1
|
Doidge NP, Allen JL, Bushell R, Lynch M, Browning GF, Marenda MS. Development of a qPCR assay to identify and differentiate insect-associated strains of the Serratia marcescens complex. J Vet Diagn Invest 2025; 37:234-243. [PMID: 39865995 PMCID: PMC11773504 DOI: 10.1177/10406387241313448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
The Serratia marcescens complex contains important opportunistic pathogens of humans and vertebrate animals, as well as insects and other invertebrates. To date, the methods used for the identification of species within the genus Serratia, including PCR assays, have poor discriminatory power and may require further molecular typing or genomic sequence analysis to determine clinical relevance. We developed a duplex TaqMan probe-based quantitative real-time PCR (qPCR) assay targeting the chiP gene, which is involved in chitin degradation and transport, and the ureD gene, which is involved in urease production. This allowed us to simultaneously identify all members of the S. marcescens complex (chiP positive) and differentiate those most likely to act as insect pathogens (chiP and ureD positive). We applied our assay to identify potentially entomopathogenic members of the S. marcescens complex in the context of a conservation program for the critically endangered insect Dryococelus australis and found it to be a useful aid for rapid and accurate detection of infection with S. marcescens complex strains in insects and determination of their clinical relevance. By targeting 2 genes likely to be virulence factors, this assay may also be of use for research investigating the pathogenesis of entomopathogenic Serratia spp.
Collapse
Affiliation(s)
- Nicholas P. Doidge
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
- Melbourne Zoo, Zoos Victoria, Parkville, Victoria, Australia
| | | | - Rhys Bushell
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| | - Michael Lynch
- Melbourne Zoo, Zoos Victoria, Parkville, Victoria, Australia
| | | | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
2
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
3
|
Maliszewska J, Jankowska M, Rogalska J. Octopamine is involved in TRP-induced thermopreference responses in American cockroach. JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104597. [PMID: 38072185 DOI: 10.1016/j.jinsphys.2023.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Insects' thermoregulatory processes depend on thermosensation and further processing of thermal information in the nervous system. It is commonly known that thermosensation involves thermoreceptors, including members of the TRP receptor family, but the involvement of neurotransmitters in thermoregulatory pathways remains unstudied. We conducted test to determine whether octopamine, a biogenic amine that acts as a neurotransmitter and neurohormone in insects, is involved in TRP-induced thermoregulatory responses in Periplaneta americana. We used capsaicin, an activator of the heat-sensitive TRP channel, Painless, to induce thermoregulatory response in cockroaches. Then, we evaluated the behavioural (thermal preferences and grooming), physiological (heart rate) and biochemical responses of insects to capsaicin, octopamine and phentolamine - octopaminergic receptor blocker. Capsaicin, similar to octopamine, increased cockroaches' grooming activity and heart rate. Moreover, octopamine level and protein kinase A (PKA) activity significantly increased after capsaicin treatment. Blocking octopaminergic receptors with phentolamine diminished cockroaches' response to capsaicin - thermoregulatory behaviour, grooming and heart rate were abolished. The results indicate that octopamine is a neurotransmitter secreted in insects after the activation of heat receptors.
Collapse
Affiliation(s)
- Justyna Maliszewska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland.
| | - Milena Jankowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland
| |
Collapse
|
4
|
Oyedele GT, Adedara IA, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Metoprolol elicits neurobehavioral insufficiency and oxidative damage in nontarget Nauphoeta cinerea nymphs. ENVIRONMENTAL TOXICOLOGY 2023; 38:3006-3017. [PMID: 37584562 DOI: 10.1002/tox.23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Metoprolol, a drug for hypertension and cardiovascular diseases, has become a contaminant of emerging concern because of its frequent detection in various environmental matrices globally. The dwindling in the biodiversity of useful insects owing to increasing presence of environmental chemicals is currently a great interest to the scientific community. In the current research, the toxicological impact of ecologically relevant concentrations of metoprolol at 0, 0.05, 0.1, 0.25, and 0.5 μg/L on Nauphoeta cinerea nymphs following exposure for 42 consecutive days was evaluated. The insects' behavior was analyzed with automated video-tracking software (ANY-maze, Stoelting Co, USA) while biochemical assays were done using the midgut, head and fat body. Metoprolol-exposed nymphs exhibited significant diminutions in the path efficiency, mobility time, distance traveled, body rotation, maximum speed and turn angle cum more episodes, and time of freezing. In addition, the heat maps and track plots confirmed the metoprolol-mediated wane in the exploratory and locomotor fitness of the insects. Compared with control, metoprolol exposure decreased acetylcholinesterase activity in insects head. Antioxidant enzymes activities and glutathione level were markedly decreased whereas indices of inflammation and oxidative injury to proteins and lipids were significantly increased in head, midgut and fat body of metoprolol-exposed insects. Taken together, metoprolol exposure induces neurobehavioral insufficiency and oxido-inflammatory injury in N. cinerea nymphs. These findings suggest the potential health effects of environmental contamination with metoprolol on ecologically and economically important nontarget insects.
