1
|
Govender AC, Chuturgoon AA, Ghazi T. A review on fumonisin B 1-induced mitochondrial dysfunction and its impact on mitophagy and DNA methylation. Food Chem Toxicol 2025; 201:115458. [PMID: 40239833 DOI: 10.1016/j.fct.2025.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Fumonisin B1 (FB1) is a food-borne mycotoxin synthesized by Fusarium verticillioides and has been identified as a group 2B carcinogen. Recent research shows that the mitochondria and DNA in cells are targets of FB1. Mitophagy is a form of autophagy that functions to break down impaired mitochondria to preserve the overall functionality of the cell. DNA methylation is an epigenetic process that involves the enzymatic transfer of methyl groups from S-adenosylmethionine (SAM) to the C-5 region of the DNA cytosine ring by DNA methyltransferases (DNMTs). DNA methylation plays a key role in maintaining DNA integrity and FB1 disrupts DNA methylation via FB1-induced folate deficiency. However, there is limited research available on the impact of FB1 on mitophagy as well as FB1-induced oxidative stress and its influence on DNA methylation regulation. In this review, we aim to combine and summarize the current information on FB1-induced mitochondrial dysfunction, its impact on mitophagy as well as its DNA methylation effects.
Collapse
Affiliation(s)
- Anthia C Govender
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
2
|
Anumudu CK, Ekwueme CT, Uhegwu CC, Ejileugha C, Augustine J, Okolo CA, Onyeaka H. A Review of the Mycotoxin Family of Fumonisins, Their Biosynthesis, Metabolism, Methods of Detection and Effects on Humans and Animals. Int J Mol Sci 2024; 26:184. [PMID: 39796041 PMCID: PMC11719890 DOI: 10.3390/ijms26010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Fumonisins, a class of mycotoxins predominantly produced by Fusarium species, represent a major threat to food safety and public health due to their widespread occurrence in staple crops including peanuts, wine, rice, sorghum, and mainly in maize and maize-based food and feed products. Although fumonisins occur in different groups, the fumonisin B series, particularly fumonisin B1 (FB1) and fumonisin B2 (FB2), are the most prevalent and toxic in this group of mycotoxins and are of public health significance due to the many debilitating human and animal diseases and mycotoxicosis they cause and their classification as by the International Agency for Research on Cancer (IARC) as a class 2B carcinogen (probable human carcinogen). This has made them one of the most regulated mycotoxins, with stringent regulatory limits on their levels in food and feeds destined for human and animal consumption, especially maize and maize-based products. Numerous countries have regulations on levels of fumonisins in foods and feeds that are intended to protect human and animal health. However, there are still gaps in knowledge, especially with regards to the molecular mechanisms underlying fumonisin-induced toxicity and their full impact on human health. Detection of fumonisins has been advanced through various methods, with immunological approaches such as Enzyme-Linked Immuno-Sorbent Assay (ELISA) and lateral flow immunoassays being widely used for their simplicity and adaptability. However, these methods face challenges such as cross-reactivity and matrix interference, necessitating the need for continued development of more sensitive and specific detection techniques. Chromatographic methods, including HPLC-FLD, are also employed in fumonisin analysis but require meticulous sample preparation and derivitization due to the low UV absorbance of fumonisins. This review provides a comprehensive overview of the fumonisin family, focusing on their biosynthesis, occurrence, toxicological effects, and levels of contamination found in foods and the factors affecting their presence. It also critically evaluates the current methods for fumonisin detection and quantification, including chromatographic techniques and immunological approaches such as ELISA and lateral flow immunoassays, highlighting the challenges associated with fumonisin detection in complex food matrices and emphasizing the need for more sensitive, rapid, and cost-effective detection methods.
Collapse
Affiliation(s)
- Christian Kosisochukwu Anumudu
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
| | - Chiemerie T. Ekwueme
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
- School of Health and Life Sciences, Teeside University, Darlington TS1 3BX, UK
| | - Chijioke Christopher Uhegwu
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
- Bioinformatics and Genomics Research Unit, Genomac Institute, Ogbomosho, Oyo State, Nigeria
| | - Chisom Ejileugha
- Lancaster Environment Center, Lancaster University, Lancaster LA1 4YQ, UK;
- Department of Science Laboratory Technology (Microbiology), Imo State Polytechnic, Omuma 474110, Imo State, Nigeria
| | - Jennifer Augustine
- Department of Microbiology, Federal University Otuoke, Otuoke 562103, Bayelsa State, Nigeria; (C.T.E.); (C.C.U.); (J.A.)
| | - Chioke Amaefuna Okolo
- Department of Food Science and Technology, Nnamdi Azikiwe University, Awka 420110, Anambra State, Nigeria;
- FOCAS Research Institute, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
4
|
van den Brand AD, Bajard L, Steffensen IL, Brantsæter AL, Dirven HAAM, Louisse J, Peijnenburg A, Ndaw S, Mantovani A, De Santis B, Mengelers MJB. Providing Biological Plausibility for Exposure-Health Relationships for the Mycotoxins Deoxynivalenol (DON) and Fumonisin B1 (FB1) in Humans Using the AOP Framework. Toxins (Basel) 2022; 14:279. [PMID: 35448888 PMCID: PMC9030459 DOI: 10.3390/toxins14040279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Humans are chronically exposed to the mycotoxins deoxynivalenol (DON) and fumonisin B1 (FB1), as indicated by their widespread presence in foods and occasional exposure in the workplace. This exposure is confirmed by human biomonitoring (HBM) studies on (metabolites of) these mycotoxins in human matrices. We evaluated the exposure-health relationship of the mycotoxins in humans by reviewing the available literature. Since human studies did not allow the identification of unequivocal chronic health effects upon exposure to DON and FB1, the adverse outcome pathway (AOP) framework was used to structure additional mechanistic evidence from in vitro and animal studies on the identified adverse effects. In addition to a preliminary AOP for DON resulting in the adverse outcome (AO) 'reduced body weight gain', we developed a more elaborated AOP for FB1, from the molecular initiating event (MIE) 'inhibition of ceramide synthases' leading to the AO 'neural tube defects'. The mechanistic evidence from AOPs can be used to support the limited evidence from human studies, to focus FB1- and DON-related research in humans to identify related early biomarkers of effect. In order to establish additional human exposure-health relationships in the future, recommendations are given to maximize the information that can be obtained from HBM.
Collapse
Affiliation(s)
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic;
| | - Inger-Lise Steffensen
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Anne Lise Brantsæter
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Hubert A. A. M. Dirven
- Norwegian Institute of Public Health (NIPH), 0213 Oslo, Norway; (I.-L.S.); (A.L.B.); (H.A.A.M.D.)
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), 6708 WB Wageningen, The Netherlands; (J.L.); (A.P.)
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité (INRS), 54500 Vandoeuvre-Lés-Nancy, France;
| | - Alberto Mantovani
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Barbara De Santis
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (A.M.); (B.D.S.)
| | - Marcel J. B. Mengelers
- Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands;
| |
Collapse
|
5
|
Awuchi CG, Ondari EN, Nwozo S, Odongo GA, Eseoghene IJ, Twinomuhwezi H, Ogbonna CU, Upadhyay AK, Adeleye AO, Okpala COR. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins (Basel) 2022; 14:toxins14030167. [PMID: 35324664 PMCID: PMC8949390 DOI: 10.3390/toxins14030167] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/21/2022] Open
Abstract
Mycotoxins are well established toxic metabolic entities produced when fungi invade agricultural/farm produce, and this happens especially when the conditions are favourable. Exposure to mycotoxins can directly take place via the consumption of infected foods and feeds; humans can also be indirectly exposed from consuming animals fed with infected feeds. Among the hundreds of mycotoxins known to humans, around a handful have drawn the most concern because of their occurrence in food and severe effects on human health. The increasing public health importance of mycotoxins across human and livestock environments mandates the continued review of the relevant literature, especially with regard to understanding their toxicological mechanisms. In particular, our analysis of recently conducted reviews showed that the toxicological mechanisms of mycotoxins deserve additional attention to help provide enhanced understanding regarding this subject matter. For this reason, this current work reviewed the mycotoxins’ toxicological mechanisms involving humans, livestock, and their associated health concerns. In particular, we have deepened our understanding about how the mycotoxins’ toxicological mechanisms impact on the human cellular genome. Along with the significance of mycotoxin toxicities and their toxicological mechanisms, there are associated health concerns arising from exposures to these toxins, including DNA damage, kidney damage, DNA/RNA mutations, growth impairment in children, gene modifications, and immune impairment. More needs to be done to enhance the understanding regards the mechanisms underscoring the environmental implications of mycotoxins, which can be actualized via risk assessment studies into the conditions/factors facilitating mycotoxins’ toxicities.
Collapse
Affiliation(s)
- Chinaza Godseill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
- Correspondence: (C.G.A.); (C.O.R.O.)
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Sarah Nwozo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Grace Akinyi Odongo
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | - Ifie Josiah Eseoghene
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda; (E.N.O.); (S.N.); (G.A.O.); (I.J.E.)
| | | | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture, P.M.B. 2240, Abeokuta 110124, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- Heredity Healthcare & Lifesciences, 206-KIIT TBI, Patia, Bhubaneswar 751024, Odisha, India;
| | - Ademiku O. Adeleye
- Faith Heroic Generation, No. 36 Temidire Street, Azure 340251, Ondo State, Nigeria;
| | - Charles Odilichukwu R. Okpala
- Department of Functional Foods Product Development, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (C.G.A.); (C.O.R.O.)
| |
Collapse
|
6
|
Wangia-Dixon RN, Nishimwe K. Molecular toxicology and carcinogenesis of fumonisins: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:44-67. [PMID: 33554724 DOI: 10.1080/26896583.2020.1867449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fumonisins, discovered in 1988 are a group of naturally occurring toxins produced by fusarium pathogenic fungi. Besides their presence in animal feeds, contamination of human foods such as corn, millet, oats, rye, barley, wheat and their products are widespread. Exposure to fumonisins results in species and organ specific toxicities including neurological disorders among equids, pulmonary edema in swine, esophageal cancer in humans and both kidney and liver related toxicities in rodents. This review seeks to consolidate groundbreaking research on the science of fumonisins toxicity, highlight recent progress on fumonisins research, and provide an overview of plausible mechanistic biomarkers for fumonisins exposure assessment.
Collapse
Affiliation(s)
- Ruth Nabwire Wangia-Dixon
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- KAVI Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Kizito Nishimwe
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
- School of Agriculture and Food Science, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
7
|
Abdul NS, Chuturgoon AA. Fumonisin B 1 regulates LDL receptor and ABCA1 expression in an LXR dependent mechanism in liver (HepG2) cells. Toxicon 2020; 190:58-64. [PMID: 33338448 DOI: 10.1016/j.toxicon.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022]
Abstract
The metabolic toxicity of Fumonisin B1 (FB1) converges at the accumulation of sphingoid bases and reduced ceramide levels. Several studies have alluded to a hypercholesterolemic endpoint after FB1 exposure, yet the molecular mechanisms remain elusive. Cell surface receptors are important regulators of cholesterol metabolism by regulating influx of lipids and efflux of cholesterol. Western blot analysis showed that FB1 elevates the expression of ABCA1 (a cholesterol efflux promoter) in an LXR dependent mechanism. We further highlight the potential role of PCSK9 in the degradation of LDL receptor. These data provide important evidence for the mechanism underlying hypercholesterolemia in FB1 treated models. The disruption of lipid homeostasis by FB1 is beginning to shift away from canonical ceramide synthase inhibition, and this changed perspective may shed light on diseases caused by dysregulated cholesterol metabolism such as cancer initiation and promotion.
Collapse
Affiliation(s)
- Naeem Sheik Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa; Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
8
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
9
|
Burger HM, Abel S, Gelderblom WCA. Modulation of key lipid raft constituents in primary rat hepatocytes by fumonisin B 1 - Implications for cancer promotion in the liver. Food Chem Toxicol 2018; 115:34-41. [PMID: 29510220 DOI: 10.1016/j.fct.2018.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/07/2018] [Accepted: 03/02/2018] [Indexed: 01/15/2023]
Abstract
Fumonisin B1 (FB1), a group 2B natural occurring carcinogenic mycotoxin, modulated lipid and fatty acid (FA) constituents of lipid rafts isolated from primary hepatocytes following exposure to a cytotoxic concentration of FB1 (250 μM). The major effects observed in rafts, included a significant (p < 0.05) increase in raft cholesterol (CHOL) and glycerophospholipid such as phosphatidylethanolamine (PE), whereas sphingomyelin (SM) decreased (p < 0.05). Changes in lipid constituents resulted in the disruption of important membrane fluidity parameters represented as a decreased (p < 0.05) in the phosphatidylcholine (PC)/PE and PC/(PE+SM) ratios and an increase (p < 0.05) in the CHOL/PL (PL=PC+PE) ratio, suggesting the preservation of lipid raft rigidity and integrity. Observed FA changes in the raft PE fraction included a significant (p < 0.05) increase in C18:2ω-6, C20:3ω-6, C20:4ω-6, C22:4ω-6, C22:5ω-3 and C22:6ω-3, with an increase in total ω-6 and ω-3 polyunsaturated fatty acids (PUFAs). Modulation of the FA content in PE, specifically the C20:4ω-6 PC/PE ratio and PUFA levels, together with changes in CHOL and SM are key determinants regulating the integrity and function of lipid rafts. In primary hepatocytes these changes are associated with the inhibition of cell proliferation and induction of apoptosis. A lipogenic mechanism is proposed whereby FB1 modulates lipid rafts and differentially target cell survival indices of normal and preneoplastic hepatocytes during cancer promotion in the liver.
Collapse
Affiliation(s)
- H-M Burger
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - S Abel
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa.
| | - W C A Gelderblom
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville 7535, South Africa; Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
10
|
Qian G, Tang L, Lin S, Xue KS, Mitchell NJ, Su J, Gelderblom WC, Riley RT, Phillips TD, Wang JS. Sequential dietary exposure to aflatoxin B1 and fumonisin B1 in F344 rats increases liver preneoplastic changes indicative of a synergistic interaction. Food Chem Toxicol 2016; 95:188-95. [PMID: 27430420 DOI: 10.1016/j.fct.2016.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Dietary co-exposure to aflatoxin B1 (AFB1) and fumonisin B1 (FB1) and their interaction on hepatocellular carcinogenesis is of particular concern in toxicology and public health. In this study we evaluated the liver preneoplastic effects of single and sequential dietary exposure to AFB1 and FB1 in the F344 rat carcinogenesis model. Serum biochemical alterations, liver histopathological changes, and the formation of liver glutathione S transferase positive (GST-P+) foci were the major outcome parameters examined. Compared to the AFB1-only treatment, the FB1-only treatment induced less dysplasia, and more apoptosis and mitoses. Sequential AFB1 and FB1 treatment lead to increased numbers of dysplasia, apoptosis and foci of altered hepatocytes, as compared to either mycotoxin treatment alone. More importantly, sequential exposure to AFB1 and FB1 synergistically increased the numbers of liver GTP-P+ foci by approximately 7.3-and 12.9-fold and increased the mean sizes of GST-P+ foci by 6- and 7.5-fold, respectively, as compared to AFB1- or FB1-only treatment groups. In addition, liver ALT and AST levels were significantly increased after sequential treatment as compared to single treatment groups. The results demonstrate the interactive effect of dietary AFB1 and FB1 in inducing liver GST-P+ foci formation and provide information to model future intervention studies.
Collapse
Affiliation(s)
- Guoqing Qian
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Shuhan Lin
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Kathy S Xue
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Nicole J Mitchell
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Jianjia Su
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Wentzel C Gelderblom
- Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa
| | - Ronald T Riley
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA; USDA-ARS, Toxicology and Mycotoxin Research Unit, R.B. Russell Research Center, National Poultry Disease Research Center, Athens, GA, USA
| | - Timothy D Phillips
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Jia-Sheng Wang
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Mitigation of Fumonisin Biomarkers by Green Tea Polyphenols in a High-Risk Population of Hepatocellular Carcinoma. Sci Rep 2015; 5:17545. [PMID: 26626148 PMCID: PMC4667183 DOI: 10.1038/srep17545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/03/2015] [Indexed: 11/21/2022] Open
Abstract
Green tea polyphenols (GTP) are highly effective in inhibiting a variety of tumorigenic effects induced by carcinogens. In this study we assessed GTP mitigation on biomarkers of fumonisin B1 (FB1), a class 2B carcinogen, in blood and urine samples collected from an intervention trial. A total of 124 exposed people were recruited and randomly assigned to low-dose (GTP 500 mg, n = 42), high-dose (GTP 1,000 mg, n = 41) or placebo (n = 41) for 3 months. After one-month of intervention, urinary FB1 was significantly decreased in high-dose group compared to that of placebo group (p = 0.045), with reduction rates of 18.95% in the low-dose group and 33.62% in the high-dose group. After three-month intervention, urinary FB1 showed significant decrease in both low-dose (p = 0.016) and the high-dose (p = 0.0005) groups compared to that of both placebo group and baseline levels, with reduction rates of 40.18% in the low-dose group and 52.6% in the high-dose group. GTP treatment also significantly reduced urinary excretion of sphinganine (Sa), sphingosine (So), and Sa/So ratio, but had no effect on serum Sa, So, and Sa/So ratio. Analysis with mixed-effect model revealed significant interactions between time and treatment effects of GTP on both urinary free FB1 levels and Sa/So ratios.
Collapse
|
12
|
Beneficial effects of Androctonus australis hector venom and its non-toxic fraction in the restoration of early hepatocyte-carcinogenesis induced by FB1 mycotoxin: Involvement of oxidative biomarkers. Exp Mol Pathol 2015; 99:198-206. [PMID: 26142225 DOI: 10.1016/j.yexmp.2015.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/08/2015] [Accepted: 06/29/2015] [Indexed: 11/24/2022]
Abstract
Some venom components are known to present potential biological activities that are useful as tools in therapeutics. In this study anti-tumoral activity of Androctonus australis hector (Aah) venom and its purified fraction on early step of hepato-carcinogenesis initiated by Fumonisin (FB1), was tested. Initiated hepatic tumor was assessed in mice by decreased doses of Fumonisin B1 associated to phenobarbital. Scorpion venom was used to investigate its activity on initiated tumor by FB1. Evaluation of oxidative unbalance, enzymatic activities and DNA quantification in the liver were correlated with tissue analysis. Obtained results showed that the initiated pathogenesis by FB1 at seven months was characterized by tissue alterations and biomarker variations. These alterations were characterized by atypical lesions such as muffled nucleus, karyo- and cyto-megaly; up normal and large number of nuclei into hepatocytes. These alterations were confirmed by DNA alteration. An unbalance of oxidative status was also observed, characterized by an increased levels of respectively oxidant (NO and MDA) and antioxidant (GSH and catalase activity) mediators. Aah venom and its non-toxic fraction used at low doses seemed to be able to restore partially the hepatic altered tissue induced by FB1. Decreased levels of oxidative and anti-oxidative mediators were also observed. DNA in hepatocytes returned also to the physiological values. Structure of hepatic tissue showed restoration of some alterations such as karyo- and cyto-megaly; decrease of polyploidy hepatocytes induced by FB1. Aah venom and its non-toxic fraction seem to contain some bioactive components with anti-tumoral activity. Purification of this activity from non-toxic fraction F1 could be of interest to identify the components with anti-tumoral activities.
Collapse
|
13
|
Demirel G, Alpertunga B, Ozden S. Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. PHARMACEUTICAL BIOLOGY 2015; 53:1302-1310. [PMID: 25858139 DOI: 10.3109/13880209.2014.976714] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides (Sacc.) Nirenberg (Nectriaceae) mold that contaminates maize and other agricultural products. Although the effects of FB1 on sphingolipid metabolism are clear, little is known about early molecular changes associated with FB1 carcinogenicity. OBJECTIVE Alteration on DNA methylation, as an early event in non-genotoxic carcinogenesis, may play an important role in the mechanism of FB1 toxiciy. MATERIALS AND METHODS Dose-related effects of FB1 (1-50 µM for 24 h) on global DNA methylation by using high-performance liquid chromatography with UV-diode array detection (HPLC-UV/DAD) and CpG promoter methylation by methylation-specific PCR (MSP) were performed in rat liver (Clone 9) and rat kidney (NRK-52E) epithelial cells. RESULTS Cell viability reduction is 39% and 34% by the XTT test and LDH release in the growth medium is 32% and 26% at 200 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. No significant dose-related effects of FB1 on global DNA methylation which ranged from 4 to 5% were observed in both cells compared with controls. Promoter regions of c-myc gene were methylated (>33%) at 10 and 50 µM of FB1 treatment in Clone 9 cells while it was unmethylated in NRK-52E cells. Promoter regions of p15 gene were unmethylated while VHL gene were found to be methylated (>33%) at 10, 25, and 50 µM and 10 and 50 µM of FB1 treatment in Clone 9 and NRK-52E cells, respectively. DISCUSSION AND CONCLUSION Alteration in DNA methylation might play an important role in the toxicity of FB1 in risk assessment process.
Collapse
Affiliation(s)
- Goksun Demirel
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , Beyazit, Istanbul , Turkey
| | | | | |
Collapse
|
14
|
Chuturgoon A, Phulukdaree A, Moodley D. Fumonisin B1 induces global DNA hypomethylation in HepG2 cells - An alternative mechanism of action. Toxicology 2014; 315:65-9. [PMID: 24280379 DOI: 10.1016/j.tox.2013.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 01/07/2023]
Abstract
Fumonisin B1 (FB1), a common mycotoxin contaminant of maize, is known to inhibit sphingolipid biosynthesis and has been implicated in cancer promoting activity in animals and humans. FB1 disrupts DNA methylation and chromatin modifications in human hepatoma (HepG2) cells. We investigated the effect of FB1 on enzymes, DNA methyltransferases and demethylases, involved in chromatin maintenance and gross changes in structural integrity of DNA in HepG2 cells. We measured: (i) the expression of 84 key genes encoding enzymes known to modify genomic DNA and histones (superarray and qPCR); (ii) protein expression of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and the major demethylase (MBD2) (western blotting); (iii) degree of DNA methylation by FACS using anti-5-MeCyt and (iv) DNA migration (single cell gel electrophoresis). FB1 significantly decreased the methyltransferase activities of DNMT1, DNMT3A and DNMT3B, and significantly up regulated the demethylases (MBD2 expression and activity, and KDM5B and KDM5C expression). FACS data showed FB1 significantly increased DNA hypomethylation and resulted in gross changes in structural DNA as evidenced by the Comet assay. We conclude that FB1 induces global DNA hypomethylation and histone demethylation that causes chromatin instability and may lead to liver tumourigenesis.
Collapse
Affiliation(s)
- Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Alisa Phulukdaree
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Devapregasan Moodley
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
15
|
Wei T, Zhu W, Pang M, Liu Y, Dong J. Natural occurrence of fumonisins B1and B2in corn in four provinces of China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2013; 6:270-4. [DOI: 10.1080/19393210.2013.819816] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
WANG SHAOKANG, LIU SHA, YANG LIGANG, SHI RUOFU, SUN GUIJU. Effect of fumonisin B1 on the cell cycle of normal human liver cells. Mol Med Rep 2013; 7:1970-6. [DOI: 10.3892/mmr.2013.1447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/19/2013] [Indexed: 11/06/2022] Open
|
17
|
Bondy G, Mehta R, Caldwell D, Coady L, Armstrong C, Savard M, Miller JD, Chomyshyn E, Bronson R, Zitomer N, Riley RT. Effects of long term exposure to the mycotoxin fumonisin B1 in p53 heterozygous and p53 homozygous transgenic mice. Food Chem Toxicol 2012; 50:3604-13. [DOI: 10.1016/j.fct.2012.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/17/2012] [Indexed: 01/08/2023]
|
18
|
Marasas W, Gelderblom W, Shephard G, Vismer H. Mycotoxicological research in South Africa 1910-2011. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2011.1322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The British mycologist, I.B. Pole-Evans, was appointed as the first South African government mycologist in 1905 following the Anglo-Boer War (1899-1902). The Onderstepoort Veterinary Research Institute was founded in 1908 with the Swiss veterinarian, Arnold Theiler, as the first director. Thus, the stage was set for the commencement of mycotoxicological research when the Union of South Africa came into being in 1910. The first accounts of this pioneering research appeared in the 'Seventh and eight reports of the Director of Veterinary Research, Union of South Africa. 1918' in which D.T. Mitchell reported on the experimental reproduction of the neurotoxic syndrome, diplodiosis, in cattle with pure cultures of Stenocarpella maydis (= Diplodia zea) isolated by P.A. Van der Bijl and grown on sterile maize kernels. This is the first report of the experimental reproduction of a veterinary mycotoxicosis with a pure culture of a fungus in South Africa and possibly in the world. This seminal research was followed by a great deal of multidisciplinary research on veterinary mycotoxicoses as well as human syndromes in which fungal toxins are suspected to be involved, taxonomy of mycotoxigenic fungi and chemistry of mycotoxins in South Africa. The mycotoxicoses studied in South Africa include the following (more or less in chronological order): diplodiosis, Paspalum staggers, aflatoxicosis, human hepatocellular carcinoma, ochratoxicosis, lupinosis, facial eczema, tremorgenic mycotoxicosis, hyperoestrogenism, stachybotryotoxicosis, ergotism, leukoencephalomalacia and human oesophageal cancer. A major breakthrough in mycotoxicological research was made in South Africa in 1988 with the isolation and chemical characterisation of the carcinogenic fumonisins produced by Fusarium verticillioides in maize. Current research at the PROMEC Unit of the South African Medical Research Council on the risk assessment of fumonisins and intervention methods to reduce fumonisin intake by rural populations on a maize staple diet is highlighted. This paper concludes with a selected list of mycotoxicological publications by South African mycologists/plant pathologists, veterinarians and chemists/biochemists.
Collapse
Affiliation(s)
- W. Marasas
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa
| | - W. Gelderblom
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland, 7602 South Africa
| | - G. Shephard
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa
| | - H. Vismer
- PROMEC Unit, Medical Research Council, P.O. Box 19070, Tygerberg, 7505 South Africa
| |
Collapse
|
19
|
Persson EC, Sewram V, Evans AA, London WT, Volkwyn Y, Shen YJ, Van Zyl JA, Chen G, Lin W, Shephard GS, Taylor PR, Fan JH, Dawsey SM, Qiao YL, McGlynn KA, Abnet CC. Fumonisin B1 and risk of hepatocellular carcinoma in two Chinese cohorts. Food Chem Toxicol 2011; 50:679-83. [PMID: 22142693 DOI: 10.1016/j.fct.2011.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/30/2022]
Abstract
Fumonisin B1 (FB1), a mycotoxin that contaminates corn in certain climates, has been demonstrated to cause hepatocellular cancer (HCC) in animal models. Whether a relationship between FB1 and HCC exists in humans is not known. To examine the hypothesis, we conducted case-control studies nested within two large cohorts in China; the Haimen City Cohort and the General Population Study of the Nutritional Intervention Trials cohort in Linxian. In the Haimen City Cohort, nail FB1 levels were determined in 271 HCC cases and 280 controls. In the General Population Nutritional Intervention Trial, nail FB1 levels were determined in 72 HCC cases and 147 controls. In each population, odds ratios and 95% confidence intervals (95%CI) from logistic regression models estimated the association between measurable FB1 and HCC, adjusting for hepatitis B virus infection and other factors. A meta-analysis that included both populations was also conducted. The analysis revealed no statistically significant association between FB1 and HCC in either Haimen City (OR=1.10, 95%CI=0.64-1.89) or in Linxian (OR=1.47, 95%CI=0.70-3.07). Similarly, the pooled meta-analysis showed no statistically significant association between FB1 exposure and HCC (OR=1.22, 95%CI=0.79-1.89). These findings, although somewhat preliminary, do not support an associated between FB1 and HCC.
Collapse
Affiliation(s)
- E Christina Persson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20852-7234, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gelderblom WCA, Marasas WFO. Controversies in fumonisin mycotoxicology and risk assessment. Hum Exp Toxicol 2011; 31:215-35. [DOI: 10.1177/0960327110395338] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- WCA Gelderblom
- PROMEC Unit, Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| | - WFO Marasas
- PROMEC Unit, Medical Research Council, Tygerberg, South Africa
- Department of Plant Pathology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602 South Africa
| |
Collapse
|
21
|
Marnewick JL, van der Westhuizen FH, Joubert E, Swanevelder S, Swart P, Gelderblom WCA. Chemoprotective properties of rooibos (Aspalathus linearis), honeybush (Cyclopia intermedia) herbal and green and black (Camellia sinensis) teas against cancer promotion induced by fumonisin B1 in rat liver. Food Chem Toxicol 2008; 47:220-9. [PMID: 19041360 DOI: 10.1016/j.fct.2008.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/05/2008] [Accepted: 11/02/2008] [Indexed: 01/26/2023]
Abstract
The chemoprotective properties of unfermented and fermented rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia) herbal teas, and green and black teas (Camellia sinensis) were investigated against fumonisin B1 (FB1) promotion in rat liver utilizing diethylnitrosamine (DEN) as cancer initiator. The various teas differently affected the clinical chemical parameters associated with liver and kidney damage associated with FB1 suggesting specific FB1/iron/polyphenolic interactions. Green tea enhanced (P<0.05) the FB1-induced reduction of the oxygen radical absorbance capacity, while fermented herbal teas and unfermented honeybush significantly (P<0.05) decreased FB1-induced lipid peroxidation in the liver. The teas exhibited varying effects on FB1-induced changes in the activities of catalase, glutathione peroxidase (GPx) glutathione reductase (GR) as well as the glutathione (GSH) status. Unfermented rooibos and honeybush significantly (P<0.05) to marginally (P<0.1) reduced the total number of foci (>10microm), respectively, while all the teas reduced the relative amount of the larger foci. Fermentation seems to reduce the protective effect of the herbal teas. Differences in the major polyphenolic components and certain FB1/polyphenolic/tissue interactions may explain the varying effects of the different teas on the oxidative parameters, hepatotoxic effects and cancer promotion in rat liver.
Collapse
Affiliation(s)
- Jeanine L Marnewick
- Oxidative Stress Research Centre, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 652, Cape Town 8000, South Africa
| | | | | | | | | | | |
Collapse
|