1
|
Alehashem M, Alcaraz AJ, Hogan N, Weber L, Siciliano SD, Hecker M. Linking pesticide exposure to neurodegenerative diseases: An in vitro investigation with human neuroblastoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173041. [PMID: 38723972 DOI: 10.1016/j.scitotenv.2024.173041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
Although many organochlorine pesticides (OCPs) have been banned or restricted because of their persistence and linkage to neurodegenerative diseases, there is evidence of continued human exposure. In contrast, registered herbicides are reported to have a moderate to low level of toxicity; however, there is little information regarding their toxicity to humans or their combined effects with OCPs. This study aimed to characterize the mechanism of toxicity of banned OCP insecticides (aldrin, dieldrin, heptachlor, and lindane) and registered herbicides (trifluralin, triallate, and clopyralid) detected at a legacy contaminated pesticide manufacturing and packing site using SH-SY5Y cells. Cell viability, LDH release, production of reactive oxygen species (ROS), and caspase 3/7 activity were evaluated following 24 h of exposure to the biocides. In addition, RNASeq was conducted at sublethal concentrations to investigate potential mechanisms involved in cellular toxicity. Our findings suggested that aldrin and heptachlor were the most toxic, while dieldrin, lindane, trifluralin, and triallate exhibited moderate toxicity, and clopyralid was not toxic to SH-SY5Y cells. While aldrin and heptachlor induced their toxicity through damage to the cell membrane, the toxicity of dieldrin was partially attributed to necrosis and apoptosis. Moreover, toxic effects of lindane, trifluralin, and triallate, at least partially, were associated with ROS generation. Gene expression profiles suggested that decreased cell viability induced by most of the tested biocides was related to inhibited cell proliferation. The dysregulation of genes encoding for proteins with anti-apoptotic properties also supported the absence of caspase activation. Identified enriched terms showed that OCP toxicity in SH-SY5Y cells was mediated through pathways associated with the pathogenesis of neurodegenerative diseases. In conclusion, this study provides a basis for elucidating the molecular mechanisms of pesticide-induced neurotoxicity. Moreover, it introduced SH-SY5Y cells as a relevant in vitro model for investigating the neurotoxicity of pesticides in humans.
Collapse
Affiliation(s)
- M Alehashem
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - A J Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - N Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Animal Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - L Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - S D Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; Department of Soil Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - M Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada.
| |
Collapse
|
2
|
Godínez-Pérez BM, Schilmann A, Lagunas-Martínez A, Escamilla-Núñez C, Burguete-García AI, Aguilar-Garduño C, Blanco-Muñoz J, Lacasaña M. Pesticide use patterns and their association with cytokine levels in Mexican flower workers. Int Arch Occup Environ Health 2024; 97:291-302. [PMID: 38270603 DOI: 10.1007/s00420-023-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/16/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Occupational exposure to pesticides is a known risk for disrupting cellular immune response in flower workers due to their use of multiple chemical products, poor work conditions, and inadequate protection. Recently, the analysis of pesticide use patterns has emerged as an alternative to studying exposure to mixtures of these products. This study aimed to evaluate the association between exposure to different patterns of pesticide use and the cytokine profile of flower workers in the State of Mexico and Morelos, Mexico. METHODS A cross-sectional study was carried out on a population of 108 flower workers. Serum levels of IL-4, IL-5, IL-6, IL-8, IL-10 cytokines were analyzed by means of multiplex analysis, and TNF-α and IFN-γ using an ELISA test. Pesticide use patterns were generated by principal components analysis. RESULTS The analysis revealed that certain patterns of pesticide use, combining insecticides and fungicides, were associated with higher levels of pro-inflammatory cytokines, particularly IL-6 and IFN-γ. CONCLUSION These findings indicate that pesticides may possess immunotoxic properties, contributing to increased inflammatory response. However, further comprehensive epidemiological studies are needed to establish a causal relationship.
Collapse
Affiliation(s)
| | - Astrid Schilmann
- National Institute of Public Health of Mexico, Av. Universidad 655, 62130, Cuernavaca, Morelos, Mexico
| | - Alfredo Lagunas-Martínez
- National Institute of Public Health of Mexico, Av. Universidad 655, 62130, Cuernavaca, Morelos, Mexico
| | - Consuelo Escamilla-Núñez
- National Institute of Public Health of Mexico, Av. Universidad 655, 62130, Cuernavaca, Morelos, Mexico
| | | | | | - Julia Blanco-Muñoz
- National Institute of Public Health of Mexico, Av. Universidad 655, 62130, Cuernavaca, Morelos, Mexico.
| | - Marina Lacasaña
- Andalusian School of Public Health, Cuesta del Observatorio 4, 18011, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Andalusian Health and Environment Observatory (OSMAN), Granada, Spain
| |
Collapse
|
3
|
Johnson L, Sarosiek KA. Role of intrinsic apoptosis in environmental exposure health outcomes. Trends Mol Med 2024; 30:56-73. [PMID: 38057226 DOI: 10.1016/j.molmed.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Environmental exposures are linked to diseases of high public health concern, including cancer, neurodegenerative disorders, and autoimmunity. These diseases are caused by excessive or insufficient cell death, prompting investigation of mechanistic links between environmental toxicants and dysregulation of cell death pathways, including apoptosis. This review describes how legacy and emerging environmental exposures target the intrinsic apoptosis pathway to potentially drive pathogenesis. Recent discoveries reveal that dynamic regulation of apoptosis may heighten the vulnerability of healthy tissues to exposures in children, and that apoptotic signaling can guide immune responses, tissue repair, and tumorigenesis. Understanding how environmental toxicants dysregulate apoptosis will uncover opportunities to deploy apoptosis-modulating agents for the treatment or prevention of exposure-linked diseases.
