1
|
Lin J, Li F, Jiao J, Qian Y, Xu M, Wang F, Sun X, Zhou T, Wu H, Kong X. Quercetin, a natural flavonoid, protects against hepatic ischemia-reperfusion injury via inhibiting Caspase-8/ASC dependent macrophage pyroptosis. J Adv Res 2025; 70:555-569. [PMID: 38735388 PMCID: PMC11976413 DOI: 10.1016/j.jare.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/20/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Hepatic ischemia-reperfusion injury (IRI) is an inevitable adverse event following liver surgery, leading to liver damage and potential organ failure. Despite advancements, effective interventions for hepatic IRI remain elusive, posing a significant clinical challenge. The innate immune response significantly contributes to the pathogenesis of hepatic IRI by promoting an inflammatory cytotoxic cycle. We have reported that blocking GSDMD-induced pyroptosis in innate immunity cells protected hepatic IRI from inflammatory injury. However, the search for effective pyroptosis inhibitors continues. OBJECTIVES This study aims to evaluate whether quercetin, a natural flavonoid, can inhibit GSDMD-induced pyroptosis and mitigate hepatic IRI. METHODS We established the hepatic IRI murine model and cellular pyroptosis model to evaluate the efficacy of quercetin. RESULTS Quercetin effectively alleviated hepatic IRI-induced tissue necrosis and inflammation. We found that during hepatic IRI, the cleavage of GSDMD occurred in hepatic macrophages, but not in other non-parenchymal cells. Quercetin inhibited the cleavage of GSDMD in macrophages. Moreover, we found that quercetin blocked the ASC assembly to inhibit the formation of NLRP3 inflammasomes and AIM2 inflammasomes, suppressing macrophage pyroptosis. Co-immunoprecipitation experiments confirmed that quercetin inhibited the interaction between ASC and Caspase-8, which is the mechanism of ASC complex and inflammasome formation. Overexpression of Caspase-8 abolished the anti-pyroptosis effect of quercetin in NLRP3 and AIM2 inflammasome signaling. Furthermore, we found that the hepatoprotective activity of quercetin was reduced in myelocytic GSDMD-deficient mice. CONCLUSION Our findings suggest that quercetin has beneficial effects on hepatic IRI. Quercetin could attenuate hepatic IRI and target inhibition of macrophage pyroptosis via blocking Caspase-8/ASC interaction. We recommend that quercetin might serve as a targeted approach for the prevention and personalized treatment of hepatic IRI in perioperative patients.
Collapse
Affiliation(s)
- Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fuyang Li
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junzhe Jiao
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Xu
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuehua Sun
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Zhou
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Scheese D, Lu P, Moore H, Tsuboi K, Tragesser C, Duess J, Raouf Z, Sampah MF, Klerk D, El Baassiri M, Jang HS, Williams-McLeod S, Ishiyama A, Steinway SN, Wang S, Wang M, Prindle T, Fulton WB, Sodhi CP, Hackam DJ. Cytomegalovirus Worsens Necrotizing Enterocolitis Severity in Mice via Increased Toll-Like Receptor 4 Signaling. Cell Mol Gastroenterol Hepatol 2025; 19:101473. [PMID: 39954728 PMCID: PMC12008672 DOI: 10.1016/j.jcmgh.2025.101473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND AIMS Necrotizing enterocolitis (NEC) is a life-threatening condition in premature infants, marked by acute intestinal necrosis. NEC develops in part after activation of the lipopolysaccharide receptor toll-like receptor 4 (TLR4) by intestinal microbes in the intestinal epithelium. Previous authors have shown an increased risk of NEC in human infants after cytomegalovirus (CMV) infection, which can affect mitochondrial function. We now seek to explore the impact and the mechanisms of CMV infection on NEC severity and its relationship with TLR4 signaling and mitochondria function. METHODS NEC was induced in newborn mice with and without CMV infection. RNA sequencing and gene set enrichment analysis were performed to identify effects on inflammatory and metabolic pathways. The role of TLR4 signaling and mitochondrial function were investigated in wild-type and Tlr4-deficient mice. The adenosine receptor agonist 5'-N-ethylcarboxamido adenosine was tested for its ability to reduce CMV-induced effects on NEC severity. RESULTS CMV infection significantly increased NEC severity in wild-type mice. Mechanistically, CMV infection triggered proinflammatory pathways, disrupted cellular metabolism, and upregulated Tlr4 expression, leading to mitochondrial dysfunction and nuclear factor-kB translocation. These effects were notably absent in Tlr4-deficient mice. 5'-N-ethylcarboxamido adenosine treatment reversed CMV-induced NEC severity by reducing mitochondrial dysfunction and TLR4-driven nuclear factor-kB activation. CONCLUSIONS CMV infection worsens NEC severity in mice by amplifying TLR4 signaling, inflammation, and mitochondrial dysfunction. Targeting CMV and its influence on TLR4 may offer novel therapeutic approaches for NEC.
