1
|
Zhan YF, Meng ZH, Yan CH, Tan M, Khurshid M, Li YJ, Zheng SJ, Wang J. A novel cascade catalysis for one-pot enzymatically modified isoquercitrin (EMIQ) conversion from rutin and sucrose using rationally designed gradient temperature control. Food Chem 2024; 457:140163. [PMID: 38924912 DOI: 10.1016/j.foodchem.2024.140163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Enzymatically modified isoquercitrin (EMIQ) is a glyco-chemically modified flavonoid exhibiting notably high biological activity, such as antioxidant, anti-inflammatory and anti-allergic properties. However, the utilization of expensive substrates such as isoquercitrin and cyclodextrin in the conventional approach has hindered the industrial-scale production of EMIQ due to high cost and low yields. Hence, the development of a cost-effective and efficient method is crucial for the biological synthesis of EMIQ. In this study, a natural cascade catalytic reaction system was constructed with α-L-rhamnosidase and amylosucrase using the inexpensive substrates rutin and sucrose. Additionally, a novel approach integrating gradient temperature regulation into biological cascade reactions was implemented. Under the optimal conditions, the rutin conversion reached a remarkable 95.39% at 24 h. Meanwhile, the productivity of quercetin-3-O-tetraglucoside with the best bioavailability reached an impressive 41.69%. This study presents promising prospects for future mass production of EMIQ directly prepared from rutin and sucrose.
Collapse
Affiliation(s)
- Yu-Fan Zhan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Zhuo-Hao Meng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Cheng-Hai Yan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Min Tan
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Marriam Khurshid
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Yi-Jiangcheng Li
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Shao-Jun Zheng
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China
| | - Jun Wang
- School of Biotechnology & School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, PR China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, PR China.
| |
Collapse
|
2
|
Mozooni Z, Ghadyani R, Soleimani S, Ahangar ER, Sheikhpour M, Haghighi M, Motallebi M, Movafagh A, Aghaei-Zarch SM. TNF-α, and TNFRs in gastrointestinal cancers. Pathol Res Pract 2024; 263:155665. [PMID: 39442225 DOI: 10.1016/j.prp.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a multifunctional cytokine that plays a role in the hemostasis of the immune system, inflammation, and cell proliferation. However, it can also have a dark side as it is involved in pro-inflammatory cytokines and pathological processes such as cell growth and death, autoimmunity, and inflammation, leading to a wide range of chronic inflammatory diseases, including digestive cancer. TNF-alpha binds to two distinct receptors, TNFRI and TNFRII. Upon binding of the ligand to these receptors, TNF receptor-associated factors (TRAFs) are recruited to the cytoplasmic receptor, triggering the activation of transcription factors such as NF-kB and Activator protein 1 (AP_1). In contrast, binding of cytokines to certain family members, such as TNF RI and Fas Ligand (Fas L), leads to the secretion and initiation of apoptosis. Gastrointestinal malignancies are among the most common types of cancer globally. Despite extensive research, the exact cause of these tumors remains a mystery. Unfortunately, they often have a poor prognosis and are often detected at a late stage. The global incidence of gastrointestinal cancers, including those of the stomach, esophagus, colon, liver, and pancreas, is on the rise, leading to a surge in both incidence and mortality. Growth factors and cytokines, which are signaling molecules found in the tumor microenvironment, are thought to be major contributors to the development and metastasis of these cancers. In this review, we explored the role of TNF-α, and its receptors in the development of digestive cancers, including its signaling pathways and functions.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rezvaneh Ghadyani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahrzad Soleimani
- Department of Molecular Genetics, Institute of Basic Science, Shahrekord Islamic Azad University, Iran
| | | | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Haghighi
- Infectious Disease and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Motallebi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Shi J, Li G, Yuan X, Wang Y, Gong M, Li C, Ge X, Lu S. Exploration and verification of COVID-19-related hub genes in liver physiological and pathological regeneration. Front Bioeng Biotechnol 2023; 11:1135997. [PMID: 36911196 PMCID: PMC9997844 DOI: 10.3389/fbioe.2023.1135997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Objectives An acute injury is often accompanied by tissue regeneration. In this process, epithelial cells show a tendency of cell proliferation under the induction of injury stress, inflammatory factors, and other factors, accompanied by a temporary decline of cellular function. Regulating this regenerative process and avoiding chronic injury is a concern of regenerative medicine. The severe coronavirus disease 2019 (COVID-19) has posed a significant threat to people's health caused by the coronavirus. Acute liver failure (ALF) is a clinical syndrome resulting from rapid liver dysfunction with a fatal outcome. We hope to analyze the two diseases together to find a way for acute failure treatment. Methods COVID-19 dataset (GSE180226) and ALF dataset (GSE38941) were downloaded from the Gene Expression Omnibus (GEO) database, and the "Deseq2" package and "limma" package were used to identify differentially expressed genes (DEGs). Common DEGs were used for hub genes exploration, Protein-Protein Interaction (PPI) network construction, Gene Ontology (GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to verify the role of hub genes in liver regeneration during in vitro expansion of liver cells and a CCl4-induced ALF mice model. Results: The common gene analysis of the COVID-19 and ALF databases revealed 15 hub genes from 418 common DEGs. These hub genes, including CDC20, were related to cell proliferation and mitosis regulation, reflecting the consistent tissue regeneration change after the injury. Furthermore, hub genes were verified in vitro expansion of liver cells and in vivo ALF model. On this basis, the potential therapeutic small molecule of ALF was found by targeting the hub gene CDC20. Conclusion We have identified hub genes for epithelial cell regeneration under acute injury conditions and explored a new small molecule Apcin for liver function maintenance and ALF treatment. These findings may provide new approaches and ideas for treating COVID-19 patients with ALF.
