1
|
Xie Z, Sun S, Ji H, Miao M, He W, Song X, Cao W, Wu Q, Liang H, Yuan W. Prenatal exposure to per- and polyfluoroalkyl substances and DNA methylation in the placenta: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132845. [PMID: 37898083 DOI: 10.1016/j.jhazmat.2023.132845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Epidemiological studies regarding the relationship between per- and polyfluoroalkyl substances (PFAS) and DNA methylation were limited. We investigated the associations of maternal PFAS concentrations with placental DNA methylation and examined the mediating role of methylation changes between PFAS and infant development. We measured the concentrations of 11 PFAS in maternal plasma during early pregnancy and infant development at six months of age. We analyzed genome-wide DNA methylation in 16 placental samples using reduced representation bisulfite sequencing. Additionally, we measured DNA methylation levels using bisulfite amplicon sequencing in 345 mother-infant pairs for five candidate genes, including carbohydrate sulfotransferase 7 (CHST7), fibroblast growth factor 13 (FGF13), insulin receptor substrate 4 (IRS4), paired like homeobox 2Ap (PHOX2A), and plexin domain containing 1 (PLXDC1). We found that placental DNA methylation profiles related to PFOA mainly enriched in angiogenesis and neuronal signaling pathways. PFOA was associated with hypomethylation of IRS4 and PLXDC1, and PFNA was associated with PLXDC1 hypomethylation. There were positive associations of CHST7 methylation with PFTrDA and IRS4 methylation with PFDoA and PFTrDA. PLXDC1 hypomethylation mediated the association between PFOA and suspected developmental delay in infants. Future studies with larger sample sizes are warranted to confirm these findings.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of public health, Fudan University, Shanghai 200237, China
| | - Songlin Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of public health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wanhong He
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiuxia Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
2
|
Chen Q, Sun S, Mei C, Zhao J, Zhang H, Wang G, Chen W. Capabilities of bio-binding, antioxidant and intestinal environmental repair jointly determine the ability of lactic acid bacteria to mitigate perfluorooctane sulfonate toxicity. ENVIRONMENT INTERNATIONAL 2022; 166:107388. [PMID: 35809485 DOI: 10.1016/j.envint.2022.107388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a novel environmental contaminant that can be enriched in humans through the food chain, causing liver diseases, neurotoxicity and metabolic disorders. Lactic acid bacteria (LAB) are safe food-grade microorganisms that exhibit high antioxidant activity and bio-binding capacity towards toxins. Here, strains of LAB with different PFOS binding capacities and antioxidant activities were selected and analyzed for their ability in mitigating the toxic effects of PFOS. The results showed that the PFOS binding capacity and antioxidant activity of LAB largely influenced their ability in alleviating the toxic effects of PFOS. Notably, the individual LAB strains with low PFOS binding capacities and antioxidant activities also attenuated the toxic effects of PFOS, which was shown to up-regulate the contents of short-chain fatty acids (SCFAs) in the cecum and of tight junction proteins in the intestines of mice. Therefore, the mitigation pathway of PFOS-induced toxic damage by LAB is not limited to bio-binding and antioxidant. Repairing the gut environment damaged by PFOS is also essential for LAB to alleviate the toxic damage due to PFOS and may be partly independent of the bio-binding and antioxidant. Therefore, LAB as an alternative pathway for alleviating PFOS toxicity is suggested.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shanshan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Chunxia Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
3
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Imir OB, Kaminsky AZ, Zuo QY, Liu YJ, Singh R, Spinella MJ, Irudayaraj J, Hu WY, Prins GS, Madak Erdogan Z. Per- and Polyfluoroalkyl Substance Exposure Combined with High-Fat Diet Supports Prostate Cancer Progression. Nutrients 2021; 13:3902. [PMID: 34836157 PMCID: PMC8623692 DOI: 10.3390/nu13113902] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals utilized in various industrial settings and include products such as flame retardants, artificial film-forming foams, cosmetics, and non-stick cookware, among others. Epidemiological studies suggest a link between increased blood PFAS levels and prostate cancer incidence, but the mechanism through which PFAS impact cancer development is unclear. To investigate the link between PFAS and prostate cancer, we evaluated the impact of metabolic alterations resulting from a high-fat diet combined with PFAS exposure on prostate tumor progression. We evaluated in vivo prostate cancer xenograft models exposed to perfluorooctane sulfonate (PFOS), a type of PFAS compound, and different diets to study the effects of PFAS on prostate cancer progression and metabolic activity. Metabolomics and transcriptomics were used to understand the metabolic landscape shifts upon PFAS exposure. We evaluated metabolic changes in benign or tumor cells that lead to epigenomic reprogramming and altered signaling, which ultimately increase tumorigenic risk and tumor aggressiveness. Our studies are the first in the field to provide new and clinically relevant insights regarding novel metabolic and epigenetic states as well as to support the future development of effective preventative and therapeutic strategies for PFAS-induced prostate cancers. Our findings enhance understanding of how PFAS synergize with high-fat diets to contribute to prostate cancer development and establish an important basis to mitigate PFAS exposure.
Collapse
Affiliation(s)
- Ozan Berk Imir
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alanna Zoe Kaminsky
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Qian-Ying Zuo
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Yu-Jeh Liu
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
| | - Ratnakar Singh
- Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (R.S.); (M.J.S.)
| | - Michael J. Spinella
- Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (R.S.); (M.J.S.)
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
| | - Wen-Yang Hu
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (W.-Y.H.); (G.S.P.)
- Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zeynep Madak Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (A.Z.K.); (Q.-Y.Z.); (Y.-J.L.)
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Kim S, Thapar I, Brooks BW. Epigenetic changes by per- and polyfluoroalkyl substances (PFAS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116929. [PMID: 33751946 DOI: 10.1016/j.envpol.2021.116929] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 03/03/2021] [Indexed: 05/09/2023]
Abstract
Increasing studies are examining per- and polyfluoroalkyl substances (PFAS) induced toxicity and resulting health outcomes, including epigenetic modifications (e.g., DNA methylation, histone modification, microRNA expression). We critically reviewed current evidence from human epidemiological, in vitro, and animal studies, including mammalian and aquatic model organisms. Epidemiological studies identified the associations between perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) exposure and epigenetic changes in both adult populations and birth cohorts. For in vitro studies, various cell types including neuroblasts, preadipocytes, and hepatocytes have been employed to understand epigenetic effects of PFAS. In studies with animal models, effects of early life exposure to PFAS have been examined using rodent models, and aquatic models (e.g., zebrafish) have been more frequently used in recent years. Several studies highlighted oxidative stress as a key mediator between epigenetic modification and health effects. Collectively, previous research clearly suggest involvement of epigenetic mechanisms in PFAS induced toxicity, though these efforts have primarily focused on specific PFASs (i.e. mainly PFOS and PFOA) or endpoints (i.e. cancer). Additional studies are necessary to define specific linkages among epigenetic mechanisms and related biomarkers or phenotypical changes. In addition, future research is also needed for understudied PFAS and complex mixtures. Studies of epigenetic effects elicited by individual PFAS and mixtures are needed within an adverse outcome pathways framework, which will advance an understanding of PFAS risks to public health and the environment, and support efforts to design less hazardous chemicals.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| | - Isha Thapar
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Honors College, Baylor University, Waco, TX, 76706, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA.
