1
|
Kumar V, Kumar R, Gurusubramanian G, Rathore SS, Roy VK. Morin hydrate ameliorates Di-2-ethylhexyl phthalate (DEHP) induced hepatotoxicity in a mouse model via TNF-α and NF-κβ signaling. 3 Biotech 2024; 14:181. [PMID: 38911474 PMCID: PMC11189377 DOI: 10.1007/s13205-024-04012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/18/2024] [Indexed: 06/25/2024] Open
Abstract
Di-(2-ethylhexyl) phthalic acid (DEHP) pollutes the environment, and posing a significant risk to human and animal health. Consequently, a successful preventative strategy against DEHP-induced liver toxicity needs to be investigated. Morin hydrate (MH), a flavanol compound, possesses toxic preventive attributes against various environmental pollutants. However, the effects of MH have not been investigated against DEHP-induced liver toxicity. Female Swiss albino mice were divided into four groups: control, DEHP (orally administered with 500 mg/kg, DEHP plus MH 10 mg/kg, and DEHP plus MH 100 mg/kg for 14 days. The results showed that the MH treatment ameliorated the DEHP-induced liver dysfunctions by decreasing the alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin, liver histoarchitecture, fibrosis, and markers of oxidative stress. Furthermore, DEHP increased apoptosis, increased active caspase 3 and decreased B cell lymphoma-2 (Bcl-2) expression. However, the MH treatment showed a differential effect on these proteins; a lower dose increased, and a higher dose decreased the expression. Thus, a lower dose of MH could be involved in the disposal of damaged hepatocytes. Expression of Estrogen receptors alpha (ERα) also showed a similar trend with active caspase 3. Furthermore, the expression of Tumor necrosis factor alpha (TNF-α) and Nuclear factor-κβ (NF-κβ) were up-regulated by DEHP treatment, and MH treatment down-regulated the expression of these two inflammatory markers. Since this down-regulation of TNF-α and NF-κβ coincides with improved liver functions against DEHP-induced toxicity, it can be concluded that MH-mediated liver function involves the singling of TNF-α and NF-κβ.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Rahul Kumar
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | | | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004 India
| |
Collapse
|
2
|
Lyu L, Tao Y, Wu S, Abaakil K, Zhong G, Gu Y, Hu Y, Zhang Y. Tissue-specific accumulation of DEHP and involvement of endogenous arachidonic acid in DEHP-induced spleen information and injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166841. [PMID: 37690753 DOI: 10.1016/j.scitotenv.2023.166841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
The plasticizer Diethylhexyl phthalate (DEHP), one of the most common contaminants, is widely detected in environmental and biological samples. However, the accumulation of DEHP in tissue and the molecular mechanisms underlying its physiological damage in the spleen of aquatic organisms have not yet been reported. In this study, gas chromatography-mass spectrometry (GC-MS), histology and multi-omics analysis were used to investigate DEHP exposure-induced alterations in transcriptomic profiles and metabolic network of zebrafish model. After exposure to DEHP, higher concentrations of DEHP were found in the intestine, liver and spleen. Anatomical and histological analyses showed that the zebrafish spleen index was significantly increased and inflammatory damage was observed. Increased splenic neutrophil counts indicate inflammation and tissue damage. Transcriptomic filtering showed that 3579 genes were significantly altered. Metabolomic analysis detected 543 differential metabolites. Multi-omics annotation results indicated that arachidonic acid and 12-Hydroperoxyicosatetraenoic acid (HPETE) are involved in the key inflammatory pathway "Inflammatory mediator regulation of TRP channels". This study demonstrated the accumulation characteristics of DEHP in aquatic zebrafish and the mechanisms of inflammation and tissue damage in the spleen which involve endogenous arachidonic acid. This will provide theoretical basis and data support for health risk assessments and tissue damage of DEHP.