Collapse
Affiliation(s)
- Jihang Shi
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Guangya Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Peking University-Tsinghua University-National Institute of Biological Science Joint Graduate Program, College of Life Science, Peking University, Beijing, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Yafei Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Ming Gong
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xinlan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China
| |
Collapse
|
4
|
Owczarek-Januszkiewicz A, Magiera A, Olszewska MA. Enzymatically Modified Isoquercitrin: Production, Metabolism, Bioavailability, Toxicity, Pharmacology, and Related Molecular Mechanisms. Int J Mol Sci 2022; 23:14784. [PMID: 36499113 PMCID: PMC9738368 DOI: 10.3390/ijms232314784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Quercetin and its glycosides, such as isoquercitrin or rutin, are among the most ubiquitous flavonoids present in plants. They possess numerous health-promoting properties, whose applicability is, however, limited by poor water solubility and absorption issues. Enzymatically modified isoquercitrin (EMIQ) is an isoquercitrin derivative obtained from rutin via enzymatic transformations that greatly enhance its bioavailability. Due to advantageous reports on its safety and bioactivity, EMIQ is currently gaining importance as a food additive and a constituent of dietary supplements. This review summarizes the thus-far-conducted investigations into the metabolism, toxicity, biological properties, and molecular mechanisms of EMIQ and presents a comprehensive characterization of this valuable substance, which might represent the future of flavonoid supplementation.
Collapse
Affiliation(s)
| | | | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| |
Collapse
|
5
|
Iori S, Pauletto M, Bassan I, Bonsembiante F, Gelain ME, Bardhi A, Barbarossa A, Zaghini A, Dacasto M, Giantin M. Deepening the Whole Transcriptomics of Bovine Liver Cells Exposed to AFB1: A Spotlight on Toll-like Receptor 2. Toxins (Basel) 2022; 14:toxins14070504. [PMID: 35878242 PMCID: PMC9323327 DOI: 10.3390/toxins14070504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a food contaminant metabolized mostly in the liver and leading to hepatic damage. Livestock species are differently susceptible to AFB1, but the underlying mechanisms of toxicity have not yet been fully investigated, especially in ruminants. Thus, the aim of the present study was to better characterize the molecular mechanism by which AFB1 exerts hepatotoxicity in cattle. The bovine fetal hepatocyte cell line (BFH12) was exposed for 48 h to three different AFB1 concentrations (0.9 µM, 1.8 µM and 3.6 µM). Whole-transcriptomic changes were measured by RNA-seq analysis, showing significant differences in the expression of genes mainly involved in inflammatory response, oxidative stress, drug metabolism, apoptosis and cancer. As a confirmatory step, post-translational investigations on genes of interest were implemented. Cell death associated with necrosis rather than apoptosis events was noted. As far as the toxicity mechanism is concerned, a molecular pathway linking inflammatory response and oxidative stress was postulated. Toll-Like Receptor 2 (TLR2) activation, consequent to AFB1 exposure, triggers an intracellular signaling cascade involving a kinase (p38β MAPK), which in turn allows the nuclear translocation of the activator protein-1 (AP-1) and NF-κB, finally leading to the release of pro-inflammatory cytokines. Furthermore, a p38β MAPK negative role in cytoprotective genes regulation was postulated. Overall, our investigations improved the actual knowledge on the molecular effects of this worldwide relevant natural toxin in cattle.
Collapse
Affiliation(s)
- Silvia Iori
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Irene Bassan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, Legnaro, 35020 Padua, Italy; (S.I.); (M.P.); (I.B.); (F.B.); (M.E.G.); (M.D.)