| |
Collapse
|
6
|
Kim S, Stroski KM, Killeen G, Smitherman C, Simcik MF, Brooks BW. 8:8 Perfluoroalkyl phosphinic acid affects neurobehavioral development, thyroid disruption, and DNA methylation in developing zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139600. [PMID: 32474277 DOI: 10.1016/j.scitotenv.2020.139600] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have reported potential neurotoxicity and epigenetic alteration associated with exposure to several per- and polyfluoroalkyl substances (PFASs). However, such information is limited to a few compounds (e.g., perfluorooctane sulfonate), primarily based on rodent experiments, and the underlying toxicological mechanism(s) for many PFAS in the environment remain poorly understood. In the present study, we investigated 8:8 perfluoroalkyl phosphinic acid (8:8 PFPiA), an under-studied PFAS with high persistency in the environment and biota, using the zebrafish model. We exposed zebrafish embryos (<4 hpf) to various concentrations of 8:8 PFPiA (0, 0.0116, 0.112, 0.343, 1.34, 5.79 μM) for 144 h. Although there was no significant change in survival, hatchability and malformations, zebrafish locomotor speed at 120 h significantly decreased in dark photoperiod. At 144 h, several genes related to thyroid hormones that are essential for neurodevelopment, including corticotropin releasing hormone b (crhb), iodothyronine deiodinase 3a (dio3a), thyroid-stimulating hormone receptor (tshr) and nkx2 homeobox1 (nkx 2.1), were up-regulated by 8:8 PFPiA at 5.79 μM. 8:8 PFPiA also significantly down-regulated a neurodevelopmental gene, elav like neuron-specific RNA binding protein (elavl3), at 1.34 and 5.79 μM; in addition, one oxidative stress gene was slightly but significantly up-regulated. Further, global DNA methylation was significantly decreased at higher treatment levels, identifying effects of 8:8 PFPiA on epigenetic regulation. However, promoter DNA methylation of selected genes (dio3, tshr, nkx2.1) were not statistically altered, though dio3 methylation showed a decreasing trend with 8:8 PFPiA exposure. Our results specifically advance an understanding of molecular toxicology of PFPiA and more broadly present an approach to define diverse responses during animal alternative assessments of PFASs.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Kevin M Stroski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA
| | - Grace Killeen
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA
| | | | - Matt F Simcik
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
7
|
Wang G, Sun S, Wu X, Yang S, Wu Y, Zhao J, Zhang H, Chen W. Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110590. [PMID: 32283409 DOI: 10.1016/j.ecoenv.2020.110590] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 05/26/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a recently identified and persistent organic pollutant that becomes enriched in living organisms via bioaccumulation and the food chain. PFOS can induce various disorders, including liver toxicity, neurotoxicity and metabolic dysregulation. Most recent studies have shown a close association of the gut microbiota with the occurrence of diseases. However, few studies have explored the effects of PFOS on the gut environment, including the intestinal flora and barrier. In this study, we evaluated the effects of PFOS in C57BL/6J male mice and explored the relationship between tissue damage and the gut environment. Mice were orally exposed to PFOS for 16 days. Liver damage was assessed by examining the inflammatory reaction in the liver and serum liver enzyme concentrations. Metabolic function was assessed by the hepatic cholesterol level and the serum concentrations of glucose, high-density lipoprotein cholesterol, total cholesterol and triglycerides. Intestinal environmental disorders were assessed by evaluating the gut microbiota, SCFAs production, inflammatory reactions and intestinal tight junction protein expression. Our results indicated that PFOS affected inflammatory reactions in the liver and colon and promoted the development of metabolic disorders (especially of cholesterol and glucose metabolism). Moreover, PFOS dysregulated various populations in the gut microbiota (e.g., Firmicutes, Bacteroides, Proteobacteria, Gammaproteobacteria, Clostridiales, Enterobacteriales, Lactobacillales, Erysipelotrichaceae, Rikenellaceae, Ruminococcaceae and Blautia) and induced a loss of gut barrier integrity by reducing short-chain fatty acids (SCFAs) production and intestinal tight junction protein expression. A Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis mainly identified metabolic pathways (e.g., the adipocytokine signalling pathway), endocrine system pathways (e.g., steroid hormone biosynthesis, flavonoid biosynthesis), the latter of which is widely considered to be associated with metabolism. Overall, our results suggest that PFOS damages various aspects of the gut environment, including the microbiota, SCFAs and barrier function, and thereby exacerbates the toxicity associated with liver, gut and metabolic disorders.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shanshan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaobing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shurong Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Yanmin Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
8
|
Wen Y, Chen J, Li J, Arif W, Kalsotra A, Irudayaraj J. Effect of PFOA on DNA Methylation and Alternative Splicing in Mouse Liver. Toxicol Lett 2020; 329:38-46. [PMID: 32320774 DOI: 10.1016/j.toxlet.2020.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant prevalent in the environment and implicated in damage to the liver leading to a fatty liver phenotype called hepatocellular steatosis. Our goal is to provide a basis for PFOA-induced hepatocellular steatosis in relation to epigenetic alterations and mRNA splicing. Young adult female mice exposed to different concentrations of PFOA showed an increase in liver weight with decreased global DNA methylation (5-mC). At higher concentrations, the expression of DNA methyltransferase 3A (Dnmt3a) was significantly reduced and the expression of tet methycytosine dioxygenase 1 (Tet1) was significantly increased. There was no significant change in the other Dnmts and Tets. PFOA exposure significantly increased the expression of cell cycle regulators and anti-apoptotic genes. The expression of multiple genes involved in mTOR (mammalian target of rapamycin) signaling pathway were altered significantly with reduction in Pten (phosphatase and tensin homolog, primary inhibitor of mTOR pathway) expression. Multiple splicing factors whose protein but not mRNA levels affected by PFOA exposure were identified. The changes in protein abundance of the splicing factors was also reflected in altered splicing pattern of their target genes, which provided new insights on the previously unexplored mechanisms of PFOA-mediated hepatotoxicity and pathogenesis.
