1
|
Borho J, Kögel M, Eckert A, Barth H. Repurposing FDA-approved disulfiram for targeted inhibition of diphtheria toxin and the binary protein toxins of Clostridium botulinum and Bacillus anthracis. Front Pharmacol 2024; 15:1455696. [PMID: 39346565 PMCID: PMC11427369 DOI: 10.3389/fphar.2024.1455696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Many bacteria act pathogenic by the release of AB-type protein toxins that efficiently enter human or animal cells and act as enzymes in their cytosol. This leads to disturbed cell functions and the clinical symptoms characteristic for the individual toxin. Therefore, molecules that directly target and neutralize these toxins provide promising novel therapeutic options. Here, we found that the FDA-approved drug disulfiram (DSF), used for decades to treat alcohol abuse, protects cells from intoxication with diphtheria toxin (DT) from Corynebacterium diphtheria, the causative agent of diphtheria, lethal toxin (LT) from Bacillus anthracis, which contributes to anthrax, and C2 enterotoxin from Clostridium botulinum when applied in concentrations lower than those found in plasma of patients receiving standard DSF treatment for alcoholism (up to 20 µM). Moreover, this inhibitory effect is increased by copper, a known enhancer of DSF activity. LT and C2 are binary toxins, consisting of two non-linked proteins, an enzyme (A) and a separate binding/transport (B) subunit. To act cytotoxic, their proteolytically activated B subunits PA63 and C2IIa, respectively, form barrel-shaped heptamers that bind to their cellular receptors and form complexes with their respective A subunits LF and C2I. The toxin complexes are internalized via receptor-mediated endocytosis and in acidified endosomes, PA63 and C2IIa form pores in endosomal membranes, which facilitate translocation of LF and C2I into the cytosol, where they act cytotoxic. In DT, A and B subunits are located within one protein, but DT also forms pores in endosomes that facilitate translocation of the A subunit. If cell binding, membrane translocation, or substrate modification is inhibited, cells are protected from intoxication. Our results implicate that DSF neither affects cellular binding nor the catalytic activity of the investigated toxins to a relevant extend, but interferes with the toxin pore-mediated translocation of the A subunits of DT, LT and C2 toxin, as demonstrated by membrane-translocation assays and toxin pore conductivity experiments in the presence or absence of DSF. Since toxin translocation across intracellular membranes represents a central step during cellular uptake of many bacterial toxins, DSF might neutralize a broad spectrum of medically relevant toxins.
Collapse
Affiliation(s)
| | | | | | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Beitzinger C, Kronhardt A, Benz R. Chloroquine-analogues block anthrax protective antigen channels in steady-state and kinetic studies. Toxicology 2023; 492:153547. [PMID: 37201861 DOI: 10.1016/j.tox.2023.153547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The tripartite anthrax toxin from Bacillus anthracis represents the prototype of A-B type of toxins, where the effector A (an enzymatic subunit) is transported with the help of a binding component B into a target cell. Anthrax toxin consists of three different molecules, two effectors, lethal factor (LF) and edema factor (EF) and the binding component also known as protective antigen (PA). PA forms heptamers or octamers following binding to host cell's receptors and mediates the translocation of the effectors into the cytosol via the endosomal pathway. The cation-selective PA63-channel is able to reconstitute in lipid membranes and can be blocked by chloroquine and other heterocyclic compounds. This suggests that the PA63-channel contains a binding site for quinolines. In this study, we investigated the structure-function relationship of different quinolines for the block of the PA63-channel. The affinity of the different chloroquine analogues to the PA63-channel as provided by the equilibrium dissociation constant was measured using titrations. Some quinolines had a much higher affinity to the PA63-channel than chloroquine itself. We also performed ligand-induced current noise measurements using fast Fourier transformation to get insight in the kinetics of the binding of some quinolines to the PA63-channel. The on-rate constants of ligand binding were around 108M-1·s-1 at 150mM KCl and were only little dependent on the individual quinoline. The off-rates varied between 4s-1 and 160s-1 and depended much more on the structure of the molecules than the on-rate constants. The possible use of the 4-aminoquinolines as a therapy is discussed.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Angelika Kronhardt
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany
| | - Roland Benz
- Science Faculty, Constructor University Bremen, Campus-Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
3
|