- Correspondence: ; Tel.: +39-049-827-2946
| |
Collapse
|
6
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
7
|
Ma C, Yan K, Wang Z, Zhang Q, Gao L, Xu T, Sai J, Cheng F, Du Y. The association between hypertension and nonalcoholic fatty liver disease (NAFLD): literature evidence and systems biology analysis. Bioengineered 2021; 12:2187-2202. [PMID: 34096467 PMCID: PMC8806441 DOI: 10.1080/21655979.2021.1933302] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major public health issue as its progression increases risks of multisystem morbidity and mortality. Recent evidence indicates a more complex relationship between hypertension and NAFLD than previously thought. In this study, a comprehensive literature search was used to gather information supporting the comorbidity phenomenon of hypertension and NAFLD. Then, systems biology approach was applied to identify the potential genes and mechanisms simultaneously associated with hypertension and NAFLD. With the help of protein-protein interaction network-based algorithm, we found that the distance between hypertension and NAFLD was much less than random ones. Sixty-four shared genes of hypertension and NAFLD modules were identified as core genes. Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis indicated that some inflammatory, metabolic and endocrine signals were related to the potential biological functions of core genes. More importantly, drugs used to treat cardiovascular diseases, hypertension, hyperlipidemia, inflammatory diseases and depression could be potential therapeutics against hypertension-NAFLD co-occurrence. After analyzing public OMICs data, ALDH1A1 was identified as a potential therapeutic target, without being affected by reverse causality. These findings give a clue for the potential mechanisms of comorbidity of hypertension and NAFLD and highlight the multiple target-therapeutic strategy of NAFLD for future clinical research.
Collapse
Affiliation(s)
- Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kai Yan
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zisong Wang
- Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lianyin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayang Sai
- Department of Oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqiong Du
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ibrahim MA, Ibrahim HM, Mohamed AA, Tammam HG. Vitamin E supplementation ameliorates the hepatotoxicity induced by Tramadol: toxicological, histological and immunohistochemical study. Toxicol Mech Methods 2019; 30:177-188. [DOI: 10.1080/15376516.2019.1681043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mahrous A. Ibrahim
- Forensic Medicine and Clinical Toxicology, College of Medicine, Jouf University, Aljouf, KSA
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hussein M. Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Alaa A. Mohamed
- Department of Medical Biochemistry, College of Medicine, Jouf University, Aljouf, KSA
- Department of medical biochemistry, Faculty of Medicine, Beni- Suif University, Ben Suif, Egypt
| | - Hany G. Tammam
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
9
|
Murayama H, Eguchi A, Nakamura M, Kawashima M, Nagahara R, Mizukami S, Kimura M, Makino E, Takahashi N, Ohtsuka R, Koyanagi M, Hayashi SM, Maronpot RR, Shibutani M, Yoshida T. Spironolactone in Combination with α-glycosyl Isoquercitrin Prevents Steatosis-related Early Hepatocarcinogenesis in Rats through the Observed NADPH Oxidase Modulation. Toxicol Pathol 2018; 46:530-539. [PMID: 29843569 DOI: 10.1177/0192623318778508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of the diuretic, spironolactone (SR), can inhibit chronic liver diseases. We determined the effects of SR alone or in combination with the antioxidant α-glycosyl isoquercitrin (AGIQ) on hyperlipidemia- and steatosis-related precancerous lesions in high-fat diet (HFD)-fed rats subjected to a two-stage hepatocarcinogenesis model. Rats were fed with control basal diet or HFD, which was administered with SR alone or in combination with an antioxidant AGIQ in drinking water. An HFD increased body weight, intra-abdominal fat (adipose) tissue weight, and plasma lipids, which were reduced by coadministration of SR and AGIQ. SR and AGIQ coadministration also reduced hepatic steatosis and preneoplastic glutathione S-transferase placental form-positive foci, in association with decrease in NADPH oxidase (NOX) subunit p22phox-positive cells and an increase in active-caspase-3-positive cells in the foci. Hepatic gene expression analysis revealed that the coadministration of SR and AGIQ altered mRNA levels of lipogenic enzymes ( Scd1 and Fasn), antioxidant-related enzymes ( Catalase), NOX component ( P67phox), and anti-inflammatory transcriptional factor ( Pparg). Our results indicated that SR in combination with AGIQ had the potential of suppressing hyperlipidemia- and steatosis-related early hepatocarcinogenesis through the reduced expression of NOX subunits.