Collapse
Affiliation(s)
- Lissah Johnson
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
4
|
Chen G, Xu Y, Yao Y, Cao Y, Liu Y, Chai H, Chen W, Chen X. IKKε knockout alleviates angiotensin II-induced apoptosis and excessive autophagy in vascular smooth muscle cells by regulating the ERK1/2 pathway. Exp Ther Med 2021; 22:1051. [PMID: 34434265 PMCID: PMC8353624 DOI: 10.3892/etm.2021.10485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of nuclear factor-κB kinase subunit ε (IKKε) is an important signal regulator in the formation of abdominal aortic aneurysm (AAA). However, the underlying mechanism remains to be elucidated. Therefore, the present study aimed to investigate the mechanism underlying IKKε function in AAA formation by studying apoptosis and autophagy in angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs). AngII was used to stimulate VSMCs for 24 h to simulate the process of AAA formation. VSMCs were transfected with IKKε small interfering RNA to investigate the effect of IKKε on AAA formation, cell apoptosis and autophagy. IKKε deficiency led to reduced mitochondrial damage and apoptosis in VSMCs in the early stage of apoptosis in vitro, as demonstrated using a JC-1 probe. IKKε deficiency also reduced autophagy and decreased the formation of autophagic vacuoles in VSMCs, demonstrated using transmission electron microscopy. The decrease in apoptosis caused by IKKε knockdown was reversed when the autophagic flow was blocked using bafilomycin A1. Western blot analysis further revealed that IKKε deficiency negatively regulated the ERK1/2 signaling pathway to reduce autophagy. Collectively, the results of the present study revealed that IKKε played a key role in apoptosis by inducing excessive autophagy, thereby potentially contributing to AAA formation. These findings further revealed the mechanism underlying IKKε function in the formation of AAA.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hao Chai
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
5
|
Luo Y, Lu S, Sun X, Gao Y, Sun G, Yang M, Sun X. Paclobutrazol exposure induces apoptosis and impairs autophagy in hepatocytes via the AMPK/mTOR signaling pathway. J Biochem Mol Toxicol 2021; 35:e22874. [PMID: 34351037 DOI: 10.1002/jbt.22874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/18/2021] [Accepted: 07/24/2021] [Indexed: 01/18/2023]
Abstract
Paclobutrazol (PBZ), one of the most widely used plant growth retardants in vegetables, fruits, and traditional Chinese medicine ingredients, exposes people to adverse events. In this study, HepaRG hepatocytes were cultured and exposed to PBZ (360 μM) in vitro to determine its mechanism. Results showed that PBZ exposure inhibited cell viability in a time- and dose-dependent manner and increased the oxidative stress and apoptosis ratio in HepaRG cells. These data revealed that the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) has an important role in PBZ-induced cell apoptosis, which is mediated by impaired autophagy and blocked by the AMPK activator. In conclusion, PBZ exposure induces apoptosis and impairs autophagy in hepatocytes via the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Shan Lu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Ye Gao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
| |
Collapse
|
6
|
Yu Y, Chen H, Hua X, Wang Z, Li L, Li Z, Xiang M, Ding P. Long-term toxicity of lindane through oxidative stress and cell apoptosis in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116036. [PMID: 33218777 DOI: 10.1016/j.envpol.2020.116036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Lindane persists in the environment and bioaccumulates as an organochlorine pesticide and can pose risks to ecological environments and human health. To explore the long-term toxicity and underlying mechanisms of lindane, Caenorhabditis elegans was chosen as an animal model for toxicological study. The indicators of physiological, oxidative stress and cell apoptosis were examined in nematodes chronically exposed to environmentally relevant concentrations of lindane (0.01-100 ng/L). The data suggested that exposure to lindane at doses above 0.01 ng/L induced adverse physiological effects in C. elegans. Significant increases of ROS production and lipofuscin accumulation were observed in 100 ng/L of lindane-exposed nematodes, suggesting that lindane exposure induced oxidative stress in nematodes. Exposure to 10-100 ng/L of lindane also significantly increased the average number of germ cell corpses, which indicated cell apoptosis induced by lindane in C. elegans. Moreover, chronic exposure to 100 ng/L lindane significantly influenced the expression of genes related to oxidative stress and cell apoptosis (e.g., isp-1, sod-3, ced-3, and cep-1 genes). These results indicated that oxidative stress and cell apoptosis could play an important role in toxicity induced by lindane in nematodes.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Zhengdong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
7
|
Devi S, Kim JJ, Singh AP, Kumar S, Dubey AK, Singh SK, Singh RS, Kumar V. Proteotoxicity: A Fatal Consequence of Environmental Pollutants-Induced Impairments in Protein Clearance Machinery. J Pers Med 2021; 11:69. [PMID: 33503824 PMCID: PMC7912547 DOI: 10.3390/jpm11020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023] Open
Abstract
