1
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
2
|
Cheng Y, Chen Z, Yang S, Liu T, Yin L, Pu Y, Liang G. Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149584. [PMID: 34399324 DOI: 10.1016/j.scitotenv.2021.149584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The extensive production and use of nanomaterials have resulted in the continuous release of nano-sized particles into the environment, and the health risks caused by exposure to these nanomaterials in the occupational population and the general population cannot be ignored. Studies have found that particle exposure is closely related to cardiovascular disease. In addition, there have been many reports that nanomaterials can enter the heart tissue, accumulate and then cause damage. Therefore, in the present article, literature related to nanomaterials-induced cardiotoxicity in recent years was collected from the PubMed database, and then organized and summarized to form a review. This article mainly discusses heart damage caused by nanomaterials from the following three aspects: Firstly, we summarize the research 8 carbon nanotubes, etc. Secondly, we discuss in depth the possible underlying mechanism of the damage to the heart caused by nanoparticles. Oxidative stress damage, mitochondrial damage, inflammation and apoptosis have been found to be key factors. Finally, we summarize the current research models used to evaluate the cardiotoxicity of nanomaterials, highlight reliable emerging technologies and in vitro models that have been used for toxicity evaluation of environmental pollutants in recent years, and indicate their application prospects.
Collapse
Affiliation(s)
- Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, PR China.
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
3
|
Nica IC, Stan MS, Popescu RG, Nicula N, Ducu R, Diamandescu L, Dinischiotu A. Fe-N Co-Doped Titanium Dioxide Nanoparticles Induce Cell Death in Human Lung Fibroblasts in a p53-Independent Manner. Int J Mol Sci 2021; 22:ijms22179627. [PMID: 34502536 PMCID: PMC8431805 DOI: 10.3390/ijms22179627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The advancement of nanotechnology in the last decade has developed an abundance of novel and intriguing TiO2-based nanomaterials that are widely used in many sectors, including industry (as a food additive and colorant in cosmetics, paints, plastics, and toothpaste) and biomedicine (photoelectrochemical biosensing, implant coatings, drug delivery, and new emerging antimicrobial agents). Therefore, the increased use of engineered nanomaterials in the industry has raised serious concern about human exposure and their unexpected cytotoxic effects. Since inhalation is considered the most relevant way of absorbing nanomaterials, different cell death mechanisms induced in MRC-5 lung fibroblasts, following the exposure to functionalized TiO2 NPs, were investigated. Long-term exposure to TiO2 nanoparticles co-doped with 1% of iron and nitrogen led to the alteration of p53 protein activity and the gene expression controlled by this suppressor (NF-kB and mdm2), DNA damage, cell cycle disruptions at the G2/M and S phases, and lysosomal membrane permeabilization and the subsequent release of cathepsin B, triggering the intrinsic pathway of apoptosis in a Bax- and p53-independent manner. Our results are of major significance, contributing to the understanding of the mechanisms underlying the interaction of these nanoparticles with in vitro biological systems, and also providing useful information for the development of new photocatalytic nanoparticles that are active in the visible spectrum, but with increased biocompatibility.
Collapse
Affiliation(s)
- Ionela Cristina Nica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.N.); (R.G.P.); (A.D.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.N.); (R.G.P.); (A.D.)
- Research Institute of the University of Bucharest–ICUB, University of Bucharest, 050657 Bucharest, Romania
- Correspondence: ; Tel./Fax: +40-21-318-15-75
| | - Roua G. Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.N.); (R.G.P.); (A.D.)
| | - Nicoleta Nicula
- Environment/Energy and Climate Change Department, National Institute for Research and Development in Electrical Engineering ICPE—CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (N.N.); (R.D.)
| | - Robert Ducu
- Environment/Energy and Climate Change Department, National Institute for Research and Development in Electrical Engineering ICPE—CA, 313 Splaiul Unirii, 030138 Bucharest, Romania; (N.N.); (R.D.)
| | - Lucian Diamandescu
- National Institute of Materials Physics (NIMP), Atomistilor 405A, Magurele, 077125 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (I.C.N.); (R.G.P.); (A.D.)
| |
Collapse
|
4
|
Rossi S, Buccarello A, Caffarra Malvezzi C, Pinelli S, Alinovi R, Guerrero Gerboles A, Rozzi G, Leonardi F, Bollati V, De Palma G, Lagonegro P, Rossi F, Lottici PP, Poli D, Statello R, Macchi E, Miragoli M. Exposure to nanoparticles derived from diesel particulate filter equipped engine increases vulnerability to arrhythmia in rat hearts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117163. [PMID: 33910133 DOI: 10.1016/j.envpol.2021.117163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is well recognized as a central player in cardiovascular disease. Exhaust particulate from diesel engines (DEP) is rich in nanoparticles and may contribute to the health effects of particulate matter in the environment. Moreover, diesel soot emitted by modern engines denotes defective surfaces alongside chemically-reactive sites increasing soot cytotoxicity. We recently demonstrated that engineered nanoparticles can cross the air/blood barrier and are capable to reach the heart. We hypothesize that DEP nanoparticles are pro-arrhythmogenic by direct interaction with cardiac cells. We evaluated the internalization kinetics and the effects of DEP, collected from Euro III (DEPe3, in the absence of Diesel Particulate Filter, DPF) and Euro IV (DEPe4, in the presence of DPF) engines, on alveolar and cardiac cell lines and on in situ rat hearts following DEP tracheal instillation. We observed significant differences in DEP size, metal and organic compositions derived from both engines. DEPe4 comprised ultrafine particles (<100 nm) and denoted a more pronounced toxicological outcome compared to DEPe3. In cardiomyocytes, particle internalization is fastened for DEPe4 compared to DEPe3. The in-vivo epicardial recording shows significant alteration of EGs parameters in both groups. However, the DEPe4-instilled group showed, compared to DEPe3, a significant increment of the effective refractory period, cardiac conduction velocity, and likelihood of arrhythmic events, with a significant increment of membrane lipid peroxidation but no increment in inflammation biomarkers. Our data suggest that DEPe4, possibly due to ultrafine nanoparticles, is rapidly internalized by cardiomyocytes resulting in an acute susceptibility to cardiac electrical disorder and arrhythmias that could accrue from cellular toxicity. Since the postulated transfer of nanoparticles from the lung to myocardial cells has not been investigated it remains open whether the effects on the cardiovascular function are the result of lung inflammatory reactions or due to particles that have reached the heart.
Collapse
Affiliation(s)
- Stefano Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | - Andrea Buccarello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | | | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Giacomo Rozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Humanitas Clinical and Research Center -IRCCS, 20090, Rozzano, Milan, Italy
| | - Fabio Leonardi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milano, Italy
| | - Giuseppe De Palma
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Paola Lagonegro
- National Research Council (CNR), Istituto Dei Materiali per L'Elettronica Ed Il Magnetismo (IMEM), Parma, Italy
| | - Francesca Rossi
- National Research Council (CNR), Istituto Dei Materiali per L'Elettronica Ed Il Magnetismo (IMEM), Parma, Italy
| | - Pier Paolo Lottici
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078, Monte Porzio Catone, Rome, Italy
| | - Rosario Statello
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilio Macchi
- CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy; Humanitas Clinical and Research Center -IRCCS, 20090, Rozzano, Milan, Italy; National Research Council (CNR), Istituto di Ricerca Genetica e Biomedica (IRGB), Milan, Italy.
| |
Collapse
|
5
|
The role of single- and multi-walled carbon nanotube in breast cancer treatment. Ther Deliv 2020; 11:653-672. [DOI: 10.4155/tde-2020-0019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have been conducted to design new strategies for breast cancer treatment. Past studies have shown a wide range of carbon-nanomaterials properties, such as single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in breast cancer diagnosis and treatment. In this regard, the current study aims to review the role of both SWCNTs and MWCNTs in breast cancer treatment and diagnosis. For reaching this goal, we reviewed the literature by using various searching engines such as Scopus, PubMed, Google Scholar, Web of Science and MEDLINE. This comprehensive review showed that CNTs could dramatically improve breast cancer treatment and could be used as a novel modality to increase diagnostic accuracy; however, no clinical studies have been conducted based on CNTs. In addition, the literature review demonstrates a lack of enough studies to evaluate the side effects of using CNTs.