Collapse
Affiliation(s)
- Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
Adedara IA, Abioye OO, Oyedele GT, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Perfluorooctanoic acid induces behavioral impairment and oxidative injury in Nauphoeta cinerea nymphs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110340-110351. [PMID: 37783994 DOI: 10.1007/s11356-023-30156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic contaminant with potential health threats to both animals and humans. However, the impact of PFOA on insects, which play significant roles in ecosystems, is understudied. We evaluated the toxicological impact of ecologically relevant concentrations of PFOA (0, 25, 50, 100, and 200 µg L-1) on Nauphoeta cinerea nymphs following exposure for 42 consecutive days. We analyzed the behavior of the insects with automated video-tracking software and processed the head, midgut, and fat body for biochemical assays. PFOA-exposed insects exhibited significant reductions in locomotory abilities and an increase in freezing time. Furthermore, PFOA exposure reduced acetylcholinesterase activity in the insect head. PFOA exposure increased the activities of superoxide dismutase, glutathione peroxidase, and catalase in the head and midgut, but decreased them in the fat body. PFOA also significantly increased glutathione-S transferase activity, while decreasing glutathione levels in the head, midgut, and fat body. Additionally, PFOA exposure increased reactive oxygen and nitrogen species, nitric oxide, lipid peroxidation, and protein carbonyl contents in the head, midgut, and fat body of the insects. In conclusion, our findings indicate that PFOA exposure poses an ecological risk to Nauphoeta cinerea.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwatoyin O Abioye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Adedara IA, Mohammed KA, Canzian J, Rosemberg DB, Aschner M, Farombi EO, Rocha JB. Nauphoeta cinerea as an emerging model in neurotoxicology. ADVANCES IN NEUROTOXICOLOGY 2023; 9:181-196. [PMID: 37389201 PMCID: PMC10310038 DOI: 10.1016/bs.ant.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Affiliation(s)
- Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Khadija A. Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao Batista Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
7
|
Sublethal biochemical, behavioral, and physiological toxicity of extremely low dose of bendiocarb insecticide in Periplaneta americana (Blattodea: Blattidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47742-47754. [PMID: 36745351 PMCID: PMC10097796 DOI: 10.1007/s11356-023-25602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
Insecticides are dedicated to impair the insect organisms, but also have an impact on other, non-target organisms, including humans. In this way, they became important risk factor for disturbance of physiological homeostasis and can be involved in the development of diseases or in deterioration of existing conditions. The influence of sublethal doses of various insecticides on vertebrates' and invertebrates' organisms has been previously observed. In this paper, we have evaluated the impact of exposure to extremely low dose of neurotoxin, bendiocarb (0.1 nM), a commonly used carbamate insecticide on a model organism in neurobiology-Periplaneta americana. The assessment was performed on all levels of animal organism from molecular (oxidative stress parameters: phosphorylation level of proteins, cAMP level, protein kinase A and C levels, and octopamine) to physiological (heart beat and gas exchange tests) and behavioral (motor skills assay, grooming test). Exposure to such a low level of bendiocarb did not cause direct paralysis of insects, but changed their grooming behavior, decreased heart rate, and increased gas exchange. We also observed the increased parameters of oxidative stress as well as stressogenic response to 0.1 nM bendiocarb exposure. Exposure to a trace amount of bendiocarb also increased sensitivity to effective doses of the same insecticide, thus acts as preconditioning. These results force us to reconsider the possible risk from frequent/continuous exposure to traces of pesticide residues in the environment to human health.
Collapse
|
8
|
Barreto YC, Oliveira RS, Borges BT, Rosa ME, Zanatta AP, de Almeida CGM, Vinadé L, Carlini CR, Belo CAD. The neurotoxic mechanism of Jack Bean Urease in insects involves the interplay between octopaminergic and dopaminergic pathways. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 189:105290. [PMID: 36549826 DOI: 10.1016/j.pestbp.2022.105290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
In the last decades, the entomotoxicity of JBU and its derived peptides became an object of study, due mainly to the ubiquitous interaction of these compounds with different species of insects and their potential as natural insecticides. In this work, we investigated the neurotoxic effects of JBU in Nauphoeta cinerea cockroaches by dissecting pharmacologically the monoaminergic pathways involved. Selective pharmacological modulators for monoaminergic pathways in in vivo and ex vivo experimental models were employed. Thus, the analysis of N. cinerea neurolocomotory behavior demonstrated that JBU (1.5 and 3 μg/g) induces a significant decrease in the exploratory activity. In these assays, pretreatment of animals with phentolamine, SCH23390 or reserpine, interfered significantly with the response of JBU. Using in vivo abductor metathoracic preparations JBU (1.5 μg/g) induced progressive neuromuscular blockade, in 120 min recordings. In this set of experiments, the previous treatment of the animals with phentolamine, SCH23390 or reserpine, completely inhibited JBU-induced neuromuscular blockade. The recordings of spontaneous compound neural action potentials in N. cinerea legs showed that JBU, only in the smallest dose, significantly decreased the number of potentials in 60 min recordings. When the animals were pretreated with phentolamine, SCH23390, or reserpine, but not with mianserin, there was a significant prevention of the JBU-inhibitory responses on the action potentials firing. Meanwhile, the treatment of the animals with mianserin did not affect JBU's inhibitory activity. The data presented in this work strongly suggest that the neurotoxic response of JBU in N. cinerea involves a cross talking between OCTOPAMIN-ergic and DOPAMIN-ergic nerve systems, but not the SEROTONIN-ergic neurotransmission. Further molecular biology studies with expression of insect receptors associated with voltage clamp techniques will help to discriminate the selectivity of JBU over the monoaminergic transmission.