Collapse
Affiliation(s)
- Hirotada Murayama
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Ayumi Eguchi
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Misato Nakamura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Masahi Kawashima
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Rei Nagahara
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Sayaka Mizukami
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Masayuki Kimura
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,2 Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Emi Makino
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | | | - Ryoichi Ohtsuka
- 3 Institute of Environmental Toxicology, Joso-shi, Ibaraki, Japan
| | - Mihoko Koyanagi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | - Shim-Mo Hayashi
- 4 Global Scientific and Regulatory Affairs, San-Ei Gen F. F. I., Inc., Toyonaka, Osaka, Japan
| | | | - Makoto Shibutani
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Toshinori Yoshida
- 1 Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
10
|
Franco ME, Sutherland GE, Lavado R. Xenobiotic metabolism in the fish hepatic cell lines Hepa-E1 and RTH-149, and the gill cell lines RTgill-W1 and G1B: Biomarkers of CYP450 activity and oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2018; 206-207:32-40. [PMID: 29496489 DOI: 10.1016/j.cbpc.2018.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 12/21/2022]
Abstract
The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Grace E Sutherland
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
11
|
Kangawa Y, Yoshida T, Abe H, Seto Y, Miyashita T, Nakamura M, Kihara T, Hayashi SM, Shibutani M. Anti-inflammatory effects of the selective phosphodiesterase 3 inhibitor, cilostazol, and antioxidants, enzymatically-modified isoquercitrin and α-lipoic acid, reduce dextran sulphate sodium-induced colorectal mucosal injury in mice. ACTA ACUST UNITED AC 2017; 69:179-186. [PMID: 28089463 DOI: 10.1016/j.etp.2016.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
|
12
|
Kangawa Y, Yoshida T, Maruyama K, Okamoto M, Kihara T, Nakamura M, Ochiai M, Hippo Y, Hayashi SM, Shibutani M. Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation. Food Chem Toxicol 2017; 100:103-114. [DOI: 10.1016/j.fct.2016.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
|
13
|
Yoshida T, Murayama H, Kawashima M, Nagahara R, Kangawa Y, Mizukami S, Kimura M, Abe H, Hayashi SM, Shibutani M. Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats. ACTA ACUST UNITED AC 2017; 69:9-16. [DOI: 10.1016/j.etp.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/05/2016] [Accepted: 10/15/2016] [Indexed: 01/28/2023]
|
14
|
Gasparotto Junior A, dos Reis Piornedo R, Assreuy J, Da Silva-Santos JE. Nitric oxide and K ir 6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats. Eur J Pharmacol 2016; 788:328-334. [DOI: 10.1016/j.ejphar.2016.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 01/05/2023]
|
15
|
Orfali GDC, Duarte AC, Bonadio V, Martinez NP, de Araújo MEMB, Priviero FBM, Carvalho PO, Priolli DG. Review of anticancer mechanisms of isoquercitin. World J Clin Oncol 2016; 7:189-199. [PMID: 27081641 PMCID: PMC4826964 DOI: 10.5306/wjco.v7.i2.189] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/19/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
This review was based on a literature search of PubMed and Scielo databases using the keywords “quercetin, rutin, isoquercitrin, isoquercitin (IQ), quercetin-3-glucoside, bioavailability, flavonols and favonoids, and cancer” and combinations of all the words. We collected relevant scientific publications from 1990 to 2015 about the absorption, bioavailability, chemoprevention activity, and treatment effects as well as the underlying anticancer mechanisms of isoquercitin. Flavonoids are a group of polyphenolic compounds widely distributed throughout the plant kingdom. The subclass of flavonols receives special attention owing to their health benefits. The main components of this class are quercetin, rutin, and IQ, which is a flavonoid and although mostly found as a glycoside, is an aglycone (lacks a glycoside side chain). This compound presents similar therapeutic profiles to quercetin but with superior bioavailability, resulting in increased efficacy compared to the aglycone form. IQ has therapeutic applications owing to its wide range of pharmacological effects including antioxidant, antiproliferative, anti-inflammatory, anti-hypertensive, and anti-diabetic. The protective effects of IQ in cancer may be due to actions on lipid peroxidation. In addition, the antitumor effect of IQ and its underlying mechanism are related to interactions with Wnt signaling pathway, mixed-lineage protein kinase 3, mitogen-activated protein kinase, apoptotic pathways, as well proinflammatory protein signaling. This review contributed to clarifying the mechanisms of absorption, metabolism, and actions of IQ and isoquercitrin in cancer.