A tightly regulated protein quality control (PQC) system maintains a healthy balance between correctly folded and misfolded protein species. This PQC system work with the help of a complex network comprised of molecular chaperones and proteostasis. Any intruder, especially environmental pollutants, disrupt the PQC network and lead to PQCs disruption, thus generating damaged and infectious protein. These misfolded/unfolded proteins are linked to several diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and cataracts. Numerous studies on proteins misfolding and disruption of PQCs by environmental pollutants highlight the necessity of detailed knowledge. This review represents the PQCs network and environmental pollutants' impact on the PQC network, especially through the protein clearance system.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Anand Prakash Singh
- Division of Cardiovascular Disease, The University of Alabama at Birmingham (UAB), 1720 2nd Ave South, Birmingham, AL 35294-1913, USA;
| | - Surendra Kumar
- Cytogenetics Lab, Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | | | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Room 4D40, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea;
| |
Collapse
|
8
|
Lee GH, Choi KC. Adverse effects of pesticides on the functions of immune system. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108789. [PMID: 32376494 DOI: 10.1016/j.cbpc.2020.108789] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Pesticides are chemical substances used to kill unwanted fungi, weeds and insects. In many countries, there is currently concern regarding the adverse effects of pesticides on health. It has been reported that pesticides may cause cancer, respiratory diseases, organ diseases, system failures, nervous system disorders and asthma, which are closely connected with immune disorders. Therefore, this study reviewed the immunotoxicity of pesticides that are currently used or prohibited from being used, especially their effects on leukocytes such as T cells, B cells, NK cells and macrophages. These immune cells play crucial roles in innate and adaptive immune systems to protect hosts. Pesticides are known to have possible toxicological modes of action to induce oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress in living organisms. According to previous studies, pesticides such as atrazine (ATR), organophophorus (OP) compounds, carbamates, and pyrethroids were shown to inhibit the survival and growth of leukocytes by inducing apoptosis or cell cycle arrest and interfering with the specific immunological functions of each type of immune cells. These results suggest the immunotoxicity of pesticides toward specific immune cells. To substantiate the overall immunocompromised effects of pesticides, there is a need to collect and thoroughly analyze additional information regarding other immunological toxicities.
Collapse
Affiliation(s)
- Gun-Hwi Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
9
|
He B, Wang X, Yang C, Zhu J, Jin Y, Fu Z. The regulation of autophagy in the pesticide-induced toxicity: Angel or demon? CHEMOSPHERE 2020; 242:125138. [PMID: 31670000 DOI: 10.1016/j.chemosphere.2019.125138] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/20/2023]
Abstract
Pesticides have become an essential tool for pest kill, weed control and microbiome inhibition for both agricultural and domestic use. However, with the massive use, pesticides can exist in soil, air and water, and sometimes even accumulate in the human or other mammals through food chains. Lots of researches have proven that pesticides possess toxicity to mammals on endocrine, neural and immune systems. Autophagy, as a conservative intracellular process, which is activated by stress-related signals, plays a pivotal role, either "angle" or "demon", in regulation of cell fate and function. Recent evidences in researches elucidated a strong link between the autophagy and the toxicity of pesticides. In this review, we summarized the previous researches which focus on the autophagy regulation in the pesticides-induced toxicity, and hope that this work can help us to discover a potential strategy for the treatment of the disease caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
10
|
Srivastava A, Srivastava AK, Mishra M, Shankar J, Agrahari A, Kamthan M, Singh PK, Yadav S, Parmar D. A proteomic approach to investigate enhanced responsiveness in rechallenged adult rats prenatally exposed to lindane. Neurotoxicology 2019; 74:184-195. [PMID: 31330156 DOI: 10.1016/j.neuro.2019.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
Proteomic analysis was carried out in substantia nigra (SNi) and hippocampus (Hi) isolated from rat offspring born to mothers exposed to lindane (orally; 0.25 mg/kg) from gestation day 5 (GD5) to GD 21 and subsequently rechallenged (orally; 2.5 mg/kg X 21 days) at adulthood (12 weeks). 2D gel electrophoresis revealed no significant differences in the expression of proteins in brain regions isolated from prenatally exposed offspring at adulthood. Significantly greater magnitude of alterations was observed in the expression of proteins related to mitochondrial and energy metabolism, ubiquitin-proteasome pathway, structural and axonal growth leading to increased oxidative stress in Hi and SNi isolated from rechallenged offspring when compared to control offspring treated postnatally with lindane. Western blotting and DNA laddering showed a greater magnitude of increase in apoptosis in the Hi and SNi of rechallenged offspring. Ultrastructural analysis demonstrated disrupted mitochondrial integrity, synaptic disruption and necrotic structures in the brain region of rechallenged offspring. Neurobehavioral studies also demonstrated a greater magnitude of alterations in cognitive and motor functions in rechallenged rats. The data suggest that prenatal exposure of lindane induces persistent molecular changes in the nervous system of offspring which are unmasked leading to neurodegeneration following rechallenge at adulthood.