Collapse
Affiliation(s)
- Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Ana Paula Zanatta
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Carlos Gabriel Moreira de Almeida
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil; Programa de Pós-Graduação em Medicina e Ciências da Saúde (PPGMCS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Celia Regina Carlini
- Brain Institute of Rio Grande do Sul (INSCER), Pontifícia Universidade Católica do Rio Grande de Sul, Porto Alegre, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia (LANETOX), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Departamento Multidisciplinar, Escola Paulista de Política, Economia e Negócios (EPPEN), Universidade Federal de São Paulo (UNIFESP), Rua Angélica, 100, Jardim das Flores, 06110295, Osasco, SP, Brazil.
| |
Collapse
|
9
|
Pereira PS, Costa AR, de Oliveira TJS, Oliveira CVB, de Lima MDCA, de Oliveira JF, Kim B, Coutinho HDM, Duarte AE, Kamdem JP, da Silva TG. Neurolocomotor Behavior and Oxidative Stress Markers of Thiazole and Thiazolidinedione Derivatives against Nauphoeta cinerea. Antioxidants (Basel) 2022; 11:antiox11020420. [PMID: 35204302 PMCID: PMC8869355 DOI: 10.3390/antiox11020420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Thiazolidine compounds NJ20 {(E)-2-(2-(5-bromo-2-methoxybenzylidene)hydrazinyl)-4-(4-nitrophenyl)thiazole} and NW05 [(2-(benzo (d) (1,3) dioxol-4-ylmethylene)-N-(4-bromophenyl)-thiosemicarbazone] potentiated the effect of norfloxacin in resistant bacteria; however, there are no reports on their effects on Nauphoeta cinerea in the literature. The objective of this work was to evaluate the behavioral effects and oxidative markers of NW05 and NJ20 in lobster cockroach N. cinerea. To evaluate the behavioral study, a video tracking software was used to evaluate the locomotor points and the exploratory profile of cockroaches in the horizontal and vertical regions of a new environment. The total concentration of thiol and reduced glutathione (GSH), substances reactive to thiobarbituric acid (TBARS), free iron (II) content and mitochondrial viability were determined. The antioxidant potential was evaluated by the DPPH method. Both substances induced changes in the behavior of cockroaches, showing a significant reduction in the total distance covered and in the speed. In the cell viability test (MTT), there was a significant reduction for NJ20 (1 mM). NJ20 caused a significant increase in total levels of thiol and non-protein thiol (NPSH), although it also slightly increased the content of malondialdehyde (MDA). Both compounds (NW05 and NJ20) caused a significant reduction in the content of free iron at a concentration of 10 mM. In conclusion, the compound NJ20 caused moderate neurotoxicity (1 mM), but had good antioxidant action, while NW05 did not show toxicity or significant antioxidant activity in the model organism tested. It is desirable to carry out complementary tests related to the antioxidant prospection of these same compounds, evaluating them at different concentrations.
Collapse
Affiliation(s)
- Pedro Silvino Pereira
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Prof. Artur de Sa Avenue, University City, Recife 54740-520, PE, Brazil; (P.S.P.); (M.d.C.A.d.L.); (T.G.d.S.)
| | - Adrielle Rodrigues Costa
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Thalyta Julyanne Silva de Oliveira
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Carlos Vinícius Barros Oliveira
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Maria do Carmo Alves de Lima
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Prof. Artur de Sa Avenue, University City, Recife 54740-520, PE, Brazil; (P.S.P.); (M.d.C.A.d.L.); (T.G.d.S.)
| | - Jamerson Ferreira de Oliveira
- Institute of Health Sciences, Auroras Campus, University of International Integration of Afro-Brazilian Lusophony (UNILAB), 3 Abolition Avenue, Downtown, Redenção 62790-000, CE, Brazil;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (B.K.); (H.D.M.C.)
| | - Henrique D. M. Coutinho
- Department of Biological Chemistry, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil
- Correspondence: (B.K.); (H.D.M.C.)
| | - Antonia Eliene Duarte
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri (URCA), 1161 Cel. Antonio Luiz Avenue, Pimenta, Crato 63105-000, CE, Brazil; (A.R.C.); (T.J.S.d.O.); (C.V.B.O.); (A.E.D.); (J.P.K.)
| | - Teresinha Gonçalves da Silva
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Prof. Artur de Sa Avenue, University City, Recife 54740-520, PE, Brazil; (P.S.P.); (M.d.C.A.d.L.); (T.G.d.S.)