Collapse
|
16
|
Chung SI, Moon H, Kim DY, Cho KJ, Ju HL, Kim DY, Ahn SH, Han KH, Ro SW. Development of a transgenic mouse model of hepatocellular carcinoma with a liver fibrosis background. BMC Gastroenterol 2016; 16:13. [PMID: 26821924 PMCID: PMC4731926 DOI: 10.1186/s12876-016-0423-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/25/2016] [Indexed: 01/29/2023] Open
Abstract
Background Liver fibrosis and its end-stage disease, cirrhosis, are major risk factors for hepatocellular carcinoma (HCC) and present in 80 to 90 % of patients with HCC. Current genetically engineered mouse models for HCC, however, generally do not feature liver fibrosis, which is a critical discrepancy between human HCC and murine models thereof. In this study, we developed a simple transgenic mouse model of HCC within the context of a fibrotic liver. Methods Employing hydrodynamic transfection (HT), coupled with the Sleeping Beauty (SB) transposon system, liver was stably transfected with transposons expressing cMyc and a short hairpin RNA down-regulating p53 (shp53). A chronic liver injury model, induced by hepatotoxic carbon tetrachloride (CCl4), was applied to the transgenic mice, allowing cells expressing cMyc plus shp53 to become malignant in the background of liver fibrosis. Results Livers harvested about 3 months after HT had excessive collagen deposition and activated hepatic stellate cells surrounding the tumors. Hepatocarcinogenesis was significantly accelerated in the fibrotic livers compared to those of the control, significantly decreasing the life span of the mice. The tumor incidence and average number of tumors per mouse were significantly higher in the group treated with CCl4 compared to the vehicle-treated control mice, following HT (p < 0.01). Conclusions Considering the simplicity and efficiency in generating HCC for fibrotic livers, the transgenic HCC model has the potential to be effectively used in preclinical testing of HCC anticancer therapy and in studies of hepatocarcinogenesis in fibrotic livers. Electronic supplementary material The online version of this article (doi:10.1186/s12876-016-0423-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sook In Chung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 120-752, South Korea. .,Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, 120-752, South Korea.
| | - Hyuk Moon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 120-752, South Korea. .,Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, 120-752, South Korea.
| | - Dae Yeong Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Kyung Joo Cho
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Hye-Lim Ju
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Simon Weonsang Ro
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 120-752, South Korea. .,Room 407, ABMRC, Severance Hospital, Yonsei University College of Medicine, Yonsei-ro 50-1, Seoul, 120-752, South Korea.
| |
Collapse
|
17
|
Wijesundera KK, Izawa T, Tennakoon AH, Golbar HM, Tanaka M, Kuwamura M, Yamate J. M1-/M2-macrophages contribute to the development of GST-P-positive preneoplastic lesions in chemically-induced rat cirrhosis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.etp.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model. ACTA ACUST UNITED AC 2014; 66:225-34. [DOI: 10.1016/j.etp.2014.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/05/2014] [Accepted: 02/24/2014] [Indexed: 02/06/2023]
|
19
|
Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem Toxicol 2014; 68:267-82. [DOI: 10.1016/j.fct.2014.03.018] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/10/2023]
|
20
|
Fujii Y, Segawa R, Kimura M, Wang L, Ishii Y, Yamamoto R, Morita R, Mitsumori K, Shibutani M. Inhibitory effect of α-lipoic acid on thioacetamide-induced tumor promotion through suppression of inflammatory cell responses in a two-stage hepatocarcinogenesis model in rats. Chem Biol Interact 2013; 205:108-18. [PMID: 23830814 DOI: 10.1016/j.cbi.2013.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/31/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
Abstract
To investigate the protective effect of α-lipoic acid (a-LA) on the hepatocarcinogenic process promoted by thioacetamide (TAA), we used a two-stage liver carcinogenesis model in N-diethylnitrosamine (DEN)-initiated and TAA-promoted rats. We examined the modifying effect of co-administered a-LA on the liver tissue environment surrounding preneoplastic hepatocellular lesions, with particular focus on hepatic macrophages and the mechanism behind the decrease in apoptosis of cells surrounding preneoplastic hepatocellular lesions during the early stages of hepatocellular tumor promotion. TAA increased the number and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of proliferating and apoptotic cells in the liver. Co-administration with a-LA suppressed these effects. TAA also increased the numbers of ED2(+), cyclooxygenase-2(+), and heme oxygenase-1(+) hepatic macrophages as well as the number of CD3(+) lymphocytes. These effects were also suppressed by a-LA. Transcript levels of some inflammation-related genes were upregulated by TAA and downregulated by a-LA in real-time RT-PCR analysis. Outside the GST-P(+) foci, a-LA reduced the numbers of apoptotic cells, active caspase-8(+) cells and death receptor (DR)-5(+) cells. These results suggest that hepatic macrophages producing proinflammatory factors may be activated in TAA-induced tumor promotion. a-LA may suppress tumor-promoting activity by suppressing the activation of these macrophages and the subsequent inflammatory responses. Furthermore, a-LA may suppress tumor-promoting activity by suppressing the DR5-mediated extrinsic pathway of apoptosis and the subsequent regeneration of liver cells outside GST-P(+) foci.