Collapse
|
6
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
7
|
Far-reaching advances in the role of carbon nanotubes in cancer therapy. Life Sci 2020; 257:118059. [PMID: 32659368 DOI: 10.1016/j.lfs.2020.118059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Cancer includes a group of diseases involving unregulated cell growth with the potential to invade or expand to other parts of the body, resulting in an estimate of 9.6 million deaths worldwide in 2018. Manifold studies have been conducted to design more efficacious techniques for cancer therapy due to the inadequacy of conventional treatments including chemotherapy, surgery, and radiation therapy. With the advances in the biomedical applications of nanotechnology-based systems, nanomaterials have gained increasing attention as promising vehicles for targeted cancer therapy and optimizing treatment outcomes. Owing to their outstanding thermal, electrical, optical and chemical properties, carbon nanotubes (CNTs) have been profoundly studied to explore the various perspectives of their application in cancer treatment. The current study aims to review the role of CNTs whether as a carrier or mediator in cancer treatment for enhancing the efficacy as well as the specificity of therapy and reducing adverse side effects. This comprehensive review indicates that CNTs have the capability to be the next generation nanomaterials to actualize noninvasive targeted eradication of tumors. However, further studies are needed to evaluate the consequences of their biomedical application before the transition into clinical trials, since possible adverse effects of CNTs on biological systems have not been clearly understood.
Collapse
|
8
|
Deweirdt J, Quignard JF, Lacomme S, Gontier E, Mornet S, Savineau JP, Marthan R, Guibert C, Baudrimont I. In vitro study of carbon black nanoparticles on human pulmonary artery endothelial cells: effects on calcium signaling and mitochondrial alterations. Arch Toxicol 2020; 94:2331-2348. [PMID: 32394085 DOI: 10.1007/s00204-020-02764-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Human exposure to manufactured nanoparticles (NPs) is a public health concern. Endothelial cells lining the inner surface of arteries could be one of the primary targets for inhaled nanoparticles. Moreover, it is well known that alteration in calcium signaling is a critical event involved in the physiopathology of cardiovascular diseases. The objective of this study was to assess the role of oxidative stress in carbon black FW2 NPs-induced alteration in calcium signaling and mitochondria in human pulmonary artery endothelial cells. To this end, cells were exposed for 4 or 24 h to FW2 NPs (1-10 μg/cm2) and the following endpoints were studied: (i) production of ROS by fluorimetry and electron paramagnetic resonance, (ii) variation in intracellular calcium concentration by confocal microscopy, and (iii) mitochondrial alteration and apoptosis by confocal microscopy and transmission electronic microscopy. Exposure to FW2 NPs concentration-dependently increases oxidative stress, evidenced by the production of superoxide anion leading to an alteration in calcium content of intracellular organelles, such as endoplasmic reticulum and mitochondria activating, in turn, intrinsic apoptosis. This study provides evidence that FW2 NPs exposure impairs calcium signaling and mitochondria triggered by oxidative stress, and, thus, could act as a cardiovascular disease risk owing to the key role of calcium homeostasis in the control of vascular tone.
Collapse
Affiliation(s)
- J Deweirdt
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - J F Quignard
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - S Lacomme
- CNRS, Bordeaux Imaging Center UMS 3420 CNRS-US4 INSERM, 33000, Bordeaux, France
| | - E Gontier
- CNRS, Bordeaux Imaging Center UMS 3420 CNRS-US4 INSERM, 33000, Bordeaux, France
| | - S Mornet
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026, 33076, Bordeaux, France
| | - J P Savineau
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - R Marthan
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France.,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France.,CHU de Bordeaux, Service d'Exploration Fonctionnelle Respiratoire, 33000, Bordeaux, France
| | - C Guibert
- Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France
| | - I Baudrimont
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U 1045, 33604, Pessac, France. .,Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, 33600, Pessac, France.
| |
Collapse
|
9
|
Ali SA, Rizk MZ, Hamed MA, Aboul-Ela EI, El-Rigal NS, Aly HF, Abdel-Hamid AHZ. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: effect of dose and particle size. Biomarkers 2019; 24:492-498. [PMID: 31099265 DOI: 10.1080/1354750x.2019.1620336] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/05/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Objective: The aim of the present work is to evaluate the toxicity of titanium dioxide nanoparticles (TiO2NPs) according to their doses and particle sizes. Materials and methods: The effect of five days oral administration of TiO2NPs (21 and 80 nm) with different doses (50, 250 and 500 mg/kg body weight) was assessed in mice via measurement of oxidative stress markers; glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and nitric oxide (NO), liver function indices; aspartate and alanine aminotransferases (AST and ALT), chromosomal aberrations and liver histopathological pattern. Results: The results revealed drastic alterations in all the measured parameters and showed positive correlation with the gradual dose increment. In addition, the smaller particle size of TiO2NPS (21 nm) had more adverse effect in all the selected biochemical parameters, genetic aberrations and histological investigations. Conclusions: Toxicity of TiO2NPs increases in a dose-dependent manner and vice versa with particles size. The evaluated biomarkers are good indicators for TiO2NPs toxicity. More detailed studies are required before the recommendation of TiO2NPS as food additives.
Collapse
Affiliation(s)
- Sanaa A Ali
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | - Maha Z Rizk
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | - Manal A Hamed
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | - Ezzat I Aboul-Ela
- b Genetics and Cytology Department , National Research Centre , Giza , Egypt
| | - Nagy S El-Rigal
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | - Hanan F Aly
- a Department of Therapeutic Chemistry , National Research Centre , Giza , Egypt
| | | |
Collapse
|
10
|
Kan H, Pan D, Castranova V. Engineered nanoparticle exposure and cardiovascular effects: the role of a neuronal-regulated pathway. Inhal Toxicol 2019; 30:335-342. [PMID: 30604639 DOI: 10.1080/08958378.2018.1535634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human and animal studies have confirmed that inhalation of particles from ambient air or occupational settings not only causes pathophysiological changes in the respiratory system, but causes cardiovascular effects as well. At an equal mass lung burden, nanoparticles are more potent in causing systemic microvascular dysfunction than fine particles of similar composition. Thus, accumulated evidence from animal studies has led to heightened concerns about the potential short- and long-term deleterious effects of inhalation of engineered nanoparticles on the cardiovascular system. This review highlights the new observations from animal studies, which document the adverse effects of pulmonary exposure to engineered nanoparticles on the cardiovascular system and elucidate the potential mechanisms involved in regulation of cardiovascular function, in particular, how the neuronal system plays a role and reacts to pulmonary nanoparticle exposure based on both in vivo and in vitro studies. In addition, this review also discusses the possible influence of altered autonomic nervous activity on preexisting cardiovascular conditions. Whether engineered nanoparticle exposure serves as a risk factor in the development of cardiovascular diseases warrants further investigation.
Collapse
Affiliation(s)
- H Kan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA.,b Department of Pharmaceutical Sciences , West Virginia University , Morgantown , WV , USA
| | - D Pan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - V Castranova
- b Department of Pharmaceutical Sciences , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
11
|
Kavosi A, Hosseini Ghale Noei S, Madani S, Khalighfard S, Khodayari S, Khodayari H, Mirzaei M, Kalhori MR, Yavarian M, Alizadeh AM, Falahati M. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep 2018; 8:8375. [PMID: 29849103 PMCID: PMC5976726 DOI: 10.1038/s41598-018-26790-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/18/2018] [Indexed: 12/23/2022] Open
Abstract
Herein, we have investigated the toxicity of SWCNTs and MWCNTs in vitro and in vivo, and assessed their therapeutic effects on a typical animal model of breast cancer in order to obtain: first, the cytotoxicity effects of CNTs on MC4L2 cell and mice, second the impact of CNTs on ablation of breast tumor. CNTs especially SWCNTs were toxic to organs and induced death at high dosages. In this case, some of the liver cells showed a relative shrinkage which was also confirmed by Annexin test in MC4L2 cells. Moreover, CNTs decreased the tumor volume. BCL2 gene was down-regulated, and BAX and Caspase-3 were also up-regulated in the treated groups with CNTs. As a result, CNTs especially MWCNT in lower dosages can be used as a promising drug delivery vehicle for targeted therapy of abnormal cells in breast cancer.
