0-fold, respectively, while the expression of Alzheimer genes (PSEN1, PSEN2, and APP), and the secretion of amyloid precursor protein were significantly reduced by 32-fold and 108-fold, respectively. Importantly, the autophagy activity was upregulated by CMP and TEP at 6.3- and 5.5-fold changes, respectively. Conclusions This finding suggested that the nanoencapsulated cordyceps and turmeric extracts accelerated neuronal maturation and alleviated neuronal pathology in human neural cells. This paves the way for nanotechnology-driven drug delivery systems that could potentially be used as an alternative medicine in the future for neurological diseases.
Collapse
Affiliation(s)
- Palakorn Kaokaen
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Natchadaporn Sorraksa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Ruchee Phonchai
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
9
|
Chen J, Zhuang YD, Zhang Q, Liu S, Zhuang BB, Wang CH, Liang RS. Exploring the mechanism of cordycepin combined with doxorubicin in treating glioblastoma based on network pharmacology and biological verification. PeerJ 2022; 10:e12942. [PMID: 35186504 PMCID: PMC8855715 DOI: 10.7717/peerj.12942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common and fatal primary malignant tumor in the central nervous system, and the prognosis is poor. Currently, there are no effective treatments for glioblastoma. Cordycepin is a natural active substance with significant anticancer activity and doxorubicin is a broad-spectrum anticancer drug. Cordycepin administered with doxorubicin is a potential drug combination for the treatment of glioblastoma. However, the mechanism of action for this drug combination has not yet been elucidated. AIM OF THE STUDY To explore the complex mechanism of cordycepin combined with doxorubicin against glioblastoma using network pharmacology and biological verification. MATERIALS AND METHODS We used an MTT assay, colony formation assay, and scratch healing to detect the growth, proliferation, and migration of LN-229, U251 and T98G cells. Putative targets and the potential mechanism of action for the drug combination in glioblastoma were obtained through online databases, network construction, and enrichment analyses. We verified the expression of EMT-related genes and identified important therapeutic targets by western blot. RESULTS In this study, the combination of doxorubicin and cordycepin was found to significantly inhibit cell proliferation and migration and can induce apoptosis. These effects are better together than with either drug alone. The drug combination inhibited EMT by upregulating the expression of E-cadherin protein and downregulating the expression of N-cadherin, ZEB1, and Twist1 proteins. There were 71 potential targets for the drug combination in glioblastoma, and Kyoto Encyclopedia of Genes and Genome analysis suggested that the anticancer process may be mediated by proteoglycans in cancer, the tumor necrosis factor signaling pathway, microRNA in cancer, pathways in cancer, and other pathways. To study the molecular mechanism of anticancer activity, we detected the expression of target proteins with downregulated expression of NFKB1, MAPK8, MYC, and MMP-9 proteins and upregulated expression of cleaved caspase 3 that promoted the apoptosis of LN-229 cells. CONCLUSIONS This study shows that the drug combination of doxorubicin and cordycepin effectively inhibits the growth and proliferation of LN-229 cells through multiple targets and multiple pathways, and the combination inhibits cell invasion and migration by regulating the EMT switch of tumor cells. Our findings provide new ideas about, and a theoretical basis for, the treatment of glioblastoma.
Collapse
Affiliation(s)
- Jing Chen
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | | | - Qiang Zhang
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuang Liu
- Fujian Medical University Union Hospital, Fuzhou, China
| | | | - Chun-Hua Wang
- Fujian Medical University Union Hospital, Fuzhou, China
| | | |
Collapse
|
10
|
Du K, Zheng X, Lv J, Zhong X, Wei M, Liu M. Cordycepin exacerbates cadmium-induced neurotoxicity via promoting endoplasmic reticulum stress-associated apoptosis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Ma L, Lu Y, Li Y, Yang Z, Mao Y, Wang Y, Man S. A novel halogenated adenosine analog 5'-BrDA displays potent toxicity against colon cancer cells in vivo and in vitro. Toxicol Appl Pharmacol 2021; 436:115857. [PMID: 34979143 DOI: 10.1016/j.taap.2021.115857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023]
Abstract
Adenosine, as a naturally occurring nucleoside, plays an important role in human health maintenance. In recent years, many studies have shown that adenosine has the effect of cancer inhibition, and some of its analogs have been successfully marketed as anticancer drugs. This report mainly describes the anti-colon cancer activities and mechanism of a novel halogenated adenosine analog named 5'-bromodeoxyadenosine (5'-BrDA). As a result, 5'-BrDA concentration-dependently inhibited colon cancer cells proliferation, induced autophagy without disruption of lysosomal stability, and promoted autophagy-independently cellular mitochondrial apoptosis by increasing the accumulation of reactive oxygen species. Furthermore, 5'-BrDA inhibited the tumor growth of colon cancer in CT26 inbred mice without affecting the body weight in vivo. Collectively, the above-mentioned mechanisms contributed to the anticancer activity of 5'-BrDA. It is rare to discover novel anticancer adenosine analogs during the past couple of decades. We believe that our work will enrich the understanding of adenosine analogs, also, pave the way for adenosine analogs product based anticancer drug development.
Collapse
Affiliation(s)
- Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaqin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhizhen Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Mao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Bioactivities of In Vitro Transepithelial Transported Peptides from Cooked Chicken Breast. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021; 26:5886. [PMID: 34641429 PMCID: PMC8510467 DOI: 10.3390/molecules26195886] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
We conducted a systematic review of the literature on the effects of cordycepin on cell survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 publications on cordycepin were found by the cut-off date of 1 February 2021. After application of the exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The examination of 150 animal studies indicated that purified cordycepin has many potential therapeutic effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation (9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac conditions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has excellent potential as a lead for drug development, especially for age-related diseases. In addition, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution of cordycepin.