Collapse
Key Words
- 8-OHdG
- 8-hydroxydeoxyguanosine
- Aldh1a1
- Apoptosis
- B-cell CLL/lymphoma 2
- BNF
- Bax
- Bcl2
- Bcl2-associated X protein
- Bcl2-like 1
- Bcl2l1
- CMD
- Casp
- Cd4
- Cd4 molecule
- Cd8a
- Cd8a molecule
- Col1a1
- Cox-2
- Cu
- Cx3cl1
- Cxcl10
- DAB
- DEN
- DR5
- Death receptor 5 (DR5)
- EMIQ
- Fadd
- Fas (TNFRSF6)-associated via death domain
- Fe
- GST-P
- Gpx2
- Gstm1
- HO-1
- Hprt
- Il1b
- Il4
- Inflammation
- Liver tumor promotion
- Mapk
- Mmp
- N-diethylnitrosamine
- NAD(P)H dehydrogenase, quinone 1
- Nfe2l2
- Nqo1
- PBS
- PCNA
- Ptgs2
- ROS
- Serpine1
- TAA
- TBARS
- TRAIL
- TUNEL
- Tgfb2
- Thioacetamide (TAA)
- Tnf
- Tnfrsf10b
- Tnfsf10
- Txn1
- a-LA
- aldehyde dehydrogenase family 1 member A1
- caspase
- chemokine (C-X-C motif) ligand 10
- chemokine (C-X3-C motif) ligand 1
- choline-methionine-deficient diet
- collagen, type I, alpha 1
- copper
- cyclooxygenase 2
- death receptor 5
- diaminobenzidine
- enzymatically modified isoquercitrin
- glutathione S-transferase mu 1
- glutathione S-transferase placental form
- glutathione peroxidase 2
- heme oxygenase-1
- hypoxanthine guanine phosphoribosyl transferase
- interleukin 1 beta
- interleukin 4
- iron
- matrix metalloproteinase
- mitogen activated protein kinase
- nuclear factor, erythroid derived 2, like 2
- phosphate buffered solution
- proliferating cell nuclear antigen
- prostaglandin-endoperoxide synthase 2
- reactive oxygen species
- serine (or cysteine) peptidase inhibitor, clade E, member 1
- terminal deoxynucleotidyl transferase-mediated nick end labeling
- thioacetamide
- thiobarbituric acid-reactive substances
- thioredoxin 1
- transforming growth factor, beta 2
- tumor necrosis factor
- tumor necrosis factor (ligand) superfamily, member 10
- tumor necrosis factor receptor superfamily, member 10b
- tumor necrosis factor-related apoptosis-inducing ligand
- α-Lipoic acid (a-LA)
- α-lipoic acid
- β-naphthoflavone
Collapse
Affiliation(s)
- Yuta Fujii
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Involvement of multiple cell cycle aberrations in early preneoplastic liver cell lesions by tumor promotion with thioacetamide in a two-stage rat hepatocarcinogenesis model. ACTA ACUST UNITED AC 2013; 65:979-88. [PMID: 23474136 DOI: 10.1016/j.etp.2013.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/09/2013] [Accepted: 01/23/2013] [Indexed: 02/06/2023]
Abstract
Thioacetamide (TAA) induces oxidative stress and hepatocarcinogenicity in rats. We previously reported that TAA promotion caused various disruptions in cell cycle protein expression in rats, including downregulation of p16(Ink4a), which is associated with intraexonic hypermethylation in hepatocellular proliferative lesions. This study further investigated the contribution of cell cycle aberrations associated with early hepatocarcinogenic processes induced by TAA using antioxidants, enzymatically modified isoquercitrin (EMIQ) and α-lipoic acid (ALA), in a two-stage rat hepatocarcinogenesis model. TAA-promotion after initiation with N-diethylnitrosamine increased the number and area of hepatocellular foci immunoreactive for glutathione S-transferase placental form (GST-P) and the numbers of proliferating and apoptotic cells. Co-treatment with EMIQ and ALA suppressed these increases. TAA-induced formation of p16(Ink4a-) foci in concordance with GST-P(+) foci was not suppressed by co-treatment with EMIQ or ALA. TAA-promotion increased cellular distributions of cell proliferation marker Ki-67, G2/M and spindle checkpoint proteins (phosphorylated checkpoint kinase 1 and Mad2), the DNA damage-related protein phosphorylated histone H2AX, and G2-M phase-related proteins (topoisomerase IIα, phosphorylated histone H3 and Cdc2) within GST-P(+) foci, and co-treatment with EMIQ or ALA suppressed these increases. These results suggest that downregulation of p16(Ink4a) may allow selective proliferation of preneoplastic cells by TAA promotion. However, antioxidants did not counteract this gene control. Moreover, effective suppression of TAA-induced cellular population changes within preneoplastic lesions by antioxidants may reflect facilitation of cell cycling and accumulation of DNA damage causing the activation of cell cycle checkpoints, leading to G2 and M phase arrest at the early stages of hepatocarcinogenesis promoted by TAA.