Collapse
Affiliation(s)
- Yi Wen
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jackie Chen
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Junya Li
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Waqar Arif
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, School of Molecular and Cell Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Cancer Center at Illinois (CCIL), University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
9
|
Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM. Application of the Key Characteristics of Carcinogens to Per and Polyfluoroalkyl Substances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1668. [PMID: 32143379 PMCID: PMC7084585 DOI: 10.3390/ijerph17051668] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a large class of environmentally persistent chemicals used in industrial and consumer products. Human exposure to PFAS is extensive, and PFAS contamination has been reported in drinking water and food supplies as well as in the serum of nearly all people. The most well-studied member of the PFAS class, perfluorooctanoic acid (PFOA), induces tumors in animal bioassays and has been associated with elevated risk of cancer in human populations. GenX, one of the PFOA replacement chemicals, induces tumors in animal bioassays as well. Using the Key Characteristics of Carcinogens framework for cancer hazard identification, we considered the existing epidemiological, toxicological and mechanistic data for 26 different PFAS. We found strong evidence that multiple PFAS induce oxidative stress, are immunosuppressive, and modulate receptor-mediated effects. We also found suggestive evidence indicating that some PFAS can induce epigenetic alterations and influence cell proliferation. Experimental data indicate that PFAS are not genotoxic and generally do not undergo metabolic activation. Data are currently insufficient to assess whether any PFAS promote chronic inflammation, cellular immortalization or alter DNA repair. While more research is needed to address data gaps, evidence exists that several PFAS exhibit one or more of the key characteristics of carcinogens.
Collapse
Affiliation(s)
- Alexis M. Temkin
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Barbara A. Hocevar
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| | - David Q. Andrews
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Olga V. Naidenko
- Environmental Working Group, Washington, DC 20009, USA; (D.Q.A.); (O.V.N.)
| | - Lisa M. Kamendulis
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (B.A.H.); (L.M.K.)
| |
Collapse
|
10
|
Rashid F, Ramakrishnan A, Fields C, Irudayaraj J. Acute PFOA exposure promotes epigenomic alterations in mouse kidney tissues. Toxicol Rep 2020; 7:125-132. [PMID: 31938689 PMCID: PMC6953769 DOI: 10.1016/j.toxrep.2019.12.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctanoic acid (PFOA), a manufactured perfluorochemical is a common surfactant and environmental pollutant found in various consumer products and water sources. Epidemiological studies have demonstrated its association with kidney dysfunction. However, the mechanisms that trigger kidney dysfunction following PFOA exposure is a gap in the field. The work presented explores the potential epigenetic indicators of kidney disease due to exposure to PFOA. In this study, 30 days old CD-1 mice were exposed to 1, 5, 10, or 20 mg/kg/day of PFOA for 10 days. Following acute oral exposure, epigenetic alterations and expression levels of various markers of fibroblast activation were evaluated in kidney tissues. We noted that PFOA-exposed mice exhibited differential methylation yielding 879 differentially methylated regions compared to vehicle. The mRNA expression revealed significant increase in Dnmt1 with decreased Rasal1 expression at higher levels of PFOA exposure suggestive of Rasal1 hypermethylation (an early indicator of fibroblast activation in kidney). Like Dnmt1, we also observed significant increase in Hdac1, 3 and 4. These are class I & II HDACs which are known to be critically altered in some renal diseases. Further, the mRNA expression levels of TGF-β and α-SMA significantly increased compared to vehicle. The KEGG and Go enrichment pathway analysis of reduced representation bisulfite data also revealed pathways implicated in renal fibrosis. Our study shows clear evidence of epigenetic alterations (DNA methylation and HDAC expression changes) in tissues from mouse kidney following PFOA exposure. Our results also suggest that epigenetic alterations in kidney promote the expression of early markers of fibroblast activation.
Collapse
Affiliation(s)
- Faizan Rashid
- Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anujaianthi Ramakrishnan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Christopher Fields
- High Performance Computing in Biology – HPCBio, Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
11
|
Ma Y, Yang J, Wan Y, Peng Y, Ding S, Li Y, Xu B, Chen X, Xia W, Ke Y, Xu S. Low-level perfluorooctanoic acid enhances 3 T3-L1 preadipocyte differentiation via altering peroxisome proliferator activated receptor gamma expression and its promoter DNA methylation. J Appl Toxicol 2017; 38:398-407. [PMID: 29094436 DOI: 10.1002/jat.3549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/30/2017] [Accepted: 09/15/2017] [Indexed: 01/09/2023]
Abstract
Recent studies suggest that perfluorooctanoic acid (PFOA) can play a role in the development of obesity; however, the associated mechanisms are poorly understood. We investigated how PFOA exposure affected the differentiation of 3 T3-L1 preadipocytes and the associated transcriptional and epigenetic mechanisms. Cells treated with different doses of PFOA (ranging from 0.01 to 100 μg ml-1 ) were assessed for proliferation, differentiation and triglyceride accumulation. The gene expression levels of peroxisome proliferator activated receptor gamma (PPARγ) and its target genes were measured. DNA methylation levels of PPARγ promoter and global DNA methylation levels were also tested. We found a concentration-dependent enhancement of adipocyte proliferation and differentiation following PFOA exposure. PFOA also induced a significant concentration-dependent increase in the accumulation of lipid and triglyceride. Increased gene expression was also observed for PPARγ, CCAAT/enhancer binding proteins α, fatty acid binding protein 2 and lipoprotein lipase in differentiated cells after PFOA exposure. The ability of PFOA to induce adipogenesis was blocked by GW9662, a known PPARγ antagonist. In addition, significant demethylation of the cytosine-phosphate-guanine sites in the PPARγ promoter was observed after exposure to PFOA. In addition, PFOA exposure resulted in decreased global DNA methylation and increased expression levels of DNA methyltransferases genes. We found that treatment with low levels of PFOA can induce adipogenic differentiation in preadipocytes, and the underlying mechanisms probably involve the activation of PPARγ transcription and demethylation of PPARγ promoter.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Molecular Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jie Yang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjian Wan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Yang Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuai Ding
- The Second Clinical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuebin Ke
- Key Laboratory of Molecular Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Modulatory Mechanism of Polyphenols and Nrf2 Signaling Pathway in LPS Challenged Pregnancy Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8254289. [PMID: 29138679 PMCID: PMC5613688 DOI: 10.1155/2017/8254289] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/16/2017] [Indexed: 12/16/2022]
Abstract
Early embryonic loss and adverse birth outcomes are the major reproductive disorders that affect both human and animals. The LPS induces inflammation by interacting with robust cellular mechanism which was considered as a plethora of numerous reproductive disorders such as fetal resorption, preterm birth, teratogenicity, intrauterine growth restriction, abortion, neural tube defects, fetal demise, and skeletal development retardation. LPS-triggered overproduction of free radicals leads to oxidative stress which mediates inflammation via stimulation of NF-κB and PPARγ transcription factors. Flavonoids, which exist in copious amounts in nature, possess a wide array of functions; their supplementation during pregnancy activates Nrf2 signaling pathway which encounters pregnancy disorders. It was further presumed that the development of strong antioxidant uterine environment during gestation can alleviate diseases which appear at adult stages. The purpose of this review is to focus on modulatory properties of flavonoids on oxidative stress-mediated pregnancy insult and abnormal outcomes and role of Nrf2 activation in pregnancy disorders. These findings would be helpful for providing new insights in ameliorating oxidative stress-induced pregnancy disorders.