| |
Collapse
|
10
|
Broll V, Perin APA, Lopes FC, Martinelli AHS, Moyetta NR, Fruttero LL, Grahl MV, Uberti AF, Demartini DR, Ligabue-Braun R, Carlini CR. Non-enzymatic properties of Proteus mirabilis urease subunits. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Perin APA, Noronha MS, Moyetta NR, Coste Grahl MV, Fruttero LL, Staniscuaski F. Jaburetox, a urease-derived peptide: Effects on enzymatic pathways of the cockroach Nauphoeta cinerea. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21731. [PMID: 32761928 DOI: 10.1002/arch.21731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Jaburetox is a recombinant peptide derived from one of the Canavalia ensiformis urease isoforms. This peptide induces several toxic effects on insects of different orders, including interference on muscle contractility in cockroaches, modulation of UDP-N-acetylglucosamine pyrophosphorylase (UAP) and nitric oxide synthase (NOS) activities in the central nervous system of triatomines, as well as activation of the immune system in Rhodnius prolixus. When injected, the peptide is lethal for R. prolixus and Triatoma infestans. Here, we evaluated Jaburetox toxicity to Nauphoeta cinerea cockroaches, exploring the effects on the central nervous system through the activities of UAP, NOS, acid phosphatases (ACP), and acetylcholinesterase (AChE). The results indicated that N. cinerea is not susceptible to the lethal effect of the peptide. Moreover, both in vivo and in vitro treatments with Jaburetox inhibited NOS activity, without modifying the protein levels. No alterations on ACP activity were observed. In addition, the enzyme activity of UAP only had its activity affected at 18 hr after injection. The peptide increased the AChE activity, suggesting a mechanism involved in overcoming the toxic effects. In conclusion, our findings indicate that Jaburetox affects the nitrinergic signaling as well as the AChE and UAP activities and establishes N. cinerea as a Jaburetox-resistant model for future comparative studies.
Collapse
Affiliation(s)
- Ana P A Perin
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mila S Noronha
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natalia R Moyetta
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Matheus V Coste Grahl
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo L Fruttero
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Staniscuaski
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Molecular Biology and Biotechnology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
12
|
Borges BT, de Brum Vieira P, Leal AP, Karnopp E, Ogata BAB, Rosa ME, Barreto YC, Oliveira RS, Belo CAD, Vinadé L. Modulation of octopaminergic and cholinergic pathways induced by Caatinga tree Manilkara rufula chemical compounds in Nauphoeta cinerea cockroaches. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104651. [PMID: 32828369 DOI: 10.1016/j.pestbp.2020.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
The entomotoxic potential of Manilkara rufula crude extract (CEMR) and its aqueous (AFMR) and methanolic (MFMR) fractions were evaluated against Nauphoeta cinerea cockroaches. The results point out to a direct modulation of octopaminergic and cholinergic pathways in insect nervous system. CEMR induced an anti-acetylcholinesterase (AChE) effect in cockroach brain homogenates. CEMR significantly decreased the cockroach heart rate in semi-isolated heart preparations. CEMR also caused a broad disturbance in the insect behavior by reducing the exploratory activity. The decreased antennae and leg grooming activities, by different doses of CEMR, mimicked those of phentolamine activity, a selective octopaminergic receptor antagonist. The lethargy induced by CEMR was accompanied by neuromuscular failure and by a decrease of sensilla spontaneous neural compound action potentials (SNCAP) firing in in vivo and ex vivo cockroach muscle-nerve preparations, respectively. AFMR was more effective in promoting neuromuscular paralysis than its methanolic counterpart, in the same dose. These data validate the entomotoxic activity of M. rufula. The phentolamine-like modulation induced in cockroaches is the result of a potential direct inhibition of octopaminergic receptors, combined to an anti-AChE activity. In addition, the modulation of CEMR on octopaminergic and cholinergic pathways is probably the result of a synergism between AFMR and MFMR chemical compounds. Further phytochemical investigation followed by a bio-guiding protocol will improve the molecular aspects of M. rufula pharmacology and toxicology to insects.
Collapse
Affiliation(s)
- Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Patrícia de Brum Vieira
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Allan P Leal
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas e Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Etiely Karnopp
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Bárbara A B Ogata
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas e Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal do Pampa, 97300-000 São Gabriel, RS, Brazil.