Eisele J, Schreiner S, Borho J, Fischer S, Heber S, Endres S, Fellermann M, Wohlgemuth L, Huber-Lang M, Fois G, Fauler M, Frick M, Barth H. The Pore-Forming Subunit C2IIa of the Binary Clostridium botulinum C2 Toxin Reduces the Chemotactic Translocation of Human Polymorphonuclear Leukocytes. Front Pharmacol 2022; 13:810611. [PMID: 35222028 PMCID: PMC8881014 DOI: 10.3389/fphar.2022.810611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
The binary C2 toxin of Clostridium (C.) botulinum consists of two non-linked proteins, the enzyme subunit C2I and the separate binding/transport subunit C2II. To exhibit toxic effects on mammalian cells, proteolytically activated C2II (C2IIa) forms barrel-shaped heptamers that bind to carbohydrate receptors which are present on all mammalian cell types. C2I binds to C2IIa and the toxin complexes are internalized via receptor-mediated endocytosis. In acidified endosomal vesicles, C2IIa heptamers change their conformation and insert as pores into endosomal membranes. These pores serve as translocation-channels for the subsequent transport of C2I from the endosomal lumen into the cytosol. There, C2I mono-ADP-ribosylates G-actin, which results in depolymerization of F-actin and cell rounding. Noteworthy, so far morphological changes in cells were only observed after incubation with the complete C2 toxin, i.e., C2IIa plus C2I, but not with the single subunits. Unexpectedly, we observed that the non-catalytic transport subunit C2IIa (but not C2II) alone induced morphological changes and actin alterations in primary human polymorphonuclear leukocytes (PMNs, alias neutrophils) from healthy donors ex vivo, but not macrophages, epithelial and endothelial cells, as detected by phase contrast microscopy and fluorescent microscopy of the actin cytoskeleton. This suggests a PMN selective mode of action for C2IIa. The cytotoxicity of C2IIa on PMNs was prevented by C2IIa pore blockers and treatment with C2IIa (but not C2II) rapidly induced Ca2+ influx in PMNs, suggesting that pore-formation by C2IIa in cell membranes of PMNs is crucial for this effect. In addition, incubation of primary human PMNs with C2IIa decreased their chemotaxis ex vivo through porous culture inserts and in co-culture with human endothelial cells which is closer to the physiological extravasation process. In conclusion, the results suggest that C2IIa is a PMN-selective inhibitor of chemotaxis. This provides new knowledge for a pathophysiological role of C2 toxin as a modulator of innate immune cells and makes C2IIa an attractive candidate for the development of novel pharmacological strategies to selectively down-modulate the excessive and detrimental PMN recruitment into organs after traumatic injuries.
Collapse
Affiliation(s)
- Julia Eisele
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Simone Schreiner
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Joscha Borho
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maximilian Fellermann
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lisa Wohlgemuth
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Holger Barth,
| |
Collapse
|
4
|
Ernst K, Landenberger M, Nieland J, Nørgaard K, Frick M, Fois G, Benz R, Barth H. Characterization and Pharmacological Inhibition of the Pore-Forming Clostridioides difficile CDTb Toxin. Toxins (Basel) 2021; 13:toxins13060390. [PMID: 34071730 PMCID: PMC8226936 DOI: 10.3390/toxins13060390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
The clinically highly relevant Clostridioides (C.) difficile releases several AB-type toxins that cause diseases such as diarrhea and pseudomembranous colitis. In addition to the main virulence factors Rho/Ras-glycosylating toxins TcdA and TcdB, hypervirulent strains produce the binary AB-type toxin CDT. CDT consists of two separate proteins. The binding/translocation B-component CDTb facilitates uptake and translocation of the enzyme A-component CDTa to the cytosol of cells. Here, CDTa ADP-ribosylates G-actin, resulting in depolymerization of the actin cytoskeleton. We previously showed that CDTb exhibits cytotoxicity in the absence of CDTa, which is most likely due to pore formation in the cytoplasmic membrane. Here, we further investigated this cytotoxic effect and showed that CDTb impairs CaCo-2 cell viability and leads to redistribution of F-actin without affecting tubulin structures. CDTb was detected at the cytoplasmic membrane in addition to its endosomal localization if CDTb was applied alone. Chloroquine and several of its derivatives, which were previously identified as toxin pore blockers, inhibited intoxication of Vero, HCT116, and CaCo-2 cells by CDTb and CDTb pores in vitro. These results further strengthen pore formation by CDTb in the cytoplasmic membrane as the underlying cytotoxic mechanism and identify pharmacological pore blockers as potent inhibitors of cytotoxicity induced by CDTb and CDTa plus CDTb.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
- Correspondence: (K.E.); (H.B.)