Collapse
|
13
|
Xu C, Jiang ZY, Liu Q, Liu H, Gu A. Estrogen receptor beta mediates hepatotoxicity induced by perfluorooctane sulfonate in mouse. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13414-13423. [PMID: 28386898 DOI: 10.1007/s11356-017-8943-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/27/2017] [Indexed: 05/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS), an artificial fluorosurfactant and global contaminant, is used widely in various consumer products. In this study, we investigated the function of estrogen receptor β (ERβ) in PFOS-induced bile acid and cholesterol metabolism disorders and gut microbiome using ERβ knockout mice that were exposed to PFOS by gavage. Our results showed that a daily dose of 5 mg PFOS/kg significantly induced hydropic degeneration and vacuolation in hepatic cells, reduced bile acid, and cholesterol levels in liver tissue, and influenced the abundance and composition of gut microbiota. Notably, ERβ deficiency not only ameliorated morphological alterations of hepatocytes but also relieved disorders in bile acids and cholesterol metabolism caused by PFOS. Furthermore, the changes in the gut microbiome by PFOS were also modulated. The relative transcript abundance of key genes involved in bile acid and cholesterol metabolism exhibited similar changes. In HepG2 cells, PFOS increased ERβ expression, which could be blocked by adding PHTPP (a selective antagonist of ERβ). Our study thus provides new evidence that ERβ mediates PFOS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhao-Yan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Guo XX, He QZ, Li W, Long DX, Pan XY, Chen C, Zeng HC. Brain-Derived Neurotrophic Factor Mediated Perfluorooctane Sulfonate Induced-Neurotoxicity via Epigenetics Regulation in SK-N-SH Cells. Int J Mol Sci 2017; 18:ijms18040893. [PMID: 28441774 PMCID: PMC5412472 DOI: 10.3390/ijms18040893] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS), a new kind of persistent organic pollutant, is widely distributed in the environment and exists in various organisms, where it is also a neurotoxic compound. However, the potential mechanism of its neurotoxicity is still unclear. To examine the role of epigenetics in the neurotoxicity induced by PFOS, SK-N-SH cells were treated with different concentrations of PFOS or control medium (0.1% DMSO) for 48 h. The mRNA levels of DNA methyltransferases (DNMTs) and Brain-derived neurotrophic factor (BDNF), microRNA-16, microRNA-22, and microRNA-30a-5p were detected by Quantitative PCR (QPCR). Enzyme Linked Immunosorbent Assay (ELISA) was used to measure the protein levels of BDNF, and a western blot was applied to analyze the protein levels of DNMTs. Bisulfite sequencing PCR (BSP) was used to detect the methylation status of the BDNF promoter I and IV. Results of MTT assays indicated that treatment with PFOS could lead to a significant decrease of cell viability, and the treated cells became shrunk. In addition, PFOS exposure decreased the expression of BDNF at mRNA and protein levels, increased the expression of microRNA-16, microRNA-22, microRNA-30a-5p, and decreased the expression of DNMT1 at mRNA and protein levels, but increased the expression of DNMT3b at mRNA and protein levels. Our results also demonstrate that PFOS exposure changes the methylation status of BDNF promoter I and IV. The findings of the present study suggest that methylation regulation of BDNF gene promoter and increases of BDNF-related-microRNA might underlie the mechanisms of PFOS-induced neurotoxicity.
Collapse
Affiliation(s)
- Xin-Xin Guo
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China.
| | - Qing-Zhi He
- School of Pharmacy and Biology, University of South China, Hengyang 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China.
| | - Wu Li
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China.
| | - Ding-Xin Long
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China.
| | - Xiao-Yuan Pan
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China.
| | - Cong Chen
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China.
| | - Huai-Cai Zeng
- Department of Preventive Medicine, School of Public Health, University of South China, Hengyang 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China.
| |
Collapse
|
15
|
Lai KP, Li JW, Cheung A, Li R, Billah MB, Chan TF, Wong CKC. Transcriptome sequencing reveals prenatal PFOS exposure on liver disorders. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:416-425. [PMID: 28131474 DOI: 10.1016/j.envpol.2017.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 05/24/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a hepatic toxicant and a potential hepatocarcinogen, is commonly used in industrial products. The widespread contamination of PFOS in human maternal and cord blood has raised concerns about its potential risks to the fetus. It is believed that adverse environmental exposure during the critical period of embryo development can have long-lasting consequences in later life. In this report, we used transcriptome sequencing, followed by bioinformatics analysis, to elucidate the potential hepatotoxic and hepatocarcinogenic effects of prenatal PFOS exposure in the fetus. Our results demonstrated that prenatal PFOS exposure could activate the synthesis and metabolism of fatty acids and lipids, leading to liver damage and interference with liver development in the fetus. In addition, a number of cancer-promoting signaling pathways, including Wnt/β-catenin, Rac, and TGF-β, were found to be activated in the fetal liver. More importantly, hepatic transaminase activity, including aspartate aminotransferase and alanine transaminase activity, was induced in the liver of mice offspring after prenatal PFOS exposure. For the first time, our results demonstrate that the hepatotoxic effects of prenatal exposure to PFOS may predispose to a long-term liver disorder in the offspring.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Jing Woei Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Angela Cheung
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Rong Li
- Croucher Institute for Environmental Sciences, Department of Biology, Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Md Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
16
|
Ma Y, Guo Y, Wu S, Lv Z, Zhang Q, Ke Y. Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells. RSC Adv 2017. [DOI: 10.1039/c6ra28272e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Titanium dioxide nanoparticles induce size-dependent cytotoxicity and genomic DNA hypomethylation in human respiratory cells.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Yinsheng Guo
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Shuang Wu
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Ziquan Lv
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Qian Zhang
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| | - Yuebin Ke
- Key Laboratory of Molecular Biology
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen
- Shenzhen Center for Disease Control and Prevention
- Shenzhen 518055
- China
| |
Collapse
|
17
|
van den Dungen MW, Murk AJ, Kampman E, Steegenga WT, Kok DE. Association between DNA methylation profiles in leukocytes and serum levels of persistent organic pollutants in Dutch men. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx001. [PMID: 29492303 PMCID: PMC5804541 DOI: 10.1093/eep/dvx001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 05/18/2023]
Abstract
Consumption of polluted fish may lead to high levels of persistent organic pollutants (POPs) in humans, potentially causing adverse health effects. Altered DNA methylation has been suggested as a possible contributor to a variety of adverse health effects. The aim of this study was to evaluate the relationship between serum POP levels (dioxins, polychlorobiphenyls, and perfluoroctane sulphonate) and DNA methylation. We recruited a total of 80 Dutch men who regularly consumed eel from either low- or high-polluted areas, and subsequently had normal or elevated POP levels. Clinical parameters related to e.g. hormone levels and liver enzymes were measured as biomarkers for adverse health effects. The Infinium 450K BeadChip was used to assess DNA methylation in a representative subset of 34 men. We identified multiple genes with differentially methylated regions (DMRs; false discovery rate <0.05) related to POP levels. Several of these genes are involved in carcinogenesis (e.g. BRCA1, MAGEE2, HOXA5), the immune system (e.g. RNF39, HLA-DQB1), retinol homeostasis (DHRS4L2), or in metabolism (CYP1A1). The DMRs in these genes show mean methylation differences up to 7.4% when comparing low- and high-exposed men, with a mean difference up to 14.4% for single positions within a DMR. Clinical parameters were not significantly associated with serum POP levels. This is the first explorative study investigating extensive DNA methylation in relation to serum POP levels among men. We observed that elevated POP levels are associated with aberrant DNA methylation profiles in adult men who consumed high-polluted eel. These preliminary findings warrant further confirmation in other populations.
Collapse
Affiliation(s)
- Myrthe W. van den Dungen
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
- Marine Animal Ecology Group, De Elst 1, 6708 WD, Wageningen, Wageningen University, The Netherlands
| | - Albertinka J. Murk
- Marine Animal Ecology Group, De Elst 1, 6708 WD, Wageningen, Wageningen University, The Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| | - Wilma T. Steegenga
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| | - Dieuwertje E. Kok
- Division of Human Nutrition, Stippeneng 4, 6708 WE, Wageningen, Wageningen University, The Netherlands
| |
Collapse
|
18
|
Fai Tse WK, Li JW, Kwan Tse AC, Chan TF, Hin Ho JC, Sun Wu RS, Chu Wong CK, Lai KP. Fatty liver disease induced by perfluorooctane sulfonate: Novel insight from transcriptome analysis. CHEMOSPHERE 2016; 159:166-177. [PMID: 27289203 DOI: 10.1016/j.chemosphere.2016.05.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 05/20/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a hepato-toxicant and potential non-genotoxic carcinogen, was widely used in industrial and commercial products. Recent studies have revealed the ubiquitous occurrence of PFOS in the environment and in humans worldwide. The widespread contamination of PFOS in human serum raised concerns about its long-term toxic effects and its potential risks to human health. Using fatty liver mutant foie gras (fgr(-/-))/transport protein particle complex 11 (trappc11(-/-)) and PFOS-exposed wild-type zebrafish embryos as the study model, together with RNA sequencing and comparative transcriptomic analysis, we identified 499 and 1414 differential expressed genes (DEGs) in PFOS-exposed wild-type and trappc11 mutant zebrafish, respectively. Also, the gene ontology analysis on common deregulated genes was found to be associated with different metabolic processes such as the carbohydrate metabolic process, glycerol ether metabolic process, mannose biosynthetic process, de novo' (Guanosine diphosphate) GDP-l-fucose biosynthetic process, GDP-mannose metabolic process and galactose metabolic process. Ingenuity Pathway Analysis further highlighted that these deregulated gene clusters are closely related to hepatitis, inflammation, fibrosis and cirrhosis of liver cells, suggesting that PFOS can cause liver pathogenesis and non-alcoholic fatty liver disease in zebrafish. The transcriptomic alterations revealed may serve as biomarkers for the hepatotoxic effect of PFOS.
Collapse
Affiliation(s)
- William Ka Fai Tse
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Jing Woei Li
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Anna Chung Kwan Tse
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; The State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jeff Cheuk Hin Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- The State Key Laboratory in Marine Pollution, Hong Kong SAR, China; Department of Science and Environmental Studies, Institute of Education, Hong Kong SAR, China.
| | - Chris Kong Chu Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China; The State Key Laboratory in Marine Pollution, Hong Kong SAR, China.
| | - Keng Po Lai
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Chapple SJ, Puszyk WM, Mann GE. Keap1-Nrf2 regulated redox signaling in utero: Priming of disease susceptibility in offspring. Free Radic Biol Med 2015; 88:212-220. [PMID: 26279476 DOI: 10.1016/j.freeradbiomed.2015.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022]
Abstract
Intrauterine exposure to gestational diabetes, pre-eclampsia or intrauterine growth restriction alters the redox status of the developing fetus. Such pregnancy-related diseases in most cases do not have a readily identifiable genetic cause, and epigenetic 'priming' mechanisms in utero may predispose both mother and child to later-life onset of cardiovascular and metabolic diseases. The concept of 'fetal programing' or 'developmental priming' and its association with an increased risk of disease in childhood or adulthood has been reviewed extensively. This review focuses on adaptive changes in the in utero redox environment during normal pregnancy and the consequences of alterations in redox control associated with pregnancies characterized by oxidative stress. We evaluate the evidence that the Keap1-Nrf2 pathway is important for protecting the fetus against adverse conditions in utero and may itself be subject to epigenetic priming, potentially contributing to an increased risk of vascular disease and insulin resistance in later life.
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - William M Puszyk
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
20
|
Guo Y, Ji J, Wang W, Dong Y, Zhang Z, Zhou Y, Chen G, Cheng J. Role of Endoplasmic reticulum apoptotic pathway in testicular Sertoli cells injury induced by Carbon disulfide. CHEMOSPHERE 2015; 132:70-78. [PMID: 25816788 DOI: 10.1016/j.chemosphere.2015.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
The exposure of Carbon disulfide (CS2) is associated with germ cell injury and male infertility in animals and humans. However, the molecular mechanism is currently unknown. This study show here that CS2-induced Sertoli cells injury via Endoplasmic reticulum (ER) apoptotic pathway. SD male rats were exposed to doses of CS2 (0, 50, 250, 1250mgm(-3)) for 4weeks. After treatment, loose structures of seminiferous tubules and disordered cell arrangements were observed by light microscopy. Ultrastructural lesions, deformed chromatins and vacuoles formed from swollen ER were observed by electron microscopy. After primary culture of Sertoli cells, a dose-dependent increased apoptosis were found. The increased activity of Caspase 3, accumulation of intracellular Ca(2+), up-regulation of mRNA and protein expressions of ER apoptotic relative molecules (Calpain 2, Cleaved-Caspase 12, GRP78 and CHOP) were also found in this study. Altogether, our findings indicated that ER apoptotic pathway played an important role in CS2-induced Sertoli cell impairment.
Collapse
Affiliation(s)
- Yinsheng Guo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China; Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, PR China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, PR China
| | - Wei Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Yu Dong
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Zhen Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Yijun Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiaotong University, Shanghai 200025, PR China
| | - Guoyuan Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, PR China.
| |
Collapse
|
21
|
Ding G, Wang L, Zhang J, Wei Y, Wei L, Li Y, Shao M, Xiong D. Toxicity and DNA methylation changes induced by perfluorooctane sulfonate (PFOS) in sea urchin Glyptocidaris crenularis. CHEMOSPHERE 2015; 128:225-230. [PMID: 25723714 DOI: 10.1016/j.chemosphere.2015.01.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 01/23/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an ubiquitous persistent organic pollutant, which can be bioaccumulated and cause adverse effects on organisms. However, there is very limited information about the toxic effects of PFOS to marine organisms and its mechanisms. Therefore, in the present study, adult sea urchins Glyptocidaris crenularis were exposed to PFOS for 21 d, followed by a 7-d depuration period, in order to investigate the toxicity of PFOS to sea urchin and its potential epigenetic mechanisms. Sea urchins dropped spines, and lowered down the motor ability and feeding ability after the PFOS exposure. Superoxide dismutase activities in supernatant of coelomic fluid of sea urchin increased firstly and then dropped down, while the change of the catalase activity took an opposite trend during the exposure period. They both approached to the corresponding activity of the control after the depuration period. The DNA methylation polymorphism, methylation rate and demethylation rate in sea urchin gonad all increased following the prolonged exposure time, and then decreased after the depuration period. The demethylation rates were lower than the corresponding methylation rates, therefore methylation events were dominant during the whole experimental period. This might suggest that sea urchin have strong self-protection mechanisms and can survive from the PFOS exposure presented in this study. Further efforts are needed to more precisely investigate the DNA methylation effects of PFOS and the self-protection mechanism of sea urchin.
Collapse
Affiliation(s)
- Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China.
| | - Luyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Jing Zhang
- College of Environment and Chemical Technology, Dalian University, Dalian 116622, PR China.
| | - Yuanyuan Wei
- College of Environment and Chemical Technology, Dalian University, Dalian 116622, PR China
| | - Lie Wei
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Yang Li
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Mihua Shao
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, PR China
| |
Collapse
|
22
|
Abstract
Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health (NIH), 9609 Medical Center Drive, Room 4E102, Rockville, MD, 20850, USA,
| |
Collapse
|
23
|
Leter G, Consales C, Eleuteri P, Uccelli R, Specht IO, Toft G, Moccia T, Budillon A, Jönsson BAG, Lindh CH, Giwercman A, Pedersen HS, Ludwicki JK, Zviezdai V, Heederik D, Bonde JPE, Spanò M. Exposure to perfluoroalkyl substances and sperm DNA global methylation in Arctic and European populations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:591-600. [PMID: 24889506 DOI: 10.1002/em.21874] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
Perfluoroalkyl substances (PFASs) are widely used in a variety of industrial processes and products, and have been detected globally in humans and wildlife. PFASs are suspected to interfere with endocrine signaling and to adversely affect human reproductive health. The aim of the present study was to investigate the associations between exposure to PFASs and sperm global methylation levels in a population of non-occupationally exposed fertile men. Measurements of PFASs in serum from 262 partners of pregnant women from Greenland, Poland and Ukraine, were also carried out by liquid chromatography tandem mass spectrometry. Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) were detected in 97% of the blood samples. Two surrogate markers were used to assess DNA global methylation levels in semen samples from the same men: (a) average DNA methylation level in repetitive DNA sequences (Alu, LINE-1, Satα) quantified by PCR-pyrosequencing after bisulfite conversion; (b) flow cytometric immunodetection of 5-methyl-cytosines. After multivariate linear regression analysis, no major consistent associations between PFASs exposure and sperm DNA global methylation endpoints could be detected. However, since weak but statistically significant associations of different PFASs with DNA hypo- and hyper-methylation were found in some of the studied populations, effects of PFASs on sperm epigenetic processes cannot be completely excluded, and this issue warrants further investigation.
Collapse
Affiliation(s)
- Giorgio Leter
- Laboratory of Toxicology, Unit of Radiation Biology and Human Health, ENEA Casaccia Research Center, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The heritable component of breast cancer accounts for only a small proportion of total incidences. Environmental and lifestyle factors are therefore considered to among the major influencing components increasing breast cancer risk. Endocrine-disrupting chemicals (EDCs) are ubiquitous in the environment. The estrogenic property of EDCs has thus shown many associations between ongoing exposures and the development of endocrine-related diseases, including breast cancer. The environment consists of a heterogenous population of EDCs and despite many identified modes of action, including that of altering the epigenome, drawing definitive correlations regarding breast cancer has been a point of much discussion. In this review, we describe in detail well-characterized EDCs and their actions in the environment, their ability to disrupt mammary gland formation in animal and human experimental models and their associations with exposure and breast cancer risk. We also highlight the susceptibility of early-life exposure to each EDC to mediate epigenetic alterations, and where possible describe how these epigenome changes influence breast cancer risk.
Collapse
Affiliation(s)
- Kevin C Knower
- Cancer Drug Discovery, MIMR-PHI Institute of Medical Research, PO BOX 5152, Clayton, Victoria 3168, Australia Department of Molecular Biology and Biochemistry, Monash University, Clayton, Victoria, Australia Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
25
|
Watkins DJ, Wellenius GA, Butler RA, Bartell SM, Fletcher T, Kelsey KT. Associations between serum perfluoroalkyl acids and LINE-1 DNA methylation. ENVIRONMENT INTERNATIONAL 2014; 63:71-6. [PMID: 24263140 PMCID: PMC4181536 DOI: 10.1016/j.envint.2013.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 05/22/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are persistent, synthetic compounds that are used in a number of consumer products. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been associated with cardiovascular risk factors, and changes in gene expression and DNA methylation in animals and cellular systems. However, whether PFAA exposure is associated with LINE-1 DNA methylation, a potential marker of cardiovascular risk, in humans remains unknown. We sought to evaluate the cross-sectional associations between serum PFAAs and LINE-1 DNA methylation in a population highly exposed to PFOA. We measured serum PFAAs twice four to five years apart in 685 adult participants (47% male, mean age±SD=42±11years). We measured percent LINE-1 DNA methylation in peripheral blood leukocytes at the second time point (follow-up), and estimated absolute differences in LINE-1 methylation associated with an interquartile (IQR) shift in mean PFAA serum levels. IQR increases in mean serum PFOA, PFOS, perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) were associated with differences of -0.04 (p=0.16), 0.20 (p=0.001), 0.06 (p=0.19), and 0.02 (p=0.57), respectively, in % LINE-1 methylation at follow-up after adjustment for potential confounders. We observed a monotonic increase in LINE-1 DNA methylation across tertiles of PFOS and PFNA (ptrend=0.02 for both associations), but not across tertiles of PFOA or PFHxS (ptrend=0.71 and 0.44, respectively). In summary, serum PFOS was associated with LINE-1 methylation, while serum PFOA, PFHxS, and PFNA were not. Additional research is needed to more precisely determine whether these compounds are epigenetically active.
Collapse
Affiliation(s)
- Deborah J Watkins
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, RI, USA
| | - Gregory A Wellenius
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, RI, USA
| | - Rondi A Butler
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, RI, USA
| | - Scott M Bartell
- Program in Public Health, University of California, Irvine, CA, USA
| | - Tony Fletcher
- Social and Environmental Health Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Karl T Kelsey
- Department of Epidemiology, Center for Environmental Health and Technology, Brown University, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
26
|
Guerranti C, Ancora S, Bianchi N, Perra G, Fanello EL, Corsolini S, Fossi MC, Focardi SE. Perfluorinated compounds in blood of Caretta caretta from the Mediterranean Sea. MARINE POLLUTION BULLETIN 2013; 73:98-101. [PMID: 23790461 DOI: 10.1016/j.marpolbul.2013.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
Perfluorinated compounds (PFCs), widely used for their hydro-oil repellent properties, are almost non-degradable in the environment; there is scientific evidence that indicate bioaccumulation. They represent a threat to many organisms, because they are toxic and are endocrine disruptors. Scientific studies have demonstrated the presence of PFCs in blood and liver samples of fish, turtles, birds and mammals of marine ecosystems in different geographical areas. The aim of this study was to determine the distribution of PFOS and PFOA in blood samples of the marine turtle Caretta caretta, using a minimally invasive sampling procedure. 49 blood samples of marine turtle, taken from several Italian marine turtle rescue centers, were analyzed. While PFOA was never detected, measurable concentrations of PFOS were found in 15 blood samples; the values show a range from 1.14 ng/g to 28.51 ng/g (wet wt.). No differences between groups of samples taken from different areas were found.
Collapse
Affiliation(s)
- Cristiana Guerranti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin CY, Wen LL, Lin LY, Wen TW, Lien GW, Hsu SHJ, Chien KL, Liao CC, Sung FC, Chen PC, Su TC. The associations between serum perfluorinated chemicals and thyroid function in adolescents and young adults. JOURNAL OF HAZARDOUS MATERIALS 2013. [PMID: 23177245 DOI: 10.1016/j.jhazmat.2012.10.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Perfluorinated chemicals (PFCs) have been widely used in a variety of products worldwide for years. However, the effect of PFCs on thyroid function has not yet been clearly defined. We recruited 567 subjects (aged 12-30 years) in a population-based cohort of adolescents and young adults with abnormal urinalysis in the childhood to determine the relationship between serum level of PFCs and the levels of serum free thyroxine (T4) and thyroid stimulating hormone (TSH). The geometric means and geometric standard deviation concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUA) were 2.67 (2.96) ng/ml, 7.78 (2.42) ng/ml, 1.01 (3.48) ng/ml and 5.81 (2.92) ng/ml, respectively. Differences in the levels of free T4 and TSH across different categories of PFOA, PFOS and PFUA were insignificant. After controlling for confounding factors, multiple linear regression analyses revealed mean serum level of free T4 increased significantly across categories (<60th, 60-89 and >90th percentiles) of PFNA (P for trend =0.012 in the full model). The association between PFNA and free T4 was more significant in male subjects in age group 20-30, active smokers and in those with higher body mass index in stratified analysis. Serum concentrations of PFNA were associated with serum free T4 levels in adolescents and young adults.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ji HX, Zhao Q, Pan JH, Shen WH, Chen ZW, Zhou ZS. Association of BLCA-4 hypomethylation in blood leukocyte DNA and the risk of bladder cancer in a Chinese population. Pathol Oncol Res 2012; 19:205-10. [PMID: 23055020 DOI: 10.1007/s12253-012-9570-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/13/2012] [Indexed: 01/13/2023]
Abstract
Global DNA hypomethylation has been associated with increased risk for cancers of the colorectum, bladder, breast, head and neck, and testicular germ cells. The aim of this study was to examine whether global hypomethylation measured at BLCA-4 repeat regions through bisulfite pyrosequencing in blood leukocyte DNA is associated with the risk of bladder cancer(BC). A total of 312 bladder cancer patients and 361 healthy control subjects were included in Chongqing, China. Global methylation in blood leukocyte DNA was estimated by analyzing BLCA-4 repeats using bisulfite-polymerase chain reaction (PCR) and pyrosequencing. The median methylation level in BC cases (percentage of 5-methylcytosine (5 mC) = 75.7 %) was significantly lower than that in controls (79.7 % 5 mC) (P = 0.002, Wilcoxon rank-sum test). The odds ratios (ORs) of BC for individuals in the third, second, and first (lowest) quartiles of BLCA-4 methylation were 1.2 (95 % confidence interval (CI) 0.8-1.9), 1.6 (95 % CI 1.1-2.3), and 2.7 (95 % CI 1.5-3.8) (P for trend <0.001), respectively, compared to individuals in the fourth (highest) quartile. A 2.1-fold (95 % CI 1.5-2.8) increased risk of BC was observed among individuals with BLCA-4 methylation below the median compared to individuals with higher (>median) BLCA-4 methylation. Our results demonstrate for the first time that individuals with global hypomethylation measured in BLCA-4 repeats in blood leukocyte DNA have an increased risk for BC. Our data provide the evidence that BLCA-4 hypomethylation may be a useful biomarker for poor prognosis of patients with BC.
Collapse
Affiliation(s)
- Hui-Xiang Ji
- Urology Department, Southwest Hospital Affilated to Third Military Medical University, No. 33, Gaotanyanzheng RD, Chongqing, 400038, China
| | | | | | | | | | | |
Collapse
|
29
|
Determination of Global DNA Methylation in Biological Samples by Liquid Chromatography-Tandem Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60566-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Pearce MS, McConnell JC, Potter C, Barrett LM, Parker L, Mathers JC, Relton CL. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol 2012; 41:210-7. [PMID: 22422454 PMCID: PMC3304536 DOI: 10.1093/ije/dys020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Patterns of DNA methylation change with age and these changes are believed to be associated with the development of common complex diseases. The hypothesis that Long Interspersed Nucleotide Element 1 (LINE-1) DNA methylation (an index of global DNA methylation) is associated with biomarkers of metabolic health was investigated in this study. Methods Global LINE-1 DNA methylation was quantified by pyrosequencing in blood-derived DNA samples from 228 individuals, aged 49–51 years, from the Newcastle Thousand Families Study (NTFS). Associations between log-transformed LINE-1 DNA methylation levels and anthropometric and blood biochemical measurements, including triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, fasting glucose and insulin secretion and resistance were examined. Results Linear regression, after adjustment for sex, demonstrated positive associations between log-transformed LINE-1 DNA methylation and fasting glucose {coefficient 2.80 [95% confidence interval (CI) 0.39–5.22]}, total cholesterol [4.76 (95% CI 1.43–8.10)], triglycerides [3.83 (95% CI 1.30–6.37)] and LDL-cholesterol [5.38 (95% CI 2.12–8.64)] concentrations. A negative association was observed between log-transformed LINE-1 methylation and both HDL cholesterol concentration [−1.43 (95% CI −2.38 to −0.48)] and HDL:LDL ratio [−1.06 (95% CI −1.76 to −0.36)]. These coefficients reflect the millimoles per litre change in biochemical measurements per unit increase in log-transformed LINE-1 methylation. Conclusions These novel associations between global LINE-1 DNA methylation and blood glycaemic and lipid profiles highlight a potential role for epigenetic biomarkers as predictors of metabolic disease and may be relevant to future diagnosis, prevention and treatment of this group of disorders. Further work is required to establish the role of confounding and reverse causation in the observed associations.
Collapse
Affiliation(s)
- Mark S Pearce
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | |
Collapse
|
31
|
Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol 2012; 33:538-545. [DOI: 10.1016/j.reprotox.2011.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/15/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022]
|
32
|
Sokolosky ML, Wargovich MJ. Homeostatic imbalance and colon cancer: the dynamic epigenetic interplay of inflammation, environmental toxins, and chemopreventive plant compounds. Front Oncol 2012; 2:57. [PMID: 22675672 PMCID: PMC3365481 DOI: 10.3389/fonc.2012.00057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022] Open
Abstract
The advent of modern medicine has allowed for significant advances within the fields of emergency care, surgery, and infectious disease control. Health threats that were historically responsible for immeasurable tolls on human life are now all but eradicated within certain populations, specifically those that enjoy higher degrees of socio-economic status and access to healthcare. However, modernization and its resulting lifestyle trends have ushered in a new era of chronic illness; one in which an unprecedented number of people are estimated to contract cancer and other inflammatory diseases. Here, we explore the idea that homeostasis has been redefined within just a few generations, and that diseases such as colorectal cancer are the result of fluctuating physiological and molecular imbalances. Phytochemical-deprived, pro-inflammatory diets combined with low-dose exposures to environmental toxins, including bisphenol-A (BPA) and other endocrine disruptors, are now linked to increasing incidences of cancer in westernized societies and developing countries. There is recent evidence that disease determinants are likely set in utero and further perpetuated into adulthood dependent upon the innate and environmentally-acquired phenotype unique to each individual. In order to address a disease as multi-factorial, case-specific, and remarkably adaptive as cancer, research must focus on its root causes in order to elucidate the molecular mechanisms by which they can be prevented or counteracted via plant-derived compounds such as epigallocatechin-3-gallate (EGCG) and resveratrol. The significant role of epigenetics in the regulation of these complex processes is emphasized here to form a comprehensive view of the dynamic interactions that influence modern-day carcinogenesis, and how sensibly restoring homeostatic balance may be the key to the cancer riddle.
Collapse
Affiliation(s)
- Melissa L Sokolosky
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina Charleston, SC, USA
| | | |
Collapse
|
33
|
Meunier L, Siddeek B, Vega A, Lakhdari N, Inoubli L, Bellon RP, Lemaire G, Mauduit C, Benahmed M. Perinatal programming of adult rat germ cell death after exposure to xenoestrogens: role of microRNA miR-29 family in the down-regulation of DNA methyltransferases and Mcl-1. Endocrinology 2012; 153:1936-47. [PMID: 22334722 DOI: 10.1210/en.2011-1109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Different studies have pointed out that developmental exposure to environmental endocrine disruptors can induce long-term testicular germ cell death probably through epigenetic mechanisms. By using a model of early neonatal post-natal day (PND) 1 to 5 exposure of male rats to a xenoestrogen, estradiol benzoate (EB), we investigated the role of microRNA and DNA methyltransferases (DNMT) on the developmental effects of EB on the adult germ cell death process. Neonatal exposure to EB induced adult germ cell apoptosis together with a dose-dependent increase in miR-29a, miR-29b, and miR-29c expression. Increased miR-29 expression resulted in a decrease in DNMT1, DNMT3a, and DNMT3b and antiapoptotic myeloid cell leukemia sequence 1 (Mcl-1) protein levels as shown in 1) germ cells of adult rats exposed neonatally to EB and 2) in spermatogonial GC-1 transfected with miR-29. The DNMT decrease was associated with a concomitant increase in transcript levels of DNA methylation target genes, such as L1td1-1 ORF1 and ORF2, Cdkn2a, and Gstp1, in correlation with their pattern of methylation. Finally, GC-1 cell lines transfection with miR-29a, miR-29b, or miR-29c undergo apoptosis evidenced by Annexin-V expression. Together, the increased miR-29 with a subsequent reduction in DNMT and Mcl-1 protein levels may represent a basis of explanation for the adult expression of the germ cell apoptosis phenotype. These observations suggest that the increased expression of the "apoptomir" miR-29 family represents the upstream mechanism identified until now that is involved in adult germ cell apoptosis induced by a neonatal hormonal disruption.
Collapse
Affiliation(s)
- Léo Meunier
- Institut National de la Santé et de la Recherche Médicale, Unité 1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice F-06204, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells. Toxicology 2012; 296:48-55. [PMID: 22425687 DOI: 10.1016/j.tox.2012.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/02/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter.
Collapse
|
35
|
Di JZ, Han XD, Gu WY, Wang Y, Zheng Q, Zhang P, Wu HM, Zhu ZZ. Association of hypomethylation of LINE-1 repetitive element in blood leukocyte DNA with an increased risk of hepatocellular carcinoma. J Zhejiang Univ Sci B 2012; 12:805-11. [PMID: 21960343 DOI: 10.1631/jzus.b1000422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Global DNA hypomethylation has been associated with increased risk for cancers of the colorectum, bladder, breast, head and neck, and testicular germ cells. The aim of this study was to examine whether global hypomethylation in blood leukocyte DNA is associated with the risk of hepatocellular carcinoma (HCC). A total of 315 HCC cases and 356 age-, sex- and HBsAg status-matched controls were included. Global methylation in blood leukocyte DNA was estimated by analyzing long interspersed element-1 (LINE-1) repeats using bisulfite-polymerase chain reaction (PCR) and pyrosequencing. We observed that the median methylation level in HCC cases (percentage of 5-methylcytosine (5mC)=77.7%) was significantly lower than that in controls (79.5% 5mC) (P=0.004, Wilcoxon rank-sum test). The odds ratios (ORs) of HCC for individuals in the third, second, and first (lowest) quartiles of LINE-1 methylation were 1.1 (95% confidence interval (CI) 0.7-1.8), 1.4 (95% CI 0.8-2.2), and 2.6 (95% CI 1.7-4.1) (P for trend <0.001), respectively, compared to individuals in the fourth (highest) quartile. A 1.9-fold (95% CI 1.4-2.6) increased risk of HCC was observed among individuals with LINE-1 methylation below the median compared to individuals with higher (>median) LINE-1 methylation. Our results demonstrate for the first time that individuals with global hypomethylation measured in LINE-1 repeats in blood leukocyte DNA have an increased risk for HCC. Our data provide the evidence that global hypomethylation detected in the easily obtainable DNA source of blood leukocytes may help identify individuals at risk of HCC.
Collapse
Affiliation(s)
- Jian-zhong Di
- Department of General Surgery, the Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Xia W, Wan Y, Li YY, Zeng H, Lv Z, Li G, Wei Z, Xu SQ. PFOS prenatal exposure induce mitochondrial injury and gene expression change in hearts of weaned SD rats. Toxicology 2011; 282:23-9. [DOI: 10.1016/j.tox.2011.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/08/2011] [Accepted: 01/10/2011] [Indexed: 01/22/2023]
|