1
|
Chu Z, Fang L, Xiang Y, Ding Y. Research progress on cholesterol metabolism and tumor therapy. Discov Oncol 2025; 16:647. [PMID: 40307614 PMCID: PMC12043555 DOI: 10.1007/s12672-025-02430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Cholesterol and its metabolic derivatives have important biological functions and are crucial in tumor initiation, progression, and treatment. Cholesterol maintains the physical properties of cellular membranes and is pivotal in cell signal transduction. Cholesterol metabolism includes both de novo synthesis and uptake from extracellular sources such as low-density lipoprotein (LDL) and high-density lipoprotein (HDL). This review explores both aspects to provide a comprehensive understanding of their roles in cancer. Cholesterol metabolism is involved in bile acid production and steroid hormone biosynthesis and is closely linked to the reprogramming of endogenous and exogenous cellular signals within the tumor microenvironment. These signals are intricately associated with key biological processes such as tumor cell proliferation, survival, invasion, and metastasis. Evidence suggests that regulating cholesterol metabolism may offer therapeutic benefits by inhibiting tumor growth, remodeling the immune microenvironment, and enhancing antitumor immune responses. This review summarizes the role of cholesterol metabolism in tumor biology and discusses the application of statins and other cholesterol metabolism inhibitors in cancer therapy, aiming to provide novel insights for the development of antitumor drugs targeting cholesterol metabolism and for advances in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Zewen Chu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
| | - Lei Fang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
| | - Yanwei Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Arabzadeh E, Sarshin A, Feizolahi F, Mohabbat M, Soleiman-Fallah MA, Rahimi A, Petridou A, Emami Z, Tajik H, Bozorg Omid R, Maleki A, Ekrami Ogholbag H, Khademi A, Zargani M. Synergistic salvation: HIIT and herbal allies reverse NAFLD damage in rats. J Mol Histol 2025; 56:131. [PMID: 40186827 DOI: 10.1007/s10735-025-10413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Fatty liver disease is a build-up of fats in the liver that can damage the organ and lead to serious complications. This study aimed to investigate the effects of exercise training and supplementation (milk thistle, chicory and cumin) on liver metabolites related to its function and health in rats with non-alcoholic fatty liver disease (NAFLD). Forty adult male Wistar rats with an average weight of 215 ± 10 g were divided into a control group fed on the basal diet and four experimental groups fed with high-fat diet (HFD) for 6 weeks to induce non-alcoholic fatty liver disease (NAFLD). The 4 NAFLD groups were subdivided and treated with (a) plain HFD, (b) high-intensity interval training (HIIT), (c) supplement (milk thistle, chicory, and cumin), and (d) combined HIIT and supplementation for 4 weeks. The induction of NAFLD through HFD yielded dyslipidemia, liver tissue damage, increased malondialdehyde, uncoupling protein 2 (UCP2), and phosphatidylinositol-3 kinase (PI3K), as well as decreased superoxide dismutase (SOD) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) in liver tissue (p < 0.05). The 4 weeks intervention with either HIIT, supplement or especially the combined application of both, reversed these factors (p < 0.05) through changes in their concentrations in a direction indicative of enhanced liver health and function. HIIT beside supplementation (milk thistle, chicory, and cumin) improved indices related to oxidative stress, lipid profile, and the expression of PI3K, UCP2, PGC-1α genes expression and PGC-1α protein content, making it potentially promising in the treatment of liver damage caused by HFD.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Majid Mohabbat
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | | | - Alireza Rahimi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Anatoli Petridou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zahra Emami
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Helena Tajik
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Reza Bozorg Omid
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Amir Maleki
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Ali Khademi
- PhD in Sport Management, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
3
|
Xu S, Chen J, Yue S, Zhang Y, Zhao S, Hu Y, Zhang C, Guan W, Zhang L, Zhang L, Liang C. Alcohol intake exacerbates experimental autoimmune prostatitis through activating PI3K/AKT/mTOR pathway-mediated Th1 differentiation. Front Immunol 2025; 15:1512456. [PMID: 39872540 PMCID: PMC11770681 DOI: 10.3389/fimmu.2024.1512456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Background Epidemiological investigations have revealed a significant association between alcohol consumption and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Nevertheless, the potential mechanisms are still inadequately revealed. This research aimed to investigate the impact of alcohol on CP/CPPS using an animal model and to elucidate the underlying mechanisms. Methods We first established the widely used animal model for CP/CPPS, experimental autoimmune prostatitis (EAP). During the induction of EAP, mice were fed with alcohol or control diet. The HE staining, ELISA, and behavioral experiments were employed to assess the severity of inflammation in EAP mice and EAP-alcohol mice. Patients with a history of chronic alcohol consumption were also included to evaluate the effects of chronic alcohol consumption on CP/CPPS. Subsequently, proteomic analysis, flow cytometry, immunofluorescence, Western blotting, and immunohistochemistry were utilized to investigate the underlying mechanism involved both in vivo and in vitro. Results HE staining, ELISA, and behavioral experiments showed that alcohol exacerbated the severity of EAP in mice and patients. Proteomic and KEGG pathway analyses showed that abnormal Th1 differentiation and PI3K/AKT/mTOR pathway were significantly enriched. Subsequent mechanistic research showed that alcohol significantly activated PI3K/AKT/mTOR pathway and increased the Th1 cell differentiation both in vivo and in vitro. In contrast, PI3K inhibitor LY294002 and shRNA-PI3K plasmid inhibited PI3K/AKT/mTOR pathway activation, reduced Th1 cell differentiation, and alleviated EAP inflammation severity, respectively. Conclusion Our study is the first to demonstrate that alcohol intake promotes Th1 cell differentiation and exacerbates EAP by activating the PI3K/AKT/mTOR pathway. Additionally, the role of LY294002 in inhibiting PI3K/AKT/mTOR pathway to relieve EAP suggests that it can serve as a promising therapeutic target for CP/CPPS.
Collapse
Affiliation(s)
- Shun Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Shaoyu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Yifan Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Shengyu Zhao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Yongtao Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Wenrui Guan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Ligang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
4
|
Qin L, Song CZ, Yuan FY, Wang XF, Yang Y, Ma YF, Chen ZL. ELOVL1 is upregulated and promotes tumor growth in hepatocellular carcinoma through regulating PI3K-AKT-mTOR signaling. Heliyon 2024; 10:e34961. [PMID: 39144963 PMCID: PMC11320299 DOI: 10.1016/j.heliyon.2024.e34961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The functions of the ELOVLs are mainly involved in the elongation of saturated and polyunsaturated fatty acids, thus influencing the metabolism of fatty acids. Abnormal lipid metabolism may result in NAFLD and NASH, which may lead to cirrhosis and liver cancer. These results suggest that ELOVLs-mediated metabolism might be involved in the development of HCC. The purpose of this study was to study the expression and function of ELOVL1 in human liver cancer. Method Using TCGA, GEPIA and other databases, we analyzed the relationship between the expression of ELOVL1 and liver cancer. The expression of ELOVL1 was detected by immunohistochemical method and Western blot method in hepatic carcinoma and hepatic carcinoma cells. Then, the effects of ELOVL1 on proliferation, apoptosis and invasion in vitro and in vivo were investigated by means of different methods. Result Our results indicate that ELOVL1 is more highly expressed in liver cancer than in normal tissues. Survival analysis showed that OS and DSS were shorter in patients with high ELOVL1 expression than in those with low expression. Multivariate Cox analysis further demonstrated that over-expression of ELOVL1 was an independent risk factor for overall survival in HCC. The results of ROC also confirmed the value of ELOVL1 in the diagnosis of liver cancer. The results of KEGG enrichment and GSEA indicate that ELOVL1 is associated with lipid metabolism and NAFLD, as well as PPAR, PI3K-AKT-mTOR. Compared with the control group, it was found that silencing ELOVL1 in Huh7 and HepG2 cells could inhibit the growth of cells, promote the apoptosis and decrease the metastasis and invasion. Changes in ELOVL1 induced cell proliferation and metastasis may be related to PI3K/AKT/mTOR. Low expression of ELOVL1 inhibited the growth of xenograft tumors in hepatocellular carcinoma xenograft model. Conclusion Our data indicate that the activation of PI3K/AKT/mTOR pathway in HCC may contribute to the promotion of cancer. Thus, ELOVL1 may be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Liang Qin
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Cheng-ze Song
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Fa-yang Yuan
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Xue-fa Wang
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Yang Yang
- Clinical Medicine School of Surgery, Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, 550000, China
| | - Yi-fei Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, NO.28 Gui Yi Street, Guiyang, 550000, China
| | - Zi-li Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, NO.28 Gui Yi Street, Guiyang, 550000, China
| |
Collapse
|
5
|
Zheng QX, Liu QL, Sun WN, Jiang XY, Zeng T. Biphasic effects of ethanol consumption on N,N-dimethylformamide-induced liver injury in mice. Toxicology 2024; 506:153872. [PMID: 38924947 DOI: 10.1016/j.tox.2024.153872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
N,N-Dimethylformamide (DMF) is a well-documented occupational hazardous material, which can induce occupational liver injury. The current study was designed to investigate whether ethanol consumption can affect DMF-induced hepatotoxicity and the potential underlying mechanisms involved. We found that a single dose of ethanol (1.25, 2.5, or 5 g/kg bw by gavage) significantly repressed the increase in serum alanine transaminase (ALT) and aspartate transaminase (AST) activities and alleviated the liver histopathological changes in mice challenged with 3 g/kg DMF. In contrast, long-term moderate drinking (2.5 g/kg bw) significantly aggravated the repeated DMF (0.7 g/kg bw) exposure-induced increase in the serum ALT and AST activities. Mechanistically, acute ethanol consumption suppressed DMF-induced activation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome, while long-term moderate ethanol consumption promoted hepatocyte apoptosis in the mouse liver. Notably, cytochrome P4502E1 (CYP2E1) protein level and activity in mouse livers were not significantly affected by ethanol per se in the two models. These results confirm that regular drinking can increase the risk of DMF-induced hepatotoxicity, and suggest that DMF-handling workers should avoid consuming ethanol to reduce the risk of DMF-indued liver injury.
