1
|
Klatt OC, de Brouwer L, Hendriks F, Dehne EM, Ataç Wagegg B, Jennings P, Wilmes A. Human and rat renal proximal tubule in vitro models for ADME applications. Arch Toxicol 2025; 99:1613-1641. [PMID: 40032686 DOI: 10.1007/s00204-025-03987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025]
Abstract
The kidney is a major organ dictating excretion rates of chemicals and their metabolites from the body and thus renal clearance is frequently a major component of pharmaco-(toxico)-kinetic profiles. Within the nephron, the proximal tubule is the major site for xenobiotic reabsorption from glomerular filtrate and xenobiotic secretion from the blood into the lumen via the expression of multiple inward (lumen to interstitium) and outward transport systems (interstitium to lumen). While there exist several human proximal tubular cell culture options that could be utilized for modelling the proximal tubule component of renal clearance, they do not necessarily represent the full complement of xenobiotic transport processes of their in vivo counterparts. Here, we review available human and rat renal proximal tubule in vitro models, including subcellular fractions, immortalized cell lines, primary cell cultures, induced pluripotent stem cell (iPSC)-derived models and also consider more organotypic cell culture environments such as microporous growth supports, organoids and microfluidic systems. This review focuses on expression levels and function of human and rat renal transporters and phase I and II metabolizing enzymes in these models in order to critically assess their usefulness and to identify potential solutions to overcome identified limitations.
Collapse
Affiliation(s)
- Olivia C Klatt
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lenya de Brouwer
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Femke Hendriks
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | - Paul Jennings
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Baratzhanova G, El Sheikh Saad H, Fournier A, Huguet M, Joubert O, Paul A, Djansugurova L, Cakir-Kiefer C. Comparison of the impact of chlordecone and its metabolite chlordecol on genes involved in pesticide metabolism in HepG2 cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104701. [PMID: 40252817 DOI: 10.1016/j.etap.2025.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Chlordecone (CLD) is an organochlorine pesticide that is highly resistant in the environment. This compound and its metabolite chlordecol (CLD-OH) still can be found in the French West Indies, after being banned 30 years ago. The novelty of this work lies in evaluating the toxicity of CLD-OH compared to CLD and examining the effects of these compounds on nuclear receptor (PXR, PPARα, and CAR) and metabolism-related genes (CYP2B6, CYP3A4) in vitro using HepG2 cell line as a model. Our study demonstrates that both compounds displayed an almost similar pattern of decrease in cell viability. Moreover, it was shown that CLD-OH can increase the expression of PXR, CYP3A4, and PPARα genes in comparison to CLD. The AKR1C4 gene showed a slight decrease in expression after CLD treatment. Collectively, this study provided a new finding into the impact of CLD-OH and compares the mode of action of CLD and its metabolite.
Collapse
Affiliation(s)
- Gulminyam Baratzhanova
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France; al Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty 050040, Kazakhstan; Institute of General Genetics and Physiology, Almaty 050060, Kazakhstan.
| | | | - Agnès Fournier
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Marion Huguet
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Olivier Joubert
- Université de Lorraine, Institut Jean Lamour, UMR CNRS 7198, Nancy F-54000, France
| | - Arnaud Paul
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Leyla Djansugurova
- al Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty 050040, Kazakhstan; Institute of General Genetics and Physiology, Almaty 050060, Kazakhstan
| | | |
Collapse
|
3
|
Elabed S, Khaled R, Farhat N, Madkour M, Mohammad Zadeh SA, Shousha T, Taneera J, Semerjian L, Abass K. Assessing aflatoxin exposure in the United Arab Emirates (UAE): Biomonitoring AFM1 levels in urine samples and their association with dietary habits. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104644. [PMID: 39870123 DOI: 10.1016/j.etap.2025.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Aflatoxins, known for their carcinoginc properties and produced by Aspergillus fungi, pose a substantial threat to public health, particularly in regions with hot and humid climates, where individuals are exposed to these toxins through contaminated food. The primary objective of this study was to assess the extent of aflatoxin exposure in the Emirate of Sharjah employing Aflatoxin M1 (AFM1) as a biomarker in urine samples from adult participants. Furthermore, this study aimed to explore the relationship between dietary habits and AFM1 levels in order to establish a potential link. METHODS In a cross-sectional study design, a total of 144 adults (73 females and 71 males) were recruited for participation. The urine samples obtained from participants were subjected to analysis for AFM1 concentrations utilizing the enzyme-linked immunosorbent assay (ELISA) method. Additionally, structured questionnaires were administered to collect information on the dietary and lifestyle habits of the participants. To explore the relationship between dietary factors and AFM1 levels, various statistical analyses, including linear regression and the Mann-Whitney U test, were performed. RESULTS AFM1 was detected in 69 % of the samples under invstigation, wherein males exhibited a higher mean level (0.912 ng/mg creatinine) in comparison to females (0.676 ng/mg creatinine). The overall mean concentration of AFM1 was determined to be 0.792 ng/mg creatinine. It is worth noting that there was a significant correlation between rice consumption and heightened AFM1 exposure among males, while no such correlation was observed among females. CONCLUSION This study conducted in the UAE provides novel perspectives on aflatoxin exposure, shedding light on the gender-specific correlation between rice consumption and aflatoxin levels among males. These findings hold significant implications for guiding public health interventions and underscore the pivotal role of ongoing surveillance and stringent food safety regulations in mitigating the hazards associated with aflatoxin contamination.
Collapse
Affiliation(s)
- Shahd Elabed
- Environmental Health Sciences, College of Health Sciences, University of Sharjah, UAE
| | - Raghad Khaled
- Environmental Health Sciences, College of Health Sciences, University of Sharjah, UAE
| | - Nada Farhat
- Sharjah Institute for Medical Research, University of Sharjah, UAE
| | - Mohamed Madkour
- Sharjah Institute for Medical Research, University of Sharjah, UAE; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, UAE
| | | | - Tamer Shousha
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, UAE
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, UAE; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, UAE
| | - Lucy Semerjian
- Environmental Health Sciences, College of Health Sciences, University of Sharjah, UAE; Research Institute of Sciences and Engineering, University of Sharjah, UAE
| | - Khaled Abass
- Environmental Health Sciences, College of Health Sciences, University of Sharjah, UAE; Sharjah Institute for Medical Research, University of Sharjah, UAE; Research Institute of Sciences and Engineering, University of Sharjah, UAE; Research Unit of Biomedicine and Internal Medicine, University of Oulu, Finland.
| |
Collapse
|
4
|
Horn G, Frielingsdorf F, Demel T, Rothmiller S, Worek F, Amend N. Concentration-dependent effects of the nerve agents cyclosarin and VX on cytochrome P450 in a HepaRG cell-based liver model. J Appl Toxicol 2025; 45:222-229. [PMID: 39228234 DOI: 10.1002/jat.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
The exposure to highly toxic organophosphorus (OP) compounds, including pesticides and nerve agents, is an ongoing medical challenge. OP can induce the uncontrolled overstimulation of the cholinergic system through inhibition of the enzyme acetylcholinesterase (AChE). The cytochrome P450 (CYP) enzymes in the liver play a predominant role in the metabolism of xenobiotics and are involved in the oxidative biotransformation of most clinical drugs. Previous research concerning the interactions between OP and CYP has usually focused on organothiophosphate pesticides that require CYP-mediated bioactivation to their active oxon metabolites to act as inhibitors of AChE. Since there has been little data available concerning the effect of nerve agents on CYP, we performed a study with cyclosarin (GF) and O-ethyl-S-[2-(diisopropylamino)-ethyl]-methylphosphonothioate (VX) by using a well-established, metabolically competent in vitro liver model (HepaRG cells). The inhibitory effect of the nerve agents GF and VX on the CYP3A4 enzyme was investigated showing a low CYP3A4 inhibitory potency. Changes on the transcription level of CYP and associated oxygenases were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using the two nerve agent concentrations 250 nM and 250 μM. In conclusion, the results demonstrated various effects on oxygenase-associated genes in dependence of the concentration and the structure of the nerve agent. Such information might be of relevance for potential interactions between nerve agents, antidotes or other clinically administered drugs, which are metabolized by the affected CYP, for example, for the therapy with benzodiazepines, that are used for the symptomatic treatment of OP poisoning and that require CYP-mediated biotransformation.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | | | - Tobias Demel
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
5
|
Pang WK, Kuznetsova E, Holota H, De Haze A, Beaudoin C, Volle DH. Understanding the role of endocrine disrupting chemicals in testicular germ cell cancer: Insights into molecular mechanisms. Mol Aspects Med 2024; 99:101307. [PMID: 39213722 DOI: 10.1016/j.mam.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review examines the complex interplay between endocrine disrupting chemicals (EDCs) and the development of testicular germ cell tumors (TGCTs). Despite the high cure rates of TGCTs, challenges in diagnosis and treatment remain, necessitating a deeper understanding of the etiology of the disease. Here, we emphasize current knowledge on the role of EDCs as potential risk factors for TGCTs, focusing on pesticides and perfluorinated and polyfluoroalkyl substances (PFAs/PFCs). Evidence suggests that EDCs disrupt endocrine pathways and induce epigenetic changes that contribute to the development of TGCTs. However, the direct link between EDCs and TGCTs remains elusive and requires further investigation of the molecular mechanisms. We also highlighted the importance of studying nuclear receptors as potential targets for understanding TGCT etiology. In addition, recent evidence implicates PFAs/PFCs in TGCT incidence, highlighting the need for further research into their impact on human health. Overall, this review provides valuable insights into the potential role of EDCs in TGCT development and suggests avenues for future research, while also highlighting how understanding their influence may pave the way for novel therapeutic approaches to improve disease management.