Collapse
Affiliation(s)
- Ankita Srivastava
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, Uttar Pradesh, India
| | - Ankur Kumar Srivastava
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, Uttar Pradesh, India
| | - Manisha Mishra
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Jai Shankar
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Microscopy Laboratory, CSIR-IITR, Lucknow, 226001, Uttar Pradesh, India
| | - Anita Agrahari
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Mohan Kamthan
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Biochemistry, Jamia Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | - Pradhyumna K Singh
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | - Sanjay Yadav
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Devendra Parmar
- Developmental Toxicology Division, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
11
|
Pesonen M, Vähäkangas K. Autophagy in exposure to environmental chemicals. Toxicol Lett 2019; 305:1-9. [PMID: 30664929 DOI: 10.1016/j.toxlet.2019.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/06/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022]
Abstract
Autophagy is a catabolic pathway, which breaks down old and damaged cytoplasmic material into basic biomolecules through lysosome-mediated digestion thereby recycling cellular material. In this way, autophagy prevents the accumulation of damaged cellular components inside cells and reduces metabolic stress and toxicity. The basal level of autophagy is generally low but essential for maintaining the turnover of proteins and other molecules. The level is, however, increased in response to various stress conditions including chemical stress. This elevation in autophagy is intended to restore energy balance and improve cell survival in stress conditions. However, aberrant and/or deficient autophagy may also be involved in the aggravation of chemical-caused insults. Thus, the overall role of autophagy in chemical-induced toxicity is complex and only a limited number of environmental chemicals have been studied from this point of view. Autophagy is associated with many of the chemical-caused cytotoxic mechanisms, including mitochondrial dysfunction, DNA damage, oxidative stress, changes in the endoplasmic reticulum, impairment of lysosomal functions, and inflammation. This mini-review describes autophagy and its involvement in the responses to some common environmental exposures including airborne particulate matter, nanoparticles and tobacco smoke as well as to some common single environmental chemicals.
Collapse
Affiliation(s)
- Maija Pesonen
- Faculty of Health Science, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Kirsi Vähäkangas
- Faculty of Health Science, School of Pharmacy/Toxicology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
12
|
Proteomic approaches to investigate age related vulnerability to lindane induced neurodegenerative effects in rats. Food Chem Toxicol 2018; 115:499-510. [DOI: 10.1016/j.fct.2018.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023]
|
13
|
Palmerini MG, Zhurabekova G, Balmagambetova A, Nottola SA, Miglietta S, Belli M, Bianchi S, Cecconi S, Di Nisio V, Familiari G, Macchiarelli G. The pesticide Lindane induces dose-dependent damage to granulosa cells in an in vitro culture. Reprod Biol 2017; 17:349-356. [DOI: 10.1016/j.repbio.2017.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
|
14
|
Khoso PA, Pan T, Wan N, Yang Z, Liu C, Li S. Selenium Deficiency Induces Autophagy in Immune Organs of Chickens. Biol Trace Elem Res 2017; 177:159-168. [PMID: 27744599 DOI: 10.1007/s12011-016-0860-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.
Collapse
Affiliation(s)
- Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
15
|
Mokarizadeh A, Faryabi MR, Rezvanfar MA, Abdollahi M. A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences. Toxicol Mech Methods 2016; 25:258-78. [PMID: 25757504 DOI: 10.3109/15376516.2015.1020182] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nowadays, in many communities, there is a growing concern about possible adverse effects of pesticides on human health. Reports indicate that during environmental or occupational exposure, pesticides can exert some intense adverse effects on human health through transient or permanent alteration of the immune system. There is evidence on the relation between pesticide-induced immune alteration and prevalence of diseases associated with alterations of the immune response. In the present study, direct immunotoxicity, endocrine disruption and antigenicity have been introduced as the main mechanisms working with pesticides-induced immune dysregulation. Moreover, the evidence on the relationship between pesticide exposure, dysregulation of the immune system and predisposition to different types of psychiatric disorders, cancers, allergies, autoimmune and infectious diseases are criticized.