Collapse
Affiliation(s)
- Arghavan Kavosi
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University, Pharmaceutical Science branch, Tehran, Iran
| | - Saeideh Hosseini Ghale Noei
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University, Pharmaceutical Science branch, Tehran, Iran
| | - Samaneh Madani
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University, Pharmaceutical Science branch, Tehran, Iran
| | - Solmaz Khalighfard
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Khodayari
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Mirzaei
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | | | - Majid Yavarian
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Kankala RK, Zhu K, Sun XN, Liu CG, Wang SB, Chen AZ. Cardiac Tissue Engineering on the Nanoscale. ACS Biomater Sci Eng 2018; 4:800-818. [DOI: 10.1021/acsbiomaterials.7b00913] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, P. R. China
| | - Xiao-Ning Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, P. R. China
| | - Chen-Guang Liu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| |
Collapse
|
13
|
Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 2017; 58:297-317. [DOI: 10.1080/10408398.2016.1160363] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aditi Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shivendu Ranjan
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
- Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India
- Xpert Arena Technological Services Pvt. Ltd., Chapra, Bihar, India
| | - Nandita Dasgupta
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chidambaram Ramalingam
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Yu X, Hong F, Zhang YQ. Cardiac inflammation involving in PKCε or ERK1/2-activated NF-κB signalling pathway in mice following exposure to titanium dioxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:68-77. [PMID: 27054666 DOI: 10.1016/j.jhazmat.2016.03.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The evaluation of toxicological effects of nanoparticles (NPs) is increasingly important due to their growing occupational use and presence as compounds in consumer products. Recent researches have demonstrated that long-term exposure to air particulate matter can induce cardiovascular events, but whether cardiovascular disease, such as cardiac damage, is induced by NP exposure and its toxic mechanisms is rarely evaluated. In the present study, when mice were continuously exposed to TiO2 NPs at 2.5, 5 or 10mg/kg BW by intragastric administration for 90days, obvious histopathological changes, and great alterations of NF-κB and its inhibitor I-κB, as well as TNF-α, IL-1β, IL-6 and IFN-α expression were induced. The NPs significantly decreased Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase and Na(+)/K(+)-ATPase activities and enhanced NCX-1 content. The NPs also considerably increased CAMK II and α1/β1-AR expression and up-regulated p-PKCε and p-ERK1/2 in a dose-dependent manner in the mouse heart. These data suggest that low-dose and long-term exposure to TiO2 NPs may cause cardiac damage such as cardiac fragmentation or disordered myocardial fibre arrangement, tissue necrosis, myocardial haemorrhage, swelling or cardiomyocyte hypertrophy, and the inflammatory response was potentially mediated by NF-κB activation via the PKCε or ERK1/2 signalling cascades in mice.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM 702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou 215123, China.
| |
Collapse
|
15
|
Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A 2016; 104:2881-97. [PMID: 27301683 DOI: 10.1002/jbm.a.35804] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Nanoparticles (NPs; < 100 nm) are increasingly being applied in various fields due to their unique physicochemical properties. The increase in human exposure to NPs has raised concerns regarding their health and safety profiles. The potential correlation between NP exposure and several cardiovascular (CV) events has been demonstrated. The aim of this review is to provide a comprehensive evaluation of the current knowledge regarding the bio-toxic impacts of titanium oxide, silver, silica, carbon black, carbon nanotube, and zinc oxide NPs exposure on the CV system in terms of in vivo and in vitro experiments, which is not fully understood presently. Moreover, the potential toxic mechanisms of NPs in the CV system that are still being questioned are elaborately discussed, and the underlying capacity of NPs used in medicine for CV events are summarized. It will be an important instrument to extrapolate relevant data for human CV risk evaluation and management. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2881-2897, 2016.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China. .,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| |
Collapse
|
16
|
Hosseinpour M, Azimirad V, Alimohammadi M, Shahabi P, Sadighi M, Ghamkhari Nejad G. The cardiac effects of carbon nanotubes in rat. ACTA ACUST UNITED AC 2016; 6:79-84. [PMID: 27525224 PMCID: PMC4981252 DOI: 10.15171/bi.2016.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Carbon nanotubes (CNTs) are novel candidates in nanotechnology with a variety of increasing applications in medicine and biology. Therefore the investigation of nanomaterials' biocompatibility can be an important topic. The aim of present study was to investigate the CNTs impact on cardiac heart rate among rats. METHODS Electrocardiogram (ECG) signals were recorded before and after injection of CNTs on a group with six rats. The heart rate variability (HRV) analysis was used for signals analysis. The rhythm-to-rhythm (RR) intervals in HRV method were computed and features of signals in time and frequency domains were extracted before and after injection. RESULTS RESULTS of the HRV analysis showed that CNTs increased the heart rate but generally these nanomaterials did not cause serious problem in autonomic nervous system (ANS) normal activities. CONCLUSION Injection of CNTs in rats resulted in increase of heart rate. The reason of phenomenon is that multiwall CNTs may block potassium channels. The suppressed and inhibited IK and potassium channels lead to increase of heart rate.
Collapse
Affiliation(s)
- Mina Hosseinpour
- Biomechatronics Lab, Department of Mechatronics, School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Vahid Azimirad
- Biomechatronics Lab, Department of Mechatronics, School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Maryam Alimohammadi
- Biomechatronics Lab, Department of Mechatronics, School of Engineering Emerging Technologies, University of Tabriz, Tabriz, Iran
| | - Parviz Shahabi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Sadighi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
17
|
Sha B, Gao W, Cui X, Wang L, Xu F. The potential health challenges of TiO2nanomaterials. J Appl Toxicol 2015; 35:1086-101. [DOI: 10.1002/jat.3193] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/10/2015] [Accepted: 05/10/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Baoyong Sha
- School of Basic Medical Science; Xi'an Medical University; Xi'an 710021 China
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
| | - Wei Gao
- Department of Anesthesiology; the First Affiliated Hospital of Xi'an Jiaotong University Health Science Center; Xi'an 710061 China
| | - Xingye Cui
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Lin Wang
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Feng Xu
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
18
|
Gorr MW, Youtz DJ, Eichenseer CM, Smith KE, Nelin TD, Cormet-Boyaka E, Wold LE. In vitro particulate matter exposure causes direct and lung-mediated indirect effects on cardiomyocyte function. Am J Physiol Heart Circ Physiol 2015; 309:H53-62. [PMID: 25957217 DOI: 10.1152/ajpheart.00162.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/04/2015] [Indexed: 01/16/2023]
Abstract
Particulate matter (PM) exposure induces a pathological response from both the lungs and the cardiovascular system. PM is capable of both manifestation into the lung epithelium and entrance into the bloodstream. Therefore, PM has the capacity for both direct and lung-mediated indirect effects on the heart. In the present studies, we exposed isolated rat cardiomyocytes to ultrafine particulate matter (diesel exhaust particles, DEP) and examined their contractile function and calcium handling ability. In another set of experiments, lung epithelial cells (16HBE14o- or Calu-3) were cultured on permeable supports that allowed access to both the basal (serosal) and apical (mucosal) media; the basal media was used to culture cardiomyocytes to model the indirect, lung-mediated effects of PM on the heart. Both the direct and indirect treatments caused a reduction in contractility as evidenced by reduced percent sarcomere shortening and reduced calcium handling ability measured in field-stimulated cardiomyocytes. Treatment of cardiomyocytes with various anti-oxidants before culture with DEP was able to partially prevent the contractile dysfunction. The basal media from lung epithelial cells treated with PM contained several inflammatory cytokines, and we found that monocyte chemotactic protein-1 was a key trigger for cardiomyocyte dysfunction. These results indicate the presence of both direct and indirect effects of PM on cardiomyocyte function in vitro. Future work will focus on elucidating the mechanisms involved in these separate pathways using in vivo models of air pollution exposure.
