1
|
Assenza MR, Gaggi G, Di Credico A, Ghinassi B, Barbagallo F. The effect of endocrine disruptors on the cardiovascular system: does sex matter? ENVIRONMENTAL RESEARCH 2025; 277:121612. [PMID: 40239736 DOI: 10.1016/j.envres.2025.121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Endocrine disruptors (EDs) are environmental chemicals that interfere with hormone function, posing significant risks to human health, including the cardiovascular system. This review comprehensively examines the impact of EDs on cardiovascular health, with a specific focus on sex differences observed in various models. Utilizing in-vitro studies, in vivo animal models, and human clinical data, we delineate how sex-specific hormonal environments influence the cardiovascular effects of ED exposure. In vitro studies highlight cellular and molecular mechanisms that differ between male and female-derived cells. In vivo models reveal distinct physiological responses and susceptibilities to EDs, influenced by sex hormones. Human studies provide epidemiological evidence and clinical observations that underscore the variability in cardiovascular outcomes between men and women. This review underscores the necessity of considering sex as a critical factor in understanding the cardiovascular implications of ED exposure, advocating for gender-specific risk assessment and therapeutic strategies. The findings aim to enhance awareness and inform future research and policy-making to mitigate the adverse cardiovascular effects of EDs across different sexes.
Collapse
Affiliation(s)
- Maria Rita Assenza
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy
| | - Giulia Gaggi
- Cell Reprogramming and Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy; UdA-TechLab, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Andrea Di Credico
- Cell Reprogramming and Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy; UdA-TechLab, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Barbara Ghinassi
- Cell Reprogramming and Differentiation Lab, Center for Advanced Studies and Technology (CAST), 66100, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. D'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Federica Barbagallo
- Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy.
| |
Collapse
|
2
|
Debler RA, Gallegos PL, Ojeda AC, Perttula AM, Lucio A, Chapkin RS, Safe S, Eitan S. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces depression-like phenotype. Neurotoxicology 2024; 103:71-77. [PMID: 38838945 PMCID: PMC11288769 DOI: 10.1016/j.neuro.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The etiology of major depressive disorder (MDD) remains poorly understood. Our previous studies suggest a role for the aryl hydrocarbon receptor (AhR) in depression. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental contaminant, with a high AhR binding affinity, and an established benchmark for assessing AhR activity. Therefore, this study examined the effect of TCDD on depression-like behaviors. Female mice were fed standard chow or a high-fat diet (HFD) for 11 weeks, and their weight was recorded. Subsequently, they were tested for baseline sucrose preference and splash test grooming. Then, TCDD (0.1 µg/kg/day) or vehicle was administered orally for 28 days, and mice were examined for their sucrose preference and performances in the splash test, forced swim test (FST), and Morris water maze (MWM) task. TCDD significantly decreased sucrose preference, increased FST immobility time, and decreased groom time in chow-fed mice. HFD itself significantly reduced sucrose preference. However, TCDD significantly increased FST immobility time and decreased groom time in HFD-fed mice. A small decrease in bodyweight was observed only at the fourth week of daily TCDD administration in chow-fed mice, and no significant effects of TCDD on bodyweights were observed in HFD-fed mice. TCDD did not have a significant effect on spatial learning in the MWM. Thus, this study demonstrated that TCDD induces a depression-like state, and the effects were not due to gross lethal toxicity. This study further suggests that more studies should examine a possible role for AhR and AhR-active environmental pollutants in precipitating or worsening MDD.