Collapse
Affiliation(s)
- Liang Lyu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China; Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Yue Tao
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Song Wu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Kaoutar Abaakil
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.
| | - Guanyu Zhong
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Yanyan Gu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Yang Hu
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| | - Ying Zhang
- College of Resources and Environment, Northeast Agricultural University, Changjiang Street 600, Harbin 150030, China.
| |
Collapse
|
3
|
Stefanizzi V, Minutolo A, Valletta E, Carlini M, Cordero FM, Ranzenigo A, Prete SP, Cicero DO, Pitti E, Petrella G, Matteucci C, Marino-Merlo F, Mastino A, Macchi B. Biological Evaluation of Triorganotin Derivatives as Potential Anticancer Agents. Molecules 2023; 28:molecules28093856. [PMID: 37175265 PMCID: PMC10180515 DOI: 10.3390/molecules28093856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-derived platinum complexes are widely used to treat solid tumors. However, systemic toxicity and tumor resistance to these drugs encourage further research into similarly effective compounds. Among others, organotin compounds have been shown to inhibit cell growth and induce cell death and autophagy. Nevertheless, the impact of the ligand structure and mechanisms involved in the toxicity of organotin compounds have not been clarified. In the present study, the biological activities of commercially available bis(tributyltin) oxide and tributyltin chloride, in comparison to those of specially synthesized tributyltin trifluoroacetate (TBT-OCOCF3) and of cisplatin, were assessed using cells with different levels of tumorigenicity. The results show that tributyltins were more cytotoxic than cisplatin in all the tested cell lines. NMR revealed that this was not related to the interaction with DNA but to the inhibition of glucose uptake into the cells. Moreover, highly tumorigenic cells were less susceptible than nontumorigenic cells to the nonunique pattern of death induced by TBT-OCOCF3. Nevertheless, tumorigenic cells became sensitive when cotreated with wortmannin and TBT-OCOCF3, although no concomitant induction of autophagy by the compound was detected. Thus, TBT-OCOCF3 might be the prototype of a family of potential anticancer agents.
Collapse
Affiliation(s)
- Valeria Stefanizzi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
- Ph.D. Course in Microbiology, Immunology, Infectious Diseases, and Transplants (MIMIT), University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Elena Valletta
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martina Carlini
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Franca M Cordero
- Department of Chemistry Ugo Schiff, University of Florence, 50019 Florence, Italy
| | - Anna Ranzenigo
- Department of Chemistry Ugo Schiff, University of Florence, 50019 Florence, Italy
| | | | - Daniel Oscar Cicero
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Erica Pitti
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Greta Petrella
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Mastino
- The Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
4
|
He S, Li P, Li ZH. Review on endocrine disrupting toxicity of triphenyltin from the perspective of species evolution: Aquatic, amphibious and mammalian. CHEMOSPHERE 2021; 269:128711. [PMID: 33121818 DOI: 10.1016/j.chemosphere.2020.128711] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Triphenyltin (TPT) is widely used as a plastic stabilizer, insecticide and the most common fungicide in antifouling coatings. This paper reviewed the main literature evidences on the morphological and physiological changes of animal endocrine system induced by TPT, with emphasis on the research progress of TPT metabolism, neurological and reproductive regulation in animal endocrine system. Similar to tributyltin (TBT), the main effects of TPT on the potential health risks of 25 species of animals, from aquatic animals to mammals, are not only related to exposure dose and time, but also to age, sex and exposed tissue/cells. Moreover, current studies have shown that TPT can directly damage the endocrine glands, interfere with the regulation of neurohormones on endocrine function, and change hormone synthesis and/or the bioavailability (i.e., in the retinoid X receptor and peroxisome proliferator-activated receptor gamma RXR-PPARγ) in target cells. Importantly, TPT can cause biochemical and morphological changes of gonads and abnormal production of steroids, both of which are related to reproductive dysfunction, for example, the imposex of aquatic animals and the irregular estrous cycle of female mammals or spermatogenic disorders of male animals. Therefore, TPT should indeed be regarded as a major endocrine disruptor, which is essential for understanding the main toxic effects on different tissues and their pathogenic effects on endocrine, metabolism, neurological and reproductive dysfunction.