Collapse
Affiliation(s)
- Masar Radhi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Sadaf Ashraf
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK;
| | - Steven Lawrence
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Asta Arendt Tranholm
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Peter Arthur David Wellham
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Abdul Hafeez
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Ammar Sabah Khamis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Robert Thomas
- The Primrose Oncology Unit, Bedford Hospital NHS Trust, Bedford MK42 9DJ, UK;
- Department of Oncology, Addenbrooke’s Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Daniel McWilliams
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham NG5 1PB, UK
| | - Cornelia Huiberdina de Moor
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| |
Collapse
|
14
|
The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin. Molecules 2021; 26:molecules26164954. [PMID: 34443541 PMCID: PMC8400201 DOI: 10.3390/molecules26164954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Cordycepin is an adenosine derivative isolated from Cordyceps sinensis, which has been used as an herbal complementary and alternative medicine with various biological activities. The general anti-cancer mechanisms of cordycepin are regulated by the adenosine A3 receptor, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), and glycogen synthase kinase (GSK)-3β, leading to cell cycle arrest or apoptosis. Notably, cordycepin also induces autophagy to trigger cell death, inhibits tumor metastasis, and modulates the immune system. Since the dysregulation of autophagy is associated with cancers and neuron, immune, and kidney diseases, cordycepin is considered an alternative treatment because of the involvement of cordycepin in autophagic signaling. However, the profound mechanism of autophagy induction by cordycepin has never been reviewed in detail. Therefore, in this article, we reviewed the anti-cancer and health-promoting effects of cordycepin in the neurons, kidneys, and the immune system through diverse mechanisms, including autophagy induction. We also suggest that formulation changes for cordycepin could enhance its bioactivity and bioavailability and lower its toxicity for future applications. A comprehensive understanding of the autophagy mechanism would provide novel mechanistic insight into the anti-cancer and health-promoting effects of cordycepin.
Collapse
|
15
|
Rahman MA, Hannan MA, Dash R, Rahman MDH, Islam R, Uddin MJ, Sohag AAM, Rahman MH, Rhim H. Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway. Front Pharmacol 2021; 12:639628. [PMID: 34025409 PMCID: PMC8138161 DOI: 10.3389/fphar.2021.639628] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Bioactive plant derived compounds are important for a wide range of therapeutic applications, and some display promising anticancer properties. Further evidence suggests that phytochemicals modulate autophagy and apoptosis, the two crucial cellular pathways involved in the underlying pathobiology of cancer development and regulation. Pharmacological targeting of autophagy and apoptosis signaling using phytochemicals therefore offers a promising strategy that is complementary to conventional cancer chemotherapy. In this review, we sought to highlight the molecular basis of the autophagic-apoptotic pathway to understand its implication in the pathobiology of cancer, and explore this fundamental cellular process as a druggable anticancer target. We also aimed to present recent advances and address the limitations faced in the therapeutic development of phytochemical-based anticancer drugs.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Rokibul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon-si, South Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
16
|
Dai R, Liu M, Nik Nabil WN, Xi Z, Xu H. Mycomedicine: A Unique Class of Natural Products with Potent Anti-tumour Bioactivities. Molecules 2021; 26:1113. [PMID: 33669877 PMCID: PMC7923288 DOI: 10.3390/molecules26041113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/17/2023] Open
Abstract
Mycomedicine is a unique class of natural medicine that has been widely used in Asian countries for thousands of years. Modern mycomedicine consists of fruiting bodies, spores, or other tissues of medicinal fungi, as well as bioactive components extracted from them, including polysaccharides and, triterpenoids, etc. Since the discovery of the famous fungal extract, penicillin, by Alexander Fleming in the late 19th century, researchers have realised the significant antibiotic and other medicinal values of fungal extracts. As medicinal fungi and fungal metabolites can induce apoptosis or autophagy, enhance the immune response, and reduce metastatic potential, several types of mushrooms, such as Ganoderma lucidum and Grifola frondosa, have been extensively investigated, and anti-cancer drugs have been developed from their extracts. Although some studies have highlighted the anti-cancer properties of a single, specific mushroom, only limited reviews have summarised diverse medicinal fungi as mycomedicine. In this review, we not only list the structures and functions of pharmaceutically active components isolated from mycomedicine, but also summarise the mechanisms underlying the potent bioactivities of several representative mushrooms in the Kingdom Fungi against various types of tumour.
Collapse
Affiliation(s)
- Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (R.D.); (M.L.); (W.N.N.N.)
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (R.D.); (M.L.); (W.N.N.N.)
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (R.D.); (M.L.); (W.N.N.N.)
- Pharmaceutical Services Program, Ministry of Health, Selangor 46200, Malaysia
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (R.D.); (M.L.); (W.N.N.N.)