Collapse
Affiliation(s)
- Won-Ki Pang
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| | - Ekaterina Kuznetsova
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Hélène Holota
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France
| | - David H Volle
- INSERM U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD Institute, Team-Volle, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Beisl J, Jochum K, Chen Y, Varga E, Marko D. Combinatory Effects of Acrylamide and Deoxynivalenol on In Vitro Cell Viability and Cytochrome P450 Enzymes of Human HepaRG Cells. Toxins (Basel) 2024; 16:389. [PMID: 39330847 PMCID: PMC11436166 DOI: 10.3390/toxins16090389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Acrylamide (AA) can be formed during the thermal processing of carbohydrate-rich foods. Deoxynivalenol (DON), a mycotoxin produced by Fusarium spp., contaminates many cereal-based products. In addition to potential co-exposure through a mixed diet, co-occurrence of AA and DON in thermally processed cereal-based products is also likely, posing the question of combinatory toxicological effects. In the present study, the effects of AA (0.001-3 mM) and DON (0.1-30 µM) on the cytotoxicity, gene transcription, and expression of major cytochrome P450 (CYP) enzymes were investigated in differentiated human hepatic HepaRG cells. In the chosen ratios of AA-DON (10:1; 100:1), cytotoxicity was clearly driven by DON and no overadditive effects were observed. Using quantitative real-time PCR, about twofold enhanced transcript levels of CYP1A1 were observed at low DON concentrations (0.3 and 1 µM), reflected by an increase in CYP1A activity in the EROD assay. In contrast, CYP2E1 and CYP3A4 gene transcription decreased in a concentration-dependent manner after incubation with DON (0.01-0.3 µM). Nevertheless, confocal microscopy showed comparably constant protein levels. The present study provided no indication of an induction of CYP2E1 as a critical step in AA bioactivation by co-occurrence with DON. Taken together, the combination of AA and DON showed no clear physiologically relevant interaction in HepaRG cells.
Collapse
Affiliation(s)
- Julia Beisl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (J.B.); (K.J.); (D.M.)
| | - Kristina Jochum
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (J.B.); (K.J.); (D.M.)
- German Federal Institute of Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China;
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (J.B.); (K.J.); (D.M.)
- Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinarplatz 1, 1210 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (J.B.); (K.J.); (D.M.)
| |
Collapse
|
7
|
Horn G, Demel T, Rothmiller S, Amend N, Worek F. The influence of the model pesticides parathion and paraoxon on human cytochrome P450 and associated oxygenases in HepaRG cells. Clin Toxicol (Phila) 2024; 62:288-295. [PMID: 38874383 DOI: 10.1080/15563650.2024.2361879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Intentional and unintentional organophosphorus pesticide exposure is a public health concern. Organothiophosphate compounds require metabolic bioactivation by the cytochrome P450 system to their corresponding oxon analogues to act as potent inhibitors of acetylcholinesterase. It is known that interactions between cytochrome P450 and pesticides include the inhibition of major xenobiotic metabolizing cytochrome P450 enzymes and changes on the genetic level. METHODS In this in vitro study, the influence of the pesticides parathion and paraoxon on human cytochrome P450 and associated oxygenases was investigated with a metabolically competent cell line (HepaRG cells). First, the viability of the cells after exposure to parathion and paraoxon was evaluated. The inhibitory effect of both pesticides on cytochrome P450 3A4, which is a pivotal enzyme in the metabolism of xenobiotics, was examined by determining the dose-response curve. Changes on the transcription level of 92 oxygenase associated genes, including those for important cytochrome P450 enzymes, were evaluated. RESULTS The exposure of HepaRG cells to parathion and paraoxon at concentrations up to 100 µM resulted in a viability of 100 per cent. After exposure for 24 hours, pronounced inhibition of cytochrome P450 3A4 enzyme activity was shown, indicating 50 per cent effective concentrations of 1.2 µM (parathion) and 2.1 µM (paraoxon). The results revealed that cytochrome P450 involved in parathion metabolism were significantly upregulated. DISCUSSION Relevant changes of the cytochrome P450 3A4 enzyme activity and significant alteration of genes associated with cytochrome P450 suggest an interference of pesticide exposure with numerous metabolic processes. The major limitations of the work involve the use of a single pesticide and the in vitro model as surrogate to human hepatocytes. CONCLUSION The data of this study might be of relevance after survival of acute, life-threatening intoxications with organophosphorus compounds, particularly for the co-administration of drugs, which are metabolized by the affected cytochrome P450.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Tobias Demel
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
8
|
Fauteux M, Côté N, Bergeron S, Maréchal A, Gaudreau L. Differential effects of pesticides on dioxin receptor signaling and p53 activation. Sci Rep 2023; 13:21211. [PMID: 38040841 PMCID: PMC10692357 DOI: 10.1038/s41598-023-48555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
As modern agricultural practices increase their use of chemical pesticides, it is inevitable that we will find a number of these xenobiotics within drinking water supplies and disseminated throughout the food chain. A major problem that arises from this pollution is that the effects of most of these pesticides on cellular mechanisms in general, and how they interact with each other and affect human cells are still poorly understood. In this study we make use of cultured human cancer cells to measure by qRT-PCR how pesticides affect gene expression of stress pathways. Immunoblotting studies were performed to monitor protein expression levels and activation of signaling pathways. We make use of immunofluorescence and microscopy to visualize and quantify DNA damage events in those cells. In the current study, we evaluate the potential of a subset of widely used pesticides to activate the dioxin receptor pathway and affect its crosstalk with estrogen receptor signaling. We quantify the impact of these chemicals on the p53-dependent cellular stress response. We find that, not only can the different pesticides activate the dioxin receptor pathway, most of them have better than additive effects on this pathway when combined at low doses. We also show that different pesticides have the ability to trigger crosstalk events that may generate genotoxic estrogen metabolites. Finally, we show that some, but not all of the tested pesticides can induce a p53-dependent stress response. Taken together our results provide evidence that several xenobiotics found within the environment have the potential to interact together to elicit significant effects on cell systems. Our data warrants caution when the toxicity of substances that are assessed simply for individual chemicals, since important biological effects could be observed only in the presence of other compounds, and that even at very low concentrations.
Collapse
Affiliation(s)
- Myriam Fauteux
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nadia Côté
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sandra Bergeron
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luc Gaudreau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
9
|
Ngan DK, Xia M, Simeonov A, Huang R. In vitro profiling of pesticides within the Tox21 10K compound library for bioactivity and potential toxicity. Toxicol Appl Pharmacol 2023; 473:116600. [PMID: 37321325 PMCID: PMC10330904 DOI: 10.1016/j.taap.2023.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Pesticides include a diverse class of toxic chemicals, often having numerous modes of actions when used in agriculture against targeted organisms to control insect infestation, halt unwanted vegetation, and prevent the spread of disease. In this study, the in vitro assay activity of pesticides within the Tox21 10K compound library were examined. The assays in which pesticides showed significantly more activities than non-pesticide chemicals revealed potential targets and mechanisms of action for pesticides. Furthermore, pesticides that showed promiscuous activity against many targets and cytotoxicity were identified, which warrant further toxicological evaluation. Several pesticides were shown to require metabolic activation, demonstrating the importance of introducing metabolic capacity to in vitro assays. Overall, the activity profiles of pesticides highlighted in this study can contribute to the knowledge gaps surrounding pesticide mechanisms and to the better understanding of the on- and off-target organismal effects of pesticides.
Collapse
Affiliation(s)
- Deborah K Ngan
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Menghang Xia
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ruili Huang
- Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, MD 20850, USA.
| |
Collapse
|
10
|
Karaca M, Willenbockel CT, Tralau T, Bloch D, Marx-Stoelting P. Toxicokinetic and toxicodynamic mixture effects of plant protection products: A case study. Regul Toxicol Pharmacol 2023; 141:105400. [PMID: 37116736 DOI: 10.1016/j.yrtph.2023.105400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Authorisation of ready to use plant protection products (PPPs) usually relies on the testing of acute and local toxicity only. This is in stark contrast to the situation for active substances where the mandatory data set comprises a most comprehensive set of studies. While the combination of certain active ingredients and co-formulants may nevertheless result in increased toxicity of the final product such combinations have never been evaluated systematically for complex and long-term toxicological endpoints. We therefore investigated the effect of three frequently used co-formulants on the toxicokinetic and toxicodynamic of the representative active substance combination of tebuconazol (Teb) and prothioconazol (Pro) or of cypermethrin (Cpm) and piperonyl butoxide (Pip), respectively. With all four active substances being potential liver steatogens, cytotoxicity and triglyceride accumulation in HepaRG were used as primary endpoints. Concomitantly transcriptomics and biochemical studies were applied to interrogate for effects on gene expression or inhibition of CYP3A4 as key enzyme for functionalization. Some of the tested combinations clearly showed more than additive effects, partly due to CYP3A4 enzyme inhibition. Other effects comprised the modulation of the expression and activity of steatosis-related nuclear key receptors. Altogether, the findings highlight the need for a more systematic consideration of toxicodynamic and toxicokinetic mixture effects during assessment of PPPs.
Collapse
Affiliation(s)
- Mawien Karaca
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany; Technical University of Berlin, Institute for Chemistry, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Christian Tobias Willenbockel
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Denise Bloch
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany; Technical University of Berlin, Institute for Chemistry, Straße des 17. Juni 115, 10623, Berlin, Germany.
| |
Collapse
|
11
|
Zhang H, Zhao F, Liu Y, Li Y, Liu H, Sun H. Assessment of the inhibition risk of chlorophenol substances on cytochrome P450 via cocktail inhibition assays. Toxicol Appl Pharmacol 2023; 461:116401. [PMID: 36706924 DOI: 10.1016/j.taap.2023.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Chlorophenols (CPs) are widespread pollutants in nature. CPs have raised significant concern due to their potential hepatotoxic effects on humans. This research aimed to ascertain the inhibitory potential of eleven CPs (2-CP, 3-CP, 4-CP, 2,4-DCP, 2,3,4-TCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,5-TeCP, 2,3,4,6-TeCP, 2,3,5,6-TeCP, and PCP) on nine human CYP isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4). The CPs that inhibit the activity of CYP isoforms were detected with human liver microsomes (HLM) using a cocktail approach in vitro. The results demonstrated that trichlorophenols, tetrachlorophenols, and PCP strongly inhibited CYP2C8 and CYP2C9. The half inhibition concentration (IC50) value of 2,3,4,6-TeCP and PCP for CYP2C8 inhibition was 27.3 μM and 12.3 μM, respectively. The IC50 for the inhibition of 2,4,6-TCP, 2,3,4,6-TeCP and PCP towards CYP2C9 were calculated to be 30.3 μM, 5.8 μM and 2.2 μM, respectively. 2,3,4,6-TeCP, and PCP exhibited non-competitive inhibition towards CYP2C8. 2,4,6-TCP, 2,3,4,6-TeCP, and PCP exhibited competitive inhibition towards CYP2C9. The inhibition kinetics parameters (Ki) were 51.51 μM, 22.28 μM, 37.86 μM, 7.27 μM, 0.68 μM for 2,3,4,6-TeCP-CYP2C8, PCP-CYP2C8, 2,4,6-TCP-CYP2C9, 2,3,4,6-TeCP-CYP2C9, PCP-CYP2C9, respectively. This study also defined clear structure-activity relationships (SAR) of CPs on CYP2C8, supported by molecular docking studies. Overall, CPs were found to cause inhibitory effects on CYP isoforms in vitro, and this finding may provide a basis for CPs focused on CYP isoforms inhibition endpoints.
Collapse
Affiliation(s)
- Haoqian Zhang
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China; First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Furong Zhao
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China; Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian 116000, China; Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Liaoning Runsheng Kangtai Medical Lab Co. Ltd, Jinzhou 121219, China
| | - Yong Liu
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China
| | - Ying Li
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China; Dalian Innovation Center of Laboratory Medicine Mass Spectrometry Technology, Dalian Runsheng Kangtai Medical Lab Co. Ltd, Dalian 116000, China; Clinical Mass Spectrometry Profession Technology Innovation Center of Liaoning Province, Liaoning Runsheng Kangtai Medical Lab Co. Ltd, Jinzhou 121219, China
| | - Haiwen Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Hongzhi Sun
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou Medical University, Jinzhou 121001, China; First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
12
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
13
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
De Anna JS, Bieczynski F, Cárcamo JG, Venturino A, Luquet CM. Chlorpyrifos stimulates ABCC-mediated transport in the intestine of the rainbow trout Oncorhynchus mykiss. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105222. [PMID: 36127061 DOI: 10.1016/j.pestbp.2022.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The organophosphorus pesticide chlorpyrifos, detected in water and food worldwide, has also been found in the Río Negro and Neuquén Valley, North Patagonia, Argentina, where the rainbow trout, Oncorhynchus mykiss, is one of the most abundant fish species. We analyzed whether chlorpyrifos affects the transport activity of the ATP-binding cassette protein transporters from the subfamily C (ABCC), which are critical components of multixenobiotic resistance. We exposed ex vivo O. mykiss middle intestine strips (non-polarized) and segments (polarized) for one hour to 0 (solvent control), 3, 10, and 20 μg L-1 and to 0, 10, and 20 μg L-1 chlorpyrifos, respectively. We estimated the Abcc-mediated transport rate by measuring the transport rate of the specific Abcc substrate 2,4-dinitrophenyl-S-glutathione (DNP-SG). In addition, we measured the enzymatic activity of cholinesterase, carboxylesterase, glutathione-S-transferase, and 7-ethoxyresorufin-O-deethylase (EROD, indicative of the activity of cytochrome P450 monooxygenase 1A, CYP1A). We also measured lipid peroxidation using the thiobarbituric acid reactive substances method and the gene expression of Abcc2 and genes of the AhR pathway, AhR, ARNT, and cyp1a, by qRT-PCR. Chlorpyrifos induced the DNP-SG transport rate in middle intestine strips in a concentration-dependent manner (49-71%). In polarized preparations, the induction of the DNP-SG transport rate was observed only in everted segments exposed to 20 μg L-1 chlorpyrifos (40%), indicating that CPF only stimulated the apical (luminal) transport flux. Exposure to chlorpyrifos increased GST activity by 42% in intestine strips and inhibited EROD activity (47.5%). In addition, chlorpyrifos exposure inhibited cholinesterase (34-55%) and carboxylesterase (33-42.5%) activities at all the concentrations assayed and increased TBARS levels in a concentration-dependent manner (71-123%). Exposure to 20 μgL-1 chlorpyrifos did not affect the mRNA expression of the studied genes. The lack of inhibition of DNP-SG transport suggests that chlorpyrifos is not an Abcc substrate. Instead, CPF induces the activity of Abcc proteins in the apical membrane of enterocytes, likely through a post-translational pathway.
Collapse
Affiliation(s)
- Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (Consejo Nacional de Investigaciones Científicas y Técnicas -Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Comahue), Neuquén, Argentina
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Comahue), Neuquén, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (Consejo Nacional de Investigaciones Científicas y Técnicas -Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina.
| |
Collapse
|
15
|
Jacobs MN, Kubickova B, Boshoff E. Candidate Proficiency Test Chemicals to Address Industrial Chemical Applicability Domains for in vitro Human Cytochrome P450 Enzyme Induction. FRONTIERS IN TOXICOLOGY 2022; 4:880818. [PMID: 35795225 PMCID: PMC9252529 DOI: 10.3389/ftox.2022.880818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes play a key role in the metabolism of both xenobiotics and endogenous chemicals, and the activity of some CYP isoforms are susceptible to induction and/or inhibition by certain chemicals. As CYP induction/inhibition can bring about significant alterations in the level of in vivo exposure to CYP substrates and metabolites, CYP induction/inhibition data is needed for regulatory chemical toxicity hazard assessment. On the basis of available human in vivo pharmaceutical data, a draft Organisation for Economic Co-operation and Development Test Guideline (TG) for an in vitro CYP HepaRG test method that is capable of detecting the induction of four human CYPs (CYP1A1/1A2, 2B6, and 3A4), has been developed and validated for a set of pharmaceutical proficiency chemicals. However to support TG adoption, further validation data was requested to demonstrate the ability of the test method to also accurately detect CYP induction mediated by industrial and pesticidal chemicals, together with an indication on regulatory uses of the test method. As part of "GOLIATH", a European Union Horizon-2020 funded research project on metabolic disrupting chemical testing approaches, work is underway to generate supplemental validated data for an additional set of chemicals with sufficient diversity to allow for the approval of the guideline. Here we report on the process of proficiency chemical selection based on a targeted literature review, the selection criteria and considerations required for acceptance of proficiency chemical selection for OECD TG development (i.e. structural diversity, range of activity, relevant chemical sectors, global restrictions etc). The following 13 proposed proficiency chemicals were reviewed and selected as a suitable set for use in the additional validation experiments: tebuconazole, benfuracarb, atrazine, cypermethrin, chlorpyrifos, perfluorooctanoic acid, bisphenol A, N,N-diethyl-m-toluamide, benzo-[a]-pyrene, fludioxonil, malathion, triclosan, and caffeine. Illustrations of applications of the test method in relation to endocrine disruption and non-genotoxic carcinogenicity are provided.
Collapse
Affiliation(s)
- Miriam Naomi Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Barbara Kubickova
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Eugene Boshoff
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
16
|
Ebedy YA, Elshazly MO, Hassan NH, Ibrahim MA, Hassanen EI. Novel insights into the potential mechanisms underlying carbendazim-induced hepatorenal toxicity in rats. J Biochem Mol Toxicol 2022; 36:e23079. [PMID: 35437878 DOI: 10.1002/jbt.23079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/13/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022]
Abstract
Carbendazim (CBZ) is a common environmental pollutant that can contaminate food and water and severely damage human health. Some studies revealed the adverse effect of CBZ on different organs, but its detailed toxicity mechanism has not been elucidated yet. Thus, the present study aims to clarify the mechanisms of CBZ-induced hepatorenal toxicity in rats. Therefore, we partitioned 40 male Wistar rats into four groups (n = 10): a negative control group and three treatment groups, which received 100, 300, and 600 mg/kg of CBZ. All rats received the treatment daily by oral gavage. We collected blood and organ samples (liver and kidney) at 14 and 28 days postdosing. CBZ caused extensive pathological alterations in both the liver and kidneys, such as cellular degeneration and necrosis accompanied by severe inflammatory reactions in a dose- and time-dependent manner. All the CBZ-treated groups displayed strong tumor necrosis factor-α and nuclear factor-κB (NF-κB) immunopositivity. Additionally, CBZ dose-dependently elevated the alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine serum levels and reduced the serum albumin levels. Furthermore, CBZ-induced apoptosis, as indicated by the observed Bax gene upregulation and Bcl-2 gene downregulation in both organs. All these changes may be related to oxidative stress, as indicated by the increase in malondialdehyde levels and the decrease in total antioxidant capacity. Our results demonstrate that CBZ-induced dose- and time-dependent hepatorenal damage through oxidative stress, which activated both the NF-κB signaling pathway and Bcl-based programmed cell death.