Collapse
Affiliation(s)
- Aram Mokarizadeh
- a Department of Immunology, Faculty of Medicine , Cellular and Molecular Research Center, Kurdistan University of Medical Sciences , Sanandaj , Iran and
| | | | | | | |
Collapse
|
16
|
Liu C, Zhao Y, Chen L, Zhang Z, Li M, Li S. Avermectin induced autophagy in pigeon spleen tissues. Chem Biol Interact 2015; 242:327-33. [DOI: 10.1016/j.cbi.2015.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/21/2015] [Accepted: 10/28/2015] [Indexed: 02/06/2023]
|
17
|
Narayanan KB, Ali M, Barclay BJ, Cheng Q(S, D’Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci AM, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi A, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 2015; 36 Suppl 1:S89-S110. [PMID: 26106145 PMCID: PMC4565614 DOI: 10.1093/carcin/bgv032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea
- Sultan Zainal Abidin University, Malaysia
- Plant Biotechnologies Inc, St. Albert AB, Canada
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
- Department of Pharmacology and Toxicology, University of Vienna, Austria
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
- Advenced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh, 226003, India
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Manaf Ali
- Sultan Zainal Abidin University, Malaysia
| | | | - Qiang (Shawn) Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - Leandro D’Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | | | - Paramita M. Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Michael J. Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Lin Li
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Suidjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Edward Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ranjeet K. Sinha
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
| | - Hosni K. Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - A.Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Neetu Singh
- Advenced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Seo Yun Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Hyun Ho Park
- *To whom correspondence should be addressed. Tel: +82 53 810 3015; Fax: +82 53 810 4619;
| |
Collapse
|
18
|
Ma X, Lin Y, Yang K, Yue B, Xiang H, Chen B. Effect of lentivirus-mediated survivin transfection on the morphology and apoptosis of nucleus pulposus cells derived from degenerative human disc in vitro. Int J Mol Med 2015; 36:186-94. [PMID: 26017192 PMCID: PMC4494593 DOI: 10.3892/ijmm.2015.2225] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
Lower back pain is a common concern, and 40% of all cases involve the degeneration of the intervertebral disc (IVD). However, the excessive apoptosis of disc cells plays an important role in IVD degeneration, particularly in the nucleus pulposus (NP). Thus, anti-apoptotic gene therapy to attenuate or reverse the degenerative process within the NP is being developed. Survivin is a unique inhibitor of apoptosis (IAP) and has been extensively investigated in cancer cells. However, little is known of the effects of survivin transfection on NP cells derived from degenerative human disc. In this study, we aimed to investigate the effects of lentivirus (LV)-mediated survivin transfection on the morphology and apoptosis of NP cells derived from degenerative human disc in vitro. NP cells were transfected with LV-mediated survivin. Subsequently, cell morphology was observed and the survivin mRNA expression levels were measured by RT-qPCR. Apoptosis was analyzed by flow cytometry and by measuring caspase-3 activity. The results revealed that the morphology of the NP cells derived from degenerative human disc transfected with LV-mediated survivin was significantly altered as evidenced by cytomorphosis, the reduction of the cytoplasm and cell shrinkage. Following transfection, survivin gene expression significantly increased in the transfected cells and subsequent generation cells; however, no significant differences in the cell apoptotic rate and caspase-3 activity were observed. We found that transfection of the survivin gene into NP cells led to the stable expression of survivin and induced marked changes in cell morphology. Furthermore, no significant anti-apoptotic effects were observed following LV-mediated survivin transfection. Overall, our findings demonstrate that LV carrying surviving may be used to successfully enforce the expression of survivin in NP cells. However, cell morphology was evidently altered, whereas the apoptotic rate did not decrease. Comprehensive studies on the feasibility of using survivin in gene therapy in an aim to attenuate disc degeneration are warranted. Further research on the mechanisms responsible for the changes in cell morphology and cell function are also required.
Collapse
Affiliation(s)
- Xuexiao Ma
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yazhou Lin
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Kun Yang
- Medical Research Center, The Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bin Yue
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hongfei Xiang
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Bohua Chen
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University Medical College, Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
19
|
Padma VV, Lalitha G, Shirony NP, Baskaran R. Effect of quercetin against lindane induced alterations in the serum and hepatic tissue lipids in wistar rats. Asian Pac J Trop Biomed 2015; 2:910-5. [PMID: 23569870 DOI: 10.1016/s2221-1691(12)60252-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/12/2012] [Accepted: 11/28/2012] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To assess the effect of quercetin (flavonoid) against lindane induced alterations in lipid profile of wistar rats. METHODS Rats were administered orally with lindane (100 mg/kg body weight) and quercetin (10 mg/kg body weight) for 30 days. After the end of treatment period lipid profile was estimated in serum and tissue. RESULTS Elevated levels of serum cholesterol, triglycerides, low density lipoprotein (LDL), very Low Density Lipoprotein (VLDL) and tissue triglycerides, cholesterol with concomitant decrease in serum HDL and tissue phospholipids were decreased in lindane treated rats were found to be significantly decreased in the quercetin and lindane co-treated rats. CONCLUSIONS Our study suggests that quercetin has hypolipidemic effect and offers protection against lindane induced toxicity in liver by restoring the altered levels of lipids. The quercetin cotreatment along with lindane for 30 days reversed these biochemical alterations in lipids induced by lindane.