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
17
|
Liao X, Tao L, Guo W, Wu ZX, Du H, Wang J, Zhang J, Chen H, Chen ZS, Lin L, Sun L. Combination of Cordycepin and Apatinib Synergistically Inhibits NSCLC Cells by Down-Regulating VEGF/PI3K/Akt Signaling Pathway. Front Oncol 2020; 10:1732. [PMID: 33014856 PMCID: PMC7505117 DOI: 10.3389/fonc.2020.01732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Background The application of apatinib is immensely limited by its acquired drug resistance. This research investigates whether cordycepin, a component from Cordyceps could synergize with apatinib to improve its anticancer effect on non-small cell lung cancer (NSCLC) cells. Methods The NSCLC cell lines A549, PC9, and H1993, and human bronchial epithelial (HBE) cell line Bears-2B were used in this study. Cell counting kit 8, colony formation assays, wound healing assay, transwell assay, and flow cytometry analysis were performed to assess the cell viability, the migration ability, and invasion ability of the cells. Kyoto encyclopedia of genes and genomes (KEGG), western blotting and molecular docking was applied to analyze the possible pathways affected by cordycepin. Results The combination of cordycepin and apatinib in a ratio of 5:1 synergistically reduced proliferation of NSCLC cells, inhibited cell migration and invasion, increased cell apoptosis by altering cell cycle in NSCLC A549 and PC9 cells. The VEGF/PI3K/Akt pathway was inhibited after treatment with cordycepin and apatinib. Conclusion Our findings demonstrated that the combination of cordycepin and apatinib has synergistically anticancer effect on NSCLC cells by down-regulating VEGF/PI3K/Akt signaling pathway. This result indicated that cordycepin and apatinib could be a promising drug combination against NSCLC.
Collapse
Affiliation(s)
- Xiaozhong Liao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanting Tao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Guo
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Haiyan Du
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Wang
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jue Zhang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanrui Chen
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Tang C, Zhao CC, Yi H, Geng ZJ, Wu XY, Zhang Y, Liu Y, Fan G. Traditional Tibetan Medicine in Cancer Therapy by Targeting Apoptosis Pathways. Front Pharmacol 2020; 11:976. [PMID: 32774302 PMCID: PMC7381342 DOI: 10.3389/fphar.2020.00976] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
Cancer is a leading cause of death around the world. Apoptosis, one of the pathways of programmed cell death, is a promising target for cancer therapy. Traditional Tibetan medicine (TTM) has been used by Tibetan people for thousands of years, and many TTMs have been proven to be effective in the treatment of cancer. This paper summarized the medicinal plants with anticancer activity in the Tibetan traditional system of medicine by searching for Tibetan medicine monographs and drug standards and reviewing modern research literatures. Forty species were found to be effective in treating cancer. More importantly, some TTMs (e.g., Ophiocordyceps sinensis, Phyllanthus emblica L. and Rhodiola kirilowii (Regel) Maxim.) and their active ingredients (e.g., cordycepin, salidroside, and gallic acid) have been reported to possess anticancer activity by targeting some apoptosis pathways in cancer, such as Bcl-2/Bax, caspases, PI3K/Akt, JAK2/STAT3, MAPK, and AMPK. These herbs and natural compounds would be potential drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- Ce Tang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-Cheng Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zang-Jia Geng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xin-Yue Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Chuang WY, Hsieh YC, Lee TT. The Effects of Fungal Feed Additives in Animals: A Review. Animals (Basel) 2020; 10:E805. [PMID: 32384791 PMCID: PMC7278461 DOI: 10.3390/ani10050805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023] Open
Abstract
As probiotics, fungi enhance animal health and are suitable animal feed additives. In addition to brewing fungi, there are also edible and medicinal fungi. Common fungi utilized in feeding programs include Saccharomyces cerevisiae, Aspergillus oryzae, Pleurotus spp., Antrodia cinnamomea, and Cordyceps militaris. These fungi are rich in glucans, polysaccharides, polyphenols, triterpenes, ergosterol, adenosine, and laccases. These functional components play important roles in antioxidant, anti-inflammatory, anti-obesity, and immune system regulation. As such, fungal feed additives could be of potential use when breeding livestock. In previous studies, fungal feed additives enhanced body weight and egg production in poultry and improved the feed conversion rate. Several mycotoxins can be produced by hazardous fungi but fortunately, the cell walls constituents and enzymes of fungal probiotics can also act to decrease the toxicity of mycotoxins. Overall, fungal feed additives are of value, but their safety and usage must be studied further, including cost-benefit economic analyses.
Collapse
Affiliation(s)
- Wen Yang Chuang
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
| | - Yun Chen Hsieh
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
| | - Tzu-Tai Lee
- Department of Animal Science, National Chung Hsing University, Taichung 402, Taiwan; (W.Y.C.); (Y.C.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
20
|
Liu T, Zhu G, Yan W, Lv Y, Wang X, Jin G, Cui M, Lin Z, Ren X. Cordycepin Inhibits Cancer Cell Proliferation and Angiogenesis through a DEK Interaction via ERK Signaling in Cholangiocarcinoma. J Pharmacol Exp Ther 2020; 373:279-289. [PMID: 32102917 DOI: 10.1124/jpet.119.263202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that arises from the epithelial cells of the bile duct and is notorious for its poor prognosis. The clinical outcome remains disappointing, and thus more effective therapeutic options are urgently required. Cordycepin, a traditional Chinese medicine, provides multiple pharmacological strategies in antitumors, but its mechanisms have not been fully elucidated. In this study, we reported that cordycepin inhibited the viability and proliferation capacity of CCA cells in a time- and dose-dependent manner determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assay. Flow cytometry and Hoechst dye showed that cordycepin induced cancer cell apoptosis via extracellular signal-regulated kinase (ERK) 1/2 deactivation. Moreover, cordycepin significantly reduced the angiogenetic capabilities of CCA in vitro as examined by tube formation assay. We also discovered that cordycepin inhibited DEK expression by using Western blot assay. DEK serves as an oncogenic protein that is overexpressed in various gastrointestinal tumors. DEK silencing inhibited CCA cell viability and angiogenesis but not apoptosis induction determined by Western blot and flow cytometry. Furthermore, cordycepin significantly inhibited tumor growth and angiogenic capacities in a xenograft model by downregulating the expression of DEK, phosphorylated ERK1/2 CD31 and von Willebrand factor (vWF). Taken together, we demonstrated that cordycepin inhibited CCA cell proliferation and angiogenesis with a DEK interaction via downregulation in ERK signaling. These data indicate that cordycepin may serve as a novel agent for CCA clinical treatment and prognosis improvement. SIGNIFICANCE STATEMENT: Cordycepin provides multiple strategies in antitumors, but its mechanisms are not fully elucidated, especially on cholangiocarcinoma (CCA). We reported that cordycepin inhibited the viability of CCA cells, induced apoptosis via extracellular signal-regulated kinase 1/2 deactivation and DEK inhibition, and reduced the angiogenetic capabilities of CCA both in vivo and in vitro.
Collapse
Affiliation(s)
- Tesi Liu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Guang Zhu
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Wendi Yan
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - You Lv
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Xue Wang
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Guang Jin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Minghua Cui
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Zhenhua Lin
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| | - Xiangshan Ren
- Department of Pathology and Cancer Research Center, Yanbian University Medical College, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of the Science and Technology Department of Jilin Province, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji, China (T.L., G.Z., W.Y., Y.L., X.W., G.J., M.C., Z.L., X.R.); and Otorhinolaryngology Institute at Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China (T.L.)
| |
Collapse
|
21
|
Han F, Dou M, Wang Y, Xu C, Li Y, Ding X, Xue W, Zheng J, Tian P, Ding C. Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress. Acta Biochim Biophys Sin (Shanghai) 2020; 52:125-132. [PMID: 31951250 DOI: 10.1093/abbs/gmz145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/20/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Cordycepin (3'-deoxyadenosine) is a naturally occurring adenosine analog and one of the bioactive constituents isolated from Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. However, the actions of cordycepin against renal ischemia/reperfusion injury (I/R) are still unknown. In the present study, rats were subject to I/R and cordycepin was intragastrically administered for seven consecutive days before surgery to investigate the effects and mechanisms of cordycepin against renal I/R injury. The test results of kidney and peripheral blood samples of experimental animals showed that cordycepin significantly decreased serum blood urea nitrogen and creatinine levels and markedly attenuated cell injury. Mechanistic studies showed that cordycepin significantly regulated inflammation, apoptosis, and oxidative stress. These data provide new insights for investigating the natural product with the nephroprotective effect against I/R, which should be developed as a new therapeutic agent for the treatment of I/R in the future.
Collapse
Affiliation(s)
- Feng Han
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Meng Dou
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuxiang Wang
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
| | - Cuixiang Xu
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Center of Shaanxi Provincial Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an 710061, China
| | - Yang Li
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - XiaoMing Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - WuJun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi’an Jiaotong University, Xi’an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
22
|
Khan MA, Tania M. Cordycepin in Anticancer Research: Molecular Mechanism of Therapeutic Effects. Curr Med Chem 2020; 27:983-996. [PMID: 30277143 DOI: 10.2174/0929867325666181001105749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/20/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cordycepin is a nucleotide analogue from Cordyceps mushrooms, which occupies a notable place in traditional medicine. OBJECTIVE In this review article, we have discussed the recent findings on the molecular aspects of cordycepin interactions with its recognized cellular targets, and possible mechanisms of its anticancer activity. METHODS We have explored databases like pubmed, google scholar, scopus and web of science for the update information on cordycepin and mechanisms of its anticancer activity, and reviewed in this study. RESULTS Cordycepin has been widely recognized for its therapeutic potential against many types of cancers by various mechanisms. More specifically, cordycepin can induce apoptosis, resist cell cycle and cause DNA damage in cancer cells, and thus kill or control cancer cell growth. Also cordycepin can induce autophagy and modulate immune system. Furthermore, cordycepin also inhibits tumor metastasis. Although many success stories of cordycepin in anticancer research in vitro and in animal model, and there is no successful clinical trial yet. CONCLUSION Ongoing research studies have reported highly potential anticancer activities of cordycepin with numerous molecular mechanisms. The in vitro and in vivo success of cordycepin in anticancer research might influence the clinical trials of cordycepin, and this molecule might be used for development of future cancer drug.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mousumi Tania
- Molecular Cancer Research Division, Red-Green Research Center, Dhaka, Bangladesh
| |
Collapse
|
23
|
Hamzeh A, Noisa P, Yongsawatdigul J. Characterization of the antioxidant and ACE-inhibitory activities of Thai fish sauce at different stages of fermentation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Yao LH, Wang J, Liu C, Wei S, Li G, Wang S, Meng W, Liu ZB, Huang LP. Cordycepin protects against β-amyloid and ibotenic acid-induced hippocampal CA1 pyramidal neuronal hyperactivity. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:483-491. [PMID: 31680770 PMCID: PMC6819905 DOI: 10.4196/kjpp.2019.23.6.483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Cordycepin exerts neuroprotective effects against excitotoxic neuronal death. However, its direct electrophysiological evidence in Alzheimer's disease (AD) remains unclear. This study aimed to explore the electrophysiological mechanisms underlying the protective effect of cordycepin against the excitotoxic neuronal insult in AD using whole-cell patch clamp techniques. β-Amyloid (Aβ) and ibotenic acid (IBO)-induced injury model in cultured hippocampal neurons was used for the purpose. The results revealed that cordycepin significantly delayed Aβ + IBO-induced excessive neuronal membrane depolarization. It increased the onset time/latency, extended the duration, and reduced the slope in both slow and rapid depolarization. Additionally, cordycepin reversed the neuronal hyperactivity in Aβ + IBO-induced evoked action potential (AP) firing, including increase in repetitive firing frequency, shortening of evoked AP latency, decrease in the amplitude of fast afterhyperpolarization, and increase in membrane depolarization. Further, the suppressive effect of cordycepin against Aβ + IBO-induced excessive neuronal membrane depolarization and neuronal hyperactivity was blocked by DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor-specific blocker). Collectively, these results revealed the suppressive effect of cordycepin against the Aβ + IBO-induced excitotoxic neuronal insult by attenuating excessive neuronal activity and membrane depolarization, and the mechanism through the activation of A1R is strongly recommended, thus highlighting the therapeutic potential of cordycepin in AD.
Collapse
Affiliation(s)
- Li-Hua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China.,School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Jinxiu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Chao Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| | - Shanshan Wei
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Guoyin Li
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Songhua Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Wei Meng
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Zhi-Bin Liu
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Li-Ping Huang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, PR China
| |
Collapse
|
25
|
Lee D, Lee WY, Jung K, Kwon YS, Kim D, Hwang GS, Kim CE, Lee S, Kang KS. The Inhibitory Effect of Cordycepin on the Proliferation of MCF-7 Breast Cancer Cells, and its Mechanism: An Investigation Using Network Pharmacology-Based Analysis. Biomolecules 2019; 9:E414. [PMID: 31454995 PMCID: PMC6770402 DOI: 10.3390/biom9090414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
Cordyceps militaris is a well-known medicinal mushroom. It is non-toxic and has clinical health benefits including cancer inhibition. However, the anticancer effects of C. militaris cultured in brown rice on breast cancer have not yet been reported. In this study, we simultaneously investigated the anticancer effects of cordycepin and an extract of C. militaris cultured in brown rice on MCF-7 human breast cancer cells using a cell viability assay, cell staining with Hoechst 33342, and an image-based cytometric assay. The C. militaris concentrate exhibited significant MCF-7 cell inhibitory effects, and its IC50 value was 73.48 µg/mL. Cordycepin also exhibited significant MCF-7 cell inhibitory effects, and its IC50 value was 9.58 µM. We applied network pharmacological analysis to predict potential targets and pathways of cordycepin. The gene set enrichment analysis showed that the targets of cordycepin are mainly associated with the hedgehog signaling, apoptosis, p53 signaling, and estrogen signaling pathways. We further verified the predicted targets related to the apoptosis pathway using western blot analysis. The C. militaris concentrate and cordycepin exhibited the ability to induce apoptotic cell death by increasing the cleavage of caspase-7 -8, and -9, increasing the Bcl-2-associated X protein/ B-cell lymphoma 2 (Bax/Bcl-2) protein expression ratio, and decreasing the protein expression of X-linked inhibitor of apoptosis protein (XIAP) in MCF-7 cells. Consequently, the C. militaris concentrate and cordycepin exhibited significant anticancer effects through their ability to induce apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
| | - Won-Yung Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Kiwon Jung
- Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University, Sungnam 13844, Korea
| | - Yong Sam Kwon
- Dong-A Pharmaceutical Co., LTD., Yongin 17073, Korea
| | - Daeyoung Kim
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam, 13120, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
26
|
Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase. PLoS One 2019; 14:e0218449. [PMID: 31199855 PMCID: PMC6568415 DOI: 10.1371/journal.pone.0218449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022] Open
Abstract
Cordycepin is an efficient component of Cordyceps spp, a traditional Chinese medicine widely used for healthcare in China, and has been recently acted as a strong anticancer agent for clinic. However, whether and how it may play a role in combating tuberculosis, caused by Mycobacterium tuberculosis, remains unknown. Here we report that cordycepin can kill Mycobacterium by hijacking the bacterial adenosine kinase (AdoK), a purine salvage enzyme responsible for the phosphorylation of adenosine (Ado) to adenosine monophosphate (AMP). We show that cordycepin is a poor AdoK substrate but it competitively inhibits the catalytic activity of AdoK for adenosine phosphorylation. Cordycepin does not affect the activity of the human adenosine kinase (hAdoK), whereas hAdoK phosphorylates cordycepin to produce a new monophosphate derivative. Co-use of cordycepin and deoxycoformycin, an inhibitor of adenosine deaminase (ADD), more efficiently kills M. bovis and M. tuberculosis. The add-deleted mycobacterium is more sensitive to cordycepin. This study characterized cordycepin as a new mycobactericidal compound and also uncovered a potential anti-mycobacterial mechanism.
Collapse
|
27
|
Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi. Molecules 2019; 24:molecules24122231. [PMID: 31207985 PMCID: PMC6632035 DOI: 10.3390/molecules24122231] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Cordycepin (3′-deoxyadenosine), a cytotoxic nucleoside analogue found in Cordyceps militaris, has attracted much attention due to its therapeutic potential and biological value. Cordycepin interacts with multiple medicinal targets associated with cancer, tumor, inflammation, oxidant, polyadenylation of mRNA, etc. The investigation of the medicinal drug actions supports the discovery of novel targets and the development of new drugs to enhance the therapeutic potency and reduce toxicity. Cordycepin may be of great value owing to its medicinal potential as an external drug, such as in cosmeceutical, traumatic, antalgic and muscle strain applications. In addition, the biological application of cordycepin, for example, as a ligand, has been used to uncover molecular structures. Notably, studies that investigated the metabolic mechanisms of cordycepin-producing fungi have yielded significant information related to the biosynthesis of high levels of cordycepin. Here, we summarized the medicinal targets, biological applications, cytotoxicity, delivery carriers, stability, and pros/cons of cordycepin in clinical applications, as well as described the metabolic mechanisms of cordycepin in cordycepin-producing fungi. We posit that new approaches, including single-cell analysis, have the potential to enhance medicinal potency and unravel all facets of metabolic mechanisms of cordycepin in Cordyceps militaris.
Collapse
|
28
|
Xu JC, Zhou XP, Wang XA, Xu MD, Chen T, Chen TY, Zhou PH, Zhang YQ. Cordycepin Induces Apoptosis and G2/M Phase Arrest through the ERK Pathways in Esophageal Cancer Cells. J Cancer 2019; 10:2415-2424. [PMID: 31258746 PMCID: PMC6584355 DOI: 10.7150/jca.32071] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/10/2019] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer is one of the most aggressive and lethal gastrointestinal tract malignancies, with a poor overall five-year survival rate. Cordycepin, a major compound of Cordyceps sinensis, has been shown to have anticancer potential. This study focuses on the anticancer properties of cordycepin that target esophageal cancer and reveals molecular aspects underlying these effects. In our CCK-8 assays and colony formation assays, cordycepin significantly suppressed esophageal cancer cell proliferation. Moreover, cordycepin induced chromatin condensation in esophageal cancer cells and significantly increased the number of apoptotic cells through activation of caspase cascades, apoptotic signaling, and the regulation of Bcl-2 family members. Cell cycle assays showed that cordycepin altered cyclin-dependent kinase1 and cyclinB1 expression, which resulted in a G2/M phase blockade. Mechanistically, ERK pathway inactivation was involved in the anti-tumor functions of cordycepin. The same results were also observed in vivo. Taken together, these findings reveal that cordycepin induces pro-apoptosis and anti-proliferation mechanisms in cancer cells, and may represent a novel therapeutic agent.
Collapse
Affiliation(s)
- Jia-Cheng Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai 200032, China
| | - Xue-Ping Zhou
- Department of General Surgery, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Xu-An Wang
- Department of General Surgery, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Mei-Dong Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai 200032, China
| | - Tao Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai 200032, China
| | - Tian-Yin Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai 200032, China
| | - Ping-Hong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai 200032, China
| | - Yi-Qun Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, No. 180 FengLin Road, Shanghai 200032, China
| |
Collapse
|
29
|
Chaicharoenaudomrung N, Kunhorm P, Promjantuek W, Heebkaew N, Rujanapun N, Noisa P. Fabrication of 3D calcium‐alginate scaffolds for human glioblastoma modeling and anticancer drug response evaluation. J Cell Physiol 2019; 234:20085-20097. [DOI: 10.1002/jcp.28608] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/22/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Nipha Chaicharoenaudomrung
- Laboratory of Cell‐Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell‐Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell‐Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Nudjanad Heebkaew
- Laboratory of Cell‐Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Narawadee Rujanapun
- Laboratory of Cell‐Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Parinya Noisa
- Laboratory of Cell‐Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology Suranaree University of Technology Nakhon Ratchasima Thailand
| |
Collapse
|
30
|
Wang Y, Lv Y, Liu TS, Yan WD, Chen LY, Li ZH, Piao YS, An RB, Lin ZH, Ren XS. Cordycepin suppresses cell proliferation and migration by targeting CLEC2 in human gastric cancer cells via Akt signaling pathway. Life Sci 2019; 223:110-119. [DOI: 10.1016/j.lfs.2019.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/03/2019] [Accepted: 03/10/2019] [Indexed: 11/28/2022]
|
31
|
Cordyceps militaris Improves Chronic Kidney Disease by Affecting TLR4/NF- κB Redox Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7850863. [PMID: 31049139 PMCID: PMC6462325 DOI: 10.1155/2019/7850863] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
Cordyceps militaris may show good promise in protecting against chronic kidney disease (CKD) but the molecular mechanism remains unclear. CKD risk is associated with the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Cordycepin is the main component of Cordyceps militaris and may affect the TLR4/NF-κB pathway. Cordycepin was prepared by preparative HPLC. CKD patients were assigned into Cordyceps militaris (COG, 100 mg daily) and placebo (CG) groups. Cordycepin activity was measured using human embryo kidney cells (HEK293T). Biochemical indices, the levels of TLR4, NF-κB, cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), were measured by real-time qRT-PCR, or ELISA kits and or Western blot. After 3-month treatment, cordycepin reduced the levels of urinal protein, blood urea nitrogen (BUN), and creatinine by 36.7%±8.6%, 12.5%±3.2%, and 18.3%±6.6%, respectively (P < 0.05). Cordyceps militaris improved lipid profile and redox capacity of CKD patients by reducing the serum levels of TG, TC, and LDL-C by 12.8%±3.6%, 15.7%±4.1%, and 16.5%±4.4% and increasing the HDL-C level by 10.1%±1.4% in the COG group when compared with the CG group, respectively (P < 0.05). The serum levels of cystatin-C (Cys-C), myeloperoxidase (MPO), and malondialdehyde (MDA) were reduced by 14.0%±3.8%, 26.9%±12.3%, and 19.7%±7.9% while nitric oxide (NO) and superoxide dismutase (SOD) were increased by 12.5%±2.9% and 25.3%±13.4% in the COG group when compared with the CG group, respectively (P < 0.05). Cordycepin reduced the levels of TLR4, NF-κB, COX2, TNF-α, and IL-1β in HEK293T cells too (P < 0.05). However, cordycepin could not affect the levels anymore if TLR4 was silenced. Cordyceps militaris protected against CKD progression by affecting the TLR4/NF-κB lipid and redox signaling pathway via cordycepin.