Collapse
Affiliation(s)
- Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
5
|
Yu L, Li HX, Guo JY, Huang YQ, Wang H, Talukder M, Li JL. Di (2-ethyl hexyl) phthalate (DEHP)-induced spleen toxicity in quail (Coturnix japonica) via disturbing Nrf2-mediated defense response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:984-989. [PMID: 31234266 DOI: 10.1016/j.envpol.2019.05.061] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), as a widely used plasticizer, is reported to have widespread environmental and global health hazards. Trace amounts of phthalates in the environment are sufficient to disrupt ecological balance and affect human health. However, DEHP-induced splenic toxicity remains in an unknown state. Therefore, to explore the mechanism of DEHP-induced splenic toxicity, male quail were employed with 0, 250, 500 and 750 mg/kg body weight DEHP by daily gastric perfusion for 45 days. Notably, splenic corpuscular border and cell gap enlargement were observed in the spleen tissue of DEHP-exposed quail under the histopathological analysis. Furthermore, DEHP induced dysregulation of oxidative stress markers by increasing malondialdehyde (MDA) content and decreasing superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities. Low concentration of DEHP (≤250 mg/kg) exposure suppressed nuclear factor-E2-related factor 2 (Nrf2) signaling pathway, while high concentration of DEHP (≥500 mg/kg) exposure activated Nrf2-mediated defense response. DEHP induced splenic oxidative stress via interfering Nrf2 signal pathway and altering the transcription of its downstream genes. In conclusion, this study suggested that DEHP induced splenic toxicity.
Collapse
Affiliation(s)
- Lei Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hui-Xin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150086, PR China
| | - Jian-Ying Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hui Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
6
|
de Castro TF, Varela Junior AS, Padilha FF, Droppa-Almeida D, Saalfeld GQ, Pires DM, Pereira JR, Corcini CD, Colares EP. Effects of exposure to triphenyltin (TPT) contaminant on sperm activity in adulthood of Calomys laucha exposed through breastfeeding. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8280-8288. [PMID: 30706268 DOI: 10.1007/s11356-019-04365-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Triphenyltin (TPT) is an organotin compound (OT), primarily used in agriculture and in the composition of antifouling paints for ships worldwide. Studies have showed its effects as an endocrine disrupter in several organisms by preventing enzymatic expression and causing reproductive toxicity. This study aimed to evaluate the effects of exposure to TPT, via breastfeeding, on reproductive physiology in the Calomys laucha species. The experimental design was compound of five groups, two controls and three with different doses of TPT. Moreover, females were exposed by gavage to the TPT for 20 days, from the 1st day postpartum to the 21st postnatal day (PND). Then, the pups were euthanized and the kinetics, organelles, and biochemistry of the sperm were evaluated. The results presented a reduction in total motility in the groups exposed to TPT. Regarding cellular organelles analysis, a loss in membrane integrity was evidenced; the functionality of mitochondria showed diminution followed by increased acrosome reaction. In conclusion, the TPT causes alteration of the reproductive parameters, decreasing the activity and sperm quality in individuals exposed in the breastfeeding phase.
Collapse
Affiliation(s)
- Tiane Ferreira de Castro
- Programa de Pós-Graduação em Ciências Fisiológicas Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Antônio Sergio Varela Junior
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | | | - Daniela Droppa-Almeida
- Programa de Pós-Graduação em Biotecnologia Industrial, Universidade Tiradentes, Aracaju, SE, Brazil.
| | - Graciela Quintana Saalfeld
- Programa de Pós-Graduação em Ciências Fisiológicas Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Diego Martins Pires
- Reprodução Animal - Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jessica Ribeiro Pereira
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Carine Dahl Corcini
- Reprodução Animal - Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elton Pinto Colares
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
7
|
de Castro TF, Saalfeld GQ, Varela AS, Padilha FF, Santos KS, Pires DM, Pereira JR, Corcini CD, Colares EP. Triphenyltin exposition induces spermatic parameter alters of Calomys laucha species. CHEMOSPHERE 2018; 211:1176-1182. [PMID: 30223333 DOI: 10.1016/j.chemosphere.2018.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
The present study aims to evaluate the influence of triphenyltin (TPT) exposure on reproductive physiology on Calomys laucha species, since this species inhabits regions susceptible to exposure to this contaminant. Animals exposed to the highest dose (10.0 mg/kg) presented signs of severe intoxication in only 7 days of exposure, demonstrating a higher sensitivity of this species to triphenyltin. The 10.0 mg TPT/kg dose was analyzed separately for short-term exposure and results suggest that exposure to this dose was severely detrimental to sperm activity. Among the main results obtained in the evaluation of sperm kinetics, a reduction in total motility was observed from the 0.5 mg TPT/kg group, accentuated according to the increase in the doses of TPT. In progressive motility, there was a decrease from the dose of 0.5 mg TPT/kg and maintained the plateau until the dose of 5.0 mg TPT/kg. It was also observed an increase in the distances and velocities average path, rectilinear and curvilinear in doses of 2.5 and 5.0 mg/kg. From the flow cytometry, evaluation a decrease in mitochondrial functionality was observed as the dose increased. Increased membrane fluidity was also observed from the 5.0 mg TPT/kg dose and the acrosome reaction presented higher values at doses of 0.5 and 5.0 mg TPT/kg. We can conclude that TPT causes impairment of the sperm activity, reducing it in individuals exposed in the adult phase.
Collapse
Affiliation(s)
- Tiane Ferreira de Castro
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| | - Graciela Quintana Saalfeld
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Antonio Sergio Varela
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | | | | | - Diego Martins Pires
- Reprodução Animal - Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jessica Ribeiro Pereira
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Carine Dahl Corcini
- Reprodução Animal - Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Elton Pinto Colares
- Reprodução Animal Comparada- RAC, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
8
|
Ferraz da Silva I, Freitas-Lima LC, Graceli JB, Rodrigues LCDM. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review. Front Endocrinol (Lausanne) 2018; 8:366. [PMID: 29358929 PMCID: PMC5766656 DOI: 10.3389/fendo.2017.00366] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023] Open
Abstract
The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC) present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs). OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood-brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs.
Collapse
Affiliation(s)
- Igor Ferraz da Silva
- Laboratory of Neurotoxicology and Psychopharmacology, Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Leandro Ceotto Freitas-Lima
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | - Jones Bernardes Graceli
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | - Lívia Carla de Melo Rodrigues
- Laboratory of Neurotoxicology and Psychopharmacology, Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
9
|
Marques VB, Faria RA, Dos Santos L. Overview of the Pathophysiological Implications of Organotins on the Endocrine System. Front Endocrinol (Lausanne) 2018; 9:101. [PMID: 29615977 PMCID: PMC5864858 DOI: 10.3389/fendo.2018.00101] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/01/2018] [Indexed: 12/29/2022] Open
Abstract
Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.
Collapse
Affiliation(s)
- Vinicius Bermond Marques
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
- Pitagoras College, Guarapari, Brazil
| | - Rodrigo Alves Faria
- Department of Health Sciences, Federal University of Espirito Santo, São Mateus, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
- *Correspondence: Leonardo Dos Santos,
| |
Collapse
|
10
|
Del Pino J, Moyano P, Ruiz M, Anadón MJ, Díaz MJ, García JM, Labajo-González E, Frejo MT. Amitraz changes NE, DA and 5-HT biosynthesis and metabolism mediated by alterations in estradiol content in CNS of male rats. CHEMOSPHERE 2017; 181:518-529. [PMID: 28463726 DOI: 10.1016/j.chemosphere.2017.04.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 05/21/2023]
Abstract
Amitraz is a formamidine insecticide/acaricide that alters different neurotransmitters levels, among other neurotoxic effects. Oral amitraz exposure (20, 50 and 80 mg/kg bw, 5 days) has been reported to increase serotonin (5-HT), norepinephrine (NE) and dopamine (DA) content and to decrease their metabolites and turnover rates in the male rat brain, particularly in the striatum, prefrontal cortex, and hippocampus. However, the mechanisms by which these alterations are produced are not completely understood. One possibility is that amitraz monoamine oxidase (MAO) inhibition could mediate these effects. Alternatively, it alters serum concentrations of sex steroids that regulate the enzymes responsible for these neurotransmitters synthesis and metabolism. Thus, alterations in sex steroids in the brain could also mediate the observed effects. To test these hypothesis regarding possible mechanisms, we treated male rats with 20, 50 and 80 mg/kg bw for 5 days and then isolated tissue from striatum, prefrontal cortex, and hippocampus. We then measured tissue levels of expression and/or activity of MAO, catechol-O-metyltransferase (COMT), dopamine-β-hydroxylase (DBH), tyrosine hydroxylase (TH) and tryptophan hydroxylase (TRH) as well as estradiol levels in these regions. Our results show that amitraz did not inhibit MAO activity at these doses, but altered MAO, COMT, DBH, TH and TRH gene expression, as well as TH and TRH activity and estradiol levels. The alteration of these enzymes was partially mediated by dysregulation of estradiol levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of amitraz.
Collapse
Affiliation(s)
- Javier Del Pino
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Paula Moyano
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Matilde Ruiz
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María José Anadón
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Jesús Díaz
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - José Manuel García
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Elena Labajo-González
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Teresa Frejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Sena GC, Freitas-Lima LC, Merlo E, Podratz PL, de Araújo JF, Brandão PA, Carneiro MT, Zicker MC, Ferreira AV, Takiya CM, de Lemos Barbosa CM, Morales MM, Santos-Silva AP, Miranda-Alves L, Silva IV, Graceli JB. Environmental obesogen tributyltin chloride leads to abnormal hypothalamic-pituitary-gonadal axis function by disruption in kisspeptin/leptin signaling in female rats. Toxicol Appl Pharmacol 2017; 319:22-38. [DOI: 10.1016/j.taap.2017.01.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
|
12
|
Rebuli ME, Patisaul HB. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol 2016; 160:148-59. [PMID: 26307491 PMCID: PMC4762757 DOI: 10.1016/j.jsbmb.2015.08.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brain sex differences are found in nearly every region of the brain and fundamental to sexually dimorphic behaviors as well as disorders of the brain and behavior. These differences are organized during gestation and early adolescence and detectable prior to puberty. Endocrine disrupting compounds (EDCs) interfere with hormone action and are thus prenatal exposure is hypothesized to disrupt the formation of sex differences, and contribute to the increased prevalence of pediatric neuropsychiatric disorders that present with a sex bias. OBJECTIVE Available evidence for the ability of EDCs to impact the emergence of brain sex differences in the rodent brain was reviewed here, with a focus on effects detected at or before puberty. METHODS The peer-reviewed literature was searched using PubMed, and all relevant papers published by January 31, 2015 were incorporated. Endpoints of interest included molecular cellular and neuroanatomical effects. Studies on behavioral endpoints were not included because numerous reviews of that literature are available. RESULTS The hypothalamus was found to be particularly affected by estrogenic EDCs in a sex, time, and exposure dependent manner. The hippocampus also appears vulnerable to endocrine disruption by BPA and PCBs although there is little evidence from the pre-pubertal literature to make any conclusions about sex-specific effects. Gestational EDC exposure can alter fetal neurogenesis and gene expression throughout the brain including the cortex and cerebellum. The available literature primarily focuses on a few, well characterized EDCs, but little data is available for emerging contaminants. CONCLUSION The developmental EDC exposure literature demonstrates evidence of altered neurodevelopment as early as fetal life, with sex specific effects observed throughout the brain even before puberty.
Collapse
Affiliation(s)
- Meghan E Rebuli
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States
| | - Heather B Patisaul
- North Carolina State University, Department of Biological Sciences, Raleigh, NC 27695, United States; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
13
|
Stojkovic R, Ivankovic S, Ivankovic D, Attias L, Mantovani A, Fucic A. Testosterone-induced micronuclei and increased nuclear division rate in L929 cell line expressing the androgen receptor. Toxicol In Vitro 2015; 29:1021-5. [DOI: 10.1016/j.tiv.2015.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/24/2015] [Accepted: 04/13/2015] [Indexed: 02/01/2023]
|
14
|
Triorganotin compounds - ligands for “rexinoid” inducible transcription factors: Biological effects. Toxicol Lett 2015; 234:50-8. [DOI: 10.1016/j.toxlet.2015.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 11/18/2022]
|
15
|
Gao J, Ye J, Ma J, Tang L, Huang J. Biosorption and biodegradation of triphenyltin by Stenotrophomonas maltophilia and their influence on cellular metabolism. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:112-119. [PMID: 24866561 DOI: 10.1016/j.jhazmat.2014.05.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/27/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Triphenyltin (TPT), an endocrine disruptor, is polluting the global environment through its worldwide use. However, information concerning the mechanisms of TPT biodegradation and cellular metabolism is severely limited. Therefore, these processes were elucidated through experiments involving TPT biosorption and degradation, intracellular metabolite analysis, nutrient use, ion and monosaccharide release, cellular membrane permeability and protein concentration quantification. The results verified that TPT was initially adsorbed by the cell surface of Stenotrophomonas maltophilia and was subsequently transported and degraded intracellularly with diphenyltin and monophenyltin production. Cl(-), Na(+), arabinose and glucose release, membrane permeability and the extracellular protein concentration increased during TPT treatment, whereas K(+) and PO4(3-) utilization and intracellular protein concentration declined. The biosorption, degradation and removal efficiencies of TPT at 0.5mgL(-1) by 0.3gL(-1) viable cells at 10 d were 3.8, 77.8 and 86.2%, respectively, and the adsorption efficiency by inactivated cells was 72.6%.
Collapse
Affiliation(s)
- Jiong Gao
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jinshao Ye
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Jiawen Ma
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Litao Tang
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jie Huang
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
16
|
Shen YT, Song YQ, He XQ, Zhang F, Huang X, Liu Y, Ding L, Xu L, Zhu MB, Hu WF, Qi ZQ, Wang HL, Yang XJ. Triphenyltin chloride induces spindle microtubule depolymerisation and inhibits meiotic maturation in mouse oocytes. Reprod Fertil Dev 2014; 26:1084-93. [DOI: 10.1071/rd12332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 08/01/2013] [Indexed: 01/04/2023] Open
Abstract
Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.
Collapse
|
17
|
Giusti A, Barsi A, Dugué M, Collinet M, Thomé JP, Joaquim-Justo C, Roig B, Lagadic L, Ducrot V. Reproductive impacts of tributyltin (TBT) and triphenyltin (TPT) in the hermaphroditic freshwater gastropod Lymnaea stagnalis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1552-1560. [PMID: 23450754 DOI: 10.1002/etc.2200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/18/2012] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
Tributyltin (TBT) and triphenyltin (TPT) are emblematic endocrine disruptors, which have been mostly studied in gonochoric prosobranchs. Although both compounds can simultaneously occur in the environment, they have mainly been tested separately for their effects on snail reproduction. Because large discrepancies in experimental conditions occurred in these tests, the present study aimed to compare the relative toxicity of TBT and TPT under similar laboratory conditions in the range of 0 ng Sn/L to 600 ng Sn/L. Tests were performed on the simultaneous hermaphrodite Lymnaea stagnalis, a freshwater snail in which effects of TPT were unknown. Survival, shell length, and reproduction were monitored in a 21-d semistatic test. Frequency of abnormal eggs was assessed as an additional endpoint. Triphenyltin hampered survival while TBT did not. Major effects on shell solidity and reproduction were observed for both compounds, reproductive outputs being more severely hampered by TBT than by TPT. Considering the frequency of abnormal eggs allowed increasing test sensitivity, because snail responses to TBT could be detected at concentrations as low as 19 ng Sn/L. However, the putative mode of action of the 2 compounds could not be deduced from the structure of the molecules or from the response of apical endpoints. Sensitivity of L. stagnalis to TBT and TPT was compared with the sensitivity of prosobranch mollusks with different habitats and different reproductive strategies.
Collapse
Affiliation(s)
- Arnaud Giusti
- Laboratory of Animal Ecology and Ecotoxicology, Center of Analytical Research and Technology, Liège University, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yi AX, Leung KMY, Lam MHW, Lee JS, Giesy JP. Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment. CHEMOSPHERE 2012; 89:1015-1025. [PMID: 22704212 DOI: 10.1016/j.chemosphere.2012.05.080] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 06/01/2023]
Abstract
The state of scientific knowledge regarding analytical methods, environmental fate, ecotoxicity and ecological risk of triphenyltin (TPT) compounds in marine ecosystems as well as their exposure and health hazard to humans was reviewed. Since the 1960s, TPT compounds have been commonly applied as biocides for diverse industrial and agricultural purposes. For instance, they are used as active ingredients in antifouling systems on marine vessels and mariculture facilities, and as fungicides in agriculture. Due to their intensive use, contamination of coastal waters by TPT and its products of transformation has become a worldwide problem. The proportion of quantified TPT to total phenyltin compounds in the marine environment provides evidence that TPT is photodegradable in water and sediment but resistant to biotransformation. Concentrations of TPT in marine biota are consistently greater than concentrations in water and sediment, which implies potential of TPT to bioaccumulate. TPT is toxic to both marine plants and animals. The predicted no effect concentration (PNEC) for TPT, as determined by use of the species sensitivity distribution approach, is 0.64 ng L(-1). In some parts of the world, concentrations of TPT in seawater exceed the PNEC, indicating that TPT can pose risks to marine life. Although there is negligible risk of TPT to average human consumers, TPT has been detected in blood of Finnish people and the concentration was greater in fishermen who ate more seafood. It is, therefore, advocated to initiate regular monitoring of TPT in blood and breast milk of populations that consume greater amounts of seafood.
Collapse
Affiliation(s)
- Andy Xianliang Yi
- The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|