Collapse
Affiliation(s)
- Viswanadha Vijaya Padma
- Animal tissue culture and Molecular genetics Laboratory, Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore-641 046, Tamilnadu, India
| | | | | | | |
Collapse
|
20
|
Qu J, Li M, Zhao F, Liu C, Zhang Z, Xu S, Li S. Autophagy is upregulated in brain tissues of pigeons exposed to avermectin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:159-168. [PMID: 25497772 DOI: 10.1016/j.ecoenv.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Avermectin (AVM) is used in agriculture and veterinary medicine for the prevention of parasitic diseases; AVM is the active component of some insecticidal and nematicidal products. Residues of AVM drugs or their metabolites in livestock feces have toxic effects on non-target aquatic and terrestrial organisms. In this study, changes in the levels of autophagy related genes and ultrastructure in pigeon brain tissues after subchronic exposure to AVM for 30, 60 and 90 d were investigated. The decrease in the mRNA levels of TORC1 and TORC2 and increase in the mRNA levels of LC3, Beclin 1, Dynein, ATG5 and ATG4B and the increase in the protein levels of LC3, Beclin 1 and Dynein in a dose- and time-dependent manner in the pigeon brain were observed. The number of autophagic vacuoles in the cerebrum, cerebellum and optic lobe increased significantly with the concentration of AVM and the exposure time. We found that the changes in the levels of autophagy related genes and the ultrastructure in the cerebrum were more obvious than in the cerebellum and the optic lobe. The results suggest that AVM could induce autophagy in pigeon brain tissues. The information presented in this study is helpful for understanding the mechanism of AVM-induced autophagy in birds.
Collapse
Affiliation(s)
- Jianping Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China; School of Life Science, Daqing Normal College, Daqing 163712, P.R. China
| | - Fuqing Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China.
| |
Collapse
|
21
|
Zucchini-Pascal N, Peyre L, Rahmani R. Crosstalk between beta-catenin and snail in the induction of epithelial to mesenchymal transition in hepatocarcinoma: role of the ERK1/2 pathway. Int J Mol Sci 2013; 14:20768-92. [PMID: 24135872 PMCID: PMC3821642 DOI: 10.3390/ijms141020768] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/23/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is an integral process in the progression of many epithelial tumors. It involves a coordinated series of events, leading to the loss of epithelial features and the acquisition of a mesenchymal phenotype, resulting in invasion and metastasis. The EMT of hepatocellular carcinoma (HCC) cells is thought to be a key event in intrahepatic dissemination and distal metastasis. In this study, we used 12-O-tet-radecanoylphorbol-13-acetate (TPA) to dissect the signaling pathways involved in the EMT of HepG2 hepatocarcinoma cells. The spectacular change in phenotype induced by TPA, leading to a pronounced spindle-shaped fibroblast-like cell morphology, required ERK1/2 activation. This ERK1/2-dependent EMT process was characterized by a loss of E-cadherin function, modification of the cytoskeleton, the acquisition of mesenchymal markers and profound changes to extracellular matrix composition and mobility. Snail was essential for E-cadherin repression, but was not sufficient for full commitment of the TPA-triggered EMT. We found that TPA triggered the formation of a complex between Snail and β-catenin that activated the Wnt pathway. This study thus provides the first evidence for the existence of a complex network governed by the ERK1/2 signaling pathway, converging on the coregulation of Snail and the Wnt/β-catenin pathway and responsible for the onset and the progression of EMT in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Nathalie Zucchini-Pascal
- Laboratory of Xenobiotic's Cellular and Molecular Toxicology, INRA, UMR 1331 TOXALIM (Research Centre in Food Toxicology), Sophia Antipolis 06903, France.
| | | | | |
Collapse
|
22
|
Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J Microbiol Biotechnol 2013; 29:2239-47. [DOI: 10.1007/s11274-013-1389-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
23
|
Mostafalou S, Abdollahi M. Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 2013; 268:157-77. [PMID: 23402800 DOI: 10.1016/j.taap.2013.01.025] [Citation(s) in RCA: 642] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. There is a huge body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. There is also circumstantial evidence on the association of exposure to pesticides with some other chronic diseases like respiratory problems, particularly asthma and chronic obstructive pulmonary disease (COPD), cardiovascular disease such as atherosclerosis and coronary artery disease, chronic nephropathies, autoimmune diseases like systemic lupus erythematous and rheumatoid arthritis, chronic fatigue syndrome, and aging. The common feature of chronic disorders is a disturbance in cellular homeostasis, which can be induced via pesticides' primary action like perturbation of ion channels, enzymes, receptors, etc., or can as well be mediated via pathways other than the main mechanism. In this review, we present the highlighted evidence on the association of pesticide's exposure with the incidence of chronic diseases and introduce genetic damages, epigenetic modifications, endocrine disruption, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum stress and unfolded protein response (UPR), impairment of ubiquitin proteasome system, and defective autophagy as the effective mechanisms of action.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
24
|
Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodeling in cell death: Implication for health and disease. Toxicology 2013; 304:141-57. [DOI: 10.1016/j.tox.2012.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/29/2012] [Accepted: 12/20/2012] [Indexed: 12/31/2022]
|
25
|
Wang Y, Yang Y, Wang D, Ouyang L, Zhang Y, Zhao J, Wang X. Morphological measurement of living cells in methanol with digital holographic microscopy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:715843. [PMID: 23424605 PMCID: PMC3568911 DOI: 10.1155/2013/715843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/16/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022]
Abstract
Cell morphology is the research foundation in many applications related to the estimation of cell status, drug response, and toxicity screening. In biomedical field, the quantitative phase detection is an inevitable trend for living cells. In this paper, the morphological change of HeLa cells treated with methanol of different concentrations is detected using digital holographic microscopy. The compact image-plane digital holographic system is designed based on fiber elements. The quantitative phase image of living cells is obtained in combination with numerical analysis. The statistical analysis shows that the area and average optical thickness of HeLa cells treated with 12.5% or 25% methanol reduce significantly, which indicates that the methanol with lower concentration could cause cellular shrinkage. The area of HeLa cells treated with 50% methanol is similar to that of normal cells (P > 0.05), which reveals the fixative effect of methanol with higher concentration. The maximum optical thickness of the cells treated with 12.5%, 25%, and 50% methanol is greater than that of untreated cells, which implies the pyknosis of HeLa cells under the effect of methanol. All of the results demonstrate that digital holographic microscopy has supplied a noninvasive imaging alternative to measure the morphological change of label-free living cells.