Collapse
|
22
|
Lu X, Hu B, Shao L, Tian Y, Jin T, Jin Y, Ji S, Fan X. Integrated analysis of transcriptomics and metabonomics profiles in aflatoxin B1-induced hepatotoxicity in rat. Food Chem Toxicol 2013; 55:444-55. [PMID: 23385219 DOI: 10.1016/j.fct.2013.01.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The aim of this work was to identify mechanisms and potential biomarkers for predicting the development and progression of aflatoxin B1 (AFB1)-induced acute hepatotoxicity. In this study, microarray analysis and metabolites profiles were used to identify shifts in gene expression and metabolite levels associated with the affected physiological processes of rats treated with AFB1. Histopathological examinations and serum biochemical analysis were simultaneously performed; the results indicated that hepatotoxicity occurred in higher dosage groups. However, gene expression analysis and metabolite profiles are more sensitive than general toxicity studies for detecting AFB1-induced acute hepatotoxicity as the patterns of low-dose AFB1-treated rats in these two technique platforms were more similar to the rats in higher dosage groups than to the control rats. Integrated analysis of the results from general toxicity studies, transcriptomics and metabonomics profiles suggested that p53 signaling pathway induced by oxidative damage was the crucial step in AFB1-induced acute hepatotoxicity, whereas gluconeogenesis and lipid metabolism disorder were found to be the major metabolic effects after acute AFB1 exposure. The genes and metabolites significantly affected in common in rat liver or serum of three doses AFB1 treatments served as potential biomarkers for detecting AFB1-induced acute hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Fujii Y, Kimura M, Ishii Y, Yamamoto R, Morita R, Hayashi SM, Suzuki K, Shibutani M. Effect of enzymatically modified isoquercitrin on preneoplastic liver cell lesions induced by thioacetamide promotion in a two-stage hepatocarcinogenesis model using rats. Toxicology 2013; 305:30-40. [PMID: 23318833 DOI: 10.1016/j.tox.2013.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 02/06/2023]
Abstract
To investigate the protective effect of enzymatically modified isoquercitrin (EMIQ) on the hepatocarcinogenic process, we used a two-stage hepatocarcinogenesis model in N-diethylnitrosamine-initiated and thioacetamide (TAA)-promoted rats. We examined the modifying effect of co-administration with EMIQ on the liver tissue environment including hepatic macrophages and lymphocytes and on the induction mechanism of preneoplastic cell apoptosis during early stages of hepatocellular tumor promotion. TAA increased the number and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of proliferating and apoptotic cells in randomly selected areas in liver sections. Co-administration with EMIQ suppressed these effects. TAA also increased the numbers of ED2(+), cyclooxygenase-2(+), and heme oxygenase-1(+) liver cells, as well as the number of CD3(+) lymphocytes. These effects were also suppressed by EMIQ. EMIQ increased liver levels of thiobarbituric acid-reactive substance and 8-hydroxydeoxyguanosine, and TUNEL(+) apoptotic cells, death receptor 5 (DR5)(+) cells and 4-hydroxy-2-nonenal(+) cells within GST-P(+) foci. Outside the GST-P(+) foci, EMIQ decreased the numbers of apoptotic cells and DR5(+) cells. These results suggest that TAA-induced tumor promotion involves activation of hepatic macrophages producing proinflammatory factors. EMIQ may suppress the TAA-induced tumor-promoting activity by an anti-inflammatory mechanism mediated by suppressing the activation of these macrophages. Furthermore, EMIQ may suppress tumor-promoting activity differentially between the inside and outside of GST-P(+) foci. Within GST-P(+) foci, EMIQ facilitates the apoptosis of preneoplastic cells through the upregulation of DR5. Outside the GST-P(+) foci, EMIQ suppresses apoptosis and the subsequent regeneration of non-transformed liver cells.