Collapse
Affiliation(s)
- Qing-Xiang Zheng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qing-Lin Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wen-Na Sun
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin-Yu Jiang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Huang M, Wu Z, Jia L, Wang Y, Gao S, Liu Y, Zhang Y, Li J. Bioinformatics and network pharmacology identify promotional effects and potential mechanisms of ethanol on esophageal squamous cell carcinoma and experimental validation. Toxicol Appl Pharmacol 2023; 474:116615. [PMID: 37406968 DOI: 10.1016/j.taap.2023.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Ethanol is an important risk factor for esophageal squamous cell carcinoma (ESCC); however, the molecular mechanisms behind how ethanol promotes ESCC development remain poorly understood. In this study, ethanol-ESCC-associated target genes were constructed and screened using network pharmacology and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) and bioinformatics analysis. A mouse ethanol-exposed esophageal cancer model was constructed with 4-nitroquinoline-1-oxide (4-NQO) to assess its survival and tumor lesion status, and the mechanism of ethanol-promoted ESCC lesions was verified by qRT-PCR and Western blotting. The results showed that 126 ethanol-ESCC crossover genes were obtained, which were significantly enriched in the PI3K/AKT signaling pathway. Bioinformatics results showed that the target genes TNF, IL6, IL1β and JUN were highly expressed in esophageal tumor samples and positively correlated with tumor proliferation and apoptosis genes, and the genetic information of these genes was mutated to different degrees. Animal model experiments showed that ethanol decreased the survival rate and aggravated the occurrence of esophageal cancer in mice. qRT-PCR showed that ethanol promoted the expression of TNF, IL6, IL1β and JUN mRNA in mouse esophageal tumor tissues, and Western blotting showed that ethanol promoted p-PI3K and p-AKT protein expression in mouse esophageal tumor tissues. In conclusion, ethanol promotes esophageal carcinogenesis by increasing the expression of TNF, IL6, IL1β and JUN and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Jia
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yu Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Liu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yushuang Zhang
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang 050017, China; The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| |
Collapse
|
7
|
Wang Y, Chen Q, Wu S, Sun X, Yin R, Ouyang Z, Yin H, Wei Y. Amelioration of ethanol-induced oxidative stress and alcoholic liver disease by in vivo RNAi targeting Cyp2e1. Acta Pharm Sin B 2023; 13:3906-3918. [PMID: 37719371 PMCID: PMC10502278 DOI: 10.1016/j.apsb.2023.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 12/10/2022] [Indexed: 09/19/2023] Open
Abstract
Alcoholic liver disease (ALD) results from continuous and heavy alcohol consumption. The current treatment strategy for ALD is based on alcohol withdrawal coupled with antioxidant drug intervention, which is a long process with poor efficacy and low patient compliance. Alcohol-induced CYP2E1 upregulation has been demonstrated as a key regulator of ALD, but CYP2E1 knockdown in humans was impractical, and pharmacological inhibition of CYP2E1 by a clinically relevant approach for treating ALD was not shown. In this study, we developed a RNAi therapeutics delivered by lipid nanoparticle, and treated mice fed on Lieber-DeCarli ethanol liquid diet weekly for up to 12 weeks. This RNAi-based inhibition of Cyp2e1 expression reduced reactive oxygen species and oxidative stress in mouse livers, and contributed to improved ALD symptoms in mice. The liver fat accumulation, hepatocyte inflammation, and fibrosis were reduced in ALD models. Therefore, this study suggested the feasibility of RNAi targeting to CYP2E1 as a potential therapeutic tool to the development of ALD.
Collapse
Affiliation(s)
- Yalan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Qiubing Chen
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuang Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hao Yin
- Department of Urology, Frontier Science Centre for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- RNA Institute, Wuhan University, Wuhan 430072, China
- Wuhan Research Centre for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430010, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
8
|
Chou YN, Lee MM, Deng JS, Jiang WP, Lin JG, Huang GJ. Water Extract from Brown Strain of Flammulina velutipes Alleviates Cisplatin-Induced Acute Kidney Injury by Attenuating Oxidative Stress, Inflammation, and Autophagy via PI3K/AKT Pathway Regulation. Int J Mol Sci 2023; 24:ijms24119448. [PMID: 37298398 DOI: 10.3390/ijms24119448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
One of the most popular edible mushrooms in the world, Flammulina velutipes, has been shown to possess pharmacological properties such as anti-inflammatory and antioxidant properties. However, the potential activity of the brown strain of F. velutipes, a hybrid between the white and yellow strains, has not been thoroughly investigated. Numerous studies have been conducted in recent years to determine whether natural products can aid in improving or treating kidney diseases. In this study, we focused on the renoprotective effects of the brown strain of F. velutipes on cisplatin-induced acute kidney injury (AKI) in mice. Mice were pretreated with water extract from the brown strain of F. velutipes (WFV) from day 1 to day 10, with a single-dose intraperitoneal injection of cisplatin on day 7 to induce AKI. Our results demonstrated that WFV administration resulted in a reduction in weight loss and the amelioration of renal function and renal histological changes in mice with cisplatin-induced AKI. WFV improved antioxidative stress and anti-inflammatory capacity by increasing antioxidant enzymes and decreasing inflammatory factors. The expression of related proteins was determined via Western blot analysis, which showed that WFV could improve the expression of apoptosis and autophagy. We used the PI3K inhibitor Wortmannin and found that WFV achieved a protective effect by modulating the PI3K/AKT pathway and the expression of autophagy. Overall, WFV as a natural substance could be used as a new therapeutic agent for AKI.
Collapse
Affiliation(s)
- Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Min-Min Lee
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
9
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
10
|
Blood Vessels as a Key Mediator for Ethanol Toxicity: Implication for Neuronal Damage. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111882. [PMID: 36431016 PMCID: PMC9696276 DOI: 10.3390/life12111882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Excessive intake of ethanol is associated with severe brain dysfunction, and the subsequent neurological and behavioral abnormalities are well-established social risks. Many research studies have addressed how ethanol induces neurological toxicity. However, the underlying mechanisms with which ethanol induces neurological toxicity are still obscure, perhaps due to the variety and complexity of these mechanisms. Epithelial cells are in direct contact with blood and can thus mediate ethanol neurotoxicity. Ethanol activates the endothelial cells of blood vessels, as well as lymphatic vessels, in a concentration-dependent manner. Among various signaling mediators, nitric oxide plays important roles in response to ethanol. Endothelial and inducible nitric oxide synthases (eNOS and iNOS) are upregulated and activated by ethanol and enhance neuroinflammation. On the other hand, angiogenesis and blood vessel remodeling are both affected by ethanol intake, altering blood supply and releasing angiocrine factors to regulate neuronal functions. Thus, ethanol directly acts on endothelial cells, yet the molecular target(s) on endothelial cells remain unknown. Previous studies on neurons and glial cells have validated the potential contribution of membrane lipids and some specific proteins as ethanol targets, which may also be the case in endothelial cells. Future studies, based on current knowledge, will allow for a greater understanding of the contribution and underlying mechanisms of endothelial cells in ethanol-induced neurological toxicity, protecting neurological health against ethanol toxicity.
Collapse
|
11
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Oh KK, Choi YR, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Kim DJ, Suk KT. Identification of Gut Microbiome Metabolites via Network Pharmacology Analysis in Treating Alcoholic Liver Disease. Curr Issues Mol Biol 2022; 44:3253-3266. [PMID: 35877448 PMCID: PMC9316215 DOI: 10.3390/cimb44070224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/03/2022] Open
Abstract
Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein-protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin-RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Korea; (K.-K.O.); (Y.-R.C.); (H.G.); (R.G.); (S.P.S.); (S.-M.W.); (J.-J.J.); (S.-B.L.); (M.-G.C.); (G.-H.K.); (D.-J.K.)
| |
Collapse
|
13
|
Ganoderma lucidum protease hydrolyzate on lipid metabolism and gut microbiota in high-fat diet fed rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Hu M, Chen Y, Deng F, Chang B, Luo J, Dong L, Lu X, Zhang Y, Chen Z, Zhou J. D-Mannose Regulates Hepatocyte Lipid Metabolism via PI3K/Akt/mTOR Signaling Pathway and Ameliorates Hepatic Steatosis in Alcoholic Liver Disease. Front Immunol 2022; 13:877650. [PMID: 35464439 PMCID: PMC9021718 DOI: 10.3389/fimmu.2022.877650] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective properties and mechanisms of D-mannose against hepatic steatosis in experimental alcoholic liver disease (ALD). Drinking-water supplementation of D-mannose significantly attenuated hepatic steatosis in a standard mouse ALD model established by chronic-binge ethanol feeding, especially hepatocyte lipid deposition. This function of D-mannose on lipid accumulation in hepatocytes was also confirmed using ethanol-treated primary mouse hepatocytes (PMHs) with a D-mannose supplement. Meanwhile, D-mannose regulated lipid metabolism by rescuing ethanol-mediated reduction of fatty acid oxidation genes (PPARα, ACOX1, CPT1) and elevation of lipogenic genes (SREBP1c, ACC1, FASN). PI3K/Akt/mTOR signaling pathway was involved in this effect of D-mannose on lipid metabolism since PI3K/Akt/mTOR pathway inhibitors or agonists could abolish this effect in PMHs. Overall, our findings suggest that D-mannose exhibits its anti-steatosis effect in ALD by regulating hepatocyte lipid metabolism via PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Mengyao Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijun Dong
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Li X, Chen H, Yang H, Liu J, Li Y, Dang Y, Wang J, Wang L, Li J, Nie G. Study on the Potential Mechanism of Tonifying Kidney and Removing Dampness Formula in the Treatment of Postmenopausal Dyslipidemia Based on Network Pharmacology, Molecular Docking and Experimental Evidence. Front Endocrinol (Lausanne) 2022; 13:918469. [PMID: 35872979 PMCID: PMC9302042 DOI: 10.3389/fendo.2022.918469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Management of menopausal dyslipidemia is the main measure to reduce the incidence of cardiovascular disease in postmenopausal women. Tonifying Kidney and Removing Dampness Formula (TKRDF) is a traditional Chinese medicine (TCM) formula that ameliorates dyslipidemia in postmenopausal women. This study applied network pharmacology, molecular docking, and in vitro and in vitro experiments to investigate the underlying mechanism of TKRDF against postmenopausal dyslipidemia. METHODS Network pharmacology research was first conducted, and the active compounds and targets of TKRDF, as well as the targets of postmenopausal dyslipidemia, were extracted from public databases. Protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to identify the potential targets and signaling pathways of TKRDF in postmenopausal dyslipidemia. Molecular docking was then performed to evaluate the combination of active compounds with principal targets. Finally, an ovariectomized rat model was used for the in vivo experiment and alpha mouse liver 12 (AML12) cells treated with palmitic acid were used for the in vitro experiments to provide further evidence for the research. RESULTS Based on network pharmacology analysis, we obtained 78 active compounds from TKRDF that acted on 222 targets of postmenopausal dyslipidemia. The analysis results indicated that IL6, TNF, VEGFA, AKT1, MAPK3, MAPK1, PPARG and PIK3CA, etc., were the potentially key targets, and the PI3K/AKT signaling pathway was the possibly crucial pathway for TKRDF to treat postmenopausal dyslipidemia. Molecular docking suggested that the active compounds have good binding activity with the core targets. The in vivo and in vitro experiments demonstrated that TKRDF ameliorates postmenopausal dyslipidemia by regulating hormone levels, inhibiting inflammation, promoting angiogenesis and inhibiting lipid synthesis, which appear to be related to TKRDF's regulation of the ERK1/2 and PI3K/AKT signaling pathways. CONCLUSION This study clarified the active ingredients, potential targets, and molecular mechanisms of TKRDF for treating postmenopausal dyslipidemia. It also provided a feasible method to uncover the scientific basis and therapeutic mechanism for prescribing TCM in the treatment of diseases.