Collapse
Affiliation(s)
- Daniel Scheese
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Peng Lu
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Hannah Moore
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Cody Tragesser
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Johannes Duess
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Zachariah Raouf
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Maame F Sampah
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Daphne Klerk
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Mahmoud El Baassiri
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Hee-Seong Jang
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Sierra Williams-McLeod
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Asuka Ishiyama
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Steve N Steinway
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Sanxia Wang
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Menghan Wang
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Thomas Prindle
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - William B Fulton
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland.
| | - David J Hackam
- Division of Pediatric Surgery, Johns Hopkins University School of Medicine, and the Johns Hopkins Children's Center, Baltimore, Maryland.
| |
Collapse
|
3
|
Gureev AP, Nesterova VV, Sadovnikova IS. Long-range PCR as a tool for evaluating mitochondrial DNA damage: Principles, benefits, and limitations of the technique. DNA Repair (Amst) 2025; 146:103812. [PMID: 39848024 DOI: 10.1016/j.dnarep.2025.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Mitochondrial DNA (mtDNA) is often more susceptible to damage compared to nuclear DNA. This is due to its localization in the mitochondrial matrix, where a large portion of reactive oxygen species are produced. Mitochondria do not have histones and mtDNA is only slightly protected by histone-like proteins and is believed to have less efficient repair mechanisms. In this review, we discuss the long-range PCR method, which allows for the effective detection of mtDNA damage. The method is based on the assumption that various types of DNA lesions can interfere the progress of DNA polymerase, resulting in reduced amplification efficiency. It can be used to estimate the number of additional (above background) lesions in mtDNA. The review outlines the evolution of the methodology, its variations, applications in a wide range of model organisms, the advantages of the method and its limitations, as well as ways to overcome these limitations. Over the past two decades, the use of long-range PCR has allowed the study of mtDNA repair mechanisms, the characteristics of mitochondrial genome damage in various neurodegenerative diseases, aging, ischemic and oncological processes, as well as in anticancer therapy. The assessment of mtDNA damage has also been proposed for use in environmental biomonitoring. This review provides a critical evaluation of the various variations of this method, summarizes the accumulated data, and discusses the role of mtDNA damage in different organs at the organismal level.
Collapse
Affiliation(s)
- Artem P Gureev
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Veronika V Nesterova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Irina S Sadovnikova
- Departments of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
4
|
Wu Y, Li W, Zhang J, Lin J, You L, Su J, Zheng C, Gao Y, Kong X, Sun X. Shaoyao-Gancao Decoction, a famous Chinese medicine formula, protects against APAP-induced liver injury by promoting autophagy/mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156053. [PMID: 39326138 DOI: 10.1016/j.phymed.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Acetaminophen (APAP)-induced hepatotoxicity is a major cause of acute liver failure (ALF), during which autophagy is triggered as a cellular defense mechanism. Shaoyao-Gancao Decoction (SGD), a traditional prescription in Chinese Medicine, is renowned for its therapeutic effects on liver diseases. However, the efficacy and mechanisms of SGD in treating APAP-induced liver injury remain underexplored. PURPOSE This study aims to provide robust evidence regarding the protective effects of SGD against APAP overdose in vitro and in vivo, as well as to elucidate its hepatoprotective mechanisms and active components. STUDY DESIGN The hepatoprotective mechanisms and active components of SGD were investigated through a combination of in vivo and in vitro experiments. METHODS The protective effects of SGD on APAP-induced liver injury were assessed using a murine model and primary hepatocytes. RNA sequencing and subsequent experimental validations were conducted to uncover the underlying mechanisms of SGD's hepatoprotective actions. Comprehensive chemical profiling of SGD was performed using UHPLC-Q-Exactive Orbitrap HRMS to identify potential active ingredients. Immunohistochemistry, immunofluorescence, quantitative real-time PCR (qPCR), western blotting, enzyme-linked immunosorbent assay (ELISA), and flow cytometry were utilized to investigate the specific cellular changes in liver tissues and hepatocytes influenced by SGD. RESULTS SGD was observed to mitigate APAP-induced mitochondrial damage, inflammation, and necrosis by promoting mitochondrial autophagy. The inhibition of autophagy negated the hepatoprotective effects of SGD. Additionally, a detailed characterization of SGD's chemical composition revealed that Licoisoflavone B, Liquiritin, Liquiritin apioside, Licorice saponin G2 and Paeoniflorin Sulfit were potentially critical compounds in the regulation of autophagy and mitophagy. CONCLUSION Our findings demonstrate that SGD promotes autophagy/mitophagy, which effectively mitigates APAP-induced hepatotoxicity, suggesting SGD's potential as a promising therapeutic agent for APAP-induced liver injury.