| |
Collapse
|
13
|
Leal A, Karnopp E, Barreto YC, Oliveira RS, Rosa ME, Borges BT, Goulart FL, de Souza VQ, Laikowski MM, Moura S, Vinadé L, da Rocha JBT, Dal Belo CA. The Insecticidal Activity of Rhinella schneideri (Werner, 1894) Paratoid Secretion in Nauphoeta cinerea Cocroaches. Toxins (Basel) 2020; 12:toxins12100630. [PMID: 33019552 PMCID: PMC7601029 DOI: 10.3390/toxins12100630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Rhinella schneideri is a common toad found in South America, whose paratoid toxic secretion has never been explored as an insecticide. In order to evaluate its insecticidal potential, Nauphoeta cinerea cockroaches were used as an experimental model in biochemical, physiological and behavioral procedures. Lethality assays with Rhinella schneideri paratoid secretion (RSPS) determined the LD50 value after 24 h (58.07µg/g) and 48 h exposure (44.07 µg/g) (R2 = 0.882 and 0.954, respectively). Acetylcholinesterase activity (AChE) after RSPS at its highest dose promoted an enzyme inhibition of 40%, a similar effect observed with neostigmine administration (p < 0.001, n= 5). Insect locomotion recordings revealed that RSPS decreased the distance traveled by up to 37% with a concomitant 85% increase in immobile episodes (p < 0.001, n = 36). RSPS added to in vivo cockroach semi-isolated heart preparation promoted an irreversible and dose dependent decrease in heart rate, showing a complete failure after 30 min recording (p < 0.001, n ≥ 6). In addition, RSPS into nerve-muscle preparations induced a dose-dependent neuromuscular blockade, reaching a total blockage at 70 min at the highest dose applied (p < 0.001, n ≥ 6). The effect of RSPS on spontaneous sensorial action potentials was characterized by an increase in the number of spikes 61% (p < 0.01). Meanwhile, there was 42% decrease in the mean area of those potentials (p < 0.05, n ≥ 6). The results obtained here highlight the potential insecticidal relevance of RSPS and its potential biotechnological application.
Collapse
Affiliation(s)
- Allan Leal
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria RS 97105-900, Brazil;
| | - Etiely Karnopp
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Flávia Luana Goulart
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Velci Queiróz de Souza
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - Manuela Merlin Laikowski
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul RS 95070-560, Brazil; (M.M.L.); (S.M.)
| | - Sidnei Moura
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul RS 95070-560, Brazil; (M.M.L.); (S.M.)
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
| | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria RS 97105-900, Brazil;
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel RS 97307-020, Brazil; (A.L.); (E.K.); (Y.C.B.); (R.S.O.); (M.E.R.); (B.T.B.); (F.L.G.); (V.Q.d.S.); (L.V.)
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica (PPGBTox), Universidade Federal de Santa Maria (UFSM), Avenida Roraima 1000, Santa Maria RS 97105-900, Brazil;
- Correspondence:
| |
Collapse
|
14
|
Moyetta NR, Fruttero LL, Leyria J, Ramos FO, Carlini CR, Canavoso L. The entomotoxin Jack Bean Urease changes cathepsin D activity in nymphs of the hematophagous insect Dipetalogaster maxima (Hemiptera: Reduviidae). Comp Biochem Physiol B Biochem Mol Biol 2020; 251:110511. [PMID: 33007467 DOI: 10.1016/j.cbpb.2020.110511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023]
Abstract
In insects, cathepsin D is a lysosomal aspartic endopeptidase involved in several functions such as digestion, defense and reproduction. Jack Bean Urease (JBU) is the most abundant urease isoform obtained from the seeds of the plant Canavalia ensiformis. JBU is a multifunctional protein with entomotoxic effects unrelated to its catalytic activity, by mechanisms not yet fully understood. In this work, we employed nymphs of the hematophagous insect Dipetalogaster maxima as an experimental model in order to study the effects of JBU on D. maxima CatD (DmCatD). In insects without treatment, immunofluorescence assays revealed a conspicuous distribution pattern of DmCatD in the anterior and posterior midgut as well as in the fat body and hemocytes. Western blot assays showed that the active form of DmCatD was present in the fat body, the anterior and posterior midgut; whereas the proenzyme was visualized in hemocytes and hemolymph. The transcript of DmCatD and its enzymatic activity was detected in the anterior and posterior midgut as well as in fat body and hemocytes. JBU injections induced a significant increase of DmCatD activity in the posterior midgut (at 3 h post-injection) whereas in the hemolymph, such an effect was observed after 18 h. These changes were not correlated with modifications in DmCatD mRNA and protein levels or changes in the immunofluorescence pattern. In vitro experiments might suggest a direct effect of the toxin in DmCatD activity. Our findings indicated that the tissue-specific increment of cathepsin D activity is a novel effect of JBU in insects.
Collapse
Affiliation(s)
- Natalia R Moyetta
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Fabian O Ramos
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| | - Célia R Carlini
- Brain Institute (INSCER) and School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90610-000, Brazil.
| | - Lilián Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina; Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, CP 5000, Argentina.
| |
Collapse
|
15
|
Ademiluyi AO, Oyeniran OH, Oboh G. Dietary monosodium glutamate altered redox status and dopamine metabolism in lobster cockroach (Nauphoeta cinerea). J Food Biochem 2020; 44:e13451. [PMID: 32851688 DOI: 10.1111/jfbc.13451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/08/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022]
Abstract
Monosodium Glutamate (MSG) is the most commonly utilized food additive in the world. However, data on possible biochemical reasons underlying the neurotoxic effects of dietary MSG is limited. Therefore, this study investigated the effects of dietary supplementation of MSG on redox status and neurochemical indices in lobster cockroach nymph. These were evaluated via assessment of enzymatic and nonenzymatic antioxidants, acetylcholinesterase and monoamine oxidase activities, and dopamine content in the cockroach nymph head homogenate. MSG supplemented diet caused dose-dependent significant (p < .05) reduction in % survival, thiol, GSH, dopamine contents, and GST activity, increased ROS, NO, Fe2+ , MDA contents, and MAO activity but no significant (p < .05) difference was obtained in GSH and TBARS contents, and AChE activity. Increased oxidative, cholinergic, and monoaminergic activities coupled with decreased dopamine level might be the plausible biochemical explanation for the neurotoxic effects observed during sub-chronic consumption of large amounts of MSG in diet. PRACTICAL APPLICATIONS: This study suggests that consumption of monosodium glutamate should be reduced to the barest minimum due to its capability to induce oxidative stress and nervous toxicological effects at high dosage.
Collapse
Affiliation(s)
- Adedayo O Ademiluyi
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Olubukola H Oyeniran
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biochemistry, Federal University Oye - Ekiti, Ekiti, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
16
|
Sá CA, Vieira LR, Pereira Almeida Filho LC, Real-Guerra R, Lopes FC, Souza TM, Vasconcelos IM, Staniscuaski F, Carlini CR, Urano Carvalho AF, Farias DF. Risk assessment of the antifungal and insecticidal peptide Jaburetox and its parental protein the Jack bean (Canavalia ensiformis) urease. Food Chem Toxicol 2019; 136:110977. [PMID: 31759068 DOI: 10.1016/j.fct.2019.110977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023]
Abstract
Jaburetox (JBTX) is an insecticidal and antifungal peptide derived from jack bean (Canavalia ensiformis) urease that has been considered a candidate for developing genetically modified crops. This study aimed to perform the risk assessment of the peptide JBTX following the general recommendations of the two-tiered, weight-of-evidence approach proposed by International Life Sciences Institute. The urease of C. ensiformis (JBU) and its isoform JBURE IIb (the JBTX parental protein) were assessed. The history of safe use revealed no hazard reports for the studied proteins. The available information shows that JBTX possesses selective activity against insects and fungi. JBTX and JBU primary amino acids sequences showed no relevant similarity to toxic, antinutritional or allergenic proteins. Additionally, JBTX and JBU were susceptible to in vitro digestibility, and JBU was also susceptible to heat treatment. The results did not identify potential risks of adverse effects and reactions associated to JBTX. However, further allergen (e.g. serum IgE binding test) and toxicity (e.g. rodent toxicity tests) experimentation can be done to gather additional safety information on JBTX, and to meet regulatory inquiries for commercial approval of transgenic cultivars expressing this peptide.
Collapse
Affiliation(s)
- Chayenne Alves Sá
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Leonardo Rogério Vieira
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | | | - Rafael Real-Guerra
- Center for Coastal, Limnological and Marine Studies (CECLIMAR), Federal University of Rio Grande do Sul, 95625-000, Imbé, RS, Brazil; Interdisciplinary Department, Federal University of Rio Grande do Sul, 95625-000, Tramandaí, RS, Brazil
| | - Fernanda Cortez Lopes
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil
| | - Terezinha Maria Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Ilka Maria Vasconcelos
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Fernanda Staniscuaski
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil
| | - Célia Regina Carlini
- Center of Biotechnology and Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Building 43431, 91501-970, Porto Alegre, Brazil; Brain Institute (Instituto do Cérebro-INSCER), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Building 63, CEP 90610-000, Porto Alegre, Brazil
| | - Ana Fontenele Urano Carvalho
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil; Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Davi Felipe Farias
- Graduate Program in Biochemistry, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil; Laboratory for Risk Assesment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraíba, 58051-900, João Pessoa, Brazil.
| |
Collapse
|
17
|
Holken Lorensi G, Soares Oliveira R, Leal AP, Zanatta AP, Moreira de Almeida CG, Barreto YC, Eduarda Rosa M, de Brum Vieira P, Brito Ramos CJ, de Carvalho Victoria F, Batista Pereira A, LaneuvilleTeixeira V, Dal Belo CA. Entomotoxic Activity of Prasiola crispa (Antarctic Algae) in Nauphoeta cinerea Cockroaches: Identification of Main Steroidal Compounds. Mar Drugs 2019; 17:md17100573. [PMID: 31658661 PMCID: PMC6835979 DOI: 10.3390/md17100573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Prasiola crispa is a macroscopic green algae found in abundance in Antarctica ice free areas. Prasiola crispan-hexaneextract (HPC) induced insecticidal activity in Nauphoeta cinerea cockroaches after 24 h of exposure. The chemical analysis of HPC revealed the presence of the followingphytosterols: β-sitosterol, campesterol and stigmasterol. The incubation of cockroach semi-isolated heart preparations with HPC caused a significant negative chronotropic activity in the heartbeats. HPC affected the insect neuromuscular function by inducing a complete inhibition of the cockroach leg-muscle twitch tension. When the isolated phytosterols were injected at in vivo cockroach neuromuscular preparations, there was a progressive inhibition of muscle twitches on the following order of potency: β-sitosterol > campesterol > stigmasterol. HPC also provoked significant behavioral alterations, characterized by the increase or decrease of cockroach grooming activity, depending on the dose assayed. Altogether, the results presented here corroborate the insecticide potential of Prasiola crispa Antarctic algae. They also revealed the presence of phytosterols and the involvement of these steroidal compounds in the entomotoxic activity of the algae, potentially by modulating octopaminergic-cholinergic pathways. Further phytochemical-combined bioguided analysis of the HPC will unveil novel bioactive compounds that might be an accessory to the insecticide activity of the algae.