Collapse
Affiliation(s)
- Xuewen Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyan Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongyan Yang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian Liu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Li
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiajing Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Guangning Nie, ; Jun Li,
| | - Guangning Nie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Guangning Nie, ; Jun Li,
| |
Collapse
|
16
|
Wang B, Shao Z, Gu M, Ni L, Shi Y, Yan Y, Wu A, Jin H, Chen J, Pan X, Xu D. Hydrogen sulfide protects against IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis in chondrocytes and ameliorates osteoarthritis. J Cell Physiol 2021; 236:4369-4386. [PMID: 33164235 DOI: 10.1002/jcp.30154] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/26/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022]
Abstract
The inflammatory environment and excessive chondrocyte apoptosis have been demonstrated to play crucial roles in the onset of osteoarthritis (OA). Hydrogen sulfide (H2 S), a gaseous signalling molecule, exerts an inhibitory effect on inflammation and apoptosis in several degenerative diseases. However, the protective effect of H2 S against OA has not been fully clarified, and its underlying mechanism should be examined further. In the current study, the role of endogenous H2 S in the pathogenesis of OA and its protective effects on interleukin (IL)-1β-induced chondrocytes were identified. Our data revealed decreased H2 S expression in both human degenerative OA cartilage tissue and IL-1β-induced chondrocytes. Pretreatment with the H2 S donor sodium hydrosulfide (NaHS) dramatically attenuated IL-1β-induced overproduction of inflammatory cytokines and improved the balance between anabolic and catabolic chondrocyte capacities, and these effects were dependent on PI3K/AKT pathway-mediated inhibition of nuclear factor kappa B (NF-κB). Moreover, mitochondrial dysfunction-related apoptosis was significantly reversed by NaHS in IL-1β-stimulated chondrocytes. Mechanistically, NaHS partially suppressed IL-1β-induced phosphorylation of the mitogen-activated protein kinase (MAPK) cascades. Furthermore, in the destabilization of the medial meniscus mouse model, OA progression was ameliorated by NaHS administration. Taken together, these results suggest that H2 S may antagonize IL-1β-induced inflammation and mitochondrial dysfunction-related apoptosis via selective suppression of the PI3K/Akt/NF-κB and MAPK signalling pathways, respectively, in chondrocytes and may be a potential therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
- Department of Orthopedic, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Mingbao Gu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Libin Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yingzhao Yan
- Department of Orthopaedic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
17
|
Niture S, Lin M, Rios-Colon L, Qi Q, Moore JT, Kumar D. Emerging Roles of Impaired Autophagy in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Hepatol 2021; 2021:6675762. [PMID: 33976943 PMCID: PMC8083829 DOI: 10.1155/2021/6675762] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved catabolic process that eliminates dysfunctional cytosolic biomolecules through vacuole-mediated sequestration and lysosomal degradation. Although the molecular mechanisms that regulate autophagy are not fully understood, recent work indicates that dysfunctional/impaired autophagic functions are associated with the development and progression of nonalcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), and hepatocellular carcinoma (HCC). Autophagy prevents NAFLD and AFLD progression through enhanced lipid catabolism and decreasing hepatic steatosis, which is characterized by the accumulation of triglycerides and increased inflammation. However, as both diseases progress, autophagy can become impaired leading to exacerbation of both pathological conditions and progression into HCC. Due to the significance of impaired autophagy in these diseases, there is increased interest in studying pathways and targets involved in maintaining efficient autophagic functions as potential therapeutic targets. In this review, we summarize how impaired autophagy affects liver function and contributes to NAFLD, AFLD, and HCC progression. We will also explore how recent discoveries could provide novel therapeutic opportunities to effectively treat these diseases.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Minghui Lin
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China 750021
| | - Leslimar Rios-Colon
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - John T. Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA
| |
Collapse
|
18
|
Lua YH, Ong WW, Wong HK, Chew CH. Ethanol-induced CYP2E1 Expression is Reduced by Lauric Acid via PI3K Pathway in HepG2 Cells. Trop Life Sci Res 2020; 31:63-75. [PMID: 33214856 PMCID: PMC7652244 DOI: 10.21315/tlsr2020.31.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The metabolism of alcohol involves cytochrome P450 2E1 (CYP2E1)-induced oxidative stress, with the association of phosphatidylinositol-3-kinases (PI3K) and nuclear factor kappa B (NFκB) signalling pathways. CYP2E1 is primarily involved in the microsomal ethanol oxidising system, which generates massive reactive oxygen species (ROS) and ultimately leads to oxidative stress and tissue damage. Lauric acid, a major fatty acid in palm kernel oil, has been shown as a potential antioxidant. Here, we aimed to evaluate the use of lauric acid as a potential antioxidant against ethanol-mediated oxidative stress by investigating its effect on CYP2E1 mRNA expression and the signalling pathway in ethanol-induced HepG2 cells. HepG2 cells were firstly treated with different concentrations of ethanol, and subsequently co-treated with different concentrations of lauric acid for 24 h. Total cellular RNA and total protein were extracted, and qPCR and Western blot was carried out. Ethanol induced the mRNA expression of CYP2E1 significantly, but lauric acid was able to downregulate the induced CYP2E1 expression in a dose-dependent manner. Similarly, Western blot analysis and densitometry analysis showed that the phosphorylated PI3K p85 (Tyr458) protein was significantly elevated in ethanol-treated HepG2 cells, but co-treatment with lauric acid repressed the activation of PI3K. However, there was no significant difference in NFκB pathway, in which the normalised NFκB p105 (Ser933) phosphorylation remained constant in any treatment conditions in this study. This suggests that ethanol induced CYP2E1 expression by activating PI3K p85 (Tyr458) pathway, but not the NFκB p105 (Ser933) pathway in HepG2 cells.
Collapse
Affiliation(s)
- Ying-Huan Lua
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Wei-Wah Ong
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Hong-Kin Wong
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| | - Choy-Hoong Chew
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
19
|
Region-dependent regulation of acute ethanol on γ oscillation in the rat hippocampal slices. Psychopharmacology (Berl) 2020; 237:2959-2966. [PMID: 32700022 DOI: 10.1007/s00213-020-05584-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Ethanol use disorders are a serious medical and public health problem in the world today. Acute ethanol intoxication can lead to cognitive dysfunction such as learning and memory impairment. Gamma oscillations (γ, 30-80 Hz) are synchronized rhythmic activity generated by population of neurons within local network, and closely related to learning and memory function. The hippocampus is a critical anatomic structure that supports learning and memory. On the grounds of structure and function, hippocampus can be divided into the intermediate (IH), the dorsal (DH), and ventral hippocampus (VH). The current study is the first to investigate the effects of acute ethanol on γ oscillations in these sub-regions of rat hippocampal slices. METHODS The sustained γ oscillations were induced by 200 nM kainate (KA) in the CA3c of IH, DH, and VH. When KA-induced γ oscillation reached the steady state, ethanol (50 mM or 100 mM) was applied and the effects of ethanol on γ oscillation power was measured in the slices sequentially sectioned from ventral to dorsal hippocampus of adult rats. RESULTS In the intermediate hippocampal slices, compared with control (KA only), ethanol (50 mM) caused 36.1 ± 3.9% decrease in γ power (p < 0.05, n = 10), while ethanol (100 mM) caused 55.3 ± 5.5% decrease in γ power (p < 0.001, n = 14). In the dorsal hippocampus, only ethanol (100 mM) caused 18.1 ± 8.6% decrease in γ power (p < 0.05, n = 12). However, in the ventral hippocampus, neither 50 mM nor 100 mM ethanol affected γ oscillation. CONCLUSIONS Our results demonstrate that ethanol may produce the differential suppression of γ oscillations in a dose-dependent manner in different sub-regions of hippocampus, suggesting that the modulation of ethanol on hippocampal γ oscillation is region-dependent.
Collapse
|
20
|
Fan J, Shi Y, Peng Y. Autophagy and Liver Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:497-528. [PMID: 32671772 DOI: 10.1007/978-981-15-4272-5_37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy plays an important role in the physiology and pathology of the liver. It is involved in the development of many liver diseases such as α-1-antitrypsin deficiency, chronic hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver disease, and liver cancer. Autophagy has thus become a new target for the treatment of liver diseases. How to treat liver diseases by regulating autophagy has been a hot topic.
Collapse
Affiliation(s)
- Jia Fan
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China.
| | - Yinghong Shi
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| | - Yuanfei Peng
- Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, China
| |
Collapse
|
21
|
Zhu Q, Huang C, Meng X, Li J. CYP1A2 contributes to alcohol-induced abnormal lipid metabolism through the PTEN/AKT/SREBP-1c pathway. Biochem Biophys Res Commun 2019; 513:509-514. [DOI: 10.1016/j.bbrc.2019.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
|
22
|
Heo MJ, Kim TH, You JS, Blaya D, Sancho-Bru P, Kim SG. Alcohol dysregulates miR-148a in hepatocytes through FoxO1, facilitating pyroptosis via TXNIP overexpression. Gut 2019; 68:708-720. [PMID: 29475852 PMCID: PMC6581021 DOI: 10.1136/gutjnl-2017-315123] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Alcoholic liver disease (ALD) is a leading cause of death among chronic liver diseases. However, its pathogenesis has not been completely established. MicroRNAs (miRNAs) are key contributors to liver diseases progression. This study investigated hepatocyte-abundant miRNAs dysregulated by ALD, its impact on hepatocyte injury and the underlying basis. DESIGN Alcoholic hepatitis (AH) human and animal liver samples and hepatocytes were used to assess miR-148a levels. Pre-miR-148a was delivered specifically to hepatocytes in vivo using lentivirus. Immunoblottings, luciferase reporter assays, chromatin immunoprecipitation and immunofluorescence assays were carried out in cell models. RESULTS The miRNA profile and PCR analyses enabled us to find substantial decrease of miR-148a in the liver of patients with AH. In mice subjected to Lieber-DeCarli alcohol diet or binge alcohol drinking, miR-148a levels were also markedly reduced. In cultured hepatocytes and mouse livers, alcohol exposure inhibited forkhead box protein O1 (FoxO1) expression, which correlated with miR-148a levels and significantly decreased in human AH specimens. FoxO1 was identified as a transcription factor for MIR148A transactivation. MiR-148a directly inhibited thioredoxin-interacting protein (TXNIP) expression. Consequently, treatment of hepatocytes with ethanol resulted in TXNIP overexpression, activating NLRP3 inflammasome and caspase-1-mediated pyroptosis. These events were reversed by miR-148a mimic or TXNIP small-interfering RNA transfection. Hepatocyte-specific delivery of miR-148a to mice abrogated alcohol-induced TXNIP overexpression and inflammasome activation, attenuating liver injury. CONCLUSION Alcohol decreases miR-148a expression in hepatocytes through FoxO1, facilitating TXNIP overexpression and NLRP3 inflammasome activation, which induces hepatocyte pyroptosis. Our findings provide information on novel targets for reducing incidence and progression of ALD.
Collapse
Affiliation(s)
- Mi Jeong Heo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae Hyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Delia Blaya
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticasy Digestivas (CIBERehd), Barcelona, Spain
| | - Pau Sancho-Bru
- Laboratory of Liver Cell Plasticity and Tissue Repair, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticasy Digestivas (CIBERehd), Barcelona, Spain
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Qiao X, Gai H, Su R, Deji C, Cui J, Lai J, Zhu Y. PI3K-AKT-GSK3β-CREB signaling pathway regulates anxiety-like behavior in rats following alcohol withdrawal. J Affect Disord 2018; 235:96-104. [PMID: 29655081 DOI: 10.1016/j.jad.2018.04.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alcohol abuse and anxiety disorders often occur concurrently, but their underlying cellular mechanisms remain unclear. Neuroadaptation within the medial prefrontal cortex (mPFC) have been implicated in the molecular mechanisms underlying alcohol drinking behavior and withdrawal. METHODS A chronic alcohol exposure rat model (35 consecutive days of 10% alcohol intake and 48 h of withdrawal) was established, then, wortmannin (0.5 µg/side) was injected bilaterally into the mPFC. The elevated plus maze (EPM) and open field test (OFT) were used to assess anxiety-like behavior. Western blot assays were used to assess protein levels. RESULTS We found that anxiety-like behavior peaked approximately 6 h after alcohol withdrawal. However, wortmannin greatly decreased alcohol intake and attenuated anxiety-like behavior in the alcohol exposure rats. Moreover, the PI3K-AKT-GSK3β signaling pathway was activated after alcohol withdrawal, and phosphorylation of the downstream cAMP response element-binding protein (CREB) was increased. Wortmannin uniformly reversed PI3K-AKT-GSK3β-CREB pathway phosphorylation. LIMITATIONS The downstream GSK3β activity was not intervened and a single dose level of wortmannin was used. CONCLUSION Our results suggest that activating the PI3K-AKT-GSK3β-CREB pathway in the mPFC is an important contributor to the molecular mechanisms underlying alcohol withdrawal. PI3K signaling pathway inhibitors are thus potential candidates for treating alcohol abuse.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Haiyun Gai
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710021, China
| | - Rui Su
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Cuola Deji
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Jingjing Cui
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Jianghua Lai
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Yongsheng Zhu
- College of Forensic Science, School of Medicine, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
24
|
Iacobucci GJ, Gunawardena S. Ethanol stimulates the in vivo axonal movement of neuropeptide dense-core vesicles in Drosophila motor neurons. J Neurochem 2017; 144:466-482. [PMID: 28960313 DOI: 10.1111/jnc.14230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
Abstract
Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide-containing dense-core vesicle (DCV) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide-DCV while high doses inhibit bi-directional movement. This process required the presence of functional kinesin-1 motors as reduction in kinesin prevented the ethanol-induced stimulation of the anterograde movement of neuropeptide-DCV. Furthermore, expression of inactive glycogen synthase kinase 3 (GSK-3β) also prevented ethanol-induced stimulation of neuropeptide-DCV movement, similar to pharmacological inhibition of GSK-3β with lithium. Conversely, inhibition of PI3K/AKT signaling with wortmannin led to a partial prevention of ethanol-stimulated transport of neuropeptide-DCV. Taken together, we conclude that GSK-3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide-DCV to exogenous stressors. Cover Image for this Issue: doi: 10.1111/jnc.14165.
Collapse
Affiliation(s)
- Gary J Iacobucci
- Department of Biological Sciences, the State University of New York at Buffalo, Buffalo, New York, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, the State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
25
|
Tang Q, Zheng G, Feng Z, Tong M, Xu J, Hu Z, Shang P, Chen Y, Wang C, Lou Y, Chen D, Zhang D, Nisar M, Zhang X, Xu H, Liu H. Wogonoside inhibits IL-1β induced catabolism and hypertrophy in mouse chondrocyte and ameliorates murine osteoarthritis. Oncotarget 2017; 8:61440-61456. [PMID: 28977876 PMCID: PMC5617436 DOI: 10.18632/oncotarget.18374] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/27/2017] [Indexed: 01/07/2023] Open
Abstract
The inflammatory environment is correlated with extracellular matrix (ECM) degradation and chondrocyte hypertrophy in the development of osteoarthritis (OA). Previous studies have reported the anti-inflammatory effects of wogonoside in several diseases. In the present study, we investigated the protective effects of wogonoside in relation to the development of OA and delineated the potential mechanism. In vitro, wogonoside decreased the production of pro-inflammatory cytokines like Nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6). It also inhibited the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) both at gene and protein levels. Wogonoside also inhibited hypertrophy and the generation of vascular endothelial growth factor (VEGF) in interleukin-1β (IL-1β)-induced chondrocytes. Moreover, wogonoside promoted the expression of anabolic factors Sox-9, type two collagen and aggrecan while inhibiting the expression of catabolic factors such as matrix metalloproteinases (MMPs) and thrombospondin motifs 5 (ADAMTS-5) in mouse chondrocytes. Mechanistically, we found that wogonoside inhibited nuclear factor kappa B/ hypoxia-inducible factor two alpha (NF-κB/HIF-2α) activation via the phosphatidylinositol 3 kinase (PI3K) /AKT pathway. The protective effects of wogonoside were also observed in vivo and the pharmacokinetic results of wogonoside indicated that good systemic exposure was achievable after oral administration of wogonoside. In conclusion, our stduy demonstrates that wogonoside attenuates IL-1β-induced ECM degradation and hypertrophy in mouse chondrocytes via suppressing the activation of NF-κB/HIF-2α by the PI3K/AKT pathway. Moreover, wogonoside ameliorates OA progression in vivo, indicating that wogonoside may serve as a promising therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Qian Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Gang Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Minji Tong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Jianxiang Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Zhiyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Chenggui Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Yiting Lou
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Deheng Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Di Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Majid Nisar
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Huazi Xu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| | - Haixiao Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, 325027 Wenzhou, China
| |
Collapse
|
26
|
Yan S, Huda N, Khambu B, Yin XM. Relevance of autophagy to fatty liver diseases and potential therapeutic applications. Amino Acids 2017; 49:1965-1979. [PMID: 28478585 DOI: 10.1007/s00726-017-2429-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved lysosome-mediated cellular degradation program. Accumulating evidence shows that autophagy is important to the maintenance of liver homeostasis. Autophagy involves recycling of cellular nutrients recycling as well as quality control of subcellular organelles. Autophagy deficiency in the liver causes various liver pathologies. Fatty liver disease (FLD) is characterized by the accumulation of lipids in hepatocytes and the dysfunction in energy metabolism. Autophagy is negatively affected by the pathogenesis of FLD and the activation of autophagy could ameliorate steatosis, which suggests a potential therapeutic approach to FLD. In this review, we will discuss autophagy and its relevance to liver diseases, especially FLD. In addition, we will discuss recent findings on potential therapeutic applications of autophagy modulators for FLD.
Collapse
Affiliation(s)
- Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Wang S, Li M, Wang X, Li X, Yin H, Jiang L, Han W, Irving G, Zeng T, Xie K. Diallyl trisulfide attenuated n-hexane induced neurotoxicity in rats by modulating P450 enzymes. Chem Biol Interact 2017; 265:1-7. [PMID: 28115069 DOI: 10.1016/j.cbi.2017.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/19/2017] [Indexed: 01/03/2023]
Abstract
Chronic exposure to n-hexane can induce serious nerve system impairments without effective preventive medicines. Diallyl trisulfide (DATS) is a garlic-derived organosulfur compound, which has been demonstrated to have many beneficial effects. The current study was designed to evaluate whether DATS could restrain n-hexane induced neurotoxicity in rats and to explore the underlying mechanisms. Rats were treated with n-hexane (3 g/kg, p.o.) and different doses of DATS (10, 20 and 30 mg/kg, p.o.) for 8 weeks. Behavioral assessment showed that DATS could inhibit n-hexane induced neurotoxicity, demonstrated by the improvement of the grip strength and decline of gait scores. Toxicokinetic analysis revealed that the Cmax and AUC0-t of 2,5-hexanedione (product of n-hexane metabolic activation) and 2,5-hexanedione protein adducts in serum were significantly declined in DATS-treated rats, and the levels of pyrrole adducts in tissues were significantly reduced. Furthermore, DATS activated CYP1A1 and inhibited n-hexane induced increased expression and activity of CYP2E1 and CYP2B1. Collectively, these findings indicated that DATS protected the rats from n-hexane-induced neurotoxicity, which might be attributed to the modulation of P450 enzymes by DATS.
Collapse
Affiliation(s)
- Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Ming Li
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Xujing Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Xianjie Li
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Hongyin Yin
- Jinan Municipal Center for Disease Control & Prevention, Jinan, Shandong Province, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Wenting Han
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | | | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
28
|
Wang S, Li X, Li M, Jiang L, Yuan H, Han W, Wang X, Zeng T, Xie K. Cystamine attenuated behavioral deficiency via increasing the expression of BDNF and activating PI3K/Akt signaling in 2,5-hexanedione intoxicated rats. Toxicol Res (Camb) 2016; 6:199-204. [PMID: 30090490 DOI: 10.1039/c6tx00409a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022] Open
Abstract
Organic solvent-induced neurodegeneration is a severe public health problem which has no effective prevention measures yet. Cystamine stands as a promising neuroprotective agent against many degenerative diseases. In the present study, we investigated the possible protective effects of cystamine against 2,5-hexanedione (2,5-HD) induced peripheral neuropathy. Chronic exposure to 2,5-HD (300 mg kg-1, 6 times per week for 6 weeks) resulted in obvious peripheral nerve damage shown as the elevation of gait scores and the increase of latency in an accelerating rota-rod test. Cystamine (30 mg kg-1 and 60 mg kg-1) co-treatment obviously ameliorated 2,5-HD-induced impairments of the peripheral nervous system. To decipher the underlying mechanisms, we investigated the effects of cystamine on the regulation of brain-derived neurotrophic factor (BDNF) and heat shock protein-70 (Hsp70) expression and the PI3K/Akt signaling pathway. The results revealed that cystamine up-regulated the protein levels of BDNF and Hsp70, accompanied by the activation of the PI3K/Akt pathway in the spinal cord, which might account for the protection of cystamine against 2,5-HD-induced neuropathy.
Collapse
Affiliation(s)
- Shuo Wang
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong 250012 , China . ; Tel: +86-531-88382132
| | - Xianjie Li
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong 250012 , China . ; Tel: +86-531-88382132
| | - Ming Li
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong 250012 , China . ; Tel: +86-531-88382132
| | - Lulu Jiang
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong 250012 , China . ; Tel: +86-531-88382132
| | - Hua Yuan
- The People's Hospital of Shouguang , Weifang , Shandong 262700 , China
| | - Wenting Han
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong 250012 , China . ; Tel: +86-531-88382132
| | - Xujing Wang
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong 250012 , China . ; Tel: +86-531-88382132
| | - Tao Zeng
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong 250012 , China . ; Tel: +86-531-88382132
| | - Keqin Xie
- Institute of Toxicology , School of Public Health , Shandong University , Jinan , Shandong 250012 , China . ; Tel: +86-531-88382132
| |
Collapse
|
29
|
Zeng T, Zhang CL, Xiao M, Yang R, Xie KQ. Critical Roles of Kupffer Cells in the Pathogenesis of Alcoholic Liver Disease: From Basic Science to Clinical Trials. Front Immunol 2016; 7:538. [PMID: 27965666 PMCID: PMC5126119 DOI: 10.3389/fimmu.2016.00538] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) encompasses a spectrum of liver injury ranging from steatosis to steatohepatitis, fibrosis, and finally cirrhosis. Accumulating evidences have demonstrated that Kupffer cells (KCs) play critical roles in the pathogenesis of both chronic and acute ALD. It has become clear that alcohol exposure can result in increased hepatic translocation of gut-sourced endotoxin/lipopolysaccharide, which is a strong M1 polarization inducer of KCs. The activated KCs then produce a large amount of reactive oxygen species (ROS), pro-inflammatory cytokines, and chemokines, which finally lead to liver injury. The critical roles of KCs and related inflammatory cascade in the pathogenesis of ALD make it a promising target in pharmaceutical drug developments for ALD treatment. Several drugs (such as rifaximin, pentoxifylline, and infliximab) have been evaluated or are under evaluation for ALD treatment in randomized clinical trials. Furthermore, screening pharmacological regulators for KCs toward M2 polarization may provide additional therapeutic agents. The combination of these potentially therapeutic drugs with hepatoprotective agents (such as zinc, melatonin, and silymarin) may bring encouraging results.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Mo Xiao
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Rui Yang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| |
Collapse
|
30
|
Wang S, Irving G, Jiang L, Wang H, Li M, Wang X, Han W, Xu Y, Yang Y, Zeng T, Song F, Zhao X, Xie K. Oxidative Stress Mediated Hippocampal Neuron Apoptosis Participated in Carbon Disulfide-Induced Rats Cognitive Dysfunction. Neurochem Res 2016; 42:583-594. [PMID: 27900598 DOI: 10.1007/s11064-016-2113-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/06/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Occupational exposure to carbon disulfide (CS2) exhibits central nervous systems toxicity. But the mechanism is unclear. The present study was designed to investigate the relationship between the CNS damage and cognitive dysfunction caused by CS2, and eventually reveal the possible oxidative-related mechanism of hippocampus pathological changes in CS2 exposed rats. Male Wistar rats were administrated with CS2 at dosage of 200, 400 and 600 mg/kg for consecutive 20 days, respectively. Cognitive performances were evaluated by Morris water maze tests. Thionin and immunohistochemical analysis were used to investigate the hippocampal neuron damage, and the expression of apoptosis related proteins (cleaved-caspase 3, Bax and Bcl-2) were detected to explore the possible mechanisms of neuronal loss. Oxidative stress parameters were checked by commercial assay kits. Rats exposed to CS2 displayed cognitive dysfunction manifested as decreased spatial learning ability and memory lesion. Pathological changes and significant neuron loss were observed in hippocampus, especially in CA1 and CA3 sub-regions. Mitochondria-dependent apoptosis pathway was implicated in the CS2-induced neuronal loss which was demonstrated by the up-regulation of cleaved-caspase 3 and Bax accompanied with down-regulation of Bcl-2. Furthermore, extensive oxidative stress induced by CS2 was also revealed by the measurement of ROS, RNS, MDA, GSH&GSSG and antioxidant enzymes (CAT, T-SOD, and GSH-Px). Our study suggested that oxidative stress mediated hippocampal neuron apoptosis might play an important role in CS2 induced CNS damage and cognitive dysfunction.
Collapse
Affiliation(s)
- Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Gleniece Irving
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Hui Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Ming Li
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Xujing Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Wenting Han
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Yongpeng Xu
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Yilin Yang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Fuyong Song
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
31
|
Zhang ZH, Liu XQ, Zhang C, He W, Wang H, Chen YH, Liu XJ, Chen X, Xu DX. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation. Sci Rep 2016; 6:33513. [PMID: 27627966 PMCID: PMC5024165 DOI: 10.1038/srep33513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 08/30/2016] [Indexed: 12/20/2022] Open
Abstract
Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Qian Liu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Wei He
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Jing Liu
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Xi Chen
- First Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
32
|
Wang J, Zhao J, Liu Z, Guo F, Wang Y, Wang X, Zhang R, Vreugdenhil M, Lu C. Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β. Front Cell Neurosci 2016; 10:189. [PMID: 27582689 PMCID: PMC4987361 DOI: 10.3389/fncel.2016.00189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
Hippocampal network oscillations at gamma band frequency (γ, 30-80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25-100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment.
Collapse
Affiliation(s)
- JianGang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxiang, China; Department of Pathophysiology, Xinxiang Medical UniversityXinxiang, China
| | - JingXi Zhao
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxiang, China; Psychiatric Hospital of Henan ProvinceXinxiang, China
| | - ZhiHua Liu
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxiang, China; Psychiatric Hospital of Henan ProvinceXinxiang, China
| | - FangLi Guo
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxiang, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxiang, China
| | - Yali Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxiang, China; Department of Neurobiology and Physiology, Xinxiang Medical UniversityXinxiang, China
| | - Xiaofang Wang
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University Xinxiang, China
| | - RuiLing Zhang
- Psychiatric Hospital of Henan Province Xinxiang, China
| | - Martin Vreugdenhil
- Department of Psychology, Xinxiang Medical UniversityHenan, China; Department of Health Sciences, Birmingham City UniversityBirmingham, UK
| | - Chengbiao Lu
- Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical UniversityXinxiang, China; Psychiatric Hospital of Henan ProvinceXinxiang, China
| |
Collapse
|
33
|
Liu X, Yao Z. Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab (Lond) 2016; 13:49. [PMID: 27493677 PMCID: PMC4972972 DOI: 10.1186/s12986-016-0108-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Loss of cellular response to hormonal regulation in maintaining metabolic homeostasis is common in the process of aging. Chronic over-nutrition may render cells insensitive to such a hormonal regulation owing to overstimulation of certain signaling pathways, thus accelerating aging and causing diseases. The glycogen synthase kinase 3 (GSK3) plays a pivotal role in relaying various extracellular and intracellular regulatory signals critical to cell growth, survival, regeneration, or death. The main signaling pathway regulating GSK3 activity through serine-phosphorylation is the phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/Akt relay that catalyzes serine-phosphorylation and thus inactivation of GSK3. In addition, perilipin 2 (PLIN2) has recently been shown to regulate GSK3 activation through direct association with GSK3. This review summarizes current understanding on environmental and nutritional factors contributing to GSK3 regulation (or dysregulation) through the PI3K/PDK1/Akt/GSK3 axis, and highlights the newly discovered role that PLIN2 plays in regulating GSK3 activity and GSK3 downstream pathways.
Collapse
Affiliation(s)
- Xunxian Liu
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| |
Collapse
|
34
|
Gao L, Shan W, Zeng W, Hu Y, Wang G, Tian X, Zhang N, Shi X, Zhao Y, Ding C, Zhang F, Liu K, Yao J. Carnosic acid alleviates chronic alcoholic liver injury by regulating the SIRT1/ChREBP and SIRT1/p66shc pathways in rats. Mol Nutr Food Res 2016; 60:1902-11. [PMID: 27125489 DOI: 10.1002/mnfr.201500878] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Lili Gao
- Department of Pharmacology; Dalian Medical University; Dalian China
| | - Wen Shan
- Department of Pharmacology; Dalian Medical University; Dalian China
- Department of Pharmacy; Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Wenjing Zeng
- Department of Pharmacology; Dalian Medical University; Dalian China
| | - Yan Hu
- Department of Pharmacy; Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Guangzhi Wang
- Department of General Surgery; Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Xiaofeng Tian
- Department of General Surgery; Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Ning Zhang
- Department of Pharmacy; Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Xue Shi
- Department of Pharmacology; Dalian Medical University; Dalian China
| | - Yan Zhao
- Department of Pharmacology; Dalian Medical University; Dalian China
| | - Chunchun Ding
- Department of Pharmacology; Dalian Medical University; Dalian China
| | - Feng Zhang
- Department of General Surgery; Second Affiliated Hospital of Dalian Medical University; Dalian China
| | - Kexin Liu
- Department of Pharmacology; Dalian Medical University; Dalian China
| | - Jihong Yao
- Department of Pharmacology; Dalian Medical University; Dalian China
| |
Collapse
|
35
|
Chen S, Kang Y, Sun Y, Zhong Y, Li Y, Deng L, Tao J, Li Y, Tian Y, Zhao Y, Cheng J, Liu W, Feng GS, Lu Z. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: a novel therapeutic target for fatty liver disease. J Mol Cell Biol 2016; 8:492-504. [PMID: 27282405 DOI: 10.1093/jmcb/mjw028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/31/2016] [Accepted: 01/03/2016] [Indexed: 02/07/2023] Open
Abstract
Fatty liver disease is a serious health problem worldwide and is the most common cause for chronic liver disease and metabolic disorders. The major challenge in the prevention and intervention of this disease is the incomplete understanding of the underlying mechanism and thus lack of potent therapeutic targets due to multifaceted and interdependent disease factors. In this study, we investigated the role of a signaling adaptor protein, GRB2-associated-binding protein 2 (Gab2), in fatty liver using an animal disease model. Gab2 expression in hepatocytes responded to various disease factor stimulations, and Gab2 knockout mice exhibited resistance to fat-induced obesity, fat- or alcohol-stimulated hepatic steatosis, as well as methionine and choline deficiency-induced steatohepatitis. Concordantly, the forced expression or knockdown of Gab2 enhanced or diminished oleic acid (OA)- or ethanol-induced lipid production in hepatocytes in vitro, respectively. During lipid accumulation in hepatocytes, both fat and alcohol induced the recruitment of PI3K or Socs3 by Gab2 and the activation of their downstream signaling proteins AKT, ERK, and Stat3. Therefore, Gab2 may be a disease-associated protein that is induced by pathogenic factors to amplify and coordinate multifactor-induced signals to govern disease development in the liver. Our research provides a novel potential target for the prevention and intervention of fatty liver disease.
