1
|
Nakamura R, Iwai T, Takanezawa Y, Shirahata T, Konishi N, Ohshiro Y, Uraguchi S, Tanabe M, Kobayashi Y, Sakamoto K, Nakahara T, Yamamoto M, Kiyono M. Oleanolic acid-3-glucoside, a synthetic oleanane-type saponin, ameliorates methylmercury-induced dysfunction of synaptic transmission in mice. Toxicology 2024; 506:153867. [PMID: 38906242 DOI: 10.1016/j.tox.2024.153867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Methylmercury (MeHg) is widely distributed in nature and is known to cause neurotoxic effects. This study aimed to examine the anti-MeHg activity of oleanolic acid-3-glucoside (OA3Glu), a synthetic oleanane-type saponin derivative, by evaluating its effects on motor function, pathology, and electrophysiological properties in a mouse model of MeHg poisoning. Mice were orally administered 2 or 4 mg·kg-1·d-1 MeHg with or without 100 µg·kg-1·d-1 OA3Glu 5x/week for four weeks. Motor function was evaluated using beam-walking and dynamic weight-bearing (DWB) tests. High-dose MeHg exposure significantly increased the frequency of stepping off the hind leg while crossing the beam in the beam-walking test, and increased weight on forelegs when moving freely in the DWB test. OA3Glu treatment alleviated motor abnormality caused by high-dose MeHg exposure in both motor function tests. Additionally, OA3Glu treatment reduced the number of contracted Purkinje cells frequently observed in the cerebellum of MeHg-treated groups, although cerebrum histology was similar in all experimental groups. The synaptic potential amplitude in the cerebellum decreased as MeHg exposure increased, which was restored by OA3Glu treatment. Even in the cerebrum, where the effects of MeHg were not observed, the amplitude of the field potential was suppressed with increasing MeHg exposure but was restored with OA3Glu treatment. Taken together, the study findings suggest that OA3Glu improves neurotransmission and movement disorders associated with MeHg exposure via protection of Purkinje cells in the cerebellum while ameliorating pre/post-synaptic deficits in the cerebral cortex in which no changes were observed at the tissue level, potentially providing a treatment to mitigate MeHg toxicity.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Iwai
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasukazu Takanezawa
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Ohshiro
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tsutomu Nakahara
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Megumi Yamamoto
- Department of Environment and Public Health, National Institute for Minamata Disease, 4058-18, Hama, Minamata, Kumamoto 867-0008, Japan
| | - Masako Kiyono
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
2
|
A Novel Diselenide-Probucol-Analogue Protects Against Methylmercury-Induced Toxicity in HT22 Cells by Upregulating Peroxide Detoxification Systems: a Comparison with Diphenyl Diselenide. Neurotox Res 2022; 40:127-139. [PMID: 35043379 DOI: 10.1007/s12640-021-00466-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant whose mechanisms of action involve oxidation of endogenous nucleophilic groups (mainly thiols and selenols), depletion of antioxidant defenses, and disruption of neurotransmitter homeostasis. Diphenyl diselenide-(PhSe)2-a model diaryl diselenide, has been reported to display significant protective effects against MeHg-induced neurotoxicity under both in vitro and in vivo experimental conditions. In this study, we compared the protective effects of (PhSe)2 with those of RC513 (4,4'-diselanediylbis(2,6-di-tert-butylphenol), a novel diselenide-probucol-analog) against MeHg-induced toxicity in the neuronal (hippocampal) cell line HT22. Although both (PhSe)2 and RC513 significantly mitigated MeHg- and tert-butylhydroperoxide (t-BuOOH)-cytotoxicity, the probucol analog exhibited superior protective effects, which were observed earlier and at lower concentrations compared to (PhSe)2. RC513 treatment (at either 0.5 µM or 2 µM) significantly increased glutathione peroxidase (GPx) activity, which has been reported to counteract MeHg-toxicity. (PhSe)2 was also able to increase GPx activity, but only at 2 µM. Although both compounds increased the Gpx1 transcripts at 6 h after treatments, only RC513 was able to increase mRNA levels of Prx2, Prx3, Prx5, and Txn2, which are also involved in peroxide detoxification. RC513 (at 2 µM) significantly increased GPx-1 protein expression in HT22 cells, although (PhSe)2 displayed a minor (nonsignificant) effect in this parameter. In agreement, RC513 induced a faster and superior capability to cope with exogenously-added peroxide (t-BuOOH). In summary, when compared to the prototypical organic diaryl diselenide [(PhSe)2], RC513 displayed superior protective properties against MeHg-toxicity in vitro; this was paralleled by a more pronounced upregulation of defenses related to detoxification of peroxides, which are well-known MeHg-derived intermediate oxidant species.
Collapse
|
3
|
Lian M, Field CL, van Wijngaarden E, Rios C, Castellini JM, Greig DJ, Rea LD, Coleman DJ, Thomson CE, Gulland FMD, O'Hara TM. Assessment of clinical outcomes associated with mercury concentrations in harbor seal pups (Phoca vitulina richardii) in central California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143686. [PMID: 33279198 DOI: 10.1016/j.scitotenv.2020.143686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Monomethyl mercury (MeHg+) from the diet can cause mild to severe neurotoxicosis in fish-eating mammals. Chronic and low-level in utero exposure also can be neurotoxic, as documented in laboratory animal studies and epidemiologic investigations. In free-ranging animals, it is challenging to study low-level exposure related neurotoxicosis, and few studies have investigated the relationship between mercury (Hg) and adverse outcomes in wild populations. Relative to Hg concentrations on admission we evaluated different types of behaviors for 267 Pacific harbor seal (HS; Phoca vitulina richardii) pups at The Marine Mammal Center from 2015 to 2019 during rehabilitation after stranding and maternal separation. Admitted HS pups underwent a clinical exam; including sex and weight determination, and hair (partly lanugo grown in utero) and blood samples were collected for total Hg concentration ([THg]) determination. All pups were monitored weekly (behavior assessments included response to tactile stimulation, movement, swimming, interactions with other seals, hand feeding, and feeding independently), and days in rehabilitation and survival were recorded. There was a significant negative correlation between [THg] and responses to tactile stimulation and movements, measured in both hair and whole blood (p < 0.05). This relationship was found both during the intensive care unit (ICU) stage, and during the pool stage of rehabilitation. Additionally, there was a significant association between greater [THg] and number of days spent in rehabilitation, although there was no relationship between [THg] and survival. There was a significant sex difference, with greater [THg] in female pups, which contrasts with previously published findings in juvenile and adult harbor seals. Our findings support small, but significant associations between gestational THg exposure and clinical effects for tactile sensory response and movement, and longer rehabilitation durations for HS pups, although there was considerable variability among animals.
Collapse
Affiliation(s)
- Marianne Lian
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA; Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Dr Rm. 194, Fairbanks, AK 99775-6160, USA.
| | - Cara L Field
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Edwin van Wijngaarden
- University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Carlos Rios
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA
| | - Denise J Greig
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Lorrie D Rea
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 1764 Tanana Loop, Fairbanks, AK 99775, USA
| | - Denver J Coleman
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Christine E Thomson
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA; Animal Referral Hospital Brisbane, Sinnamon Park, Brisbane, Queensland, Australia
| | - Frances M D Gulland
- The Marine Mammal Center, 2000 Bunker Road, Fort Cronkhite, Sausalito, CA 94965, USA
| | - Todd M O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, 2141 Koyokuk Dr, Fairbanks, AK 99775-7750, USA; Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Spiller HA, Hays HL, Casavant MJ. Rethinking treatment of mercury poisoning: the roles of selenium, acetylcysteine, and thiol chelators in the treatment of mercury poisoning: a narrative review. TOXICOLOGY COMMUNICATIONS 2021. [DOI: 10.1080/24734306.2020.1870077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Henry A. Spiller
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Hannah L. Hays
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Departments of Emergency Medicine and Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Marcel J. Casavant
- Central Ohio Poison Center, Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
5
|
Ke T, Bornhorst J, Schwerdtle T, Santamaría A, Soare FAA, Rocha JBT, Farina M, Bowman AB, Aschner M. Therapeutic Efficacy of the N,N' Bis-(2-Mercaptoethyl) Isophthalamide Chelator for Methylmercury Intoxication in Caenorhabditis elegans. Neurotox Res 2020; 38:133-144. [PMID: 32236898 DOI: 10.1007/s12640-020-00194-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Methylmercury (MeHg) is a global pollutant and potent neurotoxin. In humans, MeHg damages the central nervous system (CNS), causing irreversible neuronal shrinkage, and neuronal loss. Most chelators for clinical mercury detoxification are thiol-containing agents. N,N 'bis-(2-mercaptoethyl) isophthalamide (NBMI) is a lipophilic thiol agent synthesized from natural chemicals. NBMI has high affinity for mercury, cadmium and lead, and can decrease their concentrations in polluted water. However, the efficacy of NBMI for MeHg toxicity has yet to be evaluated in intact animals. Here we used the nematode Caenorhabditis elegans (C. elegans) to test the efficacy of NBMI in attenuating MeHg toxicity in vivo in the whole organism. The results showed that NBMI reduced both the acute toxicity (125 μM MeHg, 1 h) and chronic (5 μM MeHg, 24 h) MeHg toxicity. Co-treatment with NBMI achieved maximal efficacy against MeHg toxicity, however delayed treatment 6 days after initiation of exposure was also effective at reducing neurotoxicity. Co-treatment of NBMI reduced the worms' death rate, structural damage in DAergic neurons, and restored antioxidant response levels. While this study provides proof of principle for the therapeutic value of NBMI in MeHg toxicity, future studies are needed to address the cellular and molecular mechanisms and translatability of these effects to humans and other animals.
Collapse
Affiliation(s)
- Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - João B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907-2051, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Afrifa J, Opoku YK, Gyamerah EO, Ashiagbor G, Sorkpor RD. The Clinical Importance of the Mercury Problem in Artisanal Small-Scale Gold Mining. Front Public Health 2019; 7:131. [PMID: 31192183 PMCID: PMC6549531 DOI: 10.3389/fpubh.2019.00131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Artisanal small-scale mining is widely operated in various countries serving as a livelihood to many rural communities. However, it is a significant source of environmental mercury contamination which affects human health. Amalgamation and amalgam smelting, two significant steps in the artisanal small-scale mining operations generate lots of mercury vapors, leading to chronic exposure among miners. Thus, this article seeks to provide a topical review of recent findings on organ damage and metabolic disorders among mercury-exposed artisanal small-scale miners with emphasis on the contributing factors such as personal protective equipment usage and artisanal small-scale gold mining-specific occupational activities. Also, insights into the effect of mercury intoxication and mechanisms of action on organ and metabolic systems among exposed individuals are provided.
Collapse
Affiliation(s)
- Justice Afrifa
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.,Scientific Research Center, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeboah Kwaku Opoku
- Department of Biomedical Science, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.,Biopharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Eric Ofori Gyamerah
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George Ashiagbor
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | |
Collapse
|
7
|
Prince LM, Aschner M, Bowman AB. Human-induced pluripotent stems cells as a model to dissect the selective neurotoxicity of methylmercury. Biochim Biophys Acta Gen Subj 2019; 1863:129300. [PMID: 30742955 DOI: 10.1016/j.bbagen.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 02/01/2019] [Indexed: 01/07/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxicant affecting both the developing and mature central nervous system (CNS) with apparent indiscriminate disruption of multiple homeostatic pathways. However, genetic and environmental modifiers contribute significant variability to neurotoxicity associated with human exposures. MeHg displays developmental stage and neural lineage selective neurotoxicity. To identify mechanistic-based neuroprotective strategies to mitigate human MeHg exposure risk, it will be critical to improve our understanding of the basis of MeHg neurotoxicity and of this selective neurotoxicity. Here, we propose that human-based pluripotent stem cell cellular approaches may enable mechanistic insight into genetic pathways that modify sensitivity of specific neural lineages to MeHg-induced neurotoxicity. Such studies are crucial for the development of novel disease modifying strategies impinging on MeHg exposure vulnerability.
Collapse
Affiliation(s)
- Lisa M Prince
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, United States.
| |
Collapse
|
8
|
Farina M, Aschner M. Glutathione antioxidant system and methylmercury-induced neurotoxicity: An intriguing interplay. Biochim Biophys Acta Gen Subj 2019; 1863:129285. [PMID: 30659883 DOI: 10.1016/j.bbagen.2019.01.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/09/2018] [Accepted: 01/09/2019] [Indexed: 01/20/2023]
Abstract
Methylmercury (MeHg) is a toxic chemical compound naturally produced mainly in the aquatic environment through the methylation of inorganic mercury catalyzed by aquatic microorganisms. MeHg is biomagnified in the aquatic food chain and, consequently, piscivorous fish at the top of the food chain possess huge amounts of MeHg (at the ppm level). Some populations that have fish as main protein's source can be exposed to exceedingly high levels of MeHg and develop signs of toxicity. MeHg is toxic to several organs, but the central nervous system (CNS) represents a preferential target, especially during development (prenatal and early postnatal periods). Though the biochemical events involved in MeHg-(neuro)toxicity are not yet entirely comprehended, a vast literature indicates that its pro-oxidative properties explain, at least partially, several of its neurotoxic effects. As result of its electrophilicity, MeHg interacts with (and oxidize) nucleophilic groups, such as thiols and selenols, present in proteins or low-molecular weight molecules. It is noteworthy that such interactions modify the redox state of these groups and, therefore, lead to oxidative stress and impaired function of several molecules, culminating in neurotoxicity. Among these molecules, glutathione (GSH; a major thiol antioxidant) and thiol- or selenol-containing enzymes belonging to the GSH antioxidant system represent key molecular targets involved in MeHg-neurotoxicity. In this review, we firstly present a general overview concerning the neurotoxicity of MeHg. Then, we present fundamental aspects of the GSH-antioxidant system, as well as the effects of MeHg on this system.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|
9
|
Ghizoni H, Ventura M, Colle D, Gonçalves CL, de Souza V, Hartwig JM, Santos DB, Naime AA, Cristina de Oliveira Souza V, Lopes MW, Barbosa F, Brocardo PS, Farina M. Effects of perinatal exposure to n-3 polyunsaturated fatty acids and methylmercury on cerebellar and behavioral parameters in mice. Food Chem Toxicol 2018; 120:603-615. [DOI: 10.1016/j.fct.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
|
10
|
Antunes Dos Santos A, Ferrer B, Marques Gonçalves F, Tsatsakis AM, Renieri EA, Skalny AV, Farina M, Rocha JBT, Aschner M. Oxidative Stress in Methylmercury-Induced Cell Toxicity. TOXICS 2018; 6:toxics6030047. [PMID: 30096882 PMCID: PMC6161175 DOI: 10.3390/toxics6030047] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg) is a hazardous environmental pollutant, which elicits significant toxicity in humans. The accumulation of MeHg through the daily consumption of large predatory fish poses potential health risks, and the central nervous system (CNS) is the primary target of toxicity. Despite well-described neurobehavioral effects (i.e., motor impairment), the mechanisms of MeHg-induced toxicity are not completely understood. However, several lines of evidence point out the oxidative stress as an important molecular mechanism in MeHg-induced intoxication. Indeed, MeHg is a soft electrophile that preferentially interacts with nucleophilic groups (mainly thiols and selenols) from proteins and low-molecular-weight molecules. Such interaction contributes to the occurrence of oxidative stress, which can produce damage by several interacting mechanisms, impairing the function of various molecules (i.e., proteins, lipids, and nucleic acids), potentially resulting in modulation of different cellular signal transduction pathways. This review summarizes the general aspects regarding the interaction between MeHg with regulators of the antioxidant response system that are rich in thiol and selenol groups such as glutathione (GSH), and the selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). A particular attention is directed towards the role of the PI3K/Akt signaling pathway and the nuclear transcription factor NF-E2-related factor 2 (Nrf2) in MeHg-induced redox imbalance.
Collapse
Affiliation(s)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Elisavet A Renieri
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece.
| | - Anatoly V Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 150000, Russia.
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150014, Russia.
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow 150000, Russia.
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil.
| | - João B T Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria 97105-900, Rio Grande do Sul, Brazil.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
11
|
Aaseth J, Ajsuvakova OP, Skalny AV, Skalnaya MG, Tinkov AA. Chelator combination as therapeutic strategy in mercury and lead poisonings. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Macedo-Júnior SJ, Luiz-Cerutti M, Nascimento DB, Farina M, Soares Santos AR, de Azevedo Maia AH. Methylmercury exposure for 14 days (short-term) produces behavioral and biochemical changes in mouse cerebellum, liver, and serum. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1145-1155. [PMID: 28850017 DOI: 10.1080/15287394.2017.1357324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Various studies on methylmercury (MeHg)-induced toxicity focused on the central nervous system (CNS) as a primary target. However, MeHg-mediated toxicity is related to metallic interaction with electrophilic groups, which are not solely restricted to the CNS, but these reactive groups are present ubiquitously in several systems/organs. The aim of this study was thus to examine MeHg-induced systemic toxicity in mice using a standardized neurotoxicology testing exposure model to measure cerebellar neurotoxicity by determining biochemical and behavioral parameters in the cerebellum. After 2 weeks exposure to MeHg (40 µg/ml; diluted in drinking water; ad libitum), adult male Swiss mice showed a marked motor impairment characteristic of cerebellar toxicity as noted in the following tests: rotarod, beam walking, pole, and hind limb clasping. MeHg treatment resulted in Hg deposition in the cerebellum as well as reduction in cerebellar weight, glutathione peroxidase (GPx) activity, and interleukin (IL)-6 levels. MeHg ingestion increased cerebellar glutathione reductase (GR) activity and brain-derived neurotrophic factor (BDNF) levels. In addition to cerebellar toxicity, MeHg treatment also elevated total and non-high density lipoprotein (non-HDL) cholesterol levels, as well as serum aspartate transaminase (AST) and alanine transaminase (ALT) enzymatic activities, systemic parameters. Increased liver weight and reduced serum urea levels were also noted in MeHg-exposed mice. Taken together, our findings demonstrated that a well-standardized exposure protocol to examine MeHg-induced neurotoxicity also produced systemic toxicity in mice, which was characterized by changes in markers of hepatic function as well as serum lipid homeostasis.
Collapse
Affiliation(s)
- Sérgio José Macedo-Júnior
- a Programa de Pós-Graduação em Farmacologia, Departamento de Farmacologia , Centro de Ciências Biológicas, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Murilo Luiz-Cerutti
- b Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Denise B Nascimento
- c Departamento de Química, Centro de Ciências Naturais e Exatas , Universidade Federal de Santa Maria , Santa Maria , RS , Brazil
| | - Marcelo Farina
- d Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Adair Roberto Soares Santos
- b Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Alcíbia Helena de Azevedo Maia
- e Departamento de Patologia, Centro de Ciências da Saúde , Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| |
Collapse
|
13
|
Farina M, Aschner M. Methylmercury-Induced Neurotoxicity: Focus on Pro-oxidative Events and Related Consequences. ADVANCES IN NEUROBIOLOGY 2017; 18:267-286. [DOI: 10.1007/978-3-319-60189-2_13] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Antunes Dos Santos A, Appel Hort M, Culbreth M, López-Granero C, Farina M, Rocha JBT, Aschner M. Methylmercury and brain development: A review of recent literature. J Trace Elem Med Biol 2016; 38:99-107. [PMID: 26987277 PMCID: PMC5011031 DOI: 10.1016/j.jtemb.2016.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/02/2016] [Indexed: 02/02/2023]
Abstract
Methylmercury (MeHg) is a potent environmental pollutant, which elicits significant toxicity in humans. The central nervous system (CNS) is the primary target of toxicity, and is particularly vulnerable during development. Maternal exposure to MeHg via consumption of fish and seafood can have irreversible effects on the neurobehavioral development of children, even in the absence of symptoms in the mother. It is well documented that developmental MeHg exposure may lead to neurological alterations, including cognitive and motor dysfunction. The neurotoxic effects of MeHg on the developing brain have been extensively studied. The mechanism of toxicity, however, is not fully understood. No single process can explain the multitude of effects observed in MeHg-induced neurotoxicity. This review summarizes the most current knowledge on the effects of MeHg during nervous system development considering both, in vitro and in vivo experimental models. Considerable attention was directed towards the role of glutamate and calcium dyshomeostasis, mitochondrial dysfunction, as well as the effects of MeHg on cytoskeletal components/regulators.
Collapse
Affiliation(s)
| | - Mariana Appel Hort
- Institute of Biological Sciences, Federal University of Rio Grande, Campus Carreiros, Rio Grande do Sul, Brazil
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Caridad López-Granero
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Joao B T Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
15
|
Ishihara Y, Tsuji M, Kawamoto T, Yamazaki T. Involvement of reactive oxygen species derived from mitochondria in neuronal injury elicited by methylmercury. J Clin Biochem Nutr 2016; 59:182-190. [PMID: 27895385 PMCID: PMC5110935 DOI: 10.3164/jcbn.16-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/04/2016] [Indexed: 01/02/2023] Open
Abstract
Methylmercury induces oxidative stress and subsequent neuronal injury. However, the mechanism by which methylmercury elicits reactive oxygen species (ROS) production remains under debate. In this study, we investigated the involvement of mitochondrial ROS in methylmercury-induced neuronal cell injury using human neuroblastoma SH-SY5Y-derived ρ0 cells, which have a deletion of mitochondrial DNA and thus decreased respiratory activity. SH-SY5Y cells were cultured for 60 days in the presence of ethidium bromide to produce ρ0 cells. Our ρ0 cells showed decreases in the cytochrome c oxidase expression and activity as well as oxygen consumption compared with original SH-SY5Y cells. Methylmercury at a concentration of 1 µM induced cell death with oxidative stress in original SH-SY5Y cells, but not ρ0 cells, indicating that ρ0 cells are resistant to methylmercury-induced oxidative stress. ρ0 cells also showed tolerance against hydrogen peroxide and superoxide anion, suggesting that ρ0 cells are resistant to total ROS. These data indicate that mitochondrial ROS are clearly involved in oxidative stress and subsequent cell death induced by methylmercury. Considering that the dominant mechanism of ROS generation elicited by methylmercury is due to direct antioxidant enzyme inhibition, mitochondria might play a role in amplifying ROS in methylmercury-induced neurotoxicity.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Mayumi Tsuji
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Toshihiro Kawamoto
- Department of Environmental Health, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| |
Collapse
|
16
|
Shen AN, Cummings C, Pope D, Hoffman D, Newland MC. A bout analysis reveals age-related methylmercury neurotoxicity and nimodipine neuroprotection. Behav Brain Res 2016; 311:147-159. [PMID: 27196441 PMCID: PMC4931967 DOI: 10.1016/j.bbr.2016.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/10/2016] [Accepted: 05/14/2016] [Indexed: 01/29/2023]
Abstract
Age-related deficits in motor and cognitive functioning may be driven by perturbations in calcium (Ca(2+)) homeostasis in nerve terminals, mechanisms that are also thought to mediate the neurotoxicity of methylmercury (MeHg). Calcium-channel blockers (CCBs) protect against MeHg toxicity in adult mice, but little is known about their efficacy in other age groups. Two age groups of BALB/c mice were exposed to 0 or 1.2mg/kg/day MeHg and 0 or 20mg/kg/day of the CCB nimodipine for approximately 8.5 months. Adults began exposure on postnatal day (PND) 72 and the retired breeders on PND 296. High-rate operant behavior was maintained under a percentile schedule, which helped to decouple response rate from reinforcer rate. Responding was analyzed using a log-survivor bout analysis approach that partitioned behavior into high-rate bouts separated by pauses. MeHg-induced mortality did not depend on age but nimodipine neuroprotection was age-dependent, with poorer protection occurring in older mice. Within-bout response rate (a marker of sensorimotor function) was more sensitive to MeHg toxicity than bout-initiation rate (a marker of motivation). Within-bout rate declined almost 2 months prior to overt signs of toxicity for the MeHg-only retired breeders but not adults, suggesting greater delay to toxicity in younger animals. Motor-based decrements also appeared in relatively healthy adult MeHg+NIM animals. Aging appeared to alter the processes underlying Ca(2+) homeostasis thereby diminishing protection by nimodipine, even in mice that have not reached senescence. The study of MeHg exposure presents an experimental model by which to study potential mechanisms of aging.
Collapse
Affiliation(s)
| | - Craig Cummings
- Department of Psychology, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Derek Pope
- Department of Psychology, Auburn University, AL 36849, United States
| | - Daniel Hoffman
- Department of Psychology, Indiana University Southeast, New Albany, IN 47150, United States
| | | |
Collapse
|
17
|
Sulforaphane Prevents Methylmercury-Induced Oxidative Damage and Excitotoxicity Through Activation of the Nrf2-ARE Pathway. Mol Neurobiol 2016; 54:375-391. [PMID: 26742517 DOI: 10.1007/s12035-015-9643-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/16/2015] [Indexed: 12/29/2022]
Abstract
Methylmercury (MeHg) is a prominent environmental neurotoxicant, which induces oxidative damage and an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. However, the interaction between oxidative damage and excitotoxicity in MeHg-exposed rats has not been fully recognized. Here, we explored the interaction between oxidative damage and excitotoxicity and evaluated the preventive effects of sulforaphane (SFN) on MeHg-induced neurotoxicity in rat cerebral cortex. Seventy-two rats were randomly assigned to four groups: control group, MeHg-treated groups (4 and 12 μmol/kg), and SFN pretreatment group. After treatment (28 days), the rats were killed and the cerebral cortex was analyzed. Then, Hg, glutathione (GSH), malondialdehyde (MDA), protein sulfhydryl, protein carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and the levels of reactive oxygen species (ROS) and apoptosis were examined. Glu and glutamine (Gln) levels, glutamine synthetase (GS), phosphate-activated glutaminase (PAG), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), Na+-K+-ATPase and Ca2+-ATPase activities, intracellular Ca2+ levels, and the mRNA and protein expressions of Nrf2, Nrf2-regulated gene products, and N-methyl-D-aspartate receptors (NMDARs) were investigated in rat cerebral cortex. In our study, MeHg exposure not only induced Hg accumulation, apoptosis, ROS formation, GSH depletion, inhibition of antioxidant enzyme activities, and activation of Nrf2-ARE pathway signaling but also caused lipid, protein, and DNA peroxidative damage in a dose-dependent manner in rat cerebral cortex. Moreover, MeHg treatment significantly altered Gln/Glu cycling and NMDAR expression and resulted in calcium overloading. Furthermore, the present study also indicated that SFN pretreatment significantly reinforced the activation of the Nrf2-ARE pathway, which could prevent the toxic effects of MeHg exposure. Collectively, MeHg initiates multiple additive or synergistic disruptive mechanisms that lead to oxidative damage and excitotoxicity in rat cerebral cortex; pretreatment with SFN might prevent the MeHg-induced neurotoxicity by reinforcing the activation of the Nrf2-ARE pathway and then downregulating the interaction between oxidative damage and excitotoxicity pathways.
Collapse
|
18
|
Feng S, Xu Z, Liu W, Li Y, Deng Y, Xu B. Preventive effects of dextromethorphan on methylmercury-induced glutamate dyshomeostasis and oxidative damage in rat cerebral cortex. Biol Trace Elem Res 2014; 159:332-45. [PMID: 24819089 DOI: 10.1007/s12011-014-9977-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/10/2014] [Indexed: 12/29/2022]
Abstract
Methylmercury (MeHg) is a well-known environmental pollutant leading to neurotoxicant associated with aberrant central nervous system (CNS) functions, but its toxic mechanisms have not yet been fully recognized. In the present study, we tested the hypothesis that MeHg induces neuronal injury via glutamate (Glu) dyshomeostasis and oxidative damage mechanisms and that these effects are attenuated by dextromethorphan (DM), a low-affinity and noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist. Seventy-two rats were randomly divided into four groups of 18 animals in each group: control group, MeHg-treated group (4 and 12 μmol/kg), and DM-pretreated group. After the 4-week treatment, we observed that the administration of MeHg at a dose of 12 μmol/kg significantly increased in total mercury (Hg) levels, disrupted Glu metabolism, overexcited NMDARs, and led to intracellular calcium overload in the cerebral cortex. We also found that MeHg reduced nonenzymatic and enzymatic antioxidants, enhanced neurocyte apoptosis, induced reactive oxygen species (ROS), and caused lipid, protein, and DNA peroxidative damage in the cerebral cortex. Moreover, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) appeared to be inhibited by MeHg exposure. These alterations were significantly prevented by the pretreatment with DM at a dose of 13.5 μmol/kg. In conclusion, these findings strongly implicate that DM has potential to protect the brain from Glu dyshomeostasis and oxidative damage resulting from MeHg-induced neurotoxicity in rat.
Collapse
Affiliation(s)
- Shu Feng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Moraes-Silva L, Siqueira LF, Oliveira VA, Oliveira CS, Ineu RP, Pedroso TF, Fonseca MM, Pereira ME. Preventive Effect of CuCl2on Behavioral Alterations and Mercury Accumulation in Central Nervous System Induced by HgCl2in Newborn Rats. J Biochem Mol Toxicol 2014; 28:328-35. [DOI: 10.1002/jbt.21569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 12/26/2022]
Affiliation(s)
- L. Moraes-Silva
- Programa de Pós-Graduação em Bioquímica Toxicológica, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
| | - L. F. Siqueira
- Departamento de Bioquímica e Biologia Molecular, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
| | - V. A. Oliveira
- Programa de Pós-Graduação em Bioquímica Toxicológica, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
| | - C. S. Oliveira
- Programa de Pós-Graduação em Bioquímica Toxicológica, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
| | - R. P. Ineu
- Programa de Pós-Graduação em Bioquímica Toxicológica, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
| | - T. F. Pedroso
- Departamento de Bioquímica e Biologia Molecular, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
| | - M. M. Fonseca
- Departamento de Bioquímica e Biologia Molecular, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
| | - M. E. Pereira
- Programa de Pós-Graduação em Bioquímica Toxicológica, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE; Universidade Federal de Santa Maria; Santa Maria 97105-900 RS Brazil
| |
Collapse
|
20
|
Zimmermann LT, dos Santos DB, Colle D, dos Santos AA, Hort MA, Garcia SC, Bressan LP, Bohrer D, Farina M. Methionine stimulates motor impairment and cerebellar mercury deposition in methylmercury-exposed mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:46-56. [PMID: 24555646 DOI: 10.1080/15287394.2014.865582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Methylmercury (MeHg) is a highly toxic environmental contaminant that produces neurological and developmental impairments in animals and humans. Although its neurotoxic properties have been widely reported, the molecular mechanisms by which MeHg enters the cells and exerts toxicity are not yet completely understood. Taking into account that MeHg is found mostly bound to sulfhydryl-containing molecules such as cysteine in the environment and based on the fact that the MeHg-cysteine complex (MeHg-S-Cys) can be transported via the L-type neutral amino acid carrier transport (LAT) system, the potential beneficial effects of L-methionine (L-Met, a well known LAT substrate) against MeHg (administrated as MeHg-S-Cys)-induced neurotoxicity in mice were investigated. Mice were exposed to MeHg (daily subcutaneous injections of MeHg-S-Cys, 10 mg Hg/kg) and/or L-Met (daily intraperitoneal injections, 250 mg/kg) for 10 consecutive days. After treatments, the measured hallmarks of toxicity were mostly based on behavioral parameters related to motor performance, as well as biochemical parameters related to the cerebellar antioxidant glutathione (GSH) system. MeHg significantly decreased motor activity (open-field test) and impaired motor performance (rota-rod task) compared with controls, as well as producing disturbances in the cerebellar antioxidant GSH system. Interestingly, L-Met administration did not protect against MeHg-induced behavioral and cerebellar changes, but rather increased motor impairments in animals exposed to MeHg. In agreement with this observation, cerebellar levels of mercury (Hg) were higher in animals exposed to MeHg plus L-Met compared to those only exposed to MeHg. However, this event was not observed in kidney and liver. These results are the first to demonstrate that L-Met enhances cerebellar deposition of Hg in mice exposed to MeHg and that this higher deposition may be responsible for the greater motor impairment observed in mice simultaneously exposed to MeHg and L-Met.
Collapse
Affiliation(s)
- Luciana T Zimmermann
- a Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , Santa Catarina , Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Akbal A, Yılmaz H, Tutkun E, Köş DM. Aggravated neuromuscular symptoms of mercury exposure from dental amalgam fillings. J Trace Elem Med Biol 2014; 28:32-4. [PMID: 24210170 DOI: 10.1016/j.jtemb.2013.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 08/11/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
Dental amalgam fillings are widely used all over the world. However, their mercury content can lead to various side effects and clinical problems. Acute or chronic mercury exposure can cause several side effects on the central nerve system, renal and hepatic functions, immune system, fetal development and it can play a role on exacerbation of neuromuscular diseases. In this case, we will present a patient with vacuolar myopathy whose symptoms were started and aggravated with her dental amalgam fillings.
Collapse
Affiliation(s)
- Ayla Akbal
- Department of Physical Medicine and Rehabilitation, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| | - Hınç Yılmaz
- Occupational Diseases Hospital, Ministry of Health, Ankara, Turkey
| | - Engin Tutkun
- Occupational Diseases Hospital, Ministry of Health, Ankara, Turkey
| | - Durdu Mehmet Köş
- Occupational Diseases Hospital, Ministry of Health, Ankara, Turkey
| |
Collapse
|
22
|
Kanda H, Shinkai Y, Kumagai Y. S-Mercuration of cellular proteins by methylmercury and its toxicological implications. J Toxicol Sci 2014; 39:687-700. [DOI: 10.2131/jts.39.687] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Hironori Kanda
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba
| |
Collapse
|
23
|
Patel E, Reynolds M. Methylmercury impairs motor function in early development and induces oxidative stress in cerebellar granule cells. Toxicol Lett 2013; 222:265-72. [DOI: 10.1016/j.toxlet.2013.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
|
24
|
Farina M, Avila DS, da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 2012; 62:575-94. [PMID: 23266600 DOI: 10.1016/j.neuint.2012.12.006] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This review focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as -SH and -SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
25
|
Hassauer M, Kaiser E, Schneider K, Schuhmacher‐Wolz U. Collate the literature on toxicity data on mercury in experimental animals and humans (Part I – Data on organic mercury). ACTA ACUST UNITED AC 2012. [DOI: 10.2903/sp.efsa.2012.en-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Hassauer
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Eva Kaiser
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Klaus Schneider
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | | |
Collapse
|
26
|
Comparison of neurobehavioral effects of methylmercury exposure in older and younger adult zebrafish (Danio rerio). Neurotoxicology 2012; 33:1212-8. [PMID: 22796261 PMCID: PMC8803049 DOI: 10.1016/j.neuro.2012.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/21/2012] [Accepted: 06/29/2012] [Indexed: 12/24/2022]
Abstract
It is widely recognized that the nature and severity of responses to toxic exposure are age-dependent. Using active avoidance conditioning as the behavioral paradigm, the present study examined the effect of short-term methylmercury (MeHg) exposure on two adult age classes, 1- and 2-year-olds to coincide with zebrafish in relatively peak vs. declining health conditions. In Experiment 1, 2-year-old zebrafish were randomly divided into groups and were exposed to no MeHg, 0.15% ethanol (EtOH), 0.01, 0.03, 0.1, or 0.3 μM of MeHg (in 0.15% ethanol) for 2 weeks. The groups were then trained and tested for avoidance responses. The results showed that older zebrafish exposed to no MeHg or EtOH learned and retained avoidance responses. However, 0.01 μM or higher concentrations of MeHg exposure impaired avoidance learning in a dose-dependent manner with 0.3 μM of MeHg exposure producing death during the exposure period or shortly after the exposure but before the avoidance training. In Experiment 2, 1-year-old zebrafish were randomly divided into groups and were exposed to the same concentrations of MeHg used in Experiment 1 for 2 weeks. The groups were then trained and tested for avoidance responses. The results showed that younger zebrafish exposed to no MeHg, EtOH, or 0.01 μM of MeHg learned and retained avoidance responses, while 0.1 or 0.3 μM of MeHg exposure impaired avoidance learning in a dose-dependent manner. The study suggested that MeHg exposure produced learning impairments at a much lower concentration of MeHg exposure and more severely in older adult compared against younger adult zebrafish even after short exposure times.
Collapse
|
27
|
Chen KL, Liu SH, Su CC, Yen CC, Yang CY, Lee KI, Tang FC, Chen YW, Lu TH, Su YC, Huang CF. Mercuric compounds induce pancreatic islets dysfunction and apoptosis in vivo. Int J Mol Sci 2012. [PMID: 23202902 PMCID: PMC3497276 DOI: 10.3390/ijms131012349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mercury is a toxic heavy metal that is an environmental and industrial pollutant throughout the world. Mercury exposure leads to many physiopathological injuries in mammals. However, the precise toxicological effects of mercury on pancreatic islets in vivo are still unclear. Here, we investigated whether mercuric compounds can induce dysfunction and damage in the pancreatic islets of mice, as well as the possible mechanisms involved in this process. Mice were treated with methyl mercuric chloride (MeHgCl, 2 mg/kg) and mercuric chloride (HgCl2, 5 mg/kg) for more than 2 consecutive weeks. Our results showed that the blood glucose levels increased and plasma insulin secretions decreased in the mice as a consequence of their exposure. A significant number of TUNEL-positive cells were revealed in the islets of mice that were treated with mercury for 2 consecutive weeks, which was accompanied by changes in the expression of the mRNA of anti-apoptotic (Bcl-2, Mcl-1, and Mdm-2) and apoptotic (p53, caspase-3, and caspase-7) genes. Moreover, plasma malondialdehyde (MDA) levels increased significantly in the mice after treatment with mercuric compounds for 2 consecutive weeks, and the generation of reactive oxygen species (ROS) in the pancreatic islets also markedly increased. In addition, the mRNA expression of genes related to antioxidation, including Nrf2, GPx, and NQO1, were also significantly reduced in these islets. These results indicate that oxidative stress injuries that are induced by mercuric compounds can cause pancreatic islets dysfunction and apoptosis in vivo.
Collapse
Affiliation(s)
- Kuo-Liang Chen
- Department of Urology, China Medical University Hospital, and School of Medicine, China Medical University, No.2 Yuh-Der Rd., Taichung 404, Taiwan; E-Mail:
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, No.1 Jen-Ai Rd., Section 1, Taipei 100, Taiwan; E-Mail:
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, No.135 Nanxiao St. Changhua City, Changhua County 500, Taiwan; E-Mail:
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University; and Department of Occupational Medicine, Chung Shan Medical University Hospital, No. 110 Section 1, Jian-Guo N. Rd., Taichung 402, Taiwan; E-Mail:
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, and Department of Surgery, College of Medicine, National Taiwan University, Taipei 10043, Taiwan; E-Mail:
| | - Kuan-I Lee
- Department of Emergency, Buddhist Tzu Chi General Hospital, Taichung Branch, No. 66 Section 1, Fongsing Rd., Tanzih Township, Taichung 427, Taiwan; E-Mail:
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; E-Mail:
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No.91 Hsueh-Shih Rd., Taichung 404, Taiwan; E-Mails: (Y.-W.C.); (T.-H.L.)
| | - Tien-Hui Lu
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No.91 Hsueh-Shih Rd., Taichung 404, Taiwan; E-Mails: (Y.-W.C.); (T.-H.L.)
| | - Yi-Chang Su
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91 Hsueh-Shih Rd., Taichung 404, Taiwan; E-Mail:
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No.91 Hsueh-Shih Rd., Taichung 404, Taiwan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-22053366 (ext. 3323); Fax: +886-4-22333641
| |
Collapse
|
28
|
Riluzole-triggered GSH synthesis via activation of glutamate transporters to antagonize methylmercury-induced oxidative stress in rat cerebral cortex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:534705. [PMID: 22966415 PMCID: PMC3432391 DOI: 10.1155/2012/534705] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/25/2012] [Accepted: 07/08/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study was to evaluate the effect of riluzole on methylmercury- (MeHg-) induced oxidative stress, through promotion of glutathione (GSH) synthesis by activating of glutamate transporters (GluTs) in rat cerebral cortex. METHODS Eighty rats were randomly assigned to four groups, control group, riluzole alone group, MeHg alone group, and riluzole + MeHg group. The neurotoxicity of MeHg was observed by measuring mercury (Hg) absorption, pathological changes, and cell apoptosis of cortex. Oxidative stress was evaluated via determining reactive oxygen species (ROS), 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDAs), carbonyl, sulfydryl, and GSH in cortex. Glutamate (Glu) transport was studied by measuring Glu, glutamine (Gln), mRNA, and protein of glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). RESULT (1) MeHg induced Hg accumulation, pathological injury, and apoptosis of cortex; (2) MeHg increased ROS, 8-OHdG, MDA, and carbonyl, and inhibited sulfydryl and GSH; (3) MeHg elevated Glu, decreased Gln, and downregulated GLAST and GLT-1 mRNA expression and protein levels; (4) riluzole antagonized MeHg-induced downregulation of GLAST and GLT-1 function and expression, GSH depletion, oxidative stress, pathological injury, and apoptosis obviously. CONCLUSION Data indicate that MeHg administration induced oxidative stress in cortex and that riluzole could antagonize this situation through elevation of GSH synthesis by activating of GluTs.
Collapse
|
29
|
Bellum S, Thuett KA, Bawa B, Abbott LC. The effect of methylmercury exposure on behavior and cerebellar granule cell physiology in aged mice. J Appl Toxicol 2012; 33:959-69. [DOI: 10.1002/jat.2786] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Sairam Bellum
- Safety Assessment, Merck Research Laboratories; West Point; PA; 19486; USA
| | - Kerry A. Thuett
- ChemRisk; 101 2nd Street, Suite 700; San Francisco; CA; 94105; USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathology; Kansas State University, College of Veterinary Medicine; 101 Trotter Hall; Manhattan; KS; 66506-5601; USA
| | - Louise C. Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, 4458 TAMU; Texas A&M University; College Station; TX; 77843-4458; USA
| |
Collapse
|
30
|
Role of calcium and mitochondria in MeHg-mediated cytotoxicity. J Biomed Biotechnol 2012; 2012:248764. [PMID: 22927718 PMCID: PMC3425894 DOI: 10.1155/2012/248764] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/12/2012] [Accepted: 06/14/2012] [Indexed: 11/17/2022] Open
Abstract
Methylmercury (MeHg) mediated cytotoxicity is associated with loss of intracellular calcium (Ca2+) homeostasis. The imbalance in Ca2+ physiology is believed to be associated with dysregulation of Ca2+ intracellular stores and/or increased permeability of the biomembranes to this ion. In this paper we summarize the contribution of glutamate dyshomeostasis in intracellular Ca2+ overload and highlight the mitochondrial dysfunctions induced by MeHg via Ca2+ overload. Mitochondrial disturbances elicited by Ca2+ may involve several molecular events (i.e., alterations in the activity of the mitochondrial electron transport chain complexes, mitochondrial proton gradient dissipation, mitochondrial permeability transition pore (MPTP) opening, thiol depletion, failure of energy metabolism, reactive oxygen species overproduction) that could culminate in cell death. Here we will focus on the role of oxidative stress in these phenomena. Additionally, possible antioxidant therapies that could be effective in the treatment of MeHg intoxication are briefly discussed.
Collapse
|
31
|
Farina M, Aschner M, Rocha JBT. Oxidative stress in MeHg-induced neurotoxicity. Toxicol Appl Pharmacol 2011; 256:405-17. [PMID: 21601588 PMCID: PMC3166649 DOI: 10.1016/j.taap.2011.05.001] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 12/20/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically studied agents.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Pediatrics and Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - João B. T. Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
32
|
Meinerz D, de Paula M, Comparsi B, Silva M, Schmitz A, Braga H, Taube P, Braga A, Rocha J, Dafre A, Farina M, Franco J, Posser T. Protective effects of organoselenium compounds against methylmercury-induced oxidative stress in mouse brain mitochondrial-enriched fractions. Braz J Med Biol Res 2011; 44:1156-63. [DOI: 10.1590/s0100-879x2011007500136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 09/21/2011] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | - M.U. Silva
- Universidade Federal de Santa Maria, Brasil
| | | | - H.C. Braga
- Universidade Federal de Santa Maria, Brasil
| | - P.S. Taube
- Universidade Federal de Santa Maria, Brasil
| | - A.L. Braga
- Universidade Federal de Santa Maria, Brasil
| | | | - A.L. Dafre
- Universidade Federal de Santa Maria, Brasil
| | - M. Farina
- Universidade Federal de Santa Maria, Brasil
| | - J.L. Franco
- Universidade Federal do Pampa, Brasil; Universidade Federal de Santa Maria, Brasil
| | - T. Posser
- Universidade Federal do Pampa, Brasil; Universidade Federal de Santa Maria, Brasil
| |
Collapse
|
33
|
Farina M, Rocha JBT, Aschner M. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 2011; 89:555-63. [PMID: 21683713 PMCID: PMC3183295 DOI: 10.1016/j.lfs.2011.05.019] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/22/2011] [Accepted: 05/13/2011] [Indexed: 02/08/2023]
Abstract
Neurological disorders are common, costly, and can cause enduring disability. Although mostly unknown, a few environmental toxicants are recognized causes of neurological disorders and subclinical brain dysfunction. One of the best known neurotoxins is methylmercury (MeHg), a ubiquitous environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. In the aquatic environment, MeHg is accumulated in fish, which represent a major source of human exposure. Although several episodes of MeHg poisoning have contributed to the understanding of the clinical symptoms and histological changes elicited by this neurotoxicant in humans, experimental studies have been pivotal in elucidating the molecular mechanisms that mediate MeHg-induced neurotoxicity. The objective of this mini-review is to summarize data from experimental studies on molecular mechanisms of MeHg-induced neurotoxicity. While the full picture has yet to be unmasked, in vitro approaches based on cultured cells, isolated mitochondria and tissue slices, as well as in vivo studies based mainly on the use of rodents, point to impairment in intracellular calcium homeostasis, alteration of glutamate homeostasis and oxidative stress as important events in MeHg-induced neurotoxicity. The potential relationship among these events is discussed, with particular emphasis on the neurotoxic cycle triggered by MeHg-induced excitotoxicity and oxidative stress. The particular sensitivity of the developing brain to MeHg toxicity, the critical role of selenoproteins and the potential protective role of selenocompounds are also discussed. These concepts provide the biochemical bases to the understanding of MeHg neurotoxicity, contributing to the discovery of endogenous and exogenous molecules that counteract such toxicity and provide efficacious means for ablating this vicious cycle.
Collapse
Affiliation(s)
- Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | | | | |
Collapse
|
34
|
Olczak M, Duszczyk M, Mierzejewski P, Meyza K, Majewska MD. Persistent behavioral impairments and alterations of brain dopamine system after early postnatal administration of thimerosal in rats. Behav Brain Res 2011; 223:107-18. [DOI: 10.1016/j.bbr.2011.04.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/14/2011] [Accepted: 04/20/2011] [Indexed: 11/15/2022]
|
35
|
Lu TH, Hsieh SY, Yen CC, Wu HC, Chen KL, Hung DZ, Chen CH, Wu CC, Su YC, Chen YW, Liu SH, Huang CF. Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury. Toxicol Lett 2011; 204:71-80. [PMID: 21549813 DOI: 10.1016/j.toxlet.2011.04.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 11/18/2022]
Abstract
Methylmercury (MeHg) is well-known for causing irreversible damage in the central nervous system as well as a risk factor for inducing neuronal degeneration. However, the molecular mechanisms of MeHg-induced neurotoxicity remain unclear. Here, we investigated the effects and possible mechanisms of MeHg in the mouse cerebrum (in vivo) and in cultured Neuro-2a cells (in vitro). In vivo study showed that the levels of LPO in the plasma and cerebral cortex significantly increased after administration of MeHg (50μg/kg/day) for 7 consecutive weeks. MeHg could also decrease glutathione level and increase the expressions of caspase-3, -7, and -9, accompanied by Bcl-2 down-regulation and up-regulation of Bax, Bak, and p53. Moreover, treatment of Neuro-2a cells with MeHg significantly reduced cell viability, increased oxidative stress damage, and induced several features of mitochondria-dependent apoptotic signals, including increased sub-G1 hypodiploids, mitochondrial dysfunctions, and the activation of PARP, and caspase cascades. These MeHg-induced apoptotic-related signals could be remarkably reversed by antioxidant NAC. MeHg also increased the phosphorylation of ERK1/2 and p38, but not JNK. Pharmacological inhibitors NAC, PD98059, and SB203580 attenuated MeHg-induced cytotoxicity, ERK1/2 and p38 activation, MMP loss, and caspase-3 activation in Neuro-2a cells. Taken together, these results suggest that the signals of ROS-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic pathways that are involved in MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Tien-Hui Lu
- Graduate Institute of Drug Safety, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Roos DH, Puntel RL, Farina M, Aschner M, Bohrer D, Rocha JBT, de Vargas Barbosa NB. Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicol Appl Pharmacol 2011; 252:28-35. [PMID: 21276810 DOI: 10.1016/j.taap.2011.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/16/2011] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is an ubiquitous environmental pollutant which is transported into the mammalian cells when present as the methylmercury-cysteine conjugate (MeHg-Cys). With special emphasis on hepatic cells, due to their particular propensity to accumulate an appreciable amount of Hg after exposure to MeHg, this study was performed to evaluate the effects of methionine (Met) on Hg uptake, reactive species (RS) formation, oxygen consumption and mitochondrial function/cellular viability in both liver slices and mitochondria isolated from these slices, after exposure to MeHg or the MeHg-Cys complex. The liver slices were pre-treated with Met (250 μM) 15 min before being exposed to MeHg (25 μM) or MeHg-Cys (25 μM each) for 30 min at 37 °C. The treatment with MeHg caused a significant increase in the Hg concentration in both liver slices and mitochondria isolated from liver slices. Moreover, the Hg uptake was higher in the group exposed to the MeHg-Cys complex. In the DCF (dichlorofluorescein) assay, the exposure to MeHg and MeHg-Cys produced a significant increase in DFC reactive species (DFC-RS) formation only in the mitochondria isolated from liver slices. As observed with Hg uptake, DFC-RS levels were significantly higher in the mitochondria treated with the MeHg-Cys complex compared to MeHg alone. MeHg exposure also caused a marked decrease in the oxygen consumption of liver slices when compared to the control group, and this effect was more pronounced in the liver slices treated with the MeHg-Cys complex. Similarly, the loss of mitochondrial activity/cell viability was greater in liver slices exposed to the MeHg-Cys complex when compared to slices treated only with MeHg. In all studied parameters, Met pre-treatment was effective in preventing the MeHg- and/or MeHg-Cys-induced toxicity in both liver slices and mitochondria. Part of the protection afforded by Met against MeHg may be related to a direct interaction with MeHg or to the competition of Met with the complex formed between MeHg and endogenous cysteine. In summary, our results show that Met pre-treatment produces pronounced protection against the toxic effects induced by MeHg and/or the MeHg-Cys complex on mitochondrial function and cell viability. Consequently, this amino acid offers considerable promise as a potential agent for treating acute MeHg exposure.
Collapse
Affiliation(s)
- Daniel Henrique Roos
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Franco JL, Posser T, Missau F, Pizzolatti MG, dos Santos ARS, Souza DO, Aschner M, Rocha JBT, Dafre AL, Farina M. Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:272-278. [PMID: 21127717 PMCID: PMC2992974 DOI: 10.1016/j.etap.2010.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In the present study, we investigated the potential protective effects of three flavonoids (myricetin, myricitrin and rutin) derived from medicinal plants against methyl mercury (MeHg)-induced mitochondrial dysfunction in vitro. Incubation of mouse brain mitochondria with MeHg induced a significant decrease in mitochondrial function, which was correlated with decreased glutathione (GSH) levels and increased generation of reactive oxygen species (ROS) and lipid peroxidation. The co-incubation of mouse brain mitochondria with myricetin or myricitrin caused a concentration-dependent decrease of MeHg-induced mitochondrial dysfunction and oxidative stress. The flavonoid rutin was ineffective in counteracting MeHg toxicity. Among the three tested flavonoids, myricetin was the most efficient in protecting against MeHg-induced mitochondrial dysfunction. Moreover, myricetin completely blocked MeHg-induced ROS formation and lipid peroxidation and partially prevented MeHg-induced GSH depletion. The ability of myricetin to attenuate MeHg-induced mitochondrial dysfunction and oxidative stress appears to be related to its higher scavenging capability when compared to myricitrin and rutin. Overall, the results suggest that MeHg-induced mitotoxicity is associated with oxidative stress. The ability of myricetin to prevent MeHg-induced oxidative damage in brain mitochondria renders this flavonoid a promising molecule for further in vivo studies in the search for potential antidotes to counteract MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Jeferson L. Franco
- Departamento de Bioquímica Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Florianópolis - SC, Brazil
- Campus São Gabriel, Universidade Federal do Pampa, São Gabriel - RS, Brazil
| | - Thais Posser
- Departamento de Bioquímica Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Florianópolis - SC, Brazil
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria - RS, Brazil
| | - Fabiana Missau
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis - SC, Brazil
| | - Moacir G. Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis - SC, Brazil
| | - Adair R. S. dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Florianópolis - SC, Brazil
| | - Diogo O. Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS, Brazil
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - João B. T. Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria - RS, Brazil
| | - Alcir L. Dafre
- Departamento de Bioquímica Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Florianópolis - SC, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica Centro de Ciências Biológicas Universidade Federal de Santa Catarina, Florianópolis - SC, Brazil
| |
Collapse
|
38
|
Effects of inorganic selenium administration in methylmercury‐induced neurotoxicity in mouse cerebral cortex. Int J Dev Neurosci 2010; 28:631-7. [DOI: 10.1016/j.ijdevneu.2010.07.225] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 06/19/2010] [Accepted: 07/01/2010] [Indexed: 11/22/2022] Open
|
39
|
Al-Madani WA, Siddiqi NJ, Alhomida AS, Khan HA, Arif IA, Kishore U. Increased urinary excretion of carnitine and acylcarnitine by mercuric chloride is reversed by 2,3-dimercapto-1-propanesulfonic acid in rats. Int J Toxicol 2010; 29:313-317. [PMID: 20448264 DOI: 10.1177/1091581810364852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This investigation was aimed to study the effect of 2,3-dimercapto-1-propanesulfonic acid (DMPS) on mercuric chloride (HgCl(2))-induced alterations in urinary excretion of various carnitine fractions including free carnitine (FC), acylcarnitine (AC), and total carnitine (TC). Different groups of Wistar male rats were treated with HgCl(2) at the doses of 0.1, 0.5, 1.0, 2.0, and 3.0 mg/kg body weight, and the animals were sacrificed at 24 hours following HgCl(2) injection. A separate batch of animals received HgCl(2) (2 mg/kg) with or without DMPS (100 mg/kg) and sacrificed at 24 or 48 hours after dosing. Administration of HgCl(2) resulted in statistically significant and dose-dependent increase in the urinary excretion of FC, AC, and TC in rats. However, the ratio of urinary AC:FC was significantly decreased by HgCl(2). Pretreatment with DMPS offered statistically significant protection against HgCl(2)-induced alterations in various urinary carnitine fractions in rats.
Collapse
|
40
|
Farina M, Campos F, Vendrell I, Berenguer J, Barzi M, Pons S, Suñol C. Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicol Sci 2009; 112:416-26. [PMID: 19770487 DOI: 10.1093/toxsci/kfp219] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methylmercury (MeHg) is an environmental neurotoxicant whose molecular mechanisms underlying toxicity remain elusive. Here, we investigated molecular events involved in MeHg-induced neurotoxicity in cultured cerebellar granule cells (CGCs) as well as potential protective strategies for such toxicity. Glutathione peroxidase, isozyme 1 (GPx-1) activity was significantly (p = 0.0017) decreased at 24 h before MeHg-induced neuronal death (day in vitro 4). This event was related to enhanced susceptibilities to hydrogen peroxide or tert-butyl peroxide and increased lipid peroxidation. However, intracellular calcium levels, glutamate uptake, and glutathione levels, as well as glutathione reductase and catalase activities, were not changed by MeHg exposure at this time point. Probucol (PB), a lipid-lowering drug, displayed a long-lasting protective effect against MeHg-induced neurotoxicity. The beneficial effects of PB were correlated with increased GPx-1 activity and decreased lipid peroxidation. The protection afforded by PB was significantly higher when compared to the antioxidants, ascorbic acid and trolox. In vitro studies with the purified GPx-1 proved that MeHg inhibits and PB activates the enzyme activity. Overexpression of GPx-1 prevented MeHg-induced neuronal death. These data indicate that (1) GPx-1 is an important molecular target involved in MeHg-induced neurotoxicity and (2) PB, which increases GPx-1 activity in CGCs, induces enduring protection against such toxicity. The results bring out new insights on the potential therapeutic strategies for poisonings to MeHg and other pathological conditions related to increased production and/or decreased detoxification of peroxides.
Collapse
Affiliation(s)
- Marcelo Farina
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS, Barcelona 08036, Spain.
| | | | | | | | | | | | | |
Collapse
|
41
|
Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy ACD, Marques MR, Dafre AL, Farina M. Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radic Biol Med 2009; 47:449-57. [PMID: 19450679 DOI: 10.1016/j.freeradbiomed.2009.05.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 01/16/2023]
Abstract
In this study, we investigated the involvement of glutathione peroxidase-GPx in methylmercury (MeHg)-induced toxicity using three models: (a) in mouse brain after treatment with MeHg (40 mg/L in drinking water), (b) in mouse brain mitochondrial-enriched fractions isolated from MeHg-treated animals, and (c) in cultured human neuroblastoma SH-SY5Y cells. First, adult male Swiss mice exposed to MeHg for 21 days showed a significant decrease in GPx activity in the brain and an increase in poly(ADP-ribose) polymerase cleavage, an index of apoptosis. Second, in mitochondrial-enriched fractions isolated from MeHg-treated mice, there was a significant reduction in GPx activity and a concomitant decrease in mitochondrial activity and increases in ROS formation and lipid peroxidation. Incubation of mitochondrial-enriched fractions with mercaptosuccinic acid, a GPx inhibitor, significantly augmented the toxic effects of MeHg administered in vivo. Incubation of mitochondrial-enriched fractions with exogenous GPx completely blocked MeHg-induced mitochondrial lipid peroxidation. Third, SH-SY5Y cells treated for 24 h with MeHg showed a significant reduction in GPx activity. There was a concomitant significant decrease in cell viability and increase in apoptosis. Inhibition of GPx substantially enhanced MeHg toxicity in the SH-SY5Y cells. These results suggest that GPx is an important target for MeHg-induced neurotoxicity, presumably because this enzyme is essential for counteracting the pro-oxidative effects of MeHg both in vitro and in vivo.
Collapse
Affiliation(s)
- Jeferson L Franco
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Grotto D, de Castro MM, Barcelos GRM, Garcia SC, Barbosa F. Low level and sub-chronic exposure to methylmercury induces hypertension in rats: nitric oxide depletion and oxidative damage as possible mechanisms. Arch Toxicol 2009; 83:653-62. [DOI: 10.1007/s00204-009-0437-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 05/12/2009] [Indexed: 11/25/2022]
|
43
|
Matsumoto S, Jin M, Dewa Y, Nishimura J, Moto M, Murata Y, Shibutani M, Mitsumori K. Suppressive effect of Siraitia grosvenorii extract on dicyclanil-promoted hepatocellular proliferative lesions in male mice. J Toxicol Sci 2009; 34:109-18. [PMID: 19182440 DOI: 10.2131/jts.34.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dicyclanil (DC) generates reactive oxygen species (ROS) due to Cyp1a1 induction, and DNA damage caused by oxidative stress is probably involved in hepatocarcinogenesis in mice. To clarify the modifying effect of the Siraitia grosvenorii extract (SGE), which has antioxidative properties, we employed a 2-stage liver carcinogenesis model in partially hepatectomized male ICR mice. Mice maintained on diet containing DC at a concentration of 1,500 ppm for 9 weeks after a single intraperitoneal injection of diethylnitrosamine (DEN) at a dose of 30 mg/kg and they were given water containing 2,500 ppm of SGE for 11 weeks including 2 weeks as pre-administration on DC. SGE inhibited the induction of gamma-glutamyltranspeptidase-positive hepatocytes, lipid peroxidation, and gene expression of Cyp1a1, all of which were caused by DC. To examine whether SGE indirectly inhibits Cyp1a1 expression induced by inhibition of aryl hydrocarbon receptor (Ahr)-mediated signal transduction caused by DC, mice with high (C57BL/6J mice) and low affinities (DBA/2J mice) to Ahr were given DC-containing diet and/or SGE-containing tap water for 2 weeks. Cyp1a1 gene expression was significantly lower in C57BL/6J mice administered DC + SGE than in C57BL/6J mice administered DC alone; there was no difference in the Cyp1a1 expression between DBA/2J mice administered DC + SGE and DC alone. These results suggest that SGE suppresses the induction of Cyp1a1, leading to inhibition of ROS generation and consequently inhibited hepatocarcinogenesis, probably due to suppression of Ahr activity.
Collapse
Affiliation(s)
- Sayaka Matsumoto
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Martins RDP, Braga HDC, da Silva AP, Dalmarco JB, de Bem AF, dos Santos ARS, Dafre AL, Pizzolatti MG, Latini A, Aschner M, Farina M. Synergistic neurotoxicity induced by methylmercury and quercetin in mice. Food Chem Toxicol 2009; 47:645-9. [PMID: 19141311 PMCID: PMC2992966 DOI: 10.1016/j.fct.2008.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/10/2008] [Accepted: 12/17/2008] [Indexed: 11/19/2022]
Abstract
Methylmercury (MeHg) is a highly neurotoxic pollutant, whose mechanisms of toxicity are related to its pro-oxidative properties. A previous report showed under in vivo conditions the neuroprotective effects of plants of the genus Polygala against MeHg-induced neurotoxicity. Moreover, the flavonoid quercetin, isolated from Polygala sabulosa, displayed beneficial effects against MeHg-induced oxidative damage under in vitro conditions. In this study, we sought for potential beneficial effects of quercetin against the neurotoxicity induced by MeHg in Swiss female mice. Animals were divided into six experimental groups: control, quercetin low dose (5 mg/kg), quercetin high dose (50 mg/kg), MeHg (40 mg/L, in tap water), MeHg+quercetin low dose, and MeHg+quercetin high dose. After the treatment (21 days), a significant motor deficit was observed in MeHg+quercetin groups. Biochemical parameters related to oxidative stress showed that the simultaneous treatment with quercetin and MeHg caused a higher cerebellar oxidative damage when compared to the individual exposures. MeHg plus quercetin elicited a higher cerebellar lipid peroxidation than MeHg or quercetin alone. The present results indicate that under in vivo conditions quercetin and MeHg cause additive pro-oxidative effects toward the mice cerebellum and that such phenomenon is associated with the observed motor deficit.
Collapse
Affiliation(s)
- Roberta de P. Martins
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Hugo de C. Braga
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Aline P. da Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Juliana B. Dalmarco
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Andreza F. de Bem
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adair Roberto S. dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alcir L. Dafre
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Moacir G. Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alexandra Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology, and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
45
|
Malagutti KS, da Silva AP, Braga HC, Mitozo PA, Soares Dos Santos AR, Dafre AL, de Bem AF, Farina M. 17β-estradiol decreases methylmercury-induced neurotoxicity in male mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2009; 27:293-297. [PMID: 21783955 DOI: 10.1016/j.etap.2008.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/09/2008] [Accepted: 11/12/2008] [Indexed: 05/31/2023]
Abstract
There is increasing evidence that health effects of toxic metals, including methylmercury (MeHg), differ in prevalence or are manifested differently in men and women. The present study was aimed at investigating the potential differential susceptibility of male and female Swiss mice against MeHg-induced neurotoxicity, which was evaluated by biochemical (cerebellar oxidative stress-related parameters) and behavioral (locomotor activity and motor performance) variables. We also aimed to evaluate the potential protective effects of 17β-estradiol against such toxicity in MeHg-exposed male animals. MeHg exposure (40mg/L, diluted in tap water, during 2 weeks) decreased locomotor activity and motor performance in both male and female animals, but such phenomena were higher in males. 17β-estradiol co-treatment (10μg/animal, in alternate days) prevented MeHg-induced locomotor deficits in males. MeHg exposure caused a significant increase (60%) in cerebellar lipid peroxidation in male mice, but did not in females. In close agreement, MeHg exposure decreased (43%) cerebellar glutathione peroxidase activity in males, but did not in females. These events were prevented by 17β-estradiol administration. Cerebellar GR activity was increased (25%) in MeHg-exposed males and such event was partially prevented by 17β-estradiol administration. These results indicate that the low susceptibility of female mice to the neurotoxicity elicited by MeHg is linked to neuroprotective effects of sex steroids, which appear to modulate the activities of glutathione-related enzymes. Our experimental observation corroborates previous epidemiological studies showing the greater developmental effects in male than in female humans exposed to MeHg.
Collapse
Affiliation(s)
- Keller Samara Malagutti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Carvalho MC, Nazari EM, Farina M, Muller YMR. Behavioral, morphological, and biochemical changes after in ovo exposure to methylmercury in chicks. Toxicol Sci 2008; 106:180-5. [PMID: 18684774 DOI: 10.1093/toxsci/kfn158] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Methylmercury (MeHg) is an environmental pollutant known to induce neurotoxicity in several animal species, including humans. However, studies focusing the effects of MeHg poisoning in chicks were based on phenomenological approaches and did not delve into the molecular mechanisms. The purpose of this study was to evaluate the postnatal consequences of the in ovo exposure to MeHg on behavioral, morphological and biochemical parameters in chicks. At the fifth embryonic day (E5), Gallus domesticus eggs were submitted to a single injection of 0.1 microg MeHg/0.05 ml saline. After treatment, the eggs returned to the incubator until hatching (E21). From first to fifth postnatal days (PN 1-PN 5), the MeHg-treated chicks showed lower frequency of exploratory movements and a significantly higher frequency of wing and anomalous movements. Cerebellar glutathione (GSH) levels and the activities of the GSH-related enzymes GSH reductase and GSH peroxidase were significantly higher (70, 72, and 80%, respectively) in MeHg exposed chicks in comparison to controls. Mercury impregnation was densest in the granular layer, followed by the Purkinje and molecular layers of treated chicks. A significant reduction of the number of Purkinje cells, as well as a greater distance between these cells were observed in chicks of MeHg group. Our results disclose that the prehatching exposure to MeHg induced motor impairments, which were correlated to histological damage and alterations on the cerebellar GSH system's development from PN 1 to PN 5.
Collapse
Affiliation(s)
- Márcia C Carvalho
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, 88090-400 Santa Catarina, Brazil
| | | | | | | |
Collapse
|
47
|
Stringari J, Nunes AKC, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JBT, Aschner M, Farina M. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 2008; 227:147-54. [PMID: 18023834 PMCID: PMC2955629 DOI: 10.1016/j.taap.2007.10.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/04/2007] [Accepted: 10/14/2007] [Indexed: 11/15/2022]
Abstract
During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F(2)-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F(2)-isoprostanes levels at all time points. Significant negative correlations were found between F(2)-isoprostanes and GSH, as well as between F(2)-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure.
Collapse
Affiliation(s)
- James Stringari
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Adriana KC Nunes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jeferson L Franco
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Denise Bohrer
- Departamento de Ciências Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Solange C Garcia
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alcir L Dafre
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Dejan Milatovic
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João BT Rocha
- Departamento de Ciências Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|