Collapse
Affiliation(s)
- Yasmin A Ebedy
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed O Elshazly
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Neven H Hassan
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
17
|
Hirte S, Burk O, Tahir A, Schwab M, Windshügel B, Kirchmair J. Development and Experimental Validation of Regularized Machine Learning Models Detecting New, Structurally Distinct Activators of PXR. Cells 2022; 11:cells11081253. [PMID: 35455933 PMCID: PMC9029776 DOI: 10.3390/cells11081253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
The pregnane X receptor (PXR) regulates the metabolism of many xenobiotic and endobiotic substances. In consequence, PXR decreases the efficacy of many small-molecule drugs and induces drug-drug interactions. The prediction of PXR activators with theoretical approaches such as machine learning (ML) proves challenging due to the ligand promiscuity of PXR, which is related to its large and flexible binding pocket. In this work we demonstrate, by the example of random forest models and support vector machines, that classifiers generated following classical training procedures often fail to predict PXR activity for compounds that are dissimilar from those in the training set. We present a novel regularization technique that penalizes the gap between a model’s training and validation performance. On a challenging test set, this technique led to improvements in Matthew correlation coefficients (MCCs) by up to 0.21. Using these regularized ML models, we selected 31 compounds that are structurally distinct from known PXR ligands for experimental validation. Twelve of them were confirmed as active in the cellular PXR ligand-binding domain assembly assay and more hits were identified during follow-up studies. Comprehensive analysis of key features of PXR biology conducted for three representative hits confirmed their ability to activate the PXR.
Collapse
Affiliation(s)
- Steffen Hirte
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, 70376 Stuttgart, Germany; (O.B.); (M.S.)
| | - Ammar Tahir
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, 70376 Stuttgart, Germany; (O.B.); (M.S.)
- Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, 72074 Tübingen, Germany
- Cluster of Excellence IFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72074 Tübingen, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research Screening Port, 22525 Hamburg, Germany;
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Johannes Kirchmair
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-4277-55104
| |
Collapse
|
18
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
20
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
21
|
Freire C, Suárez B, Vela-Soria F, Castiello F, Reina-Pérez I, Andersen HR, Olea N, Fernández MF. Urinary metabolites of non-persistent pesticides and serum hormones in Spanish adolescent males. ENVIRONMENTAL RESEARCH 2021; 197:111016. [PMID: 33771511 DOI: 10.1016/j.envres.2021.111016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To assess the relationship of urinary concentrations of ethylenethiourea (ETU), the main degradation product of ethylene bis-dithiocarbamate fungicides, 3-phenoxybenzoic acid (3-PBA), a common metabolite of many pyrethroids, and 1-naphthol (1N), a metabolite of the carbamate insecticide carbaryl, with hormone concentrations in adolescent males; and to examine interactions between pesticide metabolites and polymorphisms in xenobiotic metabolizing enzymes, including CYP2C19 and CYP2D6, in relation to hormone concentrations. METHODS A cross-sectional study was conducted in 134 males from the Spanish Environment and Childhood (INMA)-Granada cohort. Urine and serum samples were collected from participants during the same clinical visit at the age of 15-17 years. First morning urine void was analyzed for concentrations of ETU, 3-PBA, and 1N. Serum was analyzed for concentrations of reproductive hormones (testosterone, 17β-estradiol [E2], dehydroepiandrosterone sulfate [DHEAS], sex hormone binding globulin [SHBG], luteinizing hormone [LH], follicle stimulating hormone [FSH], anti-Müllerian hormone [AMH], and prolactin), thyroid hormones (free thyroxine [FT4], total triiodothyronine [TT3], and thyroid stimulating hormone [TSH]), insulin growth factor 1 (IGF-1), adrenocorticotropic hormone (ACTH), and cortisol. CYP2C19 G681A and CYP2D6 G1846A polymorphisms were determined in blood from 117 participants. Multiple linear regression, interaction terms, and stratified analyses were performed. RESULTS Urinary ETU was detected in 74.6% of participants, 1N in 38.1%, and 3-PBA in 19.4%. Positive associations between detectable 3-PBA and TT3 and between detectable 1N and DHEAS were found, and marginally-significant associations of 1N with reduced E2 and FSH were observed. Poor CYP2C19 and CYP2D6 metabolizers (GA and AA genotype carriers) showed a greater increase in DHEAS for detected versus undetected 1N compared with GG genotype carriers. Poor CYP2D6 metabolizers (1846 GA and AA genotypes) evidenced increased cortisol for detected versus undetected ETU. CONCLUSIONS The associations observed between urinary pesticide metabolites and altered thyroid and reproductive hormones are novel and should be verified in studies with larger sample size. Further research on gene-environment interactions is warranted to establish individual susceptibility to pesticides and the risk of adverse health effects.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain.
| | - Beatriz Suárez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Unidad de Gestión Clínica (UGC) de Pediatría, Hospital Universitario San Cecilio, 18016, Granada, Spain.
| | - Iris Reina-Pérez
- Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| | - Helle R Andersen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Center (CIBM), University of Granada, 18100, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
22
|
Sawicki K, Czajka M, Matysiak-Kucharek M, Kurzepa J, Wojtyła-Buciora P, Zygo K, Kruszewski M, Kapka-Skrzypczak L. Chlorpyrifos alters expression of enzymes involved in vitamin D 3 synthesis in skin cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104812. [PMID: 33838712 DOI: 10.1016/j.pestbp.2021.104812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Skin acts as a mechanical barrier between human body and environment. Epidermal cells are regularly exposed to many physiological and environmental stressors, such as pesticides, like chlorpyrifos (CPS). It is recognised that CPS may affect metabolism of other exo- and endogenous substances by affecting enzyme activity and expression. This study aims to investigate the effect of CPS on expression of CYP27A1, CYP27B1 and CYP24A1, the enzymes involved in synthesis and metabolism of vitamin D3, in human keratinocytes HaCaT and human fibroblasts BJ. Synthesis of vitamin D3 in cells was initiated by irradiating with UVB. Expression of CYP27A1, CYP27B1 and CYP24A1 was evaluated by RT-qPCR and Western blot. Our experiments revealed that expression of all tested cytochrome P450 isoforms in cells exposed to CPS changed significantly. Exposure of HaCaT keratinocytes to CPS decreased CYP27A1 mRNA levels, but increased CYP27B1 and CYP24A1 mRNA levels. This was confirmed at the protein level, except for the CYP27A1 expression. Outcome for the BJ cells was however less conclusive. Though exposure to CPS decreased CYP27A1 and CYP27B1 mRNA levels, at protein level increasing concentration of CPS and UVB intensity induced expression of CYP27A1 and CYP24A1. The expression of CYP27B1 isoform decreased in line with mRNA level. Nevertheless, it can be concluded that CPS may therefore interrupt vitamin D3 metabolism in skin cells, but further studies are required to better understand such mechanisms.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | | | - Jacek Kurzepa
- Chair and Department of Medical Chemistry, Medical University, Lublin, Poland
| | | | - Karol Zygo
- Department of Public Health, Medical University, Lublin, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland; Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
23
|
Abass K, Pelkonen O, Rautio A. Chloro-s-triazines-toxicokinetic, Toxicodynamic, Human Exposure, and Regulatory Considerations. Curr Drug Metab 2021; 22:645-656. [PMID: 34218777 PMCID: PMC8811613 DOI: 10.2174/1389200222666210701164945] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
Chloro-s-triazines-atrazine, cyanazine, propazine, simazine, and terbuthylazine-are structurally similar herbicides, differing only in specific s-triazine4-and 6-N alkyl substituents. It is generally regarded that their toxicokinetics, such as, metabolic pathways, biological effects and toxicities, also share more similar features than the differences. Consequently, it is useful to compare their characteristics to potentially find useful structure-activity relationships or other similarities or differences regarding different active compounds, their metabolites, and biological effects including toxic outcomes. The ultimate goal of these exercises is to apply the summarized knowledge-as far as it is possible regarding a patchy and often inadequate database-to cross the in vitro-in vivo and animal-human borders and integrate the available data to enhance toxicological risk assessment for the benefit of humans and ecosystems.
Collapse
Affiliation(s)
- Khaled Abass
- Address correspondence to this author at the Faculty of Medicine, Arctic Health, University of Oulu, FI-90014 Oulu, Finland; E-mails: ,
| | | | | |
Collapse
|
24
|
Characterization of human pregnane X receptor activators identified from a screening of the Tox21 compound library. Biochem Pharmacol 2020; 184:114368. [PMID: 33333074 DOI: 10.1016/j.bcp.2020.114368] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/28/2023]
Abstract
The pregnane X receptor (PXR; NR1I2) is an important nuclear receptor whose main function is to regulate enzymes within drug metabolism. The main drug metabolizing enzyme regulated by PXR, cytochrome P450 (CYP) 3A4, accounts for the metabolism of nearly 50% of all marketed drugs. Recently, PXR has also been identified as playing a role in energy homeostasis, immune response, and cancer. Due to its interaction with these important roles, alongside its drug-drug interaction function, it is imperative to identify compounds which can modulate PXR. In this study, we screened the Tox21 10,000 compound collection to identify hPXR agonists using a stable hPXR-Luc HepG2 cell line. A pharmacological study in the presence of a PXR antagonist was performed to confirm the activity of the chosen potential hPXR agonists in the same cells. Finally, metabolically competent cell lines - HepaRG and HepaRG-PXR-Knockout (KO) - were used to further confirm the potential PXR activators. We identified a group of structural clusters and singleton compounds which included potentially novel hPXR agonists. Of the 21 selected compounds, 11 potential PXR activators significantly induced CYP3A4 mRNA expression in HepaRG cells. All of these compounds lost their induction when treating HepaRG-PXR-KO cells, confirming their PXR activation. Etomidoline presented as a potentially selective agonist of PXR. In conclusion, the current study has identified 11 compounds as potentially novel or not well-characterized PXR activators. These compounds should further be studied for their potential effects on drug metabolism and drug-drug interactions due to the immense implications of being a PXR agonist.