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
| | - Julian Nieland
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
| | - Katharina Nørgaard
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (M.F.); (G.F.)
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany; (M.F.); (G.F.)
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs-University Bremen, 28759 Bremen, Germany;
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany; (M.L.); (J.N.); (K.N.)
- Correspondence: (K.E.); (H.B.)
| |
Collapse
|
5
|
Landenberger M, Nieland J, Roeder M, Nørgaard K, Papatheodorou P, Ernst K, Barth H. The cytotoxic effect of Clostridioides difficile pore-forming toxin CDTb. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183603. [PMID: 33689753 DOI: 10.1016/j.bbamem.2021.183603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023]
Abstract
Clostridioides (C.) difficile is clinically highly relevant and produces several AB-type protein toxins, which are the causative agents for C. difficile-associated diarrhea and pseudomembranous colitis. Treatment with antibiotics can lead to C. difficile overgrowth in the gut of patients due to the disturbed microbiota. C. difficile releases large Rho/Ras-GTPase glucosylating toxins TcdA and TcdB, which are considered as the major virulence factors for C. difficile-associated diseases. In addition to TcdA and TcdB, C. difficile strains isolated from severe cases of colitis produce a third toxin called CDT. CDT is a member of the family of clostridial binary actin ADP-ribosylating toxins and consists of two separate protein components. The B-component, CDTb, binds to the receptor and forms a complex with and facilitates transport and translocation of the enzymatically active A-component, CDTa, into the cytosol of target cells by forming trans-membrane pores through which CDTa translocates. In the cytosol, CDTa ADP-ribosylates G-actin causing depolymerization of the actin cytoskeleton and, eventually, cell death. In the present study, we report that CDTb exhibits a cytotoxic effect in the absence of CDTa. We show that CDTb causes cell rounding and impairs cell viability and the epithelial integrity of CaCo-2 monolayers in the absence of CDTa. CDTb-induced cell rounding depended on the presence of LSR, the specific cellular receptor of CDT. The isolated receptor-binding domain of CDTb was not sufficient to cause cell rounding. CDTb-induced cell rounding was inhibited by enzymatically inactive CDTa or a pore-blocker, implying that CDTb pores in cytoplasmic membranes contribute to cytotoxicity.
Collapse
Affiliation(s)
- Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Julian Nieland
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maurice Roeder
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Katharina Nørgaard
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
6
|
Fischer S, Ückert AK, Landenberger M, Papatheodorou P, Hoffmann-Richter C, Mittler AK, Ziener U, Hägele M, Schwan C, Müller M, Kleger A, Benz R, Popoff MR, Aktories K, Barth H. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J 2020; 34:6244-6261. [PMID: 32190927 DOI: 10.1096/fj.201902816r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
The human pathogenic bacterium Clostridioides difficile produces two exotoxins TcdA and TcdB, which inactivate Rho GTPases thereby causing C. difficile-associated diseases (CDAD) including life-threatening pseudomembranous colitis. Hypervirulent strains produce additionally the binary actin ADP-ribosylating toxin CDT. These strains are hallmarked by more severe forms of CDAD and increased frequency and severity. Once in the cytosol, the toxins act as enzymes resulting in the typical clinical symptoms. Therefore, targeting and inactivation of the released toxins are of peculiar interest. Prompted by earlier findings that human α-defensin-1 neutralizes TcdB, we investigated the effects of the defensin on all three C. difficile toxins. Inhibition of TcdA, TcdB, and CDT was demonstrated by analyzing toxin-induced changes in cell morphology, substrate modification, and decrease in transepithelial electrical resistance. Application of α-defensin-1 protected cells and human intestinal organoids from the cytotoxic effects of TcdA, TcdB, CDT, and their combination which is attributed to a direct interaction between the toxins and α-defensin-1. In mice, the application of α-defensin-1 reduced the TcdA-induced damage of intestinal loops in vivo. In conclusion, human α-defensin-1 is a specific and potent inhibitor of the C. difficile toxins and a promising agent to develop novel therapeutic options against C. difficile infections.
Collapse
Affiliation(s)
- Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Anna-Katharina Ückert
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | | | - Ann-Katrin Mittler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III, Ulm University, Ulm, Germany
| | - Marlen Hägele
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Martin Müller
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, Paris, France
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
7
|
Momben Abolfath S, Kolberg M, Karginov VA, Leppla SH, Nestorovich EM. Exploring the Nature of Cationic Blocker Recognition by the Anthrax Toxin Channel. Biophys J 2019; 117:1751-1763. [PMID: 31587826 PMCID: PMC6838753 DOI: 10.1016/j.bpj.2019.08.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 01/20/2023] Open
Abstract
Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA63) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA63 more effectively. To understand the physical basis of PA63 selectivity for a particular ligand, detailed information is required on how the blocker structural elements (e.g., positively charged and aromatic groups) influence the molecular kinetics of the blocker/channel binding reactions. In this study, we address this problem using the high-resolution single-channel planar lipid bilayer technique. Several structurally distinct cationic blockers, namely per-6-S-(3-amino) propyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-α-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-β-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-γ-cyclodextrin, methyltriphenylphosphonium ion, and G0 polyamidoamine dendrimer are tested for their ability to inhibit the heptameric and octameric PA63 variants and PA63F427A mutant. The F427 residues form a hydrophobic constriction region inside the channel, known as the "ϕ-clamp." We show that the cationic blockers interact with PA63 through a combination of forces. Analysis of the binding reaction kinetics suggests the involvement of cation-π, Coulomb, and salt-concentration-independent π-π or hydrophobic interactions in the cationic cyclodextrin binding. It is possible that these blockers bind to the ϕ-clamp and are also stabilized by the Coulomb interactions of their terminal amino groups with the water-exposed negatively charged channel residues. In PA63F427A, only the suggested Coulomb component of the cyclodextrin interaction remains. Methyltriphenylphosphonium ion and G0 polyamidoamine dendrimer, despite being positively charged, interact primarily with the ϕ-clamp. We also show that seven- and eightfold symmetric cyclodextrins effectively block the heptameric and octameric forms of PA63 interchangeably, adding flexibility to the earlier formulated blocker/target symmetry match requirement.
Collapse
Affiliation(s)
| | - Michelle Kolberg
- Department of Biology, The Catholic University of America, Washington DC
| | | | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
8
|
Yamini G, Nestorovich EM. Multivalent Inhibitors of Channel-Forming Bacterial Toxins. Curr Top Microbiol Immunol 2019; 406:199-227. [PMID: 27469304 PMCID: PMC6814628 DOI: 10.1007/82_2016_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rational design of multivalent molecules represents a remarkable modern tool to transform weak non-covalent interactions into strong binding by creating multiple finely-tuned points of contact between multivalent ligands and their supposed multivalent targets. Here, we describe several prominent examples where the multivalent blockers were investigated for their ability to directly obstruct oligomeric channel-forming bacterial exotoxins, such as the pore-forming bacterial toxins and B component of the binary bacterial toxins. We address problems related to the blocker/target symmetry match and nature of the functional groups, as well as chemistry and length of the linkers connecting the functional groups to their multivalent scaffolds. Using the anthrax toxin and AB5 toxin case studies, we briefly review how the oligomeric toxin components can be successfully disabled by the multivalent non-channel-blocking inhibitors, which are based on a variety of multivalent scaffolds.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, Washington, D.C., 20064, USA
| | | |
Collapse
|
9
|
Stiles BG. Clostridial Binary Toxins: Basic Understandings that Include Cell Surface Binding and an Internal "Coup de Grâce". Curr Top Microbiol Immunol 2019; 406:135-162. [PMID: 27380267 DOI: 10.1007/82_2016_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium species can make a remarkable number of different protein toxins, causing many diverse diseases in humans and animals. The binary toxins of Clostridium botulinum, C. difficile, C. perfringens, and C. spiroforme are one group of enteric-acting toxins that attack the actin cytoskeleton of various cell types. These enterotoxins consist of A (enzymatic) and B (cell binding/membrane translocation) components that assemble on the targeted cell surface or in solution, forming a multimeric complex. Once translocated into the cytosol via endosomal trafficking and acidification, the A component dismantles the filamentous actin-based cytoskeleton via mono-ADP-ribosylation of globular actin. Knowledge of cell surface receptors and how these usurped, host-derived molecules facilitate intoxication can lead to novel ways of defending against these clostridial binary toxins. A molecular-based understanding of the various steps involved in toxin internalization can also unveil therapeutic intervention points that stop the intoxication process. Furthermore, using these bacterial proteins as medicinal shuttle systems into cells provides intriguing possibilities in the future. The pertinent past and state-of-the-art present, regarding clostridial binary toxins, will be evident in this chapter.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, 17201, USA.
| |
Collapse
|
10
|
Schnell L, Felix I, Müller B, Sadi M, Bank F, Papatheodorou P, Popoff MR, Aktories K, Waltenberger E, Benz R, Weichbrodt C, Fauler M, Frick M, Barth H. Revisiting an old antibiotic: bacitracin neutralizes binary bacterial toxins and protects cells from intoxication. FASEB J 2019; 33:5755-5771. [DOI: 10.1096/fj.201802453r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Leonie Schnell
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | - Ina Felix
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | - Bastian Müller
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | - Mirko Sadi
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | - Franziska Bank
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| | | | | | - Klaus Aktories
- Institute of ExperimentalClinical Pharmacology and ToxicologyUniversity of Freiburg Freiburg Germany
| | - Eva Waltenberger
- Department of Life Sciences and ChemistryJacobs University Bremen Bremen Germany
| | - Roland Benz
- Department of Life Sciences and ChemistryJacobs University Bremen Bremen Germany
| | | | - Michael Fauler
- Institute of General PhysiologyUniversity of Ulm Ulm Germany
| | - Manfred Frick
- Institute of General PhysiologyUniversity of Ulm Ulm Germany
| | - Holger Barth
- Institute of Pharmacology and ToxicologyUniversity of Ulm Medical Center Ulm Germany
| |
Collapse
|
11
|
Toxin Transport by A-B Type of Toxins in Eukaryotic Target Cells and Its Inhibition by Positively Charged Heterocyclic Molecules. Curr Top Microbiol Immunol 2017; 406:229-256. [DOI: 10.1007/82_2017_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Kronhardt A, Beitzinger C, Barth H, Benz R. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells. Toxins (Basel) 2016; 8:toxins8080237. [PMID: 27517960 PMCID: PMC4999853 DOI: 10.3390/toxins8080237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells’ receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa.
Collapse
Affiliation(s)
- Angelika Kronhardt
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany.
| | - Christoph Beitzinger
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, Versbacher Straße 9, 97078 Würzburg, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs-University Bremen, Campus-Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
13
|
Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Arch Toxicol 2016; 91:1431-1445. [DOI: 10.1007/s00204-016-1716-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
14
|
Bezrukov SM, Nestorovich EM. Inhibiting bacterial toxins by channel blockage. Pathog Dis 2016; 74:ftv113. [PMID: 26656888 PMCID: PMC4830228 DOI: 10.1093/femspd/ftv113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/15/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.
Collapse
Affiliation(s)
- Sergey M Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
15
|
Pore-forming activity of clostridial binary toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:512-25. [PMID: 26278641 DOI: 10.1016/j.bbamem.2015.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
16
|
Murlykina MV, Sakhno YI, Desenko SM, Shishkina SV, Shishkin OV, Sysoiev DO, Kornet MN, Schols D, Goeman JL, Van der Eycken J, Van der Eycken EV, Chebanov VA. Study of the Chemoselectivity of Multicomponent Heterocyclizations Involving 3-Amino-1,2,4-triazole and Pyruvic Acids as Key Reagents, and Biological Activity of the Reaction Products. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500469] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Cytotoxic and apoptotic effects of recombinant subtilase cytotoxin variants of shiga toxin-producing Escherichia coli. Infect Immun 2015; 83:2338-49. [PMID: 25824835 DOI: 10.1128/iai.00231-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022] Open
Abstract
In this study, the cytotoxicity of the recently described subtilase variant SubAB2-2 of Shiga toxin-producing Escherichia coli was determined and compared to the plasmid-encoded SubAB1 and the chromosome-encoded SubAB2-1 variant. The genes for the respective enzymatic active (A) subunits and binding (B) subunits of the subtilase toxins were amplified and cloned. The recombinant toxin subunits were expressed and purified. Their cytotoxicity on Vero cells was measured for the single A and B subunits, as well as for mixtures of both, to analyze whether hybrids with toxic activity can be identified. The results demonstrated that all three SubAB variants are toxic for Vero cells. However, the values for the 50% cytotoxic dose (CD50) differ for the individual variants. Highest cytotoxicity was shown for SubAB1. Moreover, hybrids of subunits from different subtilase toxins can be obtained which cause substantial cytotoxicity to Vero cells after mixing the A and B subunits prior to application to the cells, which is characteristic for binary toxins. Furthermore, higher concentrations of the enzymatic subunit SubA1 exhibited cytotoxic effects in the absence of the respective B1 subunit. A more detailed investigation in the human HeLa cell line revealed that SubA1 alone induced apoptosis, while the B1 subunit alone did not induce cell death.
Collapse
|
18
|
Roeder M, Nestorovich EM, Karginov VA, Schwan C, Aktories K, Barth H. Tailored cyclodextrin pore blocker protects mammalian cells from clostridium difficile binary toxin CDT. Toxins (Basel) 2014; 6:2097-114. [PMID: 25029374 PMCID: PMC4113744 DOI: 10.3390/toxins6072097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/16/2014] [Accepted: 06/27/2014] [Indexed: 12/11/2022] Open
Abstract
Some Clostridium difficile strains produce, in addition to toxins A and B, the binary toxin Clostridium difficile transferase (CDT), which ADP-ribosylates actin and may contribute to the hypervirulence of these strains. The separate binding and translocation component CDTb mediates transport of the enzyme component CDTa into mammalian target cells. CDTb binds to its receptor on the cell surface, CDTa assembles and CDTb/CDTa complexes are internalised. In acidic endosomes, CDTb mediates the delivery of CDTa into the cytosol, most likely by forming a translocation pore in endosomal membranes. We demonstrate that a seven-fold symmetrical positively charged β-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-β-cyclodextrin, which was developed earlier as a potent inhibitor of the translocation pores of related binary toxins of Bacillus anthracis, Clostridium botulinum and Clostridium perfringens, protects cells from intoxication with CDT. The pore blocker did not interfere with the CDTa-catalyzed ADP-ribosylation of actin or toxin binding to Vero cells but inhibited the pH-dependent membrane translocation of CDTa into the cytosol. In conclusion, the cationic β-cyclodextrin could serve as the lead compound in a development of novel pharmacological strategies against the CDT-producing strains of C. difficile.
Collapse
Affiliation(s)
- Maurice Roeder
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | | - Vladimir A Karginov
- Innovative Biologics, Inc., 13455 Sunrise Valley Dr., Suite 200, Herndon, VA 20171, USA.
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany.
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, 79104 Freiburg, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
19
|
Förstner P, Bayer F, Kalu N, Felsen S, Förtsch C, Aloufi A, Ng DYW, Weil T, Nestorovich EM, Barth H. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors. Biomacromolecules 2014; 15:2461-74. [PMID: 24954629 PMCID: PMC4215879 DOI: 10.1021/bm500328v] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.
Collapse
Affiliation(s)
- Philip Förstner
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|