Collapse
Affiliation(s)
- Yuta Fujii
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hayashi H, Taniai E, Morita R, Yafune A, Suzuki K, Shibutani M, Mitsumori K. Threshold dose of liver tumor promoting effect of β-naphthoflavone in rats. J Toxicol Sci 2012; 37:517-26. [PMID: 22687991 DOI: 10.2131/jts.37.517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To determine the threshold dose of β-Naphthoflavone (BNF) that induces hepatocellular tumor promoting effects, reactive oxygen species (ROS) generation and thiobarbituric acid-reactive substance (TBARS) formation, and drug-metabolizing enzymes that protect against ROS generation, two-stage liver carcinogenesis model was used. Partial hepatectomized rats (n = 11 to 12) were fed diets containing 0, 0.03, 0.06, 0.125 or 0.25% BNF for 6 weeks after an intraperitoneal injection of N-diethylnitrosamine (DEN) to initiate hepatocarcinogenesis. Histopathologically, glutathione S-transferase placental form (GST-P)-positive foci significantly increased in rats given 0.25% BNF. No marked changes in ROS production and TBARS contents were observed between the BNF treated and DEN alone groups. Real-time RT-PCR showed that the expression of Cyp1a1, Cyp1a2, Cyp1b1 and Nqo1 significantly increased in the groups given 0.03% BNF or more, but Ugt1a6, Akr7a3 and Gstm1 significantly increased in the groups given 0.125% BNF or more. Gpx2 and Yc2 significantly increased in the groups given 0.06% BNF or more and 0.25% BNF, respectively. Inflammation-related genes such as Ccl2, Mmp12, Serpine1 and Cox-2 significantly increased in the 0.25% BNF group. In immunohistochemistry, the number of cyclooxygenase-2 (COX-2)-positive cells increased in rats given 0.25% BNF. These results suggest that 0.25% BNF is the threshold dose for liver tumor promotion, and the fact that inflammation-related genes and COX-2 protein increased in the 0.25% BNF group strongly suggests that inflammation is involved in the liver tumor promoting effect of BNF in rats.
Collapse
Affiliation(s)
- Hitomi Hayashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Hayashi H, Taniai E, Morita R, Hayashi M, Nakamura D, Wakita A, Suzuki K, Shibutani M, Mitsumori K. Enhanced liver tumor promotion but not liver initiation activity in rats subjected to combined administration of omeprazole and β-naphthoflavone. J Toxicol Sci 2012; 37:969-85. [PMID: 23038005 DOI: 10.2131/jts.37.969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Omeprazole (OPZ) and β-naphthoflavone (BNF) are cytochrome P450 (CYP)1A inducers and have liver tumor promoting effects. In this study, we investigated the co-promoting and co-initiating effects of OPZ and BNF in rats. In Experiment 1, male rats were subjected to partial hepatectomy (PH), and given oral doses of 138 or 276 mg/kg OPZ, 0.125% or 0.25% BNF or 138 mg/kg OPZ+0.125% BNF (n = 9~12) for 6 weeks after N-diethylnitrosamine (DEN) initiation. In Experiment 2, male rats were treated with oral doses of 138 or 276 mg/kg OPZ, 0.03% or 0.06% BNF or 138 mg/kg OPZ+0.03% BNF (n = 11~12) for 9 days starting 1 week before initiating treatment. As an initiating treatment, 2-Amino-3,4-dimethylimidazo[4,5-f]quinolone (MeIQx) was orally administered 12 hr after PH. The rats were fed a basal diet for 15 days, followed by a diet containing 0.015% 2-acetylaminofluorene for the next 10 days with a single oral dose of carbon tetrachloride. In Experiment 1, the number and area of glutathione S-transferase placental form-positive foci in the OPZ+BNF group were significantly higher than the average values of the High OPZ or the High BNF group. The expression of cyclooxygenase-2 (Cox-2) and COX-2 protein in the liver significantly increased in the OPZ+BNF group. In Experiment 2, liver initiation activity was not enhanced by the co-administration of OPZ+BNF. The results of our studies suggest that the co-administration of OPZ and BNF results in synergistic effects in the liver tumor promotion probably owing to increased COX-2 expression, but no modifying effect in the liver initiation activity of MeIQx in rats.
Collapse
Affiliation(s)
- Hitomi Hayashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tsuchiya T, Wang L, Yafune A, Kimura M, Ohishi T, Suzuki K, Mitsumori K, Shibutani M. Disruptive cell cycle regulation involving epigenetic downregulation of Cdkn2a (p16Ink4a) in early-stage liver tumor-promotion facilitating liver cell regeneration in rats. Toxicology 2012; 299:146-54. [DOI: 10.1016/j.tox.2012.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
|