Collapse
|
25
|
Küblbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting Chemicals and the Constitutive Androstane Receptor CAR. Cells 2020; 9:E2306. [PMID: 33076503 PMCID: PMC7602645 DOI: 10.3390/cells9102306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During the last two decades, the constitutive androstane receptor (CAR; NR1I3) has emerged as a master activator of drug- and xenobiotic-metabolizing enzymes and transporters that govern the clearance of both exogenous and endogenous small molecules. Recent studies indicate that CAR participates, together with other nuclear receptors (NRs) and transcription factors, in regulation of hepatic glucose and lipid metabolism, hepatocyte communication, proliferation and toxicity, and liver tumor development in rodents. Endocrine-disrupting chemicals (EDCs) constitute a wide range of persistent organic compounds that have been associated with aberrations of hormone-dependent physiological processes. Their adverse health effects include metabolic alterations such as diabetes, obesity, and fatty liver disease in animal models and humans exposed to EDCs. As numerous xenobiotics can activate CAR, its role in EDC-elicited adverse metabolic effects has gained much interest. Here, we review the key features and mechanisms of CAR as a xenobiotic-sensing receptor, species differences and selectivity of CAR ligands, contribution of CAR to regulation hepatic metabolism, and evidence for CAR-dependent EDC action therein.
Collapse
Affiliation(s)
- Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Jonna Niskanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7569, Chapel Hill, NC 27599-7569, USA
| |
Collapse
|
26
|
Klement W, Oliviero F, Gangarossa G, Zub E, De Bock F, Forner-Piquer I, Blaquiere M, Lasserre F, Pascussi JM, Maurice T, Audinat E, Ellero-Simatos S, Gamet-Payrastre L, Mselli-Lakhal L, Marchi N. Life-long Dietary Pesticide Cocktail Induces Astrogliosis Along with Behavioral Adaptations and Activates p450 Metabolic Pathways. Neuroscience 2020; 446:225-237. [PMID: 32736067 DOI: 10.1016/j.neuroscience.2020.07.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Exposure to environmental contaminants is a public health concern. However, pre-clinical studies that examine the impact of pesticides at low-dose and the long-term consequences are uncommon. Here, C57BL6/j male and female mice were daily fed from weaning and up to 12 months, corresponding to early-childhood into middle-age in humans, using chow pellets containing a cocktail of pesticides at tolerable daily intake levels. We found that 12 months of dietary exposure to pesticides was associated with a moderate perenchymal or perivascular astrogliosis in specific hippocampal sub-regions. The expression of platelet-derived growth factor receptor beta was modified at the perivascular level. Examination of Iba1+ microglial cells did not reveal sizeable changes. Concomitantly to astrogliosis, spontaneous spatial memory and sociability were modified in males at 12 months of dietary exposure to pesticides. Telemetry electrocorticograhic explorations ruled out the presence of epileptiform activity or theta-gamma wave modifications in these conditions. Long-term pesticides impacted the periphery where the hepatic P450 metabolic cytochromes Cyp4a14 and Cyp4a10 were significantly upregulated in male and female mice during the 12 months of exposure. The expression of β-oxidation genes, such as Acox1, Cpt1a and Eci, was also significantly increased in male and female mice in response to pesticides. Collectively, our results indicate that a life-long exposure to a pesticide cocktail elicits sex-dependent, spatio-temporally restricted brain modifications and significant activation of P450 pathways in the periphery. These brain-peripheral adjustments are discussed as time or age-dependent vulnerability elements.
Collapse
Affiliation(s)
- Wendy Klement
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | | | - Emma Zub
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic De Bock
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Isabel Forner-Piquer
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Marine Blaquiere
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Jean-Marc Pascussi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, UMR_S1198, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicola Marchi
- Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France.
| |
Collapse
|
27
|
Mansano AS, Moreira RA, Dornfeld HC, Freitas EC, Vieira EM, Daam MA, Rocha O, Seleghim MHR. Individual and mixture toxicity of carbofuran and diuron to the protozoan Paramecium caudatum and the cladoceran Ceriodaphnia silvestrii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110829. [PMID: 32531577 DOI: 10.1016/j.ecoenv.2020.110829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
The toxicity of the insecticide carbofuran and herbicide diuron (individually and in mixture) to the invertebrates Paramecium caudatum and Ceriodaphnia silvestrii was evaluated. Acute and chronic toxicity tests were carried out with the diuron and carbofuran active ingredients and their commercial products, Diuron Nortox® 500 SC and Furadan® 350 SC, respectively. Individual toxicity tests showed that C. silvestrii was more sensitive to both carbofuran and diuron than P. caudatum. In single exposures, both pesticides caused adverse effects to C. silvestrii in environmentally relevant concentrations (48 h EC50 = 0.001 mg L-1 and 8 d LOEC = 0.00038 mg L-1 for formulated carbofuran; 8 d LOEC < 0.05 mg L-1 for formulated diuron). For P. caudatum, carbofuran and diuron in single exposures were only slightly toxic (24 h IC50 = 5.1 mg L-1 and 6.9 mg L-1 for formulated carbofuran and diuron, respectively). Acute and chronic exposures to diuron and carbofuran mixtures caused significant deviations of the toxicity predicted by the Concentration Addition and Independent Action reference models for both test species. For the protozoan P. caudatum, a dose-dependent deviation was verified for mortality, with synergism caused mainly by carbofuran and antagonism caused mainly by diuron. For protozoan population growth, however, an antagonistic deviation was observed when the active ingredient mixtures were tested. In the case of C. silvestrii, antagonism at low concentrations and synergism at high concentrations were revealed after acute exposure to active ingredient mixtures, whereas for reproduction an antagonistic deviation was found. Commercial formulation mixtures presented significantly higher toxicity than the active ingredient mixtures. Our results showed that carbofuran and diuron interact and cause different toxic responses than those predicted by the individually tested compounds. Their mixture toxicity should therefore be considered in risk assessments as these pesticides are likely to be present simultaneously in edge-of-field waterbodies.
Collapse
Affiliation(s)
- Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil.
| | - Raquel A Moreira
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Hugo C Dornfeld
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Emanuela C Freitas
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Eny M Vieira
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, 13560-970, São Carlos, SP, Brazil
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil; Post-Graduate Program in Ecology and Natural Resources (PPGERN), Federal University of São Carlos, Rod. Washington Luis, Km 235, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
28
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
29
|
Guéniche N, Bruyere A, Le Vée M, Fardel O. Implication of human drug transporters to toxicokinetics and toxicity of pesticides. PEST MANAGEMENT SCIENCE 2020; 76:18-25. [PMID: 31392818 DOI: 10.1002/ps.5577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Human membrane drug transporters are recognized as major actors of pharmacokinetics. Pesticides also interact with human drug transporters, which may have consequences for pesticide toxicokinetics and toxicity. The present review summarizes key findings about this topic. In vitro assays have demonstrated that some pesticides, belonging to various chemical classes, modulate drug transporter activity, regulate transporter expression and/or are substrates, thus bringing the proof of concept for pesticide-transporter relationships. The expected low human concentration of pesticides in response to environmental exposure constitutes a key-parameter to be kept in mind for judging the in vivo relevance of such pesticide-transporter interactions and their consequences for human health. Existing data about interactions of pesticides with drug transporters remain, however, rather sparse; more extensive and systematic characterization of pesticide-transporter relationships, through the use of high throughput in vitro assays and/or in silico methods, is, therefore, required. In addition, consideration of transporter polymorphisms, pesticide mixture effects and physiological and pathological factors governing drug transporter expression may help to better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity for humans. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nelly Guéniche
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of contaminant unit, Fougères, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, Rennes, France
| |
Collapse
|
30
|
Kato H. Computational prediction of cytochrome P450 inhibition and induction. Drug Metab Pharmacokinet 2019; 35:30-44. [PMID: 31902468 DOI: 10.1016/j.dmpk.2019.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/27/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Cytochrome P450 (CYP) enzymes play an important role in the phase I metabolism of many xenobiotics. Most drug-drug interactions (DDIs) associated with CYP are caused by either CYP inhibition or induction. The early detection of potential DDIs is highly desirable in the pharmaceutical industry because DDIs can cause serious adverse events, which can lead to poor patient health and drug development failures. Recently, many computational studies predicting CYP inhibition and induction have been reported. The current computational modeling approaches for CYP metabolism are classified as ligand- and structure-based; various techniques, such as quantitative structure-activity relationships, machine learning, docking, and molecular dynamic simulation, are involved in both the approaches. Recently, combining these two approaches have resulted in improvements in the prediction accuracy of DDIs. In this review, we present important, recent developments in the computational prediction of the inhibition of four clinically crucial CYP isoforms (CYP1A2, 2C9, 2D6, and 3A4) and three nuclear receptors (aryl hydrocarbon receptor, constitutive androstane receptor, and pregnane X receptor) involved in the induction of CYP1A2, 2B6, and 3A4, respectively.
Collapse
Affiliation(s)
- Harutoshi Kato
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Aoba-ku, Yokohama-shi, 227-0033, Japan.
| |
Collapse
|
31
|
Bernasconi C, Pelkonen O, Andersson TB, Strickland J, Wilk-Zasadna I, Asturiol D, Cole T, Liska R, Worth A, Müller-Vieira U, Richert L, Chesne C, Coecke S. Validation of in vitro methods for human cytochrome P450 enzyme induction: Outcome of a multi-laboratory study. Toxicol In Vitro 2019; 60:212-228. [PMID: 31158489 PMCID: PMC6718736 DOI: 10.1016/j.tiv.2019.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
CYP enzyme induction is a sensitive biomarker for phenotypic metabolic competence of in vitro test systems; it is a key event associated with thyroid disruption, and a biomarker for toxicologically relevant nuclear receptor-mediated pathways. This paper summarises the results of a multi-laboratory validation study of two in vitro methods that assess the potential of chemicals to induce cytochrome P450 (CYP) enzyme activity, in particular CYP1A2, CYP2B6, and CYP3A4. The methods are based on the use of cryopreserved primary human hepatocytes (PHH) and human HepaRG cells. The validation study was coordinated by the European Union Reference Laboratory for Alternatives to Animal Testing of the European Commission's Joint Research Centre and involved a ring trial among six laboratories. The reproducibility was assessed within and between laboratories using a validation set of 13 selected chemicals (known human inducers and non-inducers) tested under blind conditions. The ability of the two methods to predict human CYP induction potential was assessed. Chemical space analysis confirmed that the selected chemicals are broadly representative of a diverse range of chemicals. The two methods were found to be reliable and relevant in vitro tools for the assessment of human CYP induction, with the HepaRG method being better suited for routine testing. Recommendations for the practical application of the two methods are proposed.
Collapse
Affiliation(s)
| | - Olavi Pelkonen
- Research Unit of Biomedicine/Pharmacology and Toxicology, Faculty of Medicine, Aapistie 5B, University of Oulu, FIN-90014, Finland; Clinical Research Center, Oulu University Hospital, Finland
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Judy Strickland
- Integrated Laboratory Systems (contractor supporting NICEATM), Research Triangle Park, North, Carolina, 27709, USA
| | | | - David Asturiol
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Thomas Cole
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Roman Liska
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ursula Müller-Vieira
- Boehringer Ingelheim, Germany. Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, an der Riss, Germany
| | - Lysiane Richert
- KaLy-Cell, 20A, rue du Général Leclerc, 67115 Plobsheim, France(g) Biopredic International, Parc d'activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France
| | - Christophe Chesne
- Biopredic International, Parc d'activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
32
|
Zhang C, Li H, Qin L, Ge J, Qi Z, Talukder M, Li YH, Li JL. Nuclear receptor AHR-mediated xenobiotic detoxification pathway involves in atrazine-induced nephrotoxicity in quail (Coturnix C. coturnix). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:889-898. [PMID: 31349198 DOI: 10.1016/j.envpol.2019.07.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Atrazine (ATR), one of the most widely used pesticides in agricultural production, are gradually concerned due to potential ecosystem and health risks. Further, the induction of ATR nephrotoxicity and detoxification response is still unknown. To evaluate ATR-induced nephrotoxicity, quails were treated with 0, 50, 250 or 500 mg/kg ATR by gavage administration for 45 days. Histopathology indicated that ATR exposure caused renal tubular epithelial cell swelling and endoplasmic reticulum degeneration, suggesting that ATR exposure causes renal impairment even renal diseases. Notably, ATR interfered cytochrome P450 system (CYP450s) homeostasis by enhancing contents or activities of CYP450s (total CYP450, Cyt b5, AH, APND, NCR and ERND) and the expression of CYP450 isoforms (CYP1A, CYP1B, CYP2C and CYP3A). ATR triggered phase II detoxifying reaction, reflected by the elevated GSH level, GST activity and the up-regulation of GST isoforms (GSTa, GSTa3 and GSTt1) and GSH synthetase (GCLC). Moreover, ABC transporters were activated to expel ATR from the body by increasing expression of MRP1 and P-GP gene. Accompanying these alterations, the nuclear receptors (AHR, CAR and PXR) were activated by ATR in a dose-dependent manner. Analysis results of present study demonstrated that the induction of phase II detoxifying enzyme system and ABC transporters could be modulated by nuclear receptors response and CYP450s disturbance in low-dose ATR-treated quail. In conclusion, all data suggested that nuclear receptors AHR-mediated detoxification pathway was involved in ATR-induced nephrotoxicity. These results provided new evidence about the nephrotoxic effects of ATR on the response of biotransformation and detoxification system.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Huixin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150086, PR China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory Animal Centre, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhang Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
33
|
Fujino C, Watanabe Y, Sanoh S, Nakajima H, Uramaru N, Kojima H, Yoshinari K, Ohta S, Kitamura S. Activation of PXR, CAR and PPARα by pyrethroid pesticides and the effect of metabolism by rat liver microsomes. Heliyon 2019; 5:e02466. [PMID: 31538121 PMCID: PMC6745485 DOI: 10.1016/j.heliyon.2019.e02466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, we used reporter gene assays in COS-1 cells to examine the activation of rat pregnane X receptor (PXR), rat constitutive androstane receptor (CAR) and rat peroxisome-proliferator activated receptor (PPAR)α by pyrethroid pesticides, and to understand the effects of metabolic modification on their activities. All eight pyrethroids tested in this study showed rat PXR agonistic activity; deltamethrin was the most potent, followed by cis-permethrin and cypermethrin. However, when the pyrethroids were incubated with rat liver microsomes, their rat PXR activities were decreased to various extents. Cis- and trans-permethrin showed weak rat CAR agonistic activity, while the other pyrethroids were inactive. However, fenvalerate showed dose-dependent inverse agonistic activity toward rat CAR, and this activity was reduced after metabolism. None of the pyrethroids showed rat PPARα agonistic activity, but a metabolite of cis-/trans-permethrin and phenothrin, 3-phenoxybenzoic acid, activated rat PPARα. Since PXR, CAR and PPARα regulate various xenobiotic/endobiotic-metabolizing enzymes, activation of these receptors by pyrethroids may result in endocrine disruption due to changes of hormone-metabolizing activities.
Collapse
Affiliation(s)
- Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Yoko Watanabe
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hiroyuki Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Aoba-ku, Sendai, 980-8578, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.,Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,Wakayama Medical University; 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| |
Collapse
|
34
|
Wei L, Xu C, Liang A, Fu Y. Insect-resistant Mechanism of Recombinant Baculovirus AcMNPV-PK2-EGFP against Spodoptera exigua Larvae. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Hu B, Zhang S, Ren M, Tian X, Wei Q, Mburu DK, Su J. The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. INSECT SCIENCE 2019; 26:199-216. [PMID: 28881445 PMCID: PMC7379962 DOI: 10.1111/1744-7917.12538] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 09/01/2017] [Indexed: 05/15/2023]
Abstract
Cytochrome P450 and UDP-glucosyltransferase (UGT) as phase I and phase II metabolism enzymes, respectively, play vital roles in the breakdown of endobiotics and xenobiotics. Insects can increase the expression of detoxification enzymes to cope with the stress from xenobiotics including insecticides. However, the molecular mechanisms for insecticide detoxification in Spodoptera exigua remain elusive, and the genes conferring insecticide metabolisms in this species are less well reported. In this study, 68 P450 and 32 UGT genes were identified. Phylogenetic analysis showed gene expansions in CYP3 and CYP4 clans of P450 genes and UGT33 family of this pest. P450 and UGT genes exhibited specific tissue expression patterns. Insecticide treatments in fat body cells of S. exigua revealed that the expression levels of P450 and UGT genes were significantly influenced by challenges of abamectin, lambda-cyhalothrin, chlorantraniliprole, metaflumizone and indoxacarb. Multiple genes for detoxification were affected in expression levels after insecticide exposures. The results demonstrated that lambda-cyhalothrin, chlorantraniliprole, metaflumizone and indoxacarb induced similar responses in the expression of P450 and UGT genes in fat body cells; eight P450 genes and four UGT genes were co-up-regulated significantly, and no or only a few CYP/UGT genes were down-regulated significantly by these four insecticides. However, abamectin triggered a distinct response for P450 and UGT gene expression; more P450 and UGT genes were down-regulated by abamectin than by the other four compounds. In conclusion, P450 and UGT genes from S. exigua were identified, and different responses to abamectin suggest a different mechanism for insecticide detoxification.
Collapse
Affiliation(s)
- Bo Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Shu‐Heng Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Miao‐Miao Ren
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Xiang‐Rui Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Qi Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - David Kibe Mburu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Jian‐Ya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
36
|
Watanabe Y, Hattori S, Fujino C, Tachibana K, Kojima H, Yoshinari K, Kitamura S. Effects of benzotriazole ultraviolet stabilizers on rat PXR, CAR and PPARα transcriptional activities. ACTA ACUST UNITED AC 2019. [DOI: 10.2131/fts.6.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ken Tachibana
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University
| | | | | | | |
Collapse
|
37
|
Lynch C, Mackowiak B, Huang R, Li L, Heyward S, Sakamuru S, Wang H, Xia M. Identification of Modulators That Activate the Constitutive Androstane Receptor From the Tox21 10K Compound Library. Toxicol Sci 2019; 167:282-292. [PMID: 30247703 PMCID: PMC6657574 DOI: 10.1093/toxsci/kfy242] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The constitutive androstane receptor (CAR; NR1I3) is a nuclear receptor involved in all phases of drug metabolism and disposition. However, recently it's been implicated in energy metabolism, tumor progression, and cancer therapy as well. It is, therefore, important to identify compounds that induce human CAR (hCAR) activation to predict drug-drug interactions and potential therapeutic usage. In this study, we screen the Tox21 10,000 compound collection to characterize hCAR activators. A potential novel structural cluster of compounds was identified, which included nitazoxanide and tenonitrozole, whereas known structural clusters, such as flavones and prazoles, were also detected. Four compounds, neticonazole, diphenamid, phenothrin, and rimcazole, have been identified as novel hCAR activators, one of which, rimcazole, shows potential selectivity toward hCAR over its sister receptor, the pregnane X receptor (PXR). All 4 compounds translocated hCAR from the cytoplasm into the nucleus demonstrating the first step to CAR activation. Profiling these compounds as hCAR activators would enable an estimation of drug-drug interactions, as well as identify prospective therapeutically beneficial drugs.
Collapse
Affiliation(s)
- Caitlin Lynch
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | | | - Srilatha Sakamuru
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
38
|
Hook SE, Mondon J, Revill AT, Greenfield PA, Smith RA, Turner RDR, Corbett PA, Warne MSJ. Transcriptomic, lipid, and histological profiles suggest changes in health in fish from a pesticide hot spot. MARINE ENVIRONMENTAL RESEARCH 2018; 140:299-321. [PMID: 29983192 DOI: 10.1016/j.marenvres.2018.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Barramundi (Lates calcarifer) were collected at the beginning (1st sampling) and end (2nd sampling) of the wet season from Sandy Creek, an agriculturally impacted catchment in the Mackay Whitsundays region of the Great Barrier Reef catchment area, and from Repulse Creek, located approximately 100 km north in Conway National Park, to assess the impacts of pesticide exposure. Gill and liver histology, lipid class composition in muscle, and the hepatic transcriptome were examined. The first sample of Repulse Creek fish showed little tissue damage and low transcript levels of xenobiotic metabolism enzymes. Sandy Creek fish showed altered transcriptomic patterns, including those that regulate lipid metabolism, xenobiotic metabolism, and immune response; gross histological alterations including lipidosis; and differences in some lipid classes. The second sampling of Repulse Creek fish showed similar alterations in hepatic transcriptome and tissue structure as fish from Sandy Creek. These changes may indicate a decrease in health of pesticide exposed fish.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Oceans and Atmosphere, Lucas Heights, New South Wales, Australia.
| | - Julie Mondon
- Deakin University, Warrnambool, Victoria, Australia
| | | | | | - Rachael A Smith
- Queensland Department of Science and Environment, Brisbane, Queensland 4001, Australia
| | - Ryan D R Turner
- Queensland Department of Science and Environment, Brisbane, Queensland 4001, Australia
| | | | - Michael St J Warne
- Centre for Agroecology, Water and Resilience, Coventry University, United Kingdom; Queensland Department of Science and Environment, Brisbane, Queensland 4001, Australia; Australian Rivers Institute, Griffith University, Queensland 4111, Australia; Queensland Alliance of Environmental Health Sciences, University of Queensland, Queensland, 4108, Australia
| |
Collapse
|
39
|
Li XN, Zuo YZ, Qin L, Liu W, Li YH, Li JL. Atrazine-xenobiotic nuclear receptor interactions induce cardiac inflammation and endoplasmic reticulum stress in quail (Coturnix coturnix coturnix). CHEMOSPHERE 2018; 206:549-559. [PMID: 29778080 DOI: 10.1016/j.chemosphere.2018.05.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Atrazine (ATR) is one of the most extensively used herbicide that eventually leaches into groundwater and surface water from agricultural areas. Exposure to ATR does harm to the health of human and animals, especially the heart. However, ATR exposure caused cardiotoxicity in bird remains unclear. To evaluate ATR-exerted potential cardiotoxicity in heart, quail were exposed with 0, 50, 250, and 500 mg/kg BW/day ATR by gavage treatment for 45 days. Cardiac histopathological alternation was observed in ATR-induced quail. ATR exposure increased the Cytochrome P450s and Cytochrome b5 contents, Cytochrome P450 (CYP) enzyme system (APND, ERND, AH, and NCR) activities and the expression of CYP isoforms (CYP1B1, CYP2C18, CYP2D6, CYP3A4, CYP3A7, and CYP4B1) in quail heart. The expression of nuclear xenobiotic receptors (NXRs) was also influenced in the heart by ATR exposure. ATR exposure significantly caused the up-regulation of pro-inflammatory cytokines (TNF-α, IL-6, NF-κB, and IL-8), down-regulation of anti-inflammatory cytokines (IL-10) expression levels and increased NO content and iNOS activity. The present research provides new insights into the mechanism that ATR-induced cardiotoxicity through up-regulating the expression levels of GRP78 and XBP-1s, triggering ER stress, activating the expression of IRE1α/TRAF2/NF-κB signaling pathway related factors (IRE1α, TRAF2, IKK, and NF-κB) and inducing an inflammatory response in quail hearts. In conclusion, ATR exposure could induce cardiac inflammatory injury via activating NXRs responses, disrupting CYP homeostasis and CYP isoforms transcription, altering NO metabolism and triggering ER stress and inflammatory response by activating IRE1α/TRAF2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Zhu Zuo
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, PR China
| | - Lei Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory Animal Center, Qiqihar Medical University, Qiqihar, 161006, PR China
| | - Wei Liu
- Energy & Environmental Research Institute of Heilongjiang Province, Harbin, 150027, PR China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
40
|
Martínez MA, Ares I, Rodríguez JL, Martínez M, Roura-Martínez D, Castellano V, Lopez-Torres B, Martínez-Larrañaga MR, Anadón A. Pyrethroid insecticide lambda-cyhalothrin induces hepatic cytochrome P450 enzymes, oxidative stress and apoptosis in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1371-1382. [PMID: 29727961 DOI: 10.1016/j.scitotenv.2018.03.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/23/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to examine in rats the effects of the Type II pyrethroid lambda-cyhalothrin on hepatic microsomal cytochrome P450 (CYP) isoform activities, oxidative stress markers, gene expression of proinflammatory, oxidative stress and apoptosis mediators, and CYP isoform gene expression and metabolism phase I enzyme PCR array analysis. Lambda-cyhalothrin, at oral doses of 1, 2, 4 and 8mg/kg bw for 6days, increased, in a dose-dependent manner, hepatic activities of ethoxyresorufin O-deethylase (CYP1A1), methoxyresorufin O-demethylase (CYP1A2), pentoxyresorufin O-depentylase (CYP2B1/2), testosterone 7α- (CYP2A1), 16β- (CYP2B1), and 6β-hydroxylase (CYP3A1/2), and lauric acid 11- and 12-hydroxylase (CYP4A1/2). Similarly, lambda-cyhalothrin (4 and 8mg/kg bw, for 6days), in a dose-dependent manner, increased significantly hepatic CYP1A1, 1A2, 2A1, 2B1, 2B2, 2E1, 3A1, 3A2 and 4A1 mRNA levels and IL-1β, NFκB, Nrf2, p53, caspase-3 and Bax gene expressions. PCR array analysis showed from 84 genes examined (P<0.05; fold change>1.5), changes in mRNA levels in 18 genes: 13 up-regulated and 5 down-regulated. A greater fold change reversion than 3-fold was observed on the up-regulated ALDH1A1, CYP2B2, CYP2C80 and CYP2D4 genes. Ingenuity Pathway Analysis (IPA) groups the expressed genes into biological mechanisms that are mainly related to drug metabolism. In the top canonical pathways, Oxidative ethanol degradation III together with Fatty Acid α-oxidation may be significant pathways for lambda-cyhalothrin. Our results may provide further understanding of molecular aspects involved in lambda-cyhalothrin-induced liver injury.
Collapse
Affiliation(s)
- María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José-Luis Rodríguez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David Roura-Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Victor Castellano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
41
|
Transplacental transfer and metabolism of diuron in human placenta. Toxicol Lett 2018; 295:307-313. [PMID: 30010034 DOI: 10.1016/j.toxlet.2018.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 11/22/2022]
Abstract
Diuron is a broad-spectrum phenylurea derived herbicide which is commonly used across the globe. Diuron is toxic to the reproductive system of animals and carcinogenic to rat urothelium, and recently found to be genotoxic in human cells. In in vivo, it is metabolized predominately into 3-(3,4-dichlorophenyl)-1-methyl urea (DCPMU) in humans and 3-(3, 4-dichlorophenyl)urea (DCPU) in animals. Information on diuron toxicokinetics and related toxicity in human placenta is absent. We have investigated the toxicokinetics of diuron in ex vivo human placental perfusion and in in vitro human placental microsomes and human trophoblastic cancer cells (BeWo). Diuron crossed human placenta readily in placental perfusion. Furthermore, diuron was metabolized into DCPMU in perfused placenta and in in vitro incubations using microsomes from placentas of smokers. In incubations with placental microsomes from non-smokers, and in BeWo cells, metabolism to DCPMU was detected but only with the highest used diuron concentration (100 μM). Diuron metabolism was inhibited upon addition of α-naphthoflavone, a CYP1A1 inhibitor, underscoring the role of CYP1A1 in the metabolism. In conclusion, it is evident that diuron crosses human placenta and diuron can be metabolized in the placenta to a toxic metabolite via CYP1A1. This implicates in vivo fetal exposure to diuron if pregnant women are exposed to diuron, which may result in fetotoxicity.
Collapse
|
42
|
Chedik L, Bruyere A, Bacle A, Potin S, Le Vée M, Fardel O. Interactions of pesticides with membrane drug transporters: implications for toxicokinetics and toxicity. Expert Opin Drug Metab Toxicol 2018; 14:739-752. [DOI: 10.1080/17425255.2018.1487398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lisa Chedik
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|
43
|
Xiang D, Chu T, Li M, Wang Q, Zhu G. Effects of pyrethroid pesticide cis-bifenthrin on lipogenesis in hepatic cell line. CHEMOSPHERE 2018; 201:840-849. [PMID: 29554630 DOI: 10.1016/j.chemosphere.2018.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Mounting evidence suggests there is a link between exposure to synthetic pyrethroids (SPs) and the development of obesity. The information presented in this study suggests that cis-bifenthrin (cis-BF) could activate pregnane X receptor (PXR) mediated pathway and lead to the lipid accumulation of human hepatoma (HepG2) cells. Cells were incubated in the control or different concentrations of cis-BF for 24 h. The 1 × 10-7 M and 1 × 10-6 M cis-BF exposure were found to induce cellular triglyceride (TG) accumulation significantly. This phenomenon was further supported by Oil Red O Staining assay. The cis-BF exposure caused upregulation of PXR gene and protein. Correspondingly, we also observed the increased expression of downstream genes involved in lipid formation and the inhibition of the expression of β-oxidation. As chiral pesticide,cis-BF was further conformed to behave enantioselectivity in the lipid metabolism. Rather than 1R-cis-BF, HepG2 cells incubated with 1S-cis-BF exhibited a significant TG accumulation. 1S-cis-BF also showed a higher binding level, of which the KD value was 9.184 × 10-8 M in the SPR assay, compared with 1R-cis-BF (3.463 × 10-6 M). In addition, the molecular docking simulation analyses correlated well with the KD values measured by the SPR, indicating that 1S-cis-BF showed a better binding affinity with PXR. The results in this study also elucidates the differences between the two enantiomers of pyrethroid-induced toxicity in lipid metabolism of non-target organism.