Collapse
Affiliation(s)
- Graziela Holken Lorensi
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Allan P Leal
- Programa de Pós-Graduação em Bioquímica Toxicológica, PPGBtox, Universidade Federal de Santa Maria, UFSM, Bairro Camobi, Santa Maria, RS 9705-900, Brazil.
| | - Ana Paula Zanatta
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | | | - Yuri Correia Barreto
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Maria Eduarda Rosa
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Patrícia de Brum Vieira
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
- Grupo de Pesquisa em Estresse Oxidativo e Sinalização Celular, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
| | - Carlos José Brito Ramos
- Programa de Pós-Graduação em Biodiversidade Neotropical, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ 22290-255, Brazil.
| | - Filipe de Carvalho Victoria
- Núcleo de Estudos da Vegetação Antártica (NEVA), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Rio Grande do Sul 97307-020, Brazil.
| | - Antônio Batista Pereira
- Núcleo de Estudos da Vegetação Antártica (NEVA), Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Rio Grande do Sul 97307-020, Brazil.
| | - Valéria LaneuvilleTeixeira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Centro, Niterói, RJ 24020-141, Brazil.
- Programa de Pós-Graduação em Biodiversidade Neotropical, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ 22290-255, Brazil.
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia (LANETOX),Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS 97307-020, Brazil.
- Programa de Pós-Graduação em Bioquímica Toxicológica, PPGBtox, Universidade Federal de Santa Maria, UFSM, Bairro Camobi, Santa Maria, RS 9705-900, Brazil.
| |
Collapse
|
18
|
Kappaun K, Piovesan AR, Carlini CR, Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. J Adv Res 2018; 13:3-17. [PMID: 30094078 PMCID: PMC6077230 DOI: 10.1016/j.jare.2018.05.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Urease (urea amidohydrolase, EC 3.5.1.5) is a nickel-containing enzyme produced by plants, fungi, and bacteria that catalyzes the hydrolysis of urea into ammonia and carbamate. Urease is of historical importance in Biochemistry as it was the first enzyme ever to be crystallized (1926). Finding nickel in urease's active site (1975) was the first indication of a biological role for this metal. In this review, historical and structural features, kinetics aspects, activation of the metallocenter and inhibitors of the urea hydrolyzing activity of ureases are discussed. The review also deals with the non-enzymatic biological properties, whose discovery 40 years ago started a new chapter in the study of ureases. Well recognized as virulence factors due to the production of ammonia and alkalinization in diseases by urease-positive microorganisms, ureases have pro-inflammatory, endocytosis-inducing and neurotoxic activities that do not require ureolysis. Particularly relevant in plants, ureases exert insecticidal and fungitoxic effects. Data on the jack bean urease and on jaburetox, a recombinant urease-derived peptide, have indicated that interactions with cell membrane lipids may be the basis of the non-enzymatic biological properties of ureases. Altogether, with this review we wanted to invite the readers to take a second look at ureases, very versatile proteins that happen also to catalyze the breakdown of urea into ammonia and carbamate.
Collapse
Affiliation(s)
- Karine Kappaun
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Angela Regina Piovesan
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia Regina Carlini
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
19
|
Leal AP, Oliveira RS, Perin APA, Borges BT, de Brum Vieira P, Dos Santos TG, Vinadé L, Valsecchi C, Belo CAD. Entomotoxic activity of Rhinella icterica (Spix, 1824) toad skin secretion in Nauphoeta cinerea cockroaches: An octopamine-like modulation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:175-181. [PMID: 29891370 DOI: 10.1016/j.pestbp.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Rhinella icterica is a poisonous toad whose toxic secretion has never been studied against entomotoxic potential. Sublethal doses of Rhinella icterica toxic secretion (RITS) were assayed in Nauphoeta cinerea cockroaches, in order to understand the physiological and behavioral parameters, over the insect central and peripheral nervous system. RITS (10 μg/g) injections, induced behavioral impairment as evidenced by a significant decrease (38 ± 14%) in the distance traveled (p < .05), followed by an increase (90 ± 6%) of immobile episodes (p < .001, n = 28, respectively). In cockroaches semi-isolated heart preparations, RITS (16 μg/200 μl) induced a significant irreversible dose-dependent negative chronotropism, reaching ~40% decrease in heart rate in 20 min incubation. In in vivo cockroach neuromuscular preparations, RITS (20, 50 and 100 μg/g of animal weight) induced a time-dependent inhibition of twitch tension that was complete for 20 μg/g, in 120 min recordings. RITS (10 μg/g) also induced a significant increase in the insect leg grooming activity (128 ± 10%, n = 29, p < .01), but not in the antennae counterparts. The RITS increase in leg grooming activity was prevented in 90% by the pretreatment of cockroaches with phentolamine (0.1 μg/g). The electrophysiological recordings of spontaneous neural compound action potentials showed that RITS (20 μg/g) induced a significant increase in the number of events, as well as in the rise time and duration of the potentials. In conclusion, RITS showed to be entomotoxic, being the neuromuscular failure and cardiotoxic activity considered the main deleterious effects. The disturbance of the cockroaches' behavior together with the electrophysiological alterations, may unveil the presence of some toxic components present in the poison with inherent biotechnological potentials.
Collapse
Affiliation(s)
- Allan Pinto Leal
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Raquel Soares Oliveira
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Ana Paula Artusi Perin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Bruna Trindade Borges
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Patrícia de Brum Vieira
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Tiago Gomes Dos Santos
- Laboratório de Estudos em Biodiversidade Pampiana LEBIP, Universidade Federal do Pampa (UNIPAMPA- SEDE), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Lúcia Vinadé
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Chiara Valsecchi
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratório de Neurobiologia e Toxinologia, LANETOX, Universidade Federal do Pampa (UNIPAMPA), Av. Antônio Trilha 1847, 97300-000 São Gabriel, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, prédio 43431, CEP 91501-970 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, (PPGBTox), Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
20
|
Carrazoni T, Nguyen C, Maciel LF, Delgado-Cañedo A, Stewart BA, Lange AB, Dal Belo CA, Carlini CR, Orchard I. Jack bean urease modulates neurotransmitter release at insect neuromuscular junctions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 146:63-70. [PMID: 29626993 DOI: 10.1016/j.pestbp.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/09/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Plants have developed a vast range of mechanisms to compete with phytophagous insects, including entomotoxic proteins such as ureases. The legume Canavalia ensiformis produces several urease isoforms, of which the more abundant is called Jack Bean Urease (JBU). Previews work has demonstrated the potential insecticidal effects of JBU, by mechanisms so far not entirely elucidated. In this work, we investigated the mechanisms involved in the JBU-induced activity upon neurotransmitter release on insect neuromuscular junctions. METHODS Electrophysiological recordings of nerve and muscle action potentials, and calcium imaging bioassays were employed. RESULTS AND CONCLUSION JBU (0.28 mg/animal/day) in Locusta migratoria 2nd instar through feeding and injection did not induce lethality, although it did result in a reduction of 20% in the weight gain at the end of 168 h (n = 9, p ≤ 0.05). JBU (0.014 and 0.14 mg) injected direct into the locust hind leg induced a dose and time-dependent decrease in the amplitude of muscle action potentials, with a maximum decrease of 70% in the amplitude at the highest dose (n = 5, p ≤ 0.05). At the same doses JBU did not alter the amplitude of action potentials evoked from motor neurons. Using Drosophila 3rd instar larvae neuromuscular preparations, JBU (10-7 M) increased the occurrence of miniature Excitatory Junctional Potentials (mEJPs) in the presence of 1 mM CaCl2 (n = 5, p ≤ 0.05). In low calcium (0.4 mM) assays, JBU (10-7 M) was not able to modulate the occurrence of the events. In Ca2+-free conditions, with EGTA or CoCl2, JBU induced a significant decrease in the occurrence of mEPJs (n = 5, p ≤ 0.05). Injected into the 3rd abdominal ganglion of Nauphoeta cinerea cockroaches, JBU (1 μM) induced a significant increase in Ca2+ influx (n = 7, p ≤ 0.01), similar to that seen for high KCl (35 mM) condition. Taken together the results confirm a direct action of JBU upon insect neuromuscular junctions and possibly central synapses, probably by disrupting the calcium machinery in the pre-synaptic region of the neurons.
Collapse
Affiliation(s)
- Thiago Carrazoni
- Universidade Federal do Rio Grande do Sul, Graduate Program in Cell and Molecular Biology, Center of Biotechnology, Porto Alegre, RS, Brazil; University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada; Pontifícia Universidade Católica do Rio Grande de Sul, Brain Institute, Porto Alegre, RS, Brazil.
| | - Christine Nguyen
- University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada
| | - Lucas F Maciel
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | | | - Bryan A Stewart
- University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada
| | - Angela B Lange
- University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada
| | | | - Celia R Carlini
- Universidade Federal do Rio Grande do Sul, Graduate Program in Cell and Molecular Biology, Center of Biotechnology, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande de Sul, Brain Institute, Porto Alegre, RS, Brazil.
| | - Ian Orchard
- University of Toronto Mississauga, Department of Biology, Mississauga, ON, Canada.
| |
Collapse
|
21
|
da Silva CS, de Cássia Gonçalves de Lima R, Elekofehinti OO, Ogunbolude Y, Duarte AE, Rocha JBT, Alencar de Menezes IR, Barros LM, Tsopmo A, Lukong KE, Kamdem JP. Caffeine-supplemented diet modulates oxidative stress markers and improves locomotor behavior in the lobster cockroach Nauphoeta cinerea. Chem Biol Interact 2018; 282:77-84. [DOI: 10.1016/j.cbi.2018.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/30/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
|