Collapse
Affiliation(s)
- Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Paula L Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Alexandra C Ojeda
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Andrea M Perttula
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Ashley Lucio
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA.
| |
Collapse
|
3
|
Abdelgawad IY, George B, Grant MKO, Huang Y, Shan Y, Huang RS, Zordoky BN. Sex-related differences in delayed doxorubicin-induced cardiac dysfunction in C57BL/6 mice. Arch Toxicol 2024; 98:1191-1208. [PMID: 38244039 DOI: 10.1007/s00204-023-03678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Cancer survivors may experience long-term cardiovascular complications due to chemotherapeutic drugs such as doxorubicin (DOX). The exact mechanism of delayed DOX-induced cardiotoxicity has not been fully elucidated. Sex is an important risk factor for DOX-induced cardiotoxicity. In the current study, we identified sex differences in delayed DOX-induced cardiotoxicity and determined the underlying molecular determinants of the observed sexual dimorphism. Five-week-old male and female mice were administered intraperitoneal injections of DOX (4 mg/kg/week) or saline for 6 weeks. Echocardiography was performed 5 weeks after the last dose of DOX to evaluate cardiac function. Thereafter, mice were sacrificed and gene expression of markers of apoptosis, senescence, and inflammation was measured by PCR in hearts and livers. Proteomic profiling of the heart from both sexes was conducted to determine differentially expressed proteins (DEPs). Only DOX-treated male, but not female, mice demonstrated cardiac dysfunction, cardiac atrophy, and upregulated cardiac expression of Nppb and Myh7. No sex-related differences were observed in DOX-induced expression of most apoptotic, senescence, and pro-inflammatory markers. However, the gene expression of Trp53 was significantly reduced in hearts of DOX-treated female mice only. The anti-inflammatory marker Il-10 was significantly reduced in hearts of DOX-treated male mice only, while the pro-inflammatory marker Il-1α was significantly reduced in livers of DOX-treated female mice only. Gene expression of Tnf-α was reduced in hearts of both DOX-treated male and female mice. Proteomic analysis identified several DEPs after DOX treatment in a sex-specific manner, including anti-inflammatory acute phase proteins. This is the first study to assess sex-specific proteomic changes in a mouse model of delayed DOX-induced cardiotoxicity. Our proteomic analysis identified several sexually dimorphic DEPs, many of which are associated with the anti-inflammatory marker Il-10.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Benu George
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Yuting Shan
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - R Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Yang CE, Wang YN, Hua MR, Miao H, Zhao YY, Cao G. Aryl hydrocarbon receptor: From pathogenesis to therapeutic targets in aging-related tissue fibrosis. Ageing Res Rev 2022; 79:101662. [PMID: 35688331 DOI: 10.1016/j.arr.2022.101662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
Abstract
Aging promotes chronic inflammation, which contributes to fibrosis and decreases organ function. Fibrosis, the excessive synthesis and deposition of extracellular matrix components, is the main cause of most chronic diseases including aging-related organ failure. Organ fibrosis in the heart, liver, and kidneys is the final manifestation of many chronic diseases. The aryl hydrocarbon receptor (AHR) is a cytoplasmic receptor and highly conserved transcription factor that is activated by a variety of small-molecule ligands to affect a wide array of tissue homeostasis functions. In recent years, mounting evidence has revealed that AHR plays an important role in multi-organ fibrosis initiation, progression, and therapy. In this review, we summarise the relationship between AHR and the pathogenesis of aging-related tissue fibrosis, and further discuss how AHR modulates tissue fibrosis by regulating transforming growth factor-β signalling, immune response, and mitochondrial function, which may offer novel targets for the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Chang-E Yang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Meng-Ru Hua
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
5
|
Kou Z, Dai W. Aryl hydrocarbon receptor: Its roles in physiology. Biochem Pharmacol 2021; 185:114428. [PMID: 33515530 PMCID: PMC8862184 DOI: 10.1016/j.bcp.2021.114428] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
Aryl hydrocarbon receptor (AHR) was initially discovered as a cellular protein involved in mediating the detoxification of xenobiotic compounds. Extensive research in the past two decades has identified several families of physiological ligands and uncovered important functions of AHR in normal development and homeostasis. Deficiency in AHR expression disrupts major signaling systems and transcriptional programs, which appear to be responsible for the development of numerous developmental abnormalities including cardiac hypertrophy and epidermal hyperplasia. This mini review primarily summarizes recent advances in our understanding of AHR functions in normal physiology with an emphasis on the cardiovascular, gastrointestinal, integumentary, nervous, and immunomodulatory systems.