Collapse
Affiliation(s)
- Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Su
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Hedlich-Dwyer J, Allard JS, Mulgrave VE, Kisby GE, Raber J, Gassman NR. Novel Techniques for Mapping DNA Damage and Repair in the Brain. Int J Mol Sci 2024; 25:7021. [PMID: 39000135 PMCID: PMC11241736 DOI: 10.3390/ijms25137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.
Collapse
Affiliation(s)
- Jenna Hedlich-Dwyer
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joanne S Allard
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Veronica E Mulgrave
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Glen E Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Gureev AP, Sadovnikova IS, Chernyshova EV, Tsvetkova AD, Babenkova PI, Nesterova VV, Krutskikh EP, Volodina DE, Samoylova NA, Andrianova NV, Silachev DN, Plotnikov EY. Beta-Hydroxybutyrate Mitigates Sensorimotor and Cognitive Impairments in a Photothrombosis-Induced Ischemic Stroke in Mice. Int J Mol Sci 2024; 25:5710. [PMID: 38891898 PMCID: PMC11172083 DOI: 10.3390/ijms25115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The consequences of stroke include cognitive deficits and sensorimotor disturbances, which are largely related to mitochondrial impairments in the brain. In this work, we have shown that the mimetic of the ketogenic diet beta-hydroxybutyrate (βHB) can improve neurological brain function in stroke. At 3 weeks after photothrombotic stroke, mice receiving βHB with drinking water before and after surgery recovered faster in terms of sensorimotor functions assessed by the string test and static rods and cognitive functions assessed by the Morris water maze. At the same time, the βHB-treated mice had lower expression of some markers of astrocyte activation and inflammation (Gfap, Il-1b, Tnf). We hypothesize that long-term administration of βHB promotes the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway, which leads to increased expression of antioxidant genes targeting mitochondria and genes involved in signaling pathways necessary for the maintenance of synaptic plasticity. βHB partially maintained mitochondrial DNA (mtDNA) integrity during the first days after photothrombosis. However, in the following three weeks, the number of mtDNA damages increased in all experimental groups, which coincided with a decrease in Ogg1 expression, which plays an important role in mtDNA repair. Thus, we can assume that βHB is not only an important metabolite that provides additional energy to brain tissue during recovery from stroke under conditions of mitochondrial damage but also an important signaling molecule that supports neuronal plasticity and reduces neuroinflammation.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Ekaterina V. Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Arina D. Tsvetkova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Polina I. Babenkova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Veronika V. Nesterova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Ekaterina P. Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Daria E. Volodina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Natalia A. Samoylova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.P.G.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
7
|
Chernyshova EV, Potanina DV, Sadovnikova IS, Krutskikh EP, Volodina DE, Samoylova NA, Gureev AP. The study of the protective effect of mitochondrial uncouplers during acute toxicity of the fungicide difenoconazole in different organs of mice. BIOMEDITSINSKAIA KHIMIIA 2024; 70:41-51. [PMID: 38450680 DOI: 10.18097/pbmc20247001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Pesticides represent a serious problem for agricultural workers due to their neurotoxic effects. The aim of this study was to evaluate the ability of pharmacological oxidative phosphorylation uncouplers to reduce the effect of the difenoconazole fungicide on mitochondrial DNA (mtDNA) of various organs in mice. Injections of difenoconazole caused cognitive deficits in mice, and the protonophore 2,4-dinitrophenol (2,4-DNP) and Azur I (AzI), a demethylated metabolite of methylene blue (MB), prevented the deterioration of cognitive abilities in mice induced by difenoconazole. Difenoconazole increased the rate of reactive oxygen species (ROS) production, likely through inhibition of complex I of the mitochondrial respiratory chain. After intraperitoneal administration of difenoconazole lungs, testes and midbrain were most sensitive to the accumulation of mtDNA damage. In contrast, the cerebral cortex and hippocampus were not tolerant to the effects of difenoconazole. The protonophore 2,4-DNP reduced the rate of ROS formation and significantly reduced the amount of mtDNA damage caused by difenoconazole in the midbrain, and partially, in the lungs and testes. MB, an alternative electron carrier capable of bypassing inhibited complex I, had no effect on the effect of difenoconazole on mtDNA, while its metabolite AzI, a demethylated metabolite of MB, was able to protect the mtDNA of the midbrain and testes. Thus, mitochondria-targeted therapy is a promising approach to reduce pesticide toxicity for agricultural workers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - A P Gureev
- Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
8
|
Tarallo D, Martínez J, Leyva A, Mónaco A, Perroni C, Tassano M, Gambini JP, Cappetta M, Durán R, Moreno M, Quijano C. Mitofusin 1 silencing decreases the senescent associated secretory phenotype, promotes immune cell recruitment and delays melanoma tumor growth after chemotherapy. Sci Rep 2024; 14:909. [PMID: 38195762 PMCID: PMC10776601 DOI: 10.1038/s41598-024-51427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Cellular senescence is a therapy endpoint in melanoma, and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and mitochondrial energy metabolism supports resistance to therapy in melanoma. In a previous report we showed that senescence, induced by the DNA methylating agent temozolomide, increased the level of fusion proteins mitofusin 1 and 2 in melanoma, and silencing Mfn1 or Mfn2 expression reduced interleukin-6 secretion by senescent cells. Here we expanded these observations evaluating the secretome of senescent melanoma cells using shotgun proteomics, and explored the impact of silencing Mfn1 on the SASP. A significant increase in proteins reported to reduce the immune response towards the tumor was found in the media of senescent cells. The secretion of several of these immunomodulatory proteins was affected by Mfn1 silencing, among them was galectin-9. In agreement, tumors lacking mitofusin 1 responded better to treatment with the methylating agent dacarbazine, tumor size was reduced and a higher immune cell infiltration was detected in the tumor. Our results highlight mitochondrial dynamic proteins as potential pharmacological targets to modulate the SASP in the context of melanoma treatment.