Collapse
Affiliation(s)
- Matthew W Gorr
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dane J Youtz
- College of Nursing, The Ohio State University, Columbus, Ohio; and
| | | | - Korbin E Smith
- College of Nursing, The Ohio State University, Columbus, Ohio; and
| | - Timothy D Nelin
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio; College of Nursing, The Ohio State University, Columbus, Ohio; and
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Loren E Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio; College of Nursing, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
19
|
Savi M, Rossi S, Bocchi L, Gennaccaro L, Cacciani F, Perotti A, Amidani D, Alinovi R, Goldoni M, Aliatis I, Lottici PP, Bersani D, Campanini M, Pinelli S, Petyx M, Frati C, Gervasi A, Urbanek K, Quaini F, Buschini A, Stilli D, Rivetti C, Macchi E, Mutti A, Miragoli M, Zaniboni M. Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue. Part Fibre Toxicol 2014; 11:63. [PMID: 25487314 PMCID: PMC4349471 DOI: 10.1186/s12989-014-0063-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar-pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO₂) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body. METHODS We conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO₂ and on healthy rats administered a single dose of 2 mg/Kg TiO₂ NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO₂ nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential. RESULTS Ventricular myocytes exposed in vitro to TiO₂ had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO₂ nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes. CONCLUSIONS Acute exposure to TiO₂ nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events.
Collapse
Affiliation(s)
- Monia Savi
- Department of Life Sciences, University of Parma, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy.
| | - Stefano Rossi
- Department of Life Sciences, University of Parma, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy.
| | - Leonardo Bocchi
- Department of Life Sciences, University of Parma, Parma, Italy.
| | | | | | - Alessio Perotti
- Department of Life Sciences, University of Parma, Parma, Italy.
| | - Davide Amidani
- Department of Life Sciences, University of Parma, Parma, Italy.
| | - Rossella Alinovi
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy.
| | - Matteo Goldoni
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy.
| | - Irene Aliatis
- Department of Physics and Earth Science, University of Parma, Parma, Italy.
| | - Pier Paolo Lottici
- Department of Physics and Earth Science, University of Parma, Parma, Italy.
| | - Danilo Bersani
- Department of Physics and Earth Science, University of Parma, Parma, Italy.
| | | | - Silvana Pinelli
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy.
| | - Marta Petyx
- Italian Worker Compensation Authority INAIL, ex-ISPESL Monteporzio Catone, Roma, Italy.
| | - Caterina Frati
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy.
| | - Andrea Gervasi
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T), University of Parma, Parma, Italy.
| | - Konrad Urbanek
- Department of Pharmacology, Second University of Naples, Naples, Italy.
| | - Federico Quaini
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy.
| | | | | | - Claudio Rivetti
- Department of Life Sciences, University of Parma, Parma, Italy.
| | - Emilio Macchi
- Department of Life Sciences, University of Parma, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy.
| | - Antonio Mutti
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy.
| | - Michele Miragoli
- CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy. .,Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan, 20090, Italy.
| | - Massimiliano Zaniboni
- Department of Life Sciences, University of Parma, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, Department of Clinical and Experimental Medicine, Via Gramsci 14, Parma, 43126, Italy.
| |
Collapse
|
20
|
Gualtieri M, Capasso L, D'Anna A, Camatini M. Organic nanoparticles from different fuel blends: in vitro toxicity and inflammatory potential. J Appl Toxicol 2014; 34:1247-55. [PMID: 25244046 DOI: 10.1002/jat.3067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/04/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
Despite the well-established link between particulate vehicle emissions and adverse health effects, the biological effects produced by ultrafine particles generated from fuel combustion need to be investigated. The biological impact of nano-sized organic carbon particles in the size range 3-7 nm, obtained from an engine fuelled with a standard diesel and four diesel fuels doped with additives of commercial interest is reported. Our data showed that the number of particles < 10 nm is to a very small extent reduced by diesel particle filters, despite its ability to trap micrometric and submicrometric particulates, and that there is a correlation between the additives used and the chemical characteristics of the nanoparticles sampled. The results show that the different nano-sized organic carbon particles induce cytotoxic and proinflammatory effects on the in vitro systems A549 (epithelial cells) and BEAS-2B (bronchial cells). All the fuels tested are able to induce the release of proinflammatory interleukins 8 and 6; moreover, the IC50 values show that the additives can increase the toxic potential of particles 10 times. Further analyses are therefore needed to better define the potential impact of organic ultrafine particles on human health.
Collapse
Affiliation(s)
- Maurizio Gualtieri
- Polaris Research Centre, University of Milano-Bicocca, 1, Piazza della Scienza, Milano, 20126, Italy
| | | | | | | |
Collapse
|
21
|
Biokinetically-based in vitro cardiotoxicity of residual oil fly ash: hazard identification and mechanisms of injury. Cardiovasc Toxicol 2014; 13:426-37. [PMID: 24048980 DOI: 10.1007/s12012-013-9225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Epidemiological studies have associated air pollution particulate matter (PM) exposure with adverse cardiovascular effects. Identification of causal PM sources is critically needed to support regulatory decisions to protect public health. This research examines the in vitro cardiotoxicity of bioavailable constituents of residual oil fly ash (ROFA) employing in vivo, biokinetically-based, concentrations determined from their pulmonary deposition. Pulmonary deposition of ROFA led to a rapid increase in plasma vanadium (V) levels that were prolonged in hypertensive animals without systemic inflammation. ROFA cardiotoxicity was evaluated using neonatal rat cardiomyocyte (RCM) cultures exposed to particle-free leachates of ROFA (ROFA-L) at levels present in exposed rat plasma. Cardiotoxicity was observed at low levels (3.13 μg/mL) of ROFA-L 24 h post-exposure. Dimethylthiourea (28 mM) inhibited ROFA-L-induced cytotoxicity at high (25-12.5 μg/mL) doses, suggesting that oxidative stress is responsible at high ROFA-L doses. Cardiotoxicity could not be reproduced using a V + Ni + Fe mixture or a ROFA-L depleted of these metals, suggesting that ROFA-L cardiotoxicity requires the full complement of bioavailable constituents. Susceptibility of RCMs to ROFA-L-induced cytotoxicity was increased following tyrosine phosphorylation inhibition, suggesting that phosphotyrosine signaling pathways play a critical role in regulating ROFA-L-induced cardiotoxicity. These data demonstrate that bioavailable constituents of ROFA are capable of direct adverse cardiac effects.
Collapse
|
22
|
Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, Shimizu M, Narita N, Okamoto M, Kobayashi S, Nomura H, Kato H, Nishimura N, Taruta S, Endo M. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 2014; 114:6040-79. [PMID: 24720563 PMCID: PMC4059771 DOI: 10.1021/cr400341h] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Naoto Saito
- Institute
for Biomedical Sciences, Shinshu University, Asahi 3-1-1, Matsumoto 390-8621, Japan
| | - Hisao Haniu
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Yuki Usui
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Kaoru Aoki
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Kazuo Hara
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Seiji Takanashi
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Masayuki Shimizu
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Nobuyo Narita
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Masanori Okamoto
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Shinsuke Kobayashi
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Hiroki Nomura
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Hiroyuki Kato
- Department
of Orthopaedic Surgery, Shinshu University
School of Medicine, Asahi
3-1-1, Matsumoto 390-8621, Japan
| | - Naoyuki Nishimura
- R&D
Center, Nakashima Medical Co. Ltd., Haga 5322, Kita-ku, Okayama 701-1221, Japan
| | - Seiichi Taruta
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Morinobu Endo
- Research Center for Exotic Nanocarbons, and Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| |
Collapse
|
23
|
Boldrin A, Hansen SF, Baun A, Hartmann NIB, Astrup TF. Environmental exposure assessment framework for nanoparticles in solid waste. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2014. [PMID: 24944519 DOI: 10.1007/s11051-013-2195-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5-143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.