Collapse
Affiliation(s)
- Ziyue Kou
- Department of Environmental Medicine, New York University Langone Medical Center, NY 10010, United States
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, NY 10010, United States.
| |
Collapse
|
6
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
7
|
Wang Z, Snyder M, Kenison JE, Yang K, Lara B, Lydell E, Bennani K, Novikov O, Federico A, Monti S, Sherr DH. How the AHR Became Important in Cancer: The Role of Chronically Active AHR in Cancer Aggression. Int J Mol Sci 2020; 22:ijms22010387. [PMID: 33396563 PMCID: PMC7795223 DOI: 10.3390/ijms22010387] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human pollution. During that period, it was not certain that the AHR had a “normal” physiological function. However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer, cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering array of AHR-controlled normal and pathological activities. The objective of this review is to discuss how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus is placed on the association between AHR activity and poor cancer outcomes, feedback loops that control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell invasion, migration, cancer stem cell characteristics, and survival.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Megan Snyder
- Graduate Program in Genetics and Genomics, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Jessica E. Kenison
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Kangkang Yang
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Brian Lara
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | - Emily Lydell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
| | - Kawtar Bennani
- Department of Environmental Health, Boston University, Boston, MA 02118, USA; (B.L.); (K.B.)
| | | | - Anthony Federico
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - Stefano Monti
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (A.F.); (S.M.)
| | - David H. Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (Z.W.); (K.Y.); (E.L.)
- Correspondence: ; Tel.: +1-617-358-1707
| |
Collapse
|
8
|
Jackson EN, Thatcher SE, Larian N, English V, Soman S, Morris AJ, Weng J, Stromberg A, Swanson HI, Pearson K, Cassis LA. Effects of Aryl Hydrocarbon Receptor Deficiency on PCB-77-Induced Impairment of Glucose Homeostasis during Weight Loss in Male and Female Obese Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:77004. [PMID: 31306034 PMCID: PMC6794491 DOI: 10.1289/ehp4133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 05/26/2019] [Accepted: 06/14/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Lipophilic polychlorinated biphenyls (PCBs) accumulate with obesity, but during weight loss, liberated PCBs act as ligands of the aryl hydrocarbon receptor (AhR) to negatively influence health. Previous studies demonstrated that PCB-77 administration to obese male mice impaired glucose tolerance during weight loss. Recent studies indicate higher toxic equivalencies of dioxin-like PCBs in exposed females than males. OBJECTIVES We compared effects of PCB-77 on weight gain or loss and glucose homeostasis in male vs. female mice. We defined effects of AhR deficiency during weight gain or loss in male and female mice exposed to PCB-77. METHODS Study design was vehicle (VEH) or PCB-77 administration while fed a high-fat (HF) diet for 12 wk, followed by weight loss for 4 wk. The following groups were examined: male and female C57BL/6 mice administered VEH or PCB-77, female [Formula: see text] and [Formula: see text] mice administered VEH or PCB-77, and male [Formula: see text] and [Formula: see text] mice administered PCB-77. Glucose tolerance was quantified during weight gain (week 11) and loss (week 15); liver and adipose AhR and IRS2 (insulin receptor substrate 2) mRNA abundance, and PCB-77 concentrations were quantified at week 16. RESULTS PCB-77 attenuated development of obesity in females but not males. During weight loss, PCB-77 impaired glucose tolerance of males. AhR-deficient females (VEH) were resistant to diet-induced obesity. Compared with VEH-treated mice, HF-fed [Formula: see text] females treated with PCB-77 has less weight gain, and [Formula: see text] females had greater weight gain. During weight loss, [Formula: see text] females but not [Formula: see text] males treated with PCB-77 exhibited impaired glucose tolerance. In [Formula: see text] females administered PCB-77, IRS2 mRNA abundance was lower in adipose tissue compared with VEH-treated mice. CONCLUSION Male and female mice responded differently to PCB-77 and AhR deficiency in body weight (BW) regulation and glucose homeostasis. AhR deficiency reversed PCB-77-induced glucose impairment of obese males losing weight but augmented glucose intolerance of females. These results demonstrate sex differences in PCB-77-induced regulation of glucose homeostasis of mice. https://doi.org/10.1289/EHP4133.