Collapse
Affiliation(s)
- Dandan Xiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Tianyi Chu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
44
|
Lieberman A, Curtis L. Severe Adverse Reactions Following Ketoconazole, Fluconazole, and Environmental Exposures: A Case Report. DRUG SAFETY - CASE REPORTS 2018; 5:18. [PMID: 29671087 PMCID: PMC5906414 DOI: 10.1007/s40800-018-0083-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this case report, we describe a 66-year-old man who developed multiple adverse reactions beginning at age 56 after exposure to several azole antifungal drugs including ketoconazole and fluconazole. He also had a history of more than 40 years exposure to chemicals including pesticides, wood preservatives, fertilizers, and welding chemicals. His reactions involved dehydration (requiring several liters of intravenous fluids in less than an hour to alleviate this condition), angioedema, nausea, tinnitus, hypotension, and difficulty breathing. His acute adverse reactions were triggered by a wide range of chemicals including gasoline, diesel fuel, pesticides, chlorine, topical isopropyl alcohol, and paper mill emissions. His acute reactions were also triggered by a wide range of foods such as bananas, apples, milk, white potatoes, and processed sweets. A number of mechanisms could be responsible for his increased sensitivity to chemicals following exposure to fluconazole/ketoconazole, including inhibition of P450 and other detoxification enzymes, acetaldehyde buildup, and neurogenic sensitization.
Collapse
Affiliation(s)
- Allan Lieberman
- Center for Occupational and Environmental Medicine (COEM), 7510 Northforest Drive, North Charleston, SC, 29420, USA
| | - Luke Curtis
- Center for Occupational and Environmental Medicine (COEM), 7510 Northforest Drive, North Charleston, SC, 29420, USA.
| |
Collapse
|
45
|
Hassani-Nezhad-Gashti F, Rysä J, Kummu O, Näpänkangas J, Buler M, Karpale M, Hukkanen J, Hakkola J. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem Pharmacol 2018; 148:253-264. [PMID: 29309761 DOI: 10.1016/j.bcp.2018.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Pregnane X receptor (PXR) is a nuclear receptor that senses chemical environment and is activated by numerous clinically used drugs and environmental contaminants. Previous studies have indicated that several drugs known to activate PXR appear to induce glucose intolerance. We now aimed to reveal the role of PXR in drug-induced glucose intolerance and characterize the mechanisms involved. We used PXR knockout mice model to investigate the significance of this nuclear receptor in the regulation of glucose tolerance. PXR ligand pregnenolone-16ɑ-carbonitrile (PCN) impaired glucose tolerance in the wildtype mice but not in the PXR knockout mice. Furthermore, DNA microarray and bioinformatics analysis of differentially expressed genes and glucose metabolism relevant pathways in PCN treated primary hepatocytes indicated that PXR regulates genes involved in glucose uptake. PCN decreased the expression of glucose transporter 2 (GLUT2) in mouse liver and in the wildtype mouse hepatocytes but not in the PXR knockout cells. Data mining of published chromatin immunoprecipitation-sequencing results indicate that Glut2 gene is a direct PXR target. Furthermore, PCN induced internalization of GLUT2 protein from the plasma membrane to the cytosol in the liver in vivo and repressed glucose uptake in the primary hepatocytes. Our results indicate that the activation of PXR impairs glucose tolerance and thus PXR represents a novel diabetogenic pathway. PXR activation dysregulates GLUT2 function by two different mechanisms. These findings may partly explain the diabetogenic effects of medications and environmental contaminants.
Collapse
Affiliation(s)
- Fatemeh Hassani-Nezhad-Gashti
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, Cancer Research and Translational Medicine Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marcin Buler
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko Karpale
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Internal Medicine, Research Unit of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
46
|
Atrazine-induced environmental nephrosis was mitigated by lycopene via modulating nuclear xenobiotic receptors-mediated response. J Nutr Biochem 2018; 51:80-90. [DOI: 10.1016/j.jnutbio.2017.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 06/01/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022]
|
47
|
Tomas Ž, Kuhanec A, Škarić-Jurić T, Petranović MZ, Narančić NS, Janićijević B, Salihović MP. Distinctiveness of the Roma population within CYP2B6 worldwide variation. Pharmacogenomics 2017; 18:1575-1587. [PMID: 29095103 DOI: 10.2217/pgs-2017-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To determine variation of CYP2B6 gene within the genetically specific Croatian Roma (Gypsy) population originating from India and to examine it in the worldwide perspective. MATERIALS & METHODS Seven SNP loci (rs12721655, rs2279343, rs28399499, rs34097093, rs3745274, rs7260329 and rs8192709) were genotyped in 439 subjects using Kompetitive Allele Specific PCR (KASP) method. RESULTS The Croatian Roma took an outlying position in CYP2B6 variation from the worldwide perspective mainly due to their exceptionally high minor allele frequency (MAF) for rs8192709 (12.8%), and lower for rs2279343 (21.1%) compared with south Asian populations. CONCLUSION This study provides the first data of several CYP2B6 polymorphisms in Roma population and indicates the need for systematic investigation of the most important pharmacogenes' variants in this large, transnationally isolated population worldwide.
Collapse
Affiliation(s)
- Željka Tomas
- Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | - Antonija Kuhanec
- Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | | | | | | | - Branka Janićijević
- Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | | |
Collapse
|
48
|
Kamata R, Nakajima D, Shiraishi F. Agonistic effects of diverse xenobiotics on the constitutive androstane receptor as detected in a recombinant yeast-cell assay. Toxicol In Vitro 2017; 46:335-349. [PMID: 28927721 DOI: 10.1016/j.tiv.2017.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
Abstract
The constitutive androstane receptor (CAR) is a nuclear receptor and transcription factor regulating proteins involved in xenobiotic metabolism. Agonist activation of the CAR can trigger metabolic activation and toxification as well as detoxification and clearance; accordingly, xenobiotic substances acting as CAR ligands may pose a threat to human and animal health. We used yeast cells transduced with the human CAR and the response pathway to measure the CAR-agonistic activities of 549 synthetic or natural compounds: 216 of the tested compounds exhibited CAR-agonistic effects. Eighty-four percent of CAR-activating compounds were aromatic compounds, and >65% of these active compounds were aromatic hydrocarbons, bisphenols, monoalkyl phenols, phthalates, styrene dimers, diphenyl ethers, organochlorines, and organophosphates. The ten most potent compounds were 4-tert-octylphenol (4tOP; reference substance), 4-nonylphenol, diethylstilbestrol, benzyl n-butyl phthalate, 2-(4-hydroxyphenyl)-2,4,4-trimethylchroman, o,p'-DDT, methoxychlor, di-n-propyl phthalate, hexestrol, and octachlorostyrene. The activities of these nine non-reference compounds exceeded 10% of the 4tOP activity. Analysis of para-monoalkyl phenols suggests that branching of the alkyl group and chlorination at the ortho position raises potency. This study provides critical information for identifying the potential of CAR-mediated toxic hazards and for understanding the relevant mechanism.
Collapse
Affiliation(s)
- Ryo Kamata
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, 35-1 Higashi 23-bancho, Towada-shi, Aomori 034-8628, Japan.
| | - Daisuke Nakajima
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Fujio Shiraishi
- Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
49
|
Hernández AF, Gil F, Lacasaña M. Toxicological interactions of pesticide mixtures: an update. Arch Toxicol 2017; 91:3211-3223. [PMID: 28845507 DOI: 10.1007/s00204-017-2043-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 02/07/2023]
Abstract
Pesticides can interact with each other in various ways according to the compound itself and its chemical family, the dose and the targeted organs, leading to various effects. The term interaction means situations where some or all individual components of a mixture influence each other's toxicity and the joint effects may deviate from the additive predictions. The various mixture effects can be greatly determined by toxicokinetic and toxicodynamic factors involving metabolic pathways and cellular or molecular targets of individual pesticides, respectively. However, the complexity of toxicological interactions can lead to unpredictable effects of pesticide mixtures. Interactions on metabolic processes affecting the biotransformation of pesticides seem to be by far the most common mechanism of synergism. Moreover, the identification of pesticides responsible for synergistic interactions is an important issue for cumulative risk assessment. Cholinesterase inhibiting insecticides (organophosphates and N-methylcarbamates), triazole fungicides, triazine herbicides, and pyrethroid insecticides are overrepresented in the synergistic mixtures identified so far. Since the limited available empirical evidence suggests that synergisms at dietary exposure levels are rather rare, and experimentally occurred at unrealistic high concentrations, synergism cannot be predicted quantitatively on the basis of the toxicity of mixture components. The prediction of biological responses elicited by interaction of pesticides with each other (or with other chemicals) will benefit from using a systems toxicology approach. The identification of core features of pesticide mixtures at molecular level, such as gene expression profiles, could be helpful to assess or predict the occurrence of interactive effects giving rise to unpredicted responses.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
| | - Marina Lacasaña
- Andalulsian School of Public Health, Granada, Spain.,CIBERESP, Madrid, Spain.,ibs.GRANADA, Granada, Spain
| |
Collapse
|
50
|
Casida JE. Pesticide Interactions: Mechanisms, Benefits, and Risks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4553-4561. [PMID: 28537748 DOI: 10.1021/acs.jafc.7b01813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interactions between pesticides at common molecular targets and detoxification systems often determine their effectiveness and safety. Compounds with the same mode of action or target are candidates for cross resistance and restrictions in their recommended uses. Discovery research is therefore focused on new mechanisms and modes of action. Interactions in detoxification systems also provide cross resistance and synergist and safener mechanisms illustrated with serine hydrolases and inhibitors, cytochrome P450 and insecticide synergists, and glutathione S-transferases and herbicide safeners. Secondary targets are also considered for inhibitors of serine hydrolases, aldehyde dehydrogenases, and transporters. Emphasis is given to the mechanistic aspects of interactions, not the incidence, which depends on potency, exposure, ratios, and timing. The benefits of pesticide interactions are the additional levels of chemical control to achieve desired organismal effects. The risks are the unpredictable interactions of complex interconnected biological systems. However, with care, two can be better than one.
Collapse
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California , Berkeley, California 94720, United States
| |
Collapse
|