Collapse
Affiliation(s)
- Alessio Boldrin
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej, 2800 Kongens Lyngby, Denmark
| | - Steffen Foss Hansen
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej, 2800 Kongens Lyngby, Denmark
| | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej, 2800 Kongens Lyngby, Denmark
| | | | - Thomas Fruergaard Astrup
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Villarreal-Calderon R, Franco-Lira M, González-Maciel A, Reynoso-Robles R, Harritt L, Pérez-Guillé B, Ferreira-Azevedo L, Drecktrah D, Zhu H, Sun Q, Torres-Jardón R, Aragón-Flores M, Calderón-Garcidueñas A, Diaz P, Calderón-Garcidueñas L. Up-regulation of mRNA ventricular PRNP prion protein gene expression in air pollution highly exposed young urbanites: endoplasmic reticulum stress, glucose regulated protein 78, and nanosized particles. Int J Mol Sci 2013; 14:23471-91. [PMID: 24287918 PMCID: PMC3876057 DOI: 10.3390/ijms141223471] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 12/24/2022] Open
Abstract
Mexico City Metropolitan Area children and young adults exposed to high concentrations of air pollutants including fine and ultrafine particulate matter (PM) vs. clean air controls, exhibit myocardial inflammation and inflammasome activation with a differential right and left ventricular expression of key inflammatory genes and inflammasomes. We investigated the mRNA expression levels of the prion protein gene PRNP, which plays an important role in the protection against oxidative stress and metal toxicity, and the glucose regulated protein 78, a key protein in endoplasmic reticulum (ER) stress signaling, in ventricular autopsy samples from 30 children and young adults age 19.97 ± 6.8 years with a lifetime of low (n:4) vs. high (n:26) air pollution exposures. Light microscopy and transmission electron microscopy studies were carried out in human ventricles, and electron microscopy studies were also done in 5 young, highly exposed Mexico City dogs. There was significant left ventricular PRNP and bi-ventricular GRP78 mRNA up-regulation in Mexico City young urbanites vs. controls. PRNP up-regulation in the left ventricle was significantly different from the right, p < 0.0001, and there was a strong left ventricular PRNP and GRP78 correlation (p = 0.0005). Marked abnormalities in capillary endothelial cells, numerous nanosized particles in myocardial ER and in abnormal mitochondria characterized the highly exposed ventricles. Early and sustained cardiac ER stress could result in detrimental irreversible consequences in urban children, and while highly complex systems maintain myocardial homeostasis, failure to compensate for chronic myocardial inflammation, oxidative and ER stress, and particles damaging myocardial organelles may prime the development of pathophysiological cardiovascular states in young urbanites. Nanosized PM could play a key cardiac myocyte toxicity role.
Collapse
Affiliation(s)
| | - Maricela Franco-Lira
- Hospital Central Militar, Secretaria de la Defensa Nacional, Mexico City 11649, Mexico; E-Mails: (M.F.-L.); (M.A.-F.)
| | - Angélica González-Maciel
- Instituto Nacional de Pediatria, Mexico City 04320, Mexico; E-Mails: (A.G.-M.); (R.R.-R.); (B.P.-G.)
| | - Rafael Reynoso-Robles
- Instituto Nacional de Pediatria, Mexico City 04320, Mexico; E-Mails: (A.G.-M.); (R.R.-R.); (B.P.-G.)
| | - Lou Harritt
- The Center for Structural and Functional Neurosciences, the University of Montana, Missoula, MT 59812, USA; E-Mail:
| | - Beatriz Pérez-Guillé
- Instituto Nacional de Pediatria, Mexico City 04320, Mexico; E-Mails: (A.G.-M.); (R.R.-R.); (B.P.-G.)
| | - Lara Ferreira-Azevedo
- Visiting Student, Ministry of Education of Brazil, Rio de Janeiro 20000-000, Brazil; E-Mail:
| | - Dan Drecktrah
- Division of Biological Sciences, the University of Montana, Missoula, MT 59812, USA; E-Mail:
| | - Hongtu Zhu
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; E-Mails: (H.Z.); (Q.S.)
| | - Qiang Sun
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; E-Mails: (H.Z.); (Q.S.)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; E-Mail:
| | - Mariana Aragón-Flores
- Hospital Central Militar, Secretaria de la Defensa Nacional, Mexico City 11649, Mexico; E-Mails: (M.F.-L.); (M.A.-F.)
| | | | - Philippe Diaz
- Core Laboratory for Neuromolecular Production, the University of Montana, Missoula, MT 59812, USA; E-Mail:
| | - Lilian Calderón-Garcidueñas
- Hospital Central Militar, Secretaria de la Defensa Nacional, Mexico City 11649, Mexico; E-Mails: (M.F.-L.); (M.A.-F.)
- The Center for Structural and Functional Neurosciences, the University of Montana, Missoula, MT 59812, USA; E-Mail:
| |
Collapse
|
25
|
Bruinink A, Bitar M, Pleskova M, Wick P, Krug HF, Maniura-Weber K. Addition of nanoscaled bioinspired surface features: A revolution for bone related implants and scaffolds? J Biomed Mater Res A 2013; 102:275-94. [PMID: 23468287 DOI: 10.1002/jbm.a.34691] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/16/2013] [Accepted: 02/11/2013] [Indexed: 11/08/2022]
Abstract
Our expanding ability to handle the "literally invisible" building blocks of our world has started to provoke a seismic shift on the technology, environment and health sectors of our society. During the last two decades, it has become increasingly evident that the "nano-sized" subunits composing many materials—living, natural and synthetic—are becoming more and more accessible for predefined manipulations at the nanosize scale. The use of equally nanoscale sized or functionalised tools may, therefore, grant us unprecedented prospects to achieve many therapeutic aims. In the past decade it became clear that nano-scale surface topography significantly influences cell behaviour and may, potentially, be utilised as a powerful tool to enhance the bioactivity and/ or integration of implanted devices. In this review, we briefly outline the state of the art and some of the current approaches and concepts for the future utilisation of nanotechnology to create biomimetic implantable medical devices and scaffolds for in vivo and in vitro tissue engineering,with a focus on bone. Based on current knowledge it must be concluded that not the materials and surfaces themselves but the systematic biological evaluation of these new material concepts represent the bottleneck for new biomedical product development based on nanotechnological principles.
Collapse
Affiliation(s)
- Arie Bruinink
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials - Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Miragoli M, Novak P, Ruenraroengsak P, Shevchuk AI, Korchev YE, Lab MJ, Tetley TD, Gorelik J. Functional interaction between charged nanoparticles and cardiac tissue: a new paradigm for cardiac arrhythmia? Nanomedicine (Lond) 2013; 8:725-737. [PMID: 23140503 PMCID: PMC4890656 DOI: 10.2217/nnm.12.125] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM To investigate the effect of surface charge of therapeutic nanoparticles on sarcolemmal ionic homeostasis and the initiation of arrhythmias. MATERIALS & METHODS Cultured neonatal rat myocytes were exposed to 50 nm-charged polystyrene latex nanoparticles and examined using a combination of hopping probe scanning ion conductance microscopy, optical recording of action potential characteristics and patch clamp. RESULTS Positively charged, amine-modified polystyrene latex nanoparticles showed cytotoxic effects and induced large-scale damage to cardiomyocyte membranes leading to calcium alternans and cell death. By contrast, negatively charged, carboxyl-modified polystyrene latex nanoparticles (NegNPs) were not overtly cytotoxic but triggered formation of 50-250-nm nanopores in the membrane. Cells exposed to NegNPs revealed pro-arrhythmic events, such as delayed afterdepolarizations, reduction in conduction velocity and pathological increment of action potential duration together with an increase in ionic current throughout the membrane, carried by the nanopores. CONCLUSION The utilization of charged nanoparticles is a novel concept for targeting cardiac excitability. However, this unique nanoscopic investigation reveals an altered electrophysiological substrate, which sensitized the heart cells towards arrhythmias.
Collapse
Affiliation(s)
- Michele Miragoli
- Myocardial Function Unit, National Heart & Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational & Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Centre of Excellence for Toxicological Research, exISPESL- INAIL, Dept of Evolution & Functional Biology, Section of Physiology, University of Parma, 43124 Parma, Italy
| | - Pavel Novak
- Myocardial Function Unit, National Heart & Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational & Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- Division of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Pakatip Ruenraroengsak
- Lung Cell Biology, Section of Pharmacology & Toxicology, National Heart & Lung Institute, Dovehouse Street, Imperial College London, London, SW3 6LY, UK
| | - Andrew I Shevchuk
- Division of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Institute for Life Sciences, University of Southampton 3046, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Yuri E Korchev
- Division of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Max J Lab
- Myocardial Function Unit, National Heart & Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational & Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Teresa D Tetley
- Lung Cell Biology, Section of Pharmacology & Toxicology, National Heart & Lung Institute, Dovehouse Street, Imperial College London, London, SW3 6LY, UK
| | - Julia Gorelik
- Myocardial Function Unit, National Heart & Lung Institute, Imperial College London, 4th floor, Imperial Centre for Translational & Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
27
|
Chang C, Demokritou P, Shafer M, Christiani D. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:214-24. [PMID: 24592438 DOI: 10.1039/c2em30505d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be greatly influenced by these factors. Furthermore, the results also confirmed the hypothesis that smaller particles generate more ROS activity and should be evaluated carefully for risk assessment.
Collapse
|
28
|
Foss Hansen S, Nolde Nielsen K, Knudsen N, Grieger KD, Baun A. Operationalization and application of "early warning signs" to screen nanomaterials for harmful properties. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:190-203. [PMID: 24592436 DOI: 10.1039/c2em30571b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In 2001 the European Environment Agency (EEA) published a report that analyzed 14 cases of technological developments that later on turned out to have negative side-effects and they identified 12 “late lessons” for current and future policy-makers to bear in mind when initiating new technological endeavors. This paper explores how the first lesson – “Acknowledge and respond to ignorance, uncertainty and risk in technology appraisal” could be applied to screen nanomaterials. In cases of ignorance, uncertainty and risk, the EEA recommends paying particular attention to important warning signs such as novelty, persistency, whether materials are readily dispersed in the environment, and whether they bioaccumulate or lead to potentially irreversible action. Through an analysis of these criteria using five well-known nanomaterials (titanium dioxide, carbon nanotubes, liposomes, poly(lactic-co-glycolic acid) and nanoscale zero-valent iron), it was found that only nanoTiO2 fulfils all the five criteria. Depending on the length of the nanotubes, carbon nanotubes fulfil 3 or 4 criteria whereas liposomes, poly(lactic-co-glycolic acid), nanoscale zero-valent iron fulfil only one criteria. Finally, we discuss how these warning signs can be used by different stakeholders such as nanomaterial researchers and developers, companies and regulators to design benign nanomaterials, communicate what is known about nano-risks and decide on whether to implement precautionary regulatory measures.
Collapse
|
29
|
Tonelli FMP, Santos AK, Gomes KN, Lorençon E, Guatimosim S, Ladeira LO, Resende RR. Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering. Int J Nanomedicine 2012; 7:4511-29. [PMID: 22923989 PMCID: PMC3423153 DOI: 10.2147/ijn.s33612] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In recent years, significant progress has been made in organ transplantation, surgical reconstruction, and the use of artificial prostheses to treat the loss or failure of an organ or bone tissue. In recent years, considerable attention has been given to carbon nanotubes and collagen composite materials and their applications in the field of tissue engineering due to their minimal foreign-body reactions, an intrinsic antibacterial nature, biocompatibility, biodegradability, and the ability to be molded into various geometries and forms such as porous structures, suitable for cell ingrowth, proliferation, and differentiation. Recently, grafted collagen and some other natural and synthetic polymers with carbon nanotubes have been incorporated to increase the mechanical strength of these composites. Carbon nanotube composites are thus emerging as potential materials for artificial bone and bone regeneration in tissue engineering.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Cell Signaling and Nanobiotechnology Laboratory, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 2012; 24:320-39. [PMID: 22486349 DOI: 10.3109/08958378.2012.668229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human inhalation exposures to manufactured nanoparticles (NP) and airborne ultrafine particles (UFP) continues to increase in both occupational and environmental settings. UFP exposures have been associated with increased cardiovascular mortality and morbidity, while ongoing research supports adverse systemic and cardiovascular health effects after NP exposures. Adverse cardiovascular health effects include alterations in heart rate variability, hypertension, thrombosis, arrhythmias, increased myocardial infarction, and atherosclerosis. Exactly how UFP and NP cause these negative cardiovascular effects is poorly understood, however a variety of mediators and mechanisms have been proposed. UFP and NP, as well as their soluble components, are known to systemically translocate from the lung. Translocated particles could mediate cardiovascular toxicity through direct interactions with the vasculature, blood, and heart. Recent study suggests that sensory nerve stimulation within the lung may also contribute to UFP- and NP-induced acute cardiovascular alterations. Activation of sensory nerves, such as C-fibers, within the lung may result in altered cardiac rhythm and function. Lastly, release of pulmonary-derived mediators into systemic circulation has been proposed to facilitate cardiovascular effects. In general, these proposed pulmonary-derived mediators include proinflammatory cytokines, oxidatively modified macromolecules, vasoactive proteins, and prothrombotic factors. These pulmonary-derived mediators have been postulated to contribute to the subsequent prothrombotic, atherogenic, and inflammatory effects after exposure. This review will evaluate the potential contribution of individual mediators and mechanisms in facilitating cardiopulmonary toxicity following inhalation of UFP and NP. Lastly, we will appraise the literature and propose a hypothesis regarding the possible role of mast cells in contributing to these systemic effects.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
31
|
Kumar V, Kumari A, Guleria P, Yadav SK. Evaluating the toxicity of selected types of nanochemicals. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 215:39-121. [PMID: 22057930 DOI: 10.1007/978-1-4614-1463-6_2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanotechnology is a fast growing field that provides for the development of materials that have new dimensions, novel properties, and a broader array of applications. Various scientific groups are keen about this technology and are devoting themselves to the development of more, new, and better nanomaterials. In the near future, expectations are that no field will be left untouched by the magical benefits available through application of nanotechnology. Presently, there is only limited knowledge concerning the toxicological effects of NPs. However, it is now known that the toxic behavior of NPs differ from their bulk counterparts. Even NPs that have the same chemical composition differ in their toxicological properties; the differences in toxicity depend upon size, shape, and surface covering. Hence, before NPs are commercially used it is most important that they be subjected to appropriate toxicity evaluation. Among the parameters of NPs that must be evaluated for their effect on toxicity are surface charges, types of coating material, and reactivity of NPs. In this article, we have reviewed the literature pertinent to the toxicity of metal oxide NPs, metallic NPs, quantum dots (QDs), silica (SiO2) NPs, carbon nanotubes (CNTs), and certain other carbon nanomaterials (NMs). These NPs have already found a wide range of applications around the world. In vitro and in vivo studies on NPs have revealed that most are toxic to animals. However, their toxic behavior varies with their size, shape, surface charge, type of coating material and reactivity. Dose, route of administration, and exposure are critical factors that affect the degree of toxicity produced by any particular type of NP. It is for this reason that we believe a careful and rigorous toxicity testing is necessary before any NP is declared to be safe for broad use. We also believe that an agreed upon testing system is needed that can be used to suitably, accurately, and economically assess the toxicity of NPs. NPs have produced an array of different toxic effects in many different types of in vivo and in vitro studies. The types of effects that NPs have produced are those on the pulmonary, cardiac, reproductive, renal and cutaneous systems, as well as on various cell lines. After exposures, significant accumulations of NPs have been found in the lungs, brain, liver, spleen, and bones of test species. It has been well established that the degree of toxicity produced by NPs is linked to their surface properties. Soluble NPs are rendered toxic because of their constituents; however, the situation is entirely different for insoluble NPs. Stable metal oxides do not show any toxicity, whereas metallic NPs that have redox potential may be cytotoxic and genotoxic. The available data on NP toxicity is unfortunately limited, and hence, does not allow scientists to yet make a significant quantitative risk assessment of the safety of synthesized NPs. In this review, we have endeavored to illustrate the importance of having and using results from existing nanotoxicological studies and for developing new and more useful future risk assessment systems. Increased efforts of both an individual and collective nature are required to explore the future pros and cons of nanotechnology.
Collapse
Affiliation(s)
- Vineet Kumar
- Biotechnology Division, Institute of Himalayan Bioresource Technology, CSIR, Palampur, HP, 176061, India
| | | | | | | |
Collapse
|
32
|
Jawad H, Boccaccini AR, Ali NN, Harding SE. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications. Nanotoxicology 2011; 5:372-80. [PMID: 20858044 DOI: 10.3109/17435390.2010.516844] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Because of the increased use of titanium dioxide (TiO2) nanoparticles (NPs) in tissue engineering (TE), and in new constructs for cardiac TE, their effect was studied on three relevant cell types: Adult rat ventricular cardiomyocytes, human embryonic stem cell-derived cardiomyocytes (hESC-CM) and fibroblasts. For adult rat myocytes, 10 μg/mL TiO2 NPs showed no significant effect on myocyte survival over 24 h or acute myocyte contractility. Increasing the concentration to 100 μg/mL was seen to reduce contraction amplitude (p < 0.05). For hESC-CM, 10 μg/mL TiO2 reduced the beating rate significantly by 24 h. No arrhythmias or cessation of beating were observed in either cell type. Culturing fibroblasts in 5-150 μg/mL TiO2 significantly reduced cell proliferation at day 4 and increased cell death. We conclude that there may be modest but potentially adverse effects of TiO2 NPs if used in fast degrading polymers for myocardial tissue engineering (MTE) applications.
Collapse
Affiliation(s)
- Hedeer Jawad
- Department of Materials, National Heart and Lung Institute , Imperial College London , UK
| | | | | | | |
Collapse
|
33
|
Kan H, Wu Z, Young SH, Chen TH, Cumpston JL, Chen F, Kashon ML, Castranova V. Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance P synthesis in nodose ganglia. Nanotoxicology 2011; 6:736-45. [PMID: 21877901 DOI: 10.3109/17435390.2011.611915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The inhalation of engineered nanoparticles stimulates the development of atherosclerosis and impairs vascular function. However, the cardiac effects of inhaled engineered nanoparticles are unknown. Here, we investigate the effects of ultrafine titanium dioxide (UFTiO(2)) on the heart, and we define the possible mechanisms underlying the measured effects. Pulmonary exposure of rats to UFTiO(2) increased the phosphorylation levels of p38 mitogen-activated protein kinase and cardiac troponin I, but not Akt, in the heart and substance P synthesis in nodose ganglia. Circulatory levels of pro-inflammatory cytokines, and blood cell counts and differentials were not significantly changed after pulmonary exposure. Separately, the incubation of cardiac myocytes isolated from naïve adult rat hearts in vitro with UFTiO(2) did not alter the phosphorylation status of the same cardiac proteins. In conclusion, the inhalation of UFTiO(2) enhanced the phosphorylation levels of cardiac proteins. Such responses are likely independent of systemic inflammation, but may involve a lung-neuron-regulated pathway.
Collapse
Affiliation(s)
- Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lord K, Moll D, Lindsey JK, Mahne S, Raman G, Dugas T, Cormier S, Troxlair D, Lomnicki S, Dellinger B, Varner K. Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo. J Recept Signal Transduct Res 2011; 31:157-67. [PMID: 21385100 PMCID: PMC3152960 DOI: 10.3109/10799893.2011.555767] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown-Norway rats were dosed (8 mg/kg, intratracheal) 24 h prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs. control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed.
Collapse
Affiliation(s)
- Kevin Lord
- Department of Cardiopulmonary Sciences, LSU Health Sciences Center, New Orleans, LA, 70112
- Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA, 70112
| | - David Moll
- School of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112
| | - John K. Lindsey
- School of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112
| | - Sarah Mahne
- Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA, 70112
| | - Girija Raman
- Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA, 70112
| | - Tammy Dugas
- Pathology, LSU Health Sciences Center, New Orleans, LA, 70112
| | - Stephania Cormier
- Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA, 70112
| | - Dana Troxlair
- Department of Pharmacology, LSU Health Sciences Center, Shreveport, LA, 33932
| | - Slawo Lomnicki
- Department of Chemistry, LSU A&M, Baton Rouge, LA, 70803
| | | | - Kurt Varner
- Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA, 70112
| |
Collapse
|
35
|
Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology 2011; 4:207-46. [PMID: 20795897 DOI: 10.3109/17435390903569639] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This critical review of the available human health safety data, relating to carbon nanotubes (CNTs), was conducted in order to assess the risks associated with CNT exposure. Determining the toxicity related to CNT exploitation is of great relevance and importance due to the increased potential for human exposure to CNTs within occupational, environmental and consumer settings. When this information is combined with knowledge on the likely exposure levels of humans to CNTs, it will enable risk assessments to be conducted to assess the risks posed to human health. CNTs are a diverse group of materials and vary with regards to their wall number (single and multi-walled CNTs are evident), length, composition, and surface chemistry. The attributes of CNTs that were identified as being most likely to drive the observed toxicity have been considered, and include CNT length, metal content, tendency to aggregate/agglomerate and surface chemistry. Of particular importance, is the contribution of the fibre paradigm to CNT toxicity, whereby the length of CNTs appears to be critical to their toxic potential. Mechanistic processes that are critical to CNT toxicity will also be discussed, with the findings insinuating that CNTs can exert an oxidative response that stimulates inflammatory, genotoxic and cytotoxic consequences. Consequently, it may transpire that a common mechanism is responsible for driving CNT toxicity, despite the fact that CNTs are a diverse population of materials. The similarity of the structure of CNTs to that of asbestos has prompted concern surrounding the exposure of humans, and so the applicability of the fibre paradigm to CNTs will be evaluated. It is also necessary to determine the systemic availability of CNTs following exposure, to determine where potential targets of toxicity are, and to thereby direct in vitro investigations within the most appropriate target cells. CNTs are therefore a group of materials whose useful exploitable properties prompts their increased production and utilization within diverse applications, so that ensuring their safety is of vital importance.
Collapse
Affiliation(s)
- Helinor J Johnston
- Centre for Nano Safety, School of Life Sciences, Edinburgh Napier University, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
36
|
UO M, AKASAKA T, WATARI F, SATO Y, TOHJI K. Toxicity evaluations of various carbon nanomaterials. Dent Mater J 2011; 30:245-63. [DOI: 10.4012/dmj.2010-039] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SAK, Tran CL, Christensen FM. Review of carbon nanotubes toxicity and exposure--appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 2010; 40:759-90. [PMID: 20860524 DOI: 10.3109/10408444.2010.506638] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Carbon nanotubes (CNTs) possess many unique electronic and mechanical properties and are thus interesting for numerous novel industrial and biomedical applications. As the level of production and use of these materials increases, so too does the potential risk to human health. This study aims to investigate the feasibility and challenges associated with conducting a human health risk assessment for carbon nanotubes based on the open literature, utilising an approach similar to that of a classical regulatory risk assessment. Results indicate that the main risks for humans arise from chronic occupational inhalation, especially during activities involving high CNT release and uncontrolled exposure. It is not yet possible to draw definitive conclusions with regards the potential risk for long, straight multi-walled carbon nanotubes to pose a similar risk as asbestos by inducing mesothelioma. The genotoxic potential of CNTs is currently inconclusive and could be either primary or secondary. Possible systemic effects of CNTs would be either dependent on absorption and distribution of CNTs to sensitive organs or could be induced through the release of inflammatory mediators. In conclusion, gaps in the data set in relation to both exposure and hazard do not allow any definite conclusions suitable for regulatory decision-making. In order to enable a full human health risk assessment, future work should focus on the generation of reliable occupational, environmental and consumer exposure data. Data on toxicokinetics and studies investigating effects of chronic exposure under conditions relevant for human exposure should also be prioritised.
Collapse
Affiliation(s)
- Karin Aschberger
- Nanobiosciences Unit, European Commission-DG Joint Research Centre (JRC), Institute for Health and Consumer Protection (IHCP), Ispra, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Philbrick M. An anticipatory governance approach to carbon nanotubes. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2010; 30:1708-1722. [PMID: 20626694 DOI: 10.1111/j.1539-6924.2010.01445.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Carbon nanotubes (CNTs) are novel materials with remarkable properties; possible beneficial applications include aircraft frames, hydrogen storage, environmental sensors, electrical transmission, and many more. At the same time, precise characterization of their potential toxicity remains elusive, in part because engineered nanostructures pose challenges to existing assays, predictive models, and dosimetry. While these obstacles are surmountable, their presence suggests that scientific uncertainty regarding the hazards of CNTs is likely to persist. Traditional U.S. policy approaches implicitly pose the question: "What level of evidence is necessary and sufficient to justify regulatory action?" In the case of CNTs, such a strategy of risk analysis is of limited immediate utility to both regulators essaying to carry out their mandates, and users of CNTs seeking to provide an appropriate level of protection to employees, customers, and other stakeholders. In contrast, the concept of anticipatory governance suggests an alternative research focus, that is: "Given the conflicted character of the data, how should relevant actors respond?" Adopting the latter theoretical framework, this article argues that currently available data support treating CNTs "as if" they are hazardous, while simultaneously highlighting some systemic uncertainties in many of the experiments carried out to date. Such a conclusion implies limiting exposure throughout product lifecycles, and also points to the possible applicability of various conceptual tools, such as life-cycle and multicriteria decision analysis approaches, in choosing appropriate courses of action in the face of prolonged uncertainty.
Collapse
Affiliation(s)
- Mark Philbrick
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
39
|
Hesterberg TW, Long CM, Lapin CA, Hamade AK, Valberg PA. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles? Inhal Toxicol 2010; 22:679-94. [PMID: 20462394 DOI: 10.3109/08958371003758823] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Engineered nanoparticles (ENPs) are increasingly tested in cellular and laboratory-animal experiments for hazard potential, but there is a lack of health effects data for humans exposed to ENPs. However, human data for another source of nanoparticle (NP) exposure are available, notably for the NPs contained in diesel exhaust particulate (DEP). Studies of human volunteers exposed to diesel exhaust (DE) in research settings report DEP-NP number concentrations (i.e., >10(6) particles/cm(3)) that exceed number concentrations reported for worst-case exposure conditions for workers manufacturing and handling ENPs. Recent human DE exposure studies, using sensitive physiological instrumentation and well-characterized exposure concentrations and durations, suggest that elevated DE exposures from pre-2007 engines may trigger short-term changes in, for example, lung and systemic inflammation, thrombogenesis, vascular function, and brain activity. Considerable uncertainty remains both as to which DE constituents underlie the observed responses (i.e., DEP NPs, DEP mass, DE gases), and as to the implications of the observed short-term changes for the development of disease. Even so, these DE human clinical data do not give evidence of a unique toxicity for NPs as compared to other small particles. Of course, physicochemical properties of toxicological relevance may differ between DEP NPs and other NPs, yet overall, the DE human clinical data do not support the idea that elevated levels of NPs per se (at least in the DEP context) must be acutely toxic by virtue of their nano-sized nature alone.
Collapse
|
40
|
Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, Aschberger K. Nano-TiO2– feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 2010; 5:110-24. [DOI: 10.3109/17435390.2010.504899] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Berntsen P, Park CY, Rothen-Rutishauser B, Tsuda A, Sager TM, Molina RM, Donaghey TC, Alencar AM, Kasahara DI, Ericsson T, Millet EJ, Swenson J, Tschumperlin DJ, Butler JP, Brain JD, Fredberg JJ, Gehr P, Zhou EH. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells. J R Soc Interface 2010; 7 Suppl 3:S331-40. [PMID: 20356875 DOI: 10.1098/rsif.2010.0068.focus] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Collapse
Affiliation(s)
- P Berntsen
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res 2010; 44:1-46. [PMID: 19886744 DOI: 10.3109/10715760903300691] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Stone V. Identification of the mechanisms that drive the toxicity of TiO(2 )particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 2009; 6:33. [PMID: 20017923 PMCID: PMC2804608 DOI: 10.1186/1743-8977-6-33] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 12/17/2009] [Indexed: 01/29/2023] Open
Abstract
This review focuses on outlining the toxicity of titanium dioxide (TiO(2)) particulates in vitro and in vivo, in order to understand their ability to detrimentally impact on human health. Evaluating the hazards associated with TiO(2 )particles is vital as it enables risk assessments to be conducted, by combining this information with knowledge on the likely exposure levels of humans. This review has concentrated on the toxicity of TiO(2), due to the fact that the greatest number of studies by far have evaluated the toxicity of TiO(2), in comparison to other metal oxide particulates. This derives from historical reasons (whereby the size dependency of particulate toxicity was first realised for TiO(2)) and due to its widespread application within consumer products (such as sunscreens). The pulmonary and dermal hazards of TiO(2 )have been a particular focus of the available studies, due to the past use of TiO(2 )as a (negative) control when assessing the pulmonary toxicity of particulates, and due to its incorporation within consumer products such as sunscreens. Mechanistic processes that are critical to TiO(2 )particulate toxicity will also be discussed and it is apparent that, in the main, the oxidant driven inflammatory, genotoxic and cytotoxic consequences associated with TiO(2 )exposure, are inherently linked, and are evident both in vivo and in vitro. The attributes of TiO(2 )that have been identified as being most likely to drive the observed toxicity include particle size (and therefore surface area), crystallinity (and photocatalytic activity), surface chemistry, and particle aggregation/agglomeration tendency. The experimental set up also influences toxicological outcomes, so that the species (or model) used, route of exposure, experiment duration, particle concentration and light conditions are all able to influence the findings of investigations. In addition, the applicability of the observed findings for particular TiO(2 )forms, to TiO(2 )particulates in general, requires consideration. At this time it is inappropriate to consider the findings for one TiO(2 )form as being representative for TiO(2 )particulates as a whole, due to the vast number of available TiO(2 )particulate forms and large variety of potential tissue and cell targets that may be affected by exposure. Thus emphasising that the physicochemical characteristics are fundamental to their toxicity.
Collapse
Affiliation(s)
- Helinor J Johnston
- Centre for Nano Safety, School of Life Sciences, Edinburgh Napier University, Edinburgh EH10 5DT, UK
- Department for Environment, Food and Rural Affairs, Chemicals and Nanotechnologies Division, Area 2a Nobel House, 17 Smith Square, London SW1P 3JR, UK
| | - Gary R Hutchison
- Centre for Nano Safety, School of Life Sciences, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Frans M Christensen
- Nanobiosciences unit, European Commission - DG Joint Research Centre (JRC), Institute for Health and Consumer Protection (IHCP), Via E. Fermi, 2749, I - 21027 Ispra, Italy
| | - Sheona Peters
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh, EH14 4AP, UK
| | - Steve Hankin
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh, EH14 4AP, UK
| | - Vicki Stone
- Centre for Nano Safety, School of Life Sciences, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| |
Collapse
|
44
|
Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 2009; 69:8784-9. [PMID: 19887611 DOI: 10.1158/0008-5472.can-09-2496] [Citation(s) in RCA: 485] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titanium dioxide (TiO(2)) nanoparticles are manufactured worldwide in large quantities for use in a wide range of applications including pigment and cosmetic manufacturing. Although TiO(2) is chemically inert, TiO(2) nanoparticles can cause negative health effects, such as respiratory tract cancer in rats. However, the mechanisms involved in TiO(2)-induced genotoxicity and carcinogenicity have not been clearly defined and are poorly studied in vivo. The present study investigates TiO(2) nanoparticles-induced genotoxicity, oxidative DNA damage, and inflammation in a mice model. We treated wild-type mice with TiO(2) nanoparticles in drinking water and determined the extent of DNA damage using the comet assay, the micronuclei assay, and the gamma-H2AX immunostaining assay and by measuring 8-hydroxy-2'-deoxyguanosine levels and, as a genetic instability endpoint, DNA deletions. We also determined mRNA levels of inflammatory cytokines in the peripheral blood. Our results show that TiO(2) nanoparticles induced 8-hydroxy-2'-deoxyguanosine, gamma-H2AX foci, micronuclei, and DNA deletions. The formation of gamma-H2AX foci, indicative of DNA double-strand breaks, was the most sensitive parameter. Inflammation was also present as characterized by a moderate inflammatory response. Together, these results describe the first comprehensive study of TiO(2) nanoparticles-induced genotoxicity in vivo in mice possibly caused by a secondary genotoxic mechanism associated with inflammation and/or oxidative stress. Given the growing use of TiO(2) nanoparticles, these findings raise concern about potential health hazards associated with TiO(2) nanoparticles exposure.
Collapse
Affiliation(s)
- Benedicte Trouiller
- Department of Pathology and Laboratory Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
45
|
Müller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 2009; 7 Suppl 1:S27-40. [PMID: 19586954 DOI: 10.1098/rsif.2009.0161.focus] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-alpha concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure.
Collapse
Affiliation(s)
- Loretta Müller
- Institute of Anatomy, Division of Histology, University of Bern, Balzerstrasse 2, 3000 Bern 9, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Wilson CG, Sisco PN, Goldsmith EC, Murphy CJ. Glycosaminoglycan-functionalized gold nanorods: interactions with cardiac cells and type I collagen. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b902760b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|