Collapse
Affiliation(s)
- Shuai Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yujia Kang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanhong Zhong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yanli Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Lijuan Deng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin Tao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Yinan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Wenjie Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| | - Gen-Sheng Feng
- Department of Pathology, and Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
36
|
Antioxidant and Hepatoprotective Effects of Procyanidins from Wild Grape (Vitis amurensis) Seeds in Ethanol-Induced Cells and Rats. Int J Mol Sci 2016; 17:ijms17050758. [PMID: 27213339 PMCID: PMC4881579 DOI: 10.3390/ijms17050758] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
In the present study, we characterized the antioxidant and hepatoprotective mechanisms underlying of wild grape seed procyanidins (WGP) against oxidative stress damage in ethanol-treated HepG2 cell and Sprague-Dawley (SD)-rat models. In HepG2 cells, WGP not only diminished the ethanol (EtOH, 100 mM)-induced reactive oxygen species (ROS) formation and cytochrome P450 2E1 (CYP2E1) expression, but also renovated both the activity and expression of antioxidant enzymes including catalase, superoxide dismutase, and glutathione peroxidase. Additionally, to investigate the hepatoprotective effect of WGP, rats were orally administered 10 or 50 mg/kg WGP once daily for seven days prior to the single oral administration of EtOH (6 g/kg). The results show that WGP administration decreased the EtOH-induced augment of the levels of serum aspartate transaminase and alanine transaminase as well as serum alcohol and acetaldehyde. WGP treatment upregulated the activities and protein levels of hepatic alcohol dehydrogenase, aldehyde dehydrogenase, and antioxidant enzymes but downregulated the protein expression level of liver CYP2E1 in EtOH-treated rats. Moreover, the decreased phosphorylation levels of mitogen activated protein kinases (MAPKs) by ethanol were induced in both HepG2 cell and rat models. Overall, pretreatment of WGP displayed the protective activity against EtOH-mediated toxicity through the regulation of antioxidant enzymes and alcohol metabolism systems via MAPKs pathways.
Collapse
|
37
|
Chuffa LGA, Alves MS, Martinez M, Camargo ICC, Pinheiro PFF, Domeniconi RF, Júnior LAL, Martinez FE. Apoptosis is triggered by melatonin in an in vivo model of ovarian carcinoma. Endocr Relat Cancer 2016; 23:65-76. [PMID: 26555801 DOI: 10.1530/erc-15-0463] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 12/20/2022]
Abstract
Apoptosis plays an important role in the treatment of cancer, and targeting apoptosis-related molecules in ovarian cancer (OC) is of great therapeutic value. Melatonin (Mel) is an indoleamine displaying several anti-cancer properties and has been reported to modulate apoptosis signaling in multiple tumor subtypes. We investigated OC and the role of Mel therapy on the pro-apoptotic (p53, BAX, caspase-3, and cleaved caspase-3) and anti-apoptotic (Bcl-2 and survivin) proteins in an ethanol (EtOH)-preferring rat model. To induce OC, the left ovary was injected directly with a single dose of 100 μg 7,12-dimethylbenz(a)anthracene dissolved in 10 μl of sesame oil under the bursa. Right ovaries were used as sham-surgery controls. After developing OC, half of the animals received i.p. injections of Mel (200 μg/100 g BW per day) for 60 days. Body weight gain, EtOH consumption, and energy intake were unaffected by the treatments. Interestingly, absolute and relative OC masses showed a significant reduction after Mel therapy, regardless of EtOH consumption. To accomplish OC-related apoptosis, we first observed that p53, BAX, caspase-3, and cleaved caspase-3 were downregulated in OC tissue while Bcl-2 and survivin were overexpressed. Notably, Mel therapy and EtOH intake promoted apoptosis along with the upregulation of p53, BAX, and cleaved caspase-3. Fragmentation of DNA observed by TUNEL-positive nuclei was also enhanced following Mel treatment. In addition, Bcl-2 was downregulated by the EtOH intake and lower survivin levels were observed after Mel therapy. Taken together, these results suggest that Mel induce apoptosis in OC cells of EtOH-preferring animals.
Collapse
Affiliation(s)
- Luiz Gustavo A Chuffa
- Department of AnatomyInstitute of Biosciences of Botucatu, UNESP - Universidade Estadual Paulista, PO Box 18618-970, Rubião Júnior, s/n, Botucatu, São Paulo 510, BrazilDepartment of Morphology and PathologyUFSCar - Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, BrazilDepartment of Biological SciencesFaculty of Sciences and Letters, UNESP - Universidade Estadual Paulista, Assis, São Paulo 19806-900, Brazil
| | - Michelly S Alves
- Department of AnatomyInstitute of Biosciences of Botucatu, UNESP - Universidade Estadual Paulista, PO Box 18618-970, Rubião Júnior, s/n, Botucatu, São Paulo 510, BrazilDepartment of Morphology and PathologyUFSCar - Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, BrazilDepartment of Biological SciencesFaculty of Sciences and Letters, UNESP - Universidade Estadual Paulista, Assis, São Paulo 19806-900, Brazil
| | - Marcelo Martinez
- Department of AnatomyInstitute of Biosciences of Botucatu, UNESP - Universidade Estadual Paulista, PO Box 18618-970, Rubião Júnior, s/n, Botucatu, São Paulo 510, BrazilDepartment of Morphology and PathologyUFSCar - Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, BrazilDepartment of Biological SciencesFaculty of Sciences and Letters, UNESP - Universidade Estadual Paulista, Assis, São Paulo 19806-900, Brazil
| | - Isabel Cristina C Camargo
- Department of AnatomyInstitute of Biosciences of Botucatu, UNESP - Universidade Estadual Paulista, PO Box 18618-970, Rubião Júnior, s/n, Botucatu, São Paulo 510, BrazilDepartment of Morphology and PathologyUFSCar - Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, BrazilDepartment of Biological SciencesFaculty of Sciences and Letters, UNESP - Universidade Estadual Paulista, Assis, São Paulo 19806-900, Brazil
| | - Patricia F F Pinheiro
- Department of AnatomyInstitute of Biosciences of Botucatu, UNESP - Universidade Estadual Paulista, PO Box 18618-970, Rubião Júnior, s/n, Botucatu, São Paulo 510, BrazilDepartment of Morphology and PathologyUFSCar - Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, BrazilDepartment of Biological SciencesFaculty of Sciences and Letters, UNESP - Universidade Estadual Paulista, Assis, São Paulo 19806-900, Brazil
| | - Raquel F Domeniconi
- Department of AnatomyInstitute of Biosciences of Botucatu, UNESP - Universidade Estadual Paulista, PO Box 18618-970, Rubião Júnior, s/n, Botucatu, São Paulo 510, BrazilDepartment of Morphology and PathologyUFSCar - Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, BrazilDepartment of Biological SciencesFaculty of Sciences and Letters, UNESP - Universidade Estadual Paulista, Assis, São Paulo 19806-900, Brazil
| | - Luiz Antonio L Júnior
- Department of AnatomyInstitute of Biosciences of Botucatu, UNESP - Universidade Estadual Paulista, PO Box 18618-970, Rubião Júnior, s/n, Botucatu, São Paulo 510, BrazilDepartment of Morphology and PathologyUFSCar - Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, BrazilDepartment of Biological SciencesFaculty of Sciences and Letters, UNESP - Universidade Estadual Paulista, Assis, São Paulo 19806-900, Brazil
| | - Francisco Eduardo Martinez
- Department of AnatomyInstitute of Biosciences of Botucatu, UNESP - Universidade Estadual Paulista, PO Box 18618-970, Rubião Júnior, s/n, Botucatu, São Paulo 510, BrazilDepartment of Morphology and PathologyUFSCar - Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, BrazilDepartment of Biological SciencesFaculty of Sciences and Letters, UNESP - Universidade Estadual Paulista, Assis, São Paulo 19806-900, Brazil
| |
Collapse
|
38
|
Liu Y, Chen H, Sun Z, Chen X. Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Cancer Lett 2015; 361:164-173. [PMID: 25766659 PMCID: PMC4765374 DOI: 10.1016/j.canlet.2015.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC.
Collapse
Affiliation(s)
- Yao Liu
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China; Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
39
|
Herbal SGR Formula Prevents Acute Ethanol-Induced Liver Steatosis via Inhibition of Lipogenesis and Enhancement Fatty Acid Oxidation in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:613584. [PMID: 26101535 PMCID: PMC4458561 DOI: 10.1155/2015/613584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023]
Abstract
Our previous study indicated that herbal SGR formula partially attenuates ethanol-induced fatty liver, but the underlying mechanisms remain unclear. In the present study, mice were pretreated with SGR (100 and 200 mg/kg/d bw) for 30 d before being exposed to ethanol (4.8 g/kg bw). The biochemical indices and histopathological changes were examined to evaluate the protective effects and to explore potential mechanisms by investigating the adiponectin, tumor necrosis factor-α (TNF-α), peroxisome proliferators-activated receptor-α (PPAR-α), sterol regulatory element binding protein-1c (SREBP-1c), adenosine monophosphate-activated protein kinase (AMPK), and so forth. Results showed that SGR pretreatment markedly inhibited acute ethanol-induced liver steatosis, significantly reduced serum and hepatic triglyceride (TG) level, and improved classic histopathological changes. SGR suppressed the protein expression of hepatic SREBP-1c and TNF-α and increased adiponectin, PPAR-α, and AMPK phosphorylation in the liver. Meanwhile, acute toxicity tests showed that no death or toxic side effects within 14 days were observed upon oral administration of the extracts at a dose of 16 g/kg body wt. These results demonstrate that SGR could protect against acute alcohol-induced liver steatosis without any toxic side effects. Therefore, our studies provide novel molecular insights into the hepatoprotective effect of SGR formula, which may be exploited as a therapeutic agent for ethanol-induced hepatosteatosis.
Collapse
|
40
|
Zhang CL, Zeng T, Zhao XL, Xie KQ. Garlic Oil Suppressed Nitrosodiethylamine-Induced Hepatocarcinoma in Rats by Inhibiting PI3K-AKT-NF-κB Pathway. Int J Biol Sci 2015; 11:643-51. [PMID: 25999787 PMCID: PMC4440254 DOI: 10.7150/ijbs.10785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 03/03/2015] [Indexed: 01/24/2023] Open
Abstract
To explore the underlying mechanisms for the protective effects of garlic oil (GO) against nitrosodiethylamine (NDEA)-induced hepatocarcinoma, 60 male Wistar rats were randomized into 4 groups (n=15): control group, NDEA group, and two GO plus NDEA groups. The rats in GO plus NDEA groups were pretreated with GO (20 or 40 mg/kg) for 7 days. Then, all rats except those in control group were gavaged with NDEA for 20 weeks, and the rats in GO plus NDEA groups were continuously administered with GO. The results showed that GO co-treatment significantly suppressed the NDEA-induced increases of alpha fetal protein (AFP) level in serum, nuclear atypia in H&E staining, sirius red-positive areas and proliferating cell nuclear antigen (PCNA) expression. The molecular mechanisms exploration revealed that the protein levels of phosphatidylinositol 3 kinase (PI3K)-p85, PI3K-p110, total AKT, p-AKT (Ser473) and p-AKT (Thr308) in the liver of NDEA group rats were higher than those in control group rats. In addition, NDEA treatment induced IκB degradation and NF-κB p65 phosphorylation, and up-regulated the protein levels of downstream pro-inflammatory mediators. GO co-treatment significantly reversed all the above adverse effects induced by NDEA. These results suggested that the protective effects of GO against NDEA-induced hepatocarcinoma might be associated with the suppression of PI3K- AKT-NF-κB pathway.
Collapse
Affiliation(s)
- Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, P.R. China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, P.R. China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, P.R. China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 Wenhua West Road, Jinan 250012, Shandong, P.R. China
| |
Collapse
|
41
|
Abstract
Ethanol metabolism in hepatocytes causes the generation of reactive oxygen species, endoplasmic reticulum stress and alterations in mitochondrial energy and REDOX metabolism. In ethanol-exposed liver disease, autophagy not only acts as a cleanser to remove damaged organelles and cytosolic components, but also selectively clears specific targets such as lipid droplets and damaged mitochondria. Moreover, ethanol appears to play a role in protecting hepatocytes from apoptosis at certain concentrations. This article describes the evidence, function and potential mechanism of autophagy in ethanol-exposed liver disease and the controversy surrounding the effects of ethanol on autophagy.
Collapse
Affiliation(s)
- Li-Ren Wang
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | | | | | | | | |
Collapse
|
42
|
Guo Y, Yuan H, Jiang L, Yang J, Zeng T, Xie K, Zhang C, Zhao X. Involvement of decreased neuroglobin protein level in cognitive dysfunction induced by 1-bromopropane in rats. Brain Res 2014; 1600:1-16. [PMID: 25557405 DOI: 10.1016/j.brainres.2014.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/27/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
1-Bromopropane (1-BP) is used as a substitute for ozone-depleting solvents (ODS) in industrial applications. 1-BP could display central nervous system (CNS) neurotoxicity manifested by cognitive dysfunction. Neuroglobin (Ngb) is an endogenous neuroprotectant and is predominantly expressed in the nervous system. The present study aimed to investigate Ngb involvement in CNS neurotoxicity induced by 1-BP in rats. Male Wistar rats were randomly divided into 5 groups (n=14) and treated with 0, 100, 200, 400 and 800 mg/kg bw 1-BP, respectively, by gavage for consecutive 12 days. Rats displayed cognitive dysfunction dose-dependently through Morris water maze (MWM) test. Significant neuron loss in layer 5 of the prelimbic cortex (PL) was observed. Moreover, 1-BP decreased Ngb protein level in cerebral cortex and Ngb decrease was significantly positively correlated with cognitive dysfunction. Glutathione (GSH) content, GSH/oxidized glutathione (GSSG) ratio and glutamate cysteine ligase (GCL) activity decreased in cerebral cortex, coupled with the increase in GSSG content. GSH and GSH/GSSG ratio decrease were significantly positively correlated with cortical Ngb decrease. Additionally, levels of N-epsilon-hexanoyl-lysine (HEL) and 4-hydroxy-2-nonenal (4-HNE) modified proteins in cerebral cortex of 1-BP-treated rats increased significantly. In conclusion, it was suggested that 1-BP resulted in decreased endogenous neuroprotectant Ngb in cerebral cortex, which might play an important role in CNS neurotoxicity induced by 1-BP and that 1-BP-induced oxidative stress in cerebral cortex might partly be responsible for Ngb decrease.
Collapse
Affiliation(s)
- Ying Guo
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Hua Yuan
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Junlin Yang
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 44 West Wenhua Road, Jinan, Shandong, PR China.
| |
Collapse
|
43
|
Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J Gastroenterol 2014; 20:17756-17772. [PMID: 25548474 PMCID: PMC4273126 DOI: 10.3748/wjg.v20.i47.17756] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/22/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is a predominant etiological factor in the pathogenesis of chronic liver diseases, resulting in fatty liver, alcoholic hepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma (HCC). Although the pathogenesis of alcoholic liver disease (ALD) involves complex and still unclear biological processes, the oxidative metabolites of ethanol such as acetaldehyde and reactive oxygen species (ROS) play a preeminent role in the clinical and pathological spectrum of ALD. Ethanol oxidative metabolism influences intracellular signaling pathways and deranges the transcriptional control of several genes, leading to fat accumulation, fibrogenesis and activation of innate and adaptive immunity. Acetaldehyde is known to be toxic to the liver and alters lipid homeostasis, decreasing peroxisome proliferator-activated receptors and increasing sterol regulatory element binding protein activity via an AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK activation by ROS modulates autophagy, which has an important role in removing lipid droplets. Acetaldehyde and aldehydes generated from lipid peroxidation induce collagen synthesis by their ability to form protein adducts that activate transforming-growth-factor-β-dependent and independent profibrogenic pathways in activated hepatic stellate cells (HSCs). Furthermore, activation of innate and adaptive immunity in response to ethanol metabolism plays a key role in the development and progression of ALD. Acetaldehyde alters the intestinal barrier and promote lipopolysaccharide (LPS) translocation by disrupting tight and adherent junctions in human colonic mucosa. Acetaldehyde and LPS induce Kupffer cells to release ROS and proinflammatory cytokines and chemokines that contribute to neutrophils infiltration. In addition, alcohol consumption inhibits natural killer cells that are cytotoxic to HSCs and thus have an important antifibrotic function in the liver. Ethanol metabolism may also interfere with cell-mediated adaptive immunity by impairing proteasome function in macrophages and dendritic cells, and consequently alters allogenic antigen presentation. Finally, acetaldehyde and ROS have a role in alcohol-related carcinogenesis because they can form DNA adducts that are prone to mutagenesis, and they interfere with methylation, synthesis and repair of DNA, thereby increasing HCC susceptibility.
Collapse
|
44
|
Ferreira GM, Martinez M, Camargo ICC, Domeniconi RF, Martinez FE, Chuffa LGA. Melatonin Attenuates Her-2, p38 MAPK, p-AKT, and mTOR Levels in Ovarian Carcinoma of Ethanol-Preferring Rats. J Cancer 2014; 5:728-35. [PMID: 25368672 PMCID: PMC4216796 DOI: 10.7150/jca.10196] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptors 2 (Her-2) and 4 (Her-4) are closely associated with ovarian cancer (OC) progression and metastasis, and a more complete understanding of these signaling pathways allow the development of new therapeutic strategies. Melatonin (Mel) is recognized as having several anticancer properties and has been reported to modulate Her-2 system in aggressive tumors. Here, we investigated OC and the role of Mel therapy on the Her-2- and Her-4-signaling pathway related to downstream molecules in an ethanol-preferring rat model. To induce OC, the left ovary was injected directly with a single dose of 100 µg 7,12-dimethylbenz(a)anthracene (DMBA) dissolved in 10 µL of sesame oil under the bursa. Right ovaries were used as sham-surgery controls. After developing OC, half of the animals received i.p. injections of Mel (200 µg/100 g b.w./day) for 60 days. While Mel therapy was unable to reduce Her-4 and phosphoinositide 3-kinase (PI3K) levels, it was able to suppress the OC-related increase in the levels of the Her-2, p38 mitogen-activated protein kinases (p38 MAPK), protein kinase B (phospho-AKT), and mammalian target of rapamycin (mTOR). In addition, Mel significantly attenuated the expression of Her-2, p38 MAPK, and p-AKT, which are involved in OC signaling during ethanol intake. Collectively, our results suggest that Mel attenuates the Her-2-signaling pathway in OC of ethanol-preferring rats, providing an effective contribution for further development of adjuvant therapies.
Collapse
Affiliation(s)
- Grazielle M Ferreira
- 1. Department of Anatomy, Biosciences Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP, Brazil, 18618-970
| | - Marcelo Martinez
- 2. Department of Morphology and Pathology, UFSCar - Universidade Federal de São Carlos, São Carlos-SP, Brazil, 13565-905
| | - Isabel Cristina C Camargo
- 3. Department of Biological Sciences, Faculty of Sciences and Letters, UNESP - Univ. Estadual Paulista, Assis-SP, Brazil, 19806-900
| | - Raquel F Domeniconi
- 1. Department of Anatomy, Biosciences Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP, Brazil, 18618-970
| | - Francisco Eduardo Martinez
- 1. Department of Anatomy, Biosciences Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP, Brazil, 18618-970
| | - Luiz Gustavo A Chuffa
- 1. Department of Anatomy, Biosciences Institute, UNESP - Univ. Estadual Paulista, Botucatu-SP, Brazil, 18618-970
| |
Collapse
|
45
|
Autophagy in alcohol-induced multiorgan injury: mechanisms and potential therapeutic targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:498491. [PMID: 25140315 PMCID: PMC4124834 DOI: 10.1155/2014/498491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/29/2014] [Indexed: 12/21/2022]
Abstract
Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy.
Collapse
|
46
|
Umoh NA, Walker RK, Al-Rubaiee M, Jeffress MA, Haddad GE. Acute alcohol modulates cardiac function as PI3K/Akt regulates oxidative stress. Alcohol Clin Exp Res 2014; 38:1847-64. [PMID: 24962888 DOI: 10.1111/acer.12459] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/07/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Clinical manifestations of alcohol abuse on the cardiac muscle include defective contractility with the development of heart failure. Interestingly, low alcohol consumption has been associated with reduced risk of cardiovascular disease. Although several hypotheses have been postulated for alcoholic cardiomyopathy and for the low-dose beneficial cardiovascular effects, the precise mechanisms and mediators remain largely undefined. We hypothesize that modulation of oxidative stress by PI3K/Akt plays a key role in the cardiac functional outcome to acute alcohol exposure. METHODS Thus, acutely exposed rat cardiac tissue and cardiocytes to low (LA: 5 mM), moderate (MA: 25 mM), and high (HA: 100 mM) alcohol were assessed for markers of oxidative stress in the presence and absence of PI3K/Akt activators (IGF-1 0.1 μM or constitutively active PI3K: Ad.BD110 transfection) or inhibitor (LY294002 1 μM or Akt-negative construct Ad.Akt(K179M) transfection). RESULTS Acute LA reduced Akt, superoxide dismutase (SOD-3) and NFκB, ERK1, and p38 MAPK gene expression. Acute HA only increased that of SOD-3 and NFκB. These effects were generally inhibited by Ad.Akt(K179M) and enhanced with Ad.BD110 transfection. In parallel, LA reduced but HA enhanced Akt activity, which was reversed by IGF-1 and inhibited by Ad.Akt(K179M), respectively. Also, LA reduced caspase 3/7 activity and oxidative stress, while HA increased both. The former was blocked, while the latter effect was enhanced by Ad.Akt(K179M). The reverse was true with PI3K/Akt activation. This translated into reduced viability with HA, with no effect with LA. On the functional level, acute LA improved cardiac output and ejection fraction, mainly through increased stroke volume. This was accompanied with enhanced end-systolic pressure-volume relationship and preload recruitable stroke work. Opposite effect was recorded for HA. LA and HA in vivo functional effects were alleviated by LY and enhanced by IGF-1 treatment. CONCLUSIONS Acute LA and HA seem to oppositely affect cardiac function through modulation of oxidative stress where PI3K/Akt plays a pivotal role.
Collapse
Affiliation(s)
- Nsini A Umoh
- Department of Physiology & Biophysics, College of Medicine, Howard University, Washington, District of Columbia
| | | | | | | | | |
Collapse
|
47
|
Zeng T, Zhang CL, Song FY, Zhao XL, Xie KQ. CMZ reversed chronic ethanol-induced disturbance of PPAR-α possibly by suppressing oxidative stress and PGC-1α acetylation, and activating the MAPK and GSK3β pathway. PLoS One 2014; 9:e98658. [PMID: 24892905 PMCID: PMC4043914 DOI: 10.1371/journal.pone.0098658] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023] Open
Abstract
Background Cytochrome P4502E1 (CYP2E1) has been suggested to play critical roles in the pathogenesis of alcoholic fatty liver (AFL), but the underlying mechanisms remains unclear. The current study was designed to evaluate whether CYP2E1 suppression by chlormethiazole (CMZ) could suppress AFL in mice, and to explore the underlying mechanisms. Methods Mice were treated with or without CMZ (50 mg/kg bw, i.p.) and subjected to liquid diet with or without ethanol (5%, w/v) for 4 weeks. Biochemical parameters were measured using commercial kits. The protein and mRNA levels were detected by western blot and qPCR, respectively. Histopathology and immunohistochemical assay were performed with routine methods. Results CYP2E1 inhibition by CMZ completely blocked AFL in mice, shown as the decline of the hepatic and serum triglyceride levels, and the fewer fat droplets in the liver sections. Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment. CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α. Furthermore, CMZ co-treatment led to the activation of AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), and PI3K/Akt/GSK3β pathway. However, chronic ethanol-induced decline of acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) protein levels was partially restored by CMZ, while the activation of autophagy appeared to be suppressed by CMZ. Conclusion These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Fu-Yong Song
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Xiu-Lan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan City, Shandong Province, People's Republic of China
- * E-mail:
| |
Collapse
|
48
|
Gracia-Sancho J, Guixé-Muntet S, Hide D, Bosch J. Modulation of autophagy for the treatment of liver diseases. Expert Opin Investig Drugs 2014; 23:965-77. [DOI: 10.1517/13543784.2014.912274] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Hospital Clínic de Barcelona – CIBEREHD,
Barcelona, Spain ;
| | - Sergi Guixé-Muntet
- Barcelona Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Hospital Clínic de Barcelona – CIBEREHD,
Barcelona, Spain ;
| | - Diana Hide
- Barcelona Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) – Hospital Clínic de Barcelona – CIBEREHD,
Barcelona, Spain ;
| | | |
Collapse
|
49
|
Arellanes-Robledo J, Reyes-Gordillo K, Shah R, Domínguez-Rosales JA, Hernández-Nazara ZH, Ramirez F, Rojkind M, Lakshman MR. Fibrogenic actions of acetaldehyde are β-catenin dependent but Wingless independent: a critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells. Free Radic Biol Med 2013; 65:1487-1496. [PMID: 23880292 DOI: 10.1016/j.freeradbiomed.2013.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
We investigated whether the fibrogenic actions of acetaldehyde, the immediate oxidation product of ethanol, are mediated via Wingless (WNT) and/or β-catenin pathways in human hepatic stellate cells (HSC). First, we show that both β-catenin small inhibitory RNA and a dominant negative-MYC expression vector markedly down-regulated the expressions of fibrogenic genes in freshly isolated HSC. We further show that acetaldehyde up-regulated platelet-derived growth factor receptor beta mRNA and protein expressions ranging from 4.0- to 7.2-fold (P<0.001). Acetaldehyde induced MYC and collagen type-1 alpha-2 mRNA and protein expressions were WNT independent because DKK1, an antagonist of the canonical WNT/β-catenin pathway, completely failed to block these inductions. Acetaldehyde increased phospho-glycogen synthase kinase-3 beta (GSK3B) protein by 31% (P<0.01), whereas phospho-β-catenin protein decreased by 50% (P ≤ 0.01). Significantly, in contrast to 43% (P<0.01) inhibition of β-catenin nuclear translocation in nucleoredoxin (NXN)-overexpressed HSC, acetaldehyde profoundly stimulated β-catenin nuclear translocation by 51%, (P<0.01). Acetaldehyde also increased the cellular reactive oxygen species level 2-fold (P<0.001) with a concomitant 2-fold (P<0.001) increase in 4-hydroxynonenal adducts. Conversely, there was a 44% decrease (P<0.001) in glutathione levels with a concomitant 76% (P<0.001) decrease in the level of NXN/ disheveled (DVL) complex. Based on these findings, we conclude that actions of acetaldehyde are mediated by a mechanism that inactivates NXN by releasing DVL, leading to the inactivation of GSK3B, and thereby blocks β-catenin phosphorylation and degradation. Thus, the stabilized β-catenin translocates to the nucleus where it up-regulates the fibrogenic pathway genes. This novel mechanism of action of acetaldehyde has the potential for therapeutic interventions in liver fibrosis induced by alcohol.
Collapse
Affiliation(s)
- Jaime Arellanes-Robledo
- Lipid Research Laboratory, VA Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Karina Reyes-Gordillo
- Lipid Research Laboratory, VA Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, USA
| | - Ruchi Shah
- Lipid Research Laboratory, VA Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, USA
| | - José Alfredo Domínguez-Rosales
- Department of Clinical Investigation, Institute of Chronic and Degenerative Diseases, CUCS, University of Guadalajara, Mexico
| | - Zamira Helena Hernández-Nazara
- Department of Clinical Investigation, Institute of Chronic and Degenerative Diseases, CUCS, University of Guadalajara, Mexico
| | - Francesco Ramirez
- Department of Pharmacology and Systems Therapeutics, P.O. Box 1603, Mount Sinai School of Medicine, New York, NY, USA
| | - Marcos Rojkind
- Lipid Research Laboratory, VA Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, USA
| | - M Raj Lakshman
- Lipid Research Laboratory, VA Medical Center, Washington, DC 20422, USA; Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, USA; Department of Medicine, The George Washington University Medical Center, Washington, DC 20037, USA. M.R.Lakshman'@va.gov
| |
Collapse
|
50
|
Liuzzi JP, Yoo C. Role of zinc in the regulation of autophagy during ethanol exposure in human hepatoma cells. Biol Trace Elem Res 2013; 156:350-6. [PMID: 24061963 DOI: 10.1007/s12011-013-9816-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023]
Abstract
Faulty autophagy has been linked to various diseases including neurodegenerative disorders, diabetes, and cancer. Increasing evidence support the notion that activation of autophagy protects against ethanol-induced steatosis and liver injury. Herein, we investigated the role of zinc in autophagy in human hepatoma cells VL-17A exposed or not to ethanol. LC3II/LC3I ratio, p62, and Beclin-1 expression and autophagosomes number were determined in cells incubated in medium containing various concentrations of zinc with or without ethanol. In addition, labile zinc and mRNA expression of metallothionein and the zinc transporters SLC39A8, SLC39A14, and SLC30A10 were evaluated in cells exposed to ethanol and the autophagy inhibitor 3-methyladenine. Zinc depletion caused a significant suppression of autophagy in cells. Conversely, zinc addition to medium stimulated autophagy in cells. Moreover, cotreatment with ethanol and excess zinc (40 μM) had an additive effect on the induction of autophagy. 3-methyadenine treatment decreased labile zinc, but this effect was more pronounced in cells exposed to ethanol. Lastly, ethanol and 3-methyladenine caused significant changes in the expression of metallothionein and zinc transporters. The results from this study support the hypothesis that zinc is critical for autophagy under basal conditions and during ethanol exposure.
Collapse
Affiliation(s)
- J P Liuzzi
- Department of Dietetics and Nutrition, Florida International University, Miami, USA,
| | | |
Collapse
|