Collapse
Affiliation(s)
- Erin N. Jackson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sean E. Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Victoria English
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Sony Soman
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew J. Morris
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jiaying Weng
- Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Arnold Stromberg
- Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Hollie I. Swanson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Kevin Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Wang Q, Fan Y, Kurita H, Jiang M, Koch S, Rao MB, Rubinstein J, Puga A. Aryl Hydrocarbon Receptor Ablation in Cardiomyocytes Protects Male Mice From Heart Dysfunction Induced by NKX2.5 Haploinsufficiency. Toxicol Sci 2018; 160:74-82. [PMID: 28973413 DOI: 10.1093/toxsci/kfx164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Epidemiological studies in humans and research in vertebrates indicates that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous and biopersistent environmental toxicant, is associated with incidence of early congenital heart disease in the embryo and later in the adult. TCDD-mediated toxicity depends on the aryl hydrocarbon receptor (AHR) but the role of the TCDD-activated AHR in cardiac function is not well-defined. To characterize the mechanisms responsible for AHR-mediated disruption of heart function, we generated several mouse strains with cardiomyocyte-specific Ahr gene knockout. Here, we report results on one of these strains in which the Ahr gene was deleted by cre recombinase regulated by the promoter of the cardiomyocyte-specific Nkx2.5 gene. We crossed mice with loxP-targeted Ahrfx/fx alleles with Nkx2.5+/cre mice bearing a "knock-in" cre recombinase gene integrated into one of the Nkx2.5 alleles. In these mice, loss of one Nkx2.5 allele is associated with disrupted cardiac development. In males, Nkx2.5 hemizygosity resulted in cardiac haploinsufficiency characterized by hypertrophy, dilated cardiomyopathy, and impaired ejection fraction. Ahr ablation protected Nkx2.5+/cre haploinsufficient males from cardiac dysfunction while inducing a significant increase in body weight. These effects were absent or largely blunted in females. Starting at 3 months of age, mice were exposed by oral gavage to 1 μg/kg/week of TCDD or control vehicle for an additional 2 months. TCDD exposure restored cardiac physiology in aging males, appearing to compensate for the heart dysfunction caused by Nkx2.5 hemizygosity. Our findings underscore the conclusion that deletion of the Ahr gene in cardiomyocytes protects males from heart dysfunction due to NKX2.5 haploinsufficiency.
Collapse
Affiliation(s)
- Qin Wang
- Department of Environmental Health and Center for Environmental Genetics
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics
| | - Hisaka Kurita
- Department of Environmental Health and Center for Environmental Genetics
| | - Min Jiang
- Department of Internal Medicine Cardiology Division, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Sheryl Koch
- Department of Internal Medicine Cardiology Division, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Marepalli B Rao
- Department of Environmental Health and Center for Environmental Genetics
| | - Jack Rubinstein
- Department of Internal Medicine Cardiology Division, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics
| |
Collapse
|
10
|
Mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin- induced cardiovascular toxicity: An overview. Chem Biol Interact 2018; 282:1-6. [PMID: 29317249 DOI: 10.1016/j.cbi.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/05/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant and its toxicity is mediated by the aryl hydrocarbon receptor (AHR). Mechanisms of TCDD cardiovascular toxicity consist of oxidative stress, growth factor modulation, and ionic current alteration. It is indicated that the rodent cardiovascular system is a target for TCDD cardiomyopathy. Here, our understanding of TCDD cardiovascular toxicity is reviewed.
Collapse
|