Collapse
|
32
|
Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body. MEDICINES 2019; 6:medicines6010020. [PMID: 30699961 PMCID: PMC6473835 DOI: 10.3390/medicines6010020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/02/2022]
Abstract
Background:Cordyceps militaris is a medicinal mushroom and has been extensively used as a folk medicine in East Asia. In this study, the separation of constituents involved in xanthine oxidase (XO) inhibitory, antioxidant and antibacterial properties of C. militaris was conducted. Methods: The aqueous residue of this fungus was extracted by methanol and then subsequently fractionated by hexane, chloroform, ethyl acetate and water. The ethyl acetate extract possessed the highest XO inhibitory and antioxidant activities was separated to different fractions by column chromatography. Each fraction was then subjected to anti-hyperuricemia, antioxidant and antibacterial assays. Results: The results showed that the CM8 fraction exhibited the strongest XO inhibitory activity (the lowest IC50: 62.82 μg/mL), followed by the CM10 (IC50: 68.04 μg/mL) and the CM7 (IC50: 86.78 μg/mL). The level of XO inhibition was proportional to antioxidant activity. In antibacterial assay, the CM9 and CM11 fractions showed effective antibacterial activity (MIC values: 15–25 mg/mL and 10–25 mg/mL, respectively). Results from gas chromatography-mass spectrometry (GC-MS) analyses indicated that cordycepin was the major constituent in the CM8 and CM10 fractions. Conclusions: This study revealed that C. militaris was beneficial for treatment hyperuricemia although in vivo trials on compounds purified from this medicinal fungus are needed.
Collapse
|
33
|
Enrichment of cordycepin for cosmeceutical applications: culture systems and strategies. Appl Microbiol Biotechnol 2019; 103:1681-1691. [DOI: 10.1007/s00253-019-09623-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
|
34
|
Tania M, Shawon J, Saif K, Kiefer R, Khorram MS, Halim MA, Khan MA. Cordycepin Downregulates Cdk-2 to Interfere with Cell Cycle and Increases Apoptosis by Generating ROS in Cervical Cancer Cells: in vitro and in silico Study. Curr Cancer Drug Targets 2019; 19:152-159. [PMID: 30182857 DOI: 10.2174/1568009618666180905095356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/25/2018] [Accepted: 08/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cordycepin is a small molecule from medicinal mushroom Cordyceps, which has been reported for anticancer properties. OBJECTIVE In this study, we have focused on the investigation of cordycepin effect on cervical cancer cells with further clarification of possible molecular mechanism. METHOD We have used cell viability and cell counting assay for cytotoxic effect of cordycepin, flow cytometric assay of apoptosis and cell cycle, and quantitative PCR (qPCR) and Western blotting for the determination of target gene expression. Molecular docking and Molecular dynamics simulation were used for in silico analysis of cordycepin affinity to target protein(s). RESULTS Treatment of cordycepin controlled SiHa and HeLa cervical cancer cell growth, increased the rate of their apoptosis, and interfered with cell cycle, specifically elongated S-phase. qPCR results indicated that there was a downregulation of cell cycle proteins CDK-2, CYCLIN-A2 and CYCLIN-E1 in mRNA level by cordycepin treatment but no significant change was observed in pro-apoptotic or antiapoptotic proteins. The intracellular reactive oxygen species (ROS) level in cordycepin treated cells was increased significantly, implying that apoptosis might be induced by ROS. Western blot analysis confirmed significant decrease of Cdk-2 and mild decrease of Cyclin-E1 and Cyclin-A2 by cordycepin, which might be responsible for regulating cell cycle. Molecular docking indicated high binding affinity of cordycepin against Cdk-2. Molecular dynamics simulation further confirmed that the docked pose of cordycepin-Cdk-2 complex remained within the binding pocket for 10 ns. CONCLUSION Our study suggests that cordycepin is effective against cervical cancer cells, and regulating cell cycle via cell cycle proteins, especially downregulating Cdk-2, and inducing apoptosis by generating ROS are among the mechanisms of anticancer activities of cordycepin.
Collapse
Affiliation(s)
- Mousumi Tania
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
| | - Jakaria Shawon
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Kazi Saif
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Rudolf Kiefer
- Conducting Polymers in Composites and applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mahdi Safaei Khorram
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Mohammad A Halim
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
35
|
Su NW, Wu SH, Chi CW, Tsai TH, Chen YJ. Cordycepin, isolated from medicinal fungus Cordyceps sinensis, enhances radiosensitivity of oral cancer associated with modulation of DNA damage repair. Food Chem Toxicol 2018; 124:400-410. [PMID: 30576710 DOI: 10.1016/j.fct.2018.12.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023]
Abstract
Concurrent chemotherapy and radiotherapy (RT) is important for controlling oral squamous cell carcinoma (OSCC), which is often accompanied by significant acute and late toxicities. We investigated whether cordycepin, a small molecule extracted from Cordyceps sinensis, could enhance the radiosensitivity of oral cancer cells. Using colony formation assay, we demonstrated that cordycepin induces radiosensitizing effects on two OSCC cells. DNA histogram analysis showed that cordycepin combined with RT prolonged the RT-induced G2/M phase arrest. It protracted the duration of DNA double strand breaks, which was detected by immunofluorescent staining of phosphorylated histone H2AX (γ-H2AX). The underlying molecular mechanism might involve the downregulation of protein expression related to DNA damage repair, including phosphorylated ataxia-telangiectasia mutated (p-ATM) and phosphorylated checkpoint kinase 2. Reciprocal upregulation of phosphorylated checkpoint kinase 1 (Chk1) expression was noted, and the radiosensitizing effect of cordycepin could be further augmented by Chk1 mRNA knockdown, indicating a compensatory DNA repair machinery involving phosphorylation of Chk1. In vivo, the combination of cordycepin and RT exhibited greater growth inhibition on xenografts and stronger apoptosis induction than RT alone, without exacerbating major toxicities. In conclusion, cordycepin increased the radiosensitivity of OSCC cells, which is associated with the modulation of RT-induced DNA damage repair machinery.
Collapse
Affiliation(s)
- Nai-Wen Su
- Division of Medical Oncology and Hematology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, 11094, Taiwan; Institute of Tradition Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Shu-Hua Wu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 25160, Taiwan
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, Taipei, 25160, Taiwan
| | - Tung-Hu Tsai
- Institute of Tradition Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan; Department of Chemical Engineering, National United University, Miaoli, 36063, Taiwan.
| | - Yu-Jen Chen
- Institute of Tradition Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, 25160, Taiwan; Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, 25160, Taiwan; Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
36
|
Li SZ, Ren JW, Fei J, Zhang XD, Du RL. Cordycepin induces Bax‑dependent apoptosis in colorectal cancer cells. Mol Med Rep 2018; 19:901-908. [PMID: 30535479 PMCID: PMC6323220 DOI: 10.3892/mmr.2018.9717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 10/25/2018] [Indexed: 01/25/2023] Open
Abstract
Cordycepin, or 3′-deoxyadenosine, is a derivative of the nucleoside adenosine. Initially extracted from the fungus Cordyceps militaris, cordycepin exhibits antitumor activity against certain cancer cell lines; however, the mechanism by which cordycepin counteracts colorectal cancer (CRC) remains poorly understood. The aim of the present study was to explore the underlying mechanisms of cordycepin against human CRC. To investigate the molecular mechanisms of cordycepin against colon cancer and in driving apoptosis, p53 and Bcl-2-like protein 4-null (Bax−/−) colon cancer HCT116 cell lines were used. Cell viability and growth were repressed in a dose-dependent manner in cells treated with cordycepin. Treatment with cordycepin resulted in increased apoptosis in HCT116 cells; however, flow cytometic analysis demonstrated that apoptosis was notably decreased in the Bax−/− HCT116 cell lines, but not in the p53−/− HCT116 cell lines. Furthermore, cordycepin exposure resulted in the translocation of Bax from the cytosol to the mitochondria and the subsequent release of cytochrome c from the mitochondria. Results from the present study demonstrated that cordycepin inhibited colon cancer cell growth in vitro and this appears to be through the endogenous Bax-dependent mitochondrial apoptosis pathway, which suggested a molecular mechanism for cordycepin against human colon cancer. These results indicated the possibility of cordycepin as a novel drug for the prevention of colon cancer.
Collapse
Affiliation(s)
- Shang-Ze Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jian-Wei Ren
- Tibet University Medical College, Lhasa, Tibet 850000, P.R. China
| | - Jing Fei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
37
|
Autophagy in glioma cells: An identity crisis with a clinical perspective. Cancer Lett 2018; 428:139-146. [PMID: 29709703 DOI: 10.1016/j.canlet.2018.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/14/2018] [Accepted: 04/20/2018] [Indexed: 01/06/2023]
Abstract
Over the last decade, autophagy has emerged as one of the critical cellular systems that control homeostasis. Besides management of normal homeostatic processes, autophagy can also be induced by tissue damage stress or by rapidly progressing tumors. During tumor progression, autophagy mediates a cellular reaction to the changes inside and outside of cells, which leads to tumor adaptation. Even though the regulation of autophagy seems universal and is a well-described process, its dysregulation and role in glioma progression remain an important topic of investigation. In this review, we summarize recent evidence of autophagy regulation in brain tumor tissues and possible interconnection between signaling pathways that govern cellular responses. This perspective may help to assess the qualitative differences and various outcomes in response to autophagy stimulation.
Collapse
|
38
|
Moosavi MA, Haghi A, Rahmati M, Taniguchi H, Mocan A, Echeverría J, Gupta VK, Tzvetkov NT, Atanasov AG. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Lett 2018; 424:46-69. [PMID: 29474859 DOI: 10.1016/j.canlet.2018.02.030] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O Box:14965/161, Tehran, Iran.
| | - Atousa Haghi
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Gheorghe Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Javier Echeverría
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, Sofia 1618, Bulgaria
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
39
|
Bioactive Molecules in Edible and Medicinal Mushrooms for Human Wellness. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54528-8_83-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|