Collapse
Affiliation(s)
- Yunxin Wang
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Yishu Yang
- College of Life Science & Biotechnology, Beijing University of Technology, Beijing 100124, China
| | - Dayong Wang
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Liting Ouyang
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| | - Yizhuo Zhang
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
- Beijing Aeronautical Manufacturing Technology Research Institute, AVIC, Beijing 100124, China
| | - Jie Zhao
- The Pilot College, Beijing University of Technology, Beijing 101101, China
| | - Xinlong Wang
- College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
- Institute of Information Photonics Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
26
|
Critical roles of Rho-associated kinase in membrane blebbing and mitochondrial pathway of apoptosis caused by 1-butanol. Toxicol In Vitro 2012; 26:849-55. [DOI: 10.1016/j.tiv.2012.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 03/15/2012] [Accepted: 04/26/2012] [Indexed: 01/08/2023]
|
27
|
Zucchini-Pascal N, Peyre L, de Sousa G, Rahmani R. Organochlorine pesticides induce epithelial to mesenchymal transition of human primary cultured hepatocytes. Food Chem Toxicol 2012; 50:3963-70. [PMID: 22902829 DOI: 10.1016/j.fct.2012.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 12/13/2022]
Abstract
Persistent organic pollutants (POPs) are a group of organic or chemicals that adversely affect human health and are persistent in the environment. These highly toxic compounds include industrial chemicals, pesticides such as organochlorines, and unwanted wastes such as dioxins. Although studies have described the general toxicity effects of organochlorine pesticides, the mechanisms underlying its potential carcinogenic effects in the liver are not well understood. In this study, we analyzed the effect of three organochlorine pesticides (dichlorodiphenyltrichloroethane, heptachlore and endosulfan) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the epithelial to mesenchymal transition (EMT) in primary cultured human hepatocytes. We found that these compounds modified the hepatocyte phenotype, inducing cell spread, formation of lamellipodia structures and reorganization of the actin cytoskeleton in stress fibers. These morphological alterations were accompanied by disruption of cell-cell junctions, E-cadherin repression and albumin down-regulation. Interestingly, these characteristic features of dedifferentiating hepatocytes were correlated with the gain of expression of various mesenchymal genes, including vimentin, fibronectin and its receptor ITGA5. These various results show that organochlorines and TCDD accelerate cultured human hepatocyte dedifferentiation and EMT processes. These events could account, at least in part, for the carcionogenic and/or fibrogenic activities of these POPs.
Collapse
Affiliation(s)
- Nathalie Zucchini-Pascal
- Laboratoire de Toxicologie Cellulaire et Moléculaire des Xénobiotiques, INRA, UMR 1331 TOXALIM (Research Center in Food Toxicology), 06903 Sophia Antipolis, France.
| | | | | | | |
Collapse
|
28
|
Rouimi P, Zucchini-Pascal N, Dupont G, Razpotnik A, Fouché E, De Sousa G, Rahmani R. Impacts of low doses of pesticide mixtures on liver cell defence systems. Toxicol In Vitro 2012; 26:718-26. [DOI: 10.1016/j.tiv.2012.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 03/06/2012] [Accepted: 03/29/2012] [Indexed: 01/23/2023]
|
29
|
Bhogal RH, Weston CJ, Curbishley SM, Adams DH, Afford SC. Autophagy: a cyto-protective mechanism which prevents primary human hepatocyte apoptosis during oxidative stress. Autophagy 2012; 8:545-58. [PMID: 22302008 PMCID: PMC3405838 DOI: 10.4161/auto.19012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of autophagy in the response of human hepatocytes to oxidative stress remains unknown. Understanding this process may have important implications for the understanding of basic liver epithelial cell biology and the responses of hepatocytes during liver disease. To address this we isolated primary hepatocytes from human liver tissue and exposed them ex vivo to hypoxia and hypoxia-reoxygenation (H-R). We showed that oxidative stress increased hepatocyte autophagy in a reactive oxygen species (ROS) and class III PtdIns3K-dependent manner. Specifically, mitochondrial ROS and NADPH oxidase were found to be key regulators of autophagy. Autophagy involved the upregulation of BECN1, LC3A, Atg7, Atg5 and Atg 12 during hypoxia and H-R. Autophagy was seen to occur within the mitochondria of the hepatocyte and inhibition of autophagy resulted in the lowering a mitochondrial membrane potential and onset of cell death. Autophagic responses were primarily observed in the large peri-venular (PV) hepatocyte subpopulation. Inhibition of autophagy, using 3-methyladenine, increased apoptosis during H-R. Specifically, PV human hepatocytes were more susceptible to apoptosis after inhibition of autophagy. These findings show for the first time that during oxidative stress autophagy serves as a cell survival mechanism for primary human hepatocytes.
Collapse
Affiliation(s)
- Ricky H Bhogal
- Centre for Liver Research, The Institute for Biomedical Research, The Medical School, University of Birmingham, Birmingham, West Midlands UK.
| | | | | | | | | |
Collapse
|
30
|
Ding F, Shao ZW, Yang SH, Wu Q, Gao F, Xiong LM. Role of mitochondrial pathway in compression-induced apoptosis of nucleus pulposus cells. Apoptosis 2012; 17:579-90. [DOI: 10.1007/s10495-012-0708-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Molecular investigation of the effects of lindane in rat hepatocytes: microarray and mechanistic studies. Food Chem Toxicol 2011; 49:3128-35. [PMID: 22001173 DOI: 10.1016/j.fct.2011.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/23/2011] [Accepted: 09/25/2011] [Indexed: 11/20/2022]
Abstract
Although many studies of lindane toxicity have been carried out, we still know little about the underlying molecular mechanisms. We used a microarray specifically designed for studies of the hepatotoxic effects of xenobiotics to evaluate the effects of lindane on specific gene expression in primary cultured rat hepatocytes. These genes were assigned to detoxication processes (CYP3A4, Gsta2, CYP4A1), cell signalling pathways and apoptosis (Eif2b3, Eif2b4, PKC). In this study, we demonstrate that lindane up-regulates PKC by increasing oxidative stress. TEMPO (a well known free radical scavenger) and Ro 31-8220 (an inhibitor of classical PKCs) prevented the inhibition of spontaneous and intrinsic apoptosis pathway (characterised by Bcl-xL induction, Bax down-regulation, caspases inhibition) and the induction of necrosis by lindane in rat hepatocytes. Thus, these findings indicate that several dependent key signalling pathways, including detoxification, apoptosis, PKC activity and redox status maintenance, contribute to lindane-induced toxicity in primary cultured rat hepatocytes. This may account more clearly for the acute and chronic effects of lindane in vivo, with the induction of cell death and tumour promotion, respectively.
Collapse
|
32
|
Hrnčić D, Rašić-Marković A, Djuric D, Šušić V, Stanojlović O. The Role of nitric oxide in convulsions induced by lindane in rats. Food Chem Toxicol 2011; 49:947-54. [DOI: 10.1016/j.fct.2010.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/27/2010] [Accepted: 12/23/2010] [Indexed: 12/29/2022]
|
33
|
Piskac-Collier AL, Smith MA. Lindane-induced generation of reactive oxygen species and depletion of glutathione do not result in necrosis in renal distal tubule cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1160-1167. [PMID: 20077184 DOI: 10.1080/15287390903091780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lindane is a chlorinated hydrocarbon pesticide, currently used in prescription shampoos and lotions to treat scabies and lice infestations. Lindane is known to be nephrotoxic; however, the mechanism of action is not well understood. In other organ systems, lindane produces cellular damage by generation of free radicals and oxidative stress. Morphological changes were observed in lindane-treated Madin-Darby canine kidney (MDCK) cells indicative of apoptosis. Lindane treatment induced time-dependent reactive oxygen species (ROS) generation. Onset of ROS generation correlated with an initial increase in total glutathione (GSH) levels above control values, with a subsequent decline in a time-dependent manner. This decline may be attributed to quenching of free radicals by GSH, thereby decreasing the cellular stores of this antioxidant. Necrotic injury was assessed by measuring lactate dehydrogenase (LDH) leakage from the cell after lindane exposure. No significant LDH leakage was noted for all concentrations tested over time. Generation of ROS and alterations in cellular protective mechanisms did not result in necrotic injury in MDCK cells, which corresponds with our morphological findings of lindane-induced apoptotic changes as opposed to necrosis in MDCK cells. Thus, lindane exposure results in oxidative damage and alterations in antioxidant response in renal distal tubule cells, followed by cell death not attributed to necrotic injury.
Collapse
Affiliation(s)
- Amanda L Piskac-Collier
- Department of Epidemiology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA.
| | | |
Collapse
|