Collapse
Affiliation(s)
- Doménica Tarallo
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Alejandro Leyva
- Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carolina Perroni
- Area Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marcos Tassano
- Area Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan Pablo Gambini
- Centro Uruguayo de Imagenología Molecular (CUDIM) and Centro de Medicina Nuclear (CMN), Hospital de Clínicas Dr. Manuel Quintela, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Cappetta
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rosario Durán
- Institut Pasteur de Montevideo and Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Celia Quijano
- Departamento de Bioquímica, Facultad de Medicina, and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
9
|
Darbinian N, Darbinyan A, Merabova N, Kassem M, Tatevosian G, Amini S, Goetzl L, Selzer ME. In utero ethanol exposure induces mitochondrial DNA damage and inhibits mtDNA repair in developing brain. Front Neurosci 2023; 17:1214958. [PMID: 37621718 PMCID: PMC10444992 DOI: 10.3389/fnins.2023.1214958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Mitochondrial dysfunction is postulated to be a central event in fetal alcohol spectrum disorders (FASD). People with the most severe form of FASD, fetal alcohol syndrome (FAS) are estimated to live only 34 years (95% confidence interval, 31 to 37 years), and adults who were born with any form of FASD often develop early aging. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage, hallmarks of aging, are postulated central events in FASD. Ethanol (EtOH) can cause mtDNA damage, consequent increased oxidative stress, and changes in the mtDNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1). Studies of molecular mechanisms are limited by the absence of suitable human models and non-invasive tools. Methods We compared human and rat EtOH-exposed fetal brain tissues and neuronal cultures, and fetal brain-derived exosomes (FB-Es) from maternal blood. Rat FASD was induced by administering a 6.7% alcohol liquid diet to pregnant dams. Human fetal (11-21 weeks) brain tissue was collected and characterized by maternal self-reported EtOH use. mtDNA was amplified by qPCR. OGG1 and Insulin-like growth factor 1 (IGF-1) mRNAs were assayed by qRT-PCR. Exosomal OGG1 was measured by ddPCR. Results Maternal EtOH exposure increased mtDNA damage in fetal brain tissue and FB-Es. The damaged mtDNA in FB-Es correlated highly with small eye diameter, an anatomical hallmark of FASD. OGG1-mediated mtDNA repair was inhibited in EtOH-exposed fetal brain tissues. IGF-1 rescued neurons from EtOH-mediated mtDNA damage and OGG1 inhibition. Conclusion The correlation between mtDNA damage and small eye size suggests that the amount of damaged mtDNA in FB-E may serve as a marker to predict which at risk fetuses will be born with FASD. Moreover, IGF-1 might reduce EtOH-caused mtDNA damage and neuronal apoptosis.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Medical College of Wisconsin-Prevea Health, Green Bay, WI, United States
| | - Myrna Kassem
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Gabriel Tatevosian
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Laura Goetzl
- Department of Obstetrics and Gynecology, University of Texas, Houston, TX, United States
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation (Shriners Hospitals Pediatric Research Center), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Dai CY, Ng CC, Hung GCC, Kirmes I, Hughes LA, Du Y, Brosnan CA, Ahier A, Hahn A, Haynes CM, Rackham O, Filipovska A, Zuryn S. ATFS-1 counteracts mitochondrial DNA damage by promoting repair over transcription. Nat Cell Biol 2023; 25:1111-1120. [PMID: 37460695 DOI: 10.1038/s41556-023-01192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome (mtDNA) requires separate enzymatic activities that can sterically compete1, suggesting a life-long trade-off between these two processes. Here in Caenorhabditis elegans, we find that the bZIP transcription factor ATFS-1/Atf5 (refs. 2,3) regulates this balance in favour of mtDNA repair by localizing to mitochondria and interfering with the assembly of the mitochondrial pre-initiation transcription complex between HMG-5/TFAM and RPOM-1/mtRNAP. ATFS-1-mediated transcriptional inhibition decreases age-dependent mtDNA molecular damage through the DNA glycosylase NTH-1/NTH1, as well as the helicase TWNK-1/TWNK, resulting in an enhancement in the functional longevity of cells and protection against decline in animal behaviour caused by targeted and severe mtDNA damage. Together, our findings reveal that ATFS-1 acts as a molecular focal point for the control of balance between genome expression and maintenance in the mitochondria.
Collapse
Affiliation(s)
- Chuan-Yang Dai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Chai Chee Ng
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Grace Ching Ching Hung
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Ina Kirmes
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Yunguang Du
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worchester, MA, USA
| | - Christopher A Brosnan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Arnaud Ahier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Anne Hahn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Cole M Haynes
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worchester, MA, USA
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Gureev AP, Silachev DN, Sadovnikova IS, Krutskikh EP, Chernyshova EV, Volodina DE, Samoylova NA, Potanina DV, Burakova IY, Smirnova YD, Popov VN, Plotnikov EY. The Ketogenic Diet but not Hydroxycitric Acid Keeps Brain Mitochondria Quality Control and mtDNA Integrity Under Focal Stroke. Mol Neurobiol 2023:10.1007/s12035-023-03325-8. [PMID: 37074549 DOI: 10.1007/s12035-023-03325-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/20/2023] [Indexed: 04/20/2023]
Abstract
Mitochondrial dysfunction in the ischemic brain is one of the hallmarks of stroke. Dietary interventions such as the ketogenic diet and hydroxycitric acid supplementation (a caloric restriction mimetic) may potentially protect neurons from mitochondrial damage induced by focal stroke in mice. We showed that in control mice, the ketogenic diet and the hydroxycitric acid did not impact significantly on the mtDNA integrity and expression of genes involved in the maintenance of mitochondrial quality control in the brain, liver, and kidney. The ketogenic diet changed the bacterial composition of the gut microbiome, which via the gut-brain axis may affect the increase in anxiety behavior and reduce mice mobility. The hydroxycitric acid causes mortality and suppresses mitochondrial biogenesis in the liver. Focal stroke modelling caused a significant decrease in the mtDNA copy number in both ipsilateral and contralateral brain cortex and increased the levels of mtDNA damage in the ipsilateral hemisphere. These alterations were accompanied by a decrease in the expression of some of the genes involved in maintaining mitochondrial quality control. The ketogenic diet consumption before stroke protects mtDNA in the ipsilateral cortex, probably via activation of the Nrf2 signaling. The hydroxycitric acid, on the contrary, increased stroke-induced injury. Thus, the ketogenic diet is the most preferred variant of dietetic intervention for stroke protection compared with the hydroxycitric acid supplementation. Our data confirm some reports about hydroxycitric acid toxicity, not only for the liver but also for the brain under stroke condition.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Denis N Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Ekaterina P Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Ekaterina V Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Daria E Volodina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Natalia A Samoylova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Daria V Potanina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Inna Yu Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Yuliya D Smirnova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036, Voronezh, Russia
| | - Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
12
|
Samoylova NA, Gureev AP, Popov VN. Methylene Blue Induces Antioxidant Defense and Reparation of Mitochondrial DNA in a Nrf2-Dependent Manner during Cisplatin-Induced Renal Toxicity. Int J Mol Sci 2023; 24:ijms24076118. [PMID: 37047089 PMCID: PMC10094522 DOI: 10.3390/ijms24076118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Cisplatin is a platinum-based cytostatic drug that is widely used for cancer treatment. Mitochondria and mtDNA are important targets for platinum-based cytostatics, which mediates its nephrotoxicity. It is important to develop therapeutic approaches to protect the kidneys from cisplatin during chemotherapy. We showed that the exposure of mitochondria to cisplatin increased the level of lipid peroxidation products in the in vitro experiment. Cisplatin caused strong damage to renal mtDNA, both in the in vivo and in vitro experiments. Cisplatin injections induced oxidative stress by depleting renal antioxidants at the transcriptome level but did not increase the rate of H2O2 production in isolated mitochondria. Methylene blue, on the contrary, induced mitochondrial H2O2 production. We supposed that methylene blue-induced H2O2 production led to activation of the Nrf2/ARE signaling pathway. The consequences of activation of this signaling pathway were manifested in an increase in the expression of some antioxidant genes, which likely caused a decrease in the amount of mtDNA damage. Methylene blue treatment induced an increase in the expression of genes that were involved in the base excision repair (BER) pathway: the main pathway for mtDNA reparation. It is known that the expression of these genes can also be regulated by the Nrf2/ARE signaling pathway. We can assume that the protective effect of methylene blue is related to the activation of Nrf2/ARE signaling pathways, which can activate the expression of genes related to antioxidant defense and mtDNA reparation. Thus, the protection of kidney mitochondria from cisplatin-induced damage using methylene blue can significantly expand its application in medicine.
Collapse
Affiliation(s)
- Natalia A Samoylova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| |
Collapse
|
13
|
Damage to Nuclear and Mitochondrial DNA in Different Organs in Streptozotocin-Induced Diabetes Models in BALB/c Mice. Bull Exp Biol Med 2023; 174:349-353. [PMID: 36723752 DOI: 10.1007/s10517-023-05717-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 02/02/2023]
Abstract
Male BALB/c mice with streptozotocin-induced diabetes mellitus were used to study nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) damage using comet DNA assay and real-time PCR, respectively. In animals receiving single injection of streptozotocin in a dose of 200 mg/kg, severe hyperglycemia was observed on days 10 and 21 of the experiment, while after 5-fold administration of streptozotocin in a dose of 40 mg/kg, it developed on days 14 and 28. DNA damage and the level of atypical DNA comets in the liver increased both on days 10 and 21 after single administration of streptozotocin, and on days 14 and 28 after repeated administrations. The level of atypical DNA comets on day 21 after a single administration of streptozotocin increased in the kidneys, but not in the brain, testes, and pancreas. Real-time PCR revealed mtDNA damage in the liver, kidney, and pancreatic cells of mice with streptozotocin-induced diabetes. Thus, these animal models were found to reproduce pathognomic signs of diabetes, hyperglycemia, and nDNA damage; mtDNA damage was also detected.
Collapse
|
14
|
Gureev AP, Khorolskaya VG, Sadovnikova IS, Shaforostova EA, Cherednichenko VR, Burakova IY, Plotnikov EY, Popov VN. Age-Related Decline in Nrf2/ARE Signaling Is Associated with the Mitochondrial DNA Damage and Cognitive Impairments. Int J Mol Sci 2022; 23:ijms232315197. [PMID: 36499517 PMCID: PMC9739464 DOI: 10.3390/ijms232315197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/08/2022] Open
Abstract
In this research, we compared the cognitive parameters of 2-, 7-, and 15-month-old mice, changes in mitochondrial DNA (mtDNA) integrity and expression of genes involved in the nuclear erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. We showed an age-related decrease in the Nfe2l2 expression in the cerebral cortex, not in the hippocampus. At the same time, we find an increase in the mtDNA copy number in the cerebral cortex, despite the lack of an increase in gene expression, which is involved in the mitochondrial biogenesis regulation. We suppose that increase in mtDNA content is associated with mitophagy downregulation. We supposed that mitophagy downregulation may be associated with an age-related increase in the mtDNA damage. In the hippocampus, we found a decrease in the Bdnf expression, which is involved in the pathways, which play an essential role in regulating long-term memory formation. We showed a deficit of working and reference memory in 15-month-old-mice in the water Morris maze, and a decrease in the exploratory behavior in the open field test. Cognitive impairments in 15-month-old mice correlated with a decrease in Bdnf expression in the hippocampus, Nfe2l2 expression, and an increase in the number of mtDNA damage in the cerebral cortex. Thus, these signaling pathways may be perspective targets for pharmacological intervention to maintain mitochondrial quality control, neuronal plasticity, and prevent the development of age-related cognitive impairment.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Victoria G. Khorolskaya
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina A. Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vadim R. Cherednichenko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Inna Y. Burakova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
15
|
Shaforostova EA, Gureev AP, Volodina DE, Popov VN. Neuroprotective effect of mildronate and L-carnitine on the cognitive parameters of aged mice and mice with LPS-induced inflammation. Metab Brain Dis 2022; 37:2497-2510. [PMID: 35881298 DOI: 10.1007/s11011-022-01047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/03/2022] [Indexed: 11/27/2022]
Abstract
Mildronate (MD) is a cardioprotective drug used for the treatment of cardiovascular diseases by switching metabolism from the fatty acids to glucose oxidation. This effect is achieved via inhibition of synthesis of L-carnitine (L-car), a common supplement, which is used for improving of fatty acid metabolism. Both MD and L-car have similar neuroprotective effect. Our goal was to investigate the effect of two drugs on the cognitive parameters of mice under different conditions (aging and lipopolysaccharide (LPS)-induced inflammation). We showed that L-car partly improved the memory and decreased the extent of mtDNA damage in the hippocampus of mice with the LPS-induced inflammation. L-car induced mitochondrial biogenesis and mitophagy in the Nrf2-dependent manner. Both MD and L-car upregulated expression of genes involved in the mitochondrial quality control. In 15-month-old mice, MD improved long-term and short-term memory, reduced the extent of mtDNA damage, and decreased the concentration of diene conjugates in the hippocampus in the Nrf2-independent manner. L-car as a Nrf2 activator had a better neuroprotective effect by normalizing mitochondrial quality control in the reversible cognitive impairment caused by the LPS-induced inflammation, while MD had a better neuroprotective effect in the irreversible cognitive impairment in aged mice, possibly due to a deeper restructuring of metabolism and reduction of oxidative stress.
Collapse
Affiliation(s)
- Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Daria E Volodina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technology, Voronezh, Russia
| |
Collapse
|
16
|
Gureev AP, Andrianova NV, Pevzner IB, Zorova LD, Chernyshova EV, Sadovnikova IS, Chistyakov DV, Popkov VA, Semenovich DS, Babenko VA, Silachev DN, Zorov DB, Plotnikov EY, Popov VN. Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats. FEBS J 2022; 289:5697-5713. [DOI: 10.1111/febs.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
- Laboratory of Metagenomics and Food Biotechnology Voronezh State University of Engineering Technology Voronezh Russia
| | - Nadezda V. Andrianova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Irina B. Pevzner
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Ljubava D. Zorova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | | | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
| | - Dmitry V. Chistyakov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Vasily A. Popkov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Dmitry S. Semenovich
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Valentina A. Babenko
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Denis N. Silachev
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Dmitry B. Zorov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
- Laboratory of Metagenomics and Food Biotechnology Voronezh State University of Engineering Technology Voronezh Russia
| |
Collapse
|
17
|
Guerbette T, Boudry G, Lan A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022; 63:101546. [PMID: 35817394 PMCID: PMC9305624 DOI: 10.1016/j.molmet.2022.101546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. Scope of review This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. Major conclusions HFD consumption provokes a metabolic shift toward fatty acid β-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid β-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| | - Annaïg Lan
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
18
|
Romanova N, Schmitz J, Strakeljahn M, Grünberger A, Bahnemann J, Noll T. Single-Cell Analysis of CHO Cells Reveals Clonal Heterogeneity in Hyperosmolality-Induced Stress Response. Cells 2022; 11:1763. [PMID: 35681457 PMCID: PMC9179406 DOI: 10.3390/cells11111763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperosmolality can occur during industrial fed-batch cultivation processes of Chinese hamster ovary (CHO) cells as highly concentrated feed and base solutions are added to replenish nutrients and regulate pH values. Some effects of hyperosmolality, such as increased cell size and growth inhibition, have been elucidated by previous research, but the impact of hyperosmolality and the specific effects of the added osmotic-active reagents have rarely been disentangled. In this study, CHO cells were exposed to four osmotic conditions between 300 mOsm/kg (physiologic condition) and 530 mOsm/kg (extreme hyperosmolality) caused by the addition of either high-glucose-supplemented industrial feed or mannitol as an osmotic control. We present novel single-cell cultivation data revealing heterogeneity in mass gain and cell division in response to these treatments. Exposure to extreme mannitol-induced hyperosmolality and to high-glucose-oversupplemented feed causes cell cycle termination, mtDNA damage, and mitochondrial membrane depolarization, which hints at the onset of premature stress-induced senescence. Thus, this study shows that both mannitol-induced hyperosmolality (530 mOsm/kg) and glucose overfeeding induce severe negative effects on cell growth and mitochondrial activity; therefore, they need to be considered during process development for commercial production.
Collapse
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Marie Strakeljahn
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany;
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (M.S.); (T.N.)
| |
Collapse
|
19
|
Ding H, Jambunathan K, Jiang G, Margolis DM, Leng I, Ihnat M, Ma JX, Mirsalis J, Zhang Y. 3D Spheroids of Human Primary Urine-Derived Stem Cells in the Assessment of Drug-Induced Mitochondrial Toxicity. Pharmaceutics 2022; 14:1042. [PMID: 35631624 PMCID: PMC9145543 DOI: 10.3390/pharmaceutics14051042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial toxicity (Mito-Tox) risk has increased due to the administration of several classes of drugs, particularly some life-long antiretroviral drugs for HIV+ individuals. However, no suitable in vitro assays are available to test long-term Mito-Tox (≥4 weeks). The goal of this study is to develop a 3D spheroid system of human primary urine-derived stem cells (USC) for the prediction of drug-induced delayed Mito-Tox. The cytotoxicity and Mito-Tox were assessed in 3D USC spheroids 4 weeks after treatment with antiretroviral drugs: zalcitabine (ddC; 0.1, 1 and 10 µM), tenofovir (TFV; 3, 30 and 300 µM) or Raltegravir (RAL; 2, 20 and 200 µM). Rotenone (RTNN, 10 µM) and 0.1% DMSO served as positive and negative controls. Despite only mild cytotoxicity, ddC significantly inhibited the expression of oxidative phosphorylation enzyme Complexes I, III, and IV; and RAL transiently reduced the level of Complex IV. A significant increase in caspase 3 and ROS/RNS level but a decrease in total ATP were observed in USC treated with ddC, TFV, RAL, and RTNN. Levels of mtDNA content and mitochondrial mass were decreased in ddC but minimally or not in TFV- and RAL-treated spheroids. Thus, 3D USC spheroid using antiretroviral drugs as a model offers an alternative platform to assess drug-induced late Mito-Tox.
Collapse
Affiliation(s)
- Huifen Ding
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Kalyani Jambunathan
- SRI Biosciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA; (K.J.); (J.M.)
| | - Guochun Jiang
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (G.J.); (D.M.M.)
| | - David M. Margolis
- University of North Carolina HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (G.J.); (D.M.M.)
| | - Iris Leng
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Michael Ihnat
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, USA;
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27101, USA;
| | - Jon Mirsalis
- SRI Biosciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA; (K.J.); (J.M.)
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| |
Collapse
|
20
|
Alimova AA, Sitnikov VV, Pogorelov DI, Boyko ON, Vitkalova IY, Gureev AP, Popov VN. High Doses of Pesticides Induce mtDNA Damage in Intact Mitochondria of Potato In Vitro and Do Not Impact on mtDNA Integrity of Mitochondria of Shoots and Tubers under In Vivo Exposure. Int J Mol Sci 2022; 23:2970. [PMID: 35328391 PMCID: PMC8955856 DOI: 10.3390/ijms23062970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that pesticides are toxic for mitochondria of animals. The effect of pesticides on plant mitochondria has not been widely studied. The goal of this research is to study the impact of metribuzin and imidacloprid on the amount of damage in the mtDNA of potato (Solanum tuberosum L.) in various conditions. We developed a set of primers to estimate mtDNA damage for the fragments in three chromosomes of potato mitogenome. We showed that both metribuzin and imidacloprid considerably damage mtDNA in vitro. Imidacloprid reduces the rate of seed germination, but does not impact the rate of the growth and number of mtDNA damage in the potato shoots. Field experiments show that pesticide exposure does not induce change in aconitate hydratase activity, and can cause a decrease in the rate of H2O2 production. We can assume that the mechanism of pesticide-induced mtDNA damage in vitro is not associated with H2O2 production, and pesticides as electrophilic substances directly interact with mtDNA. The effect of pesticides on the integrity of mtDNA in green parts of plants and in crop tubers is insignificant. In general, plant mtDNA is resistant to pesticide exposure in vivo, probably due to the presence of non-coupled respiratory systems in plant mitochondria.
Collapse
Affiliation(s)
- Alina A. Alimova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Vadim V. Sitnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Daniil I. Pogorelov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Olga N. Boyko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
| | - Inna Y. Vitkalova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (A.A.A.); (V.V.S.); (D.I.P.); (O.N.B.); (I.Y.V.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
21
|
Effect of l-carnitine and mildronate on the mitochondrial metabolism of heart and bacterial composition of the gut microbiome in ageing mice. Life Sci 2022; 293:120333. [PMID: 35051422 DOI: 10.1016/j.lfs.2022.120333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Abstract
Ageing is the most significant risk factor for cardiovascular diseases. l-Carnitine has a potent cardioprotective effect and its synthesis decreases during ageing. At the same time, there are pharmaceuticals, such as mildronate which, on the contrary, are aimed at reducing the concentration of l-carnitine in the heart and lead to slows down the oxidation of fatty acids in mitochondria. Despite this, both l-carnitine and mildronate are positioned as cardio protectors. We showed that l-carnitine supplementation to the diet of 15-month-old mice increased expression of the PGC-1α gene, which is responsible for the regulation of fatty acid oxidation, and the Nrf2 gene, which is responsible for protecting mitochondria by regulating the expression of antioxidants and mitophagy, in the heart. Mildronate activated the expression of genes that regulate glucose metabolism. Probably, this metabolic shift may protect the mitochondria of the heart from the accumulation of acyl-carnitine, which occurs during the oxidation of fatty acids under oxygen deficiency. Both pharmaceuticals impacted the gut microbiome bacterial composition. l-Carnitine increased the level of Lachnoanaerobaculum and [Eubacterium] hallii group, mildronate increased the level of Bifidobacterium, Rikinella, Christensenellaceae. Considered, that these bacteria for protection the organism from various pathogens and chronic inflammation. Thus, we suggested that the positive effects of both drugs on the mitochondria metabolism and gut microbiome bacterial composition may contribute to the protection of the heart during ageing.
Collapse
|
22
|
Gureev AP, Mashkina OS, Shabanova EA, Vitkalova IY, Sitnikov VV, Popov VN. Study of the amount of oxidative damage to mitochondrial and chloroplast DNA in clones of white poplar (Populus alba L.) during long-term in vitro cultivation for 26 years. PLANT MOLECULAR BIOLOGY 2021; 106:479-489. [PMID: 33970418 DOI: 10.1007/s11103-021-01157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018.
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia, 394036.
| | - Olga S Mashkina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018
- Breeding and Biotechnology, All-Russian Research Institute of Forest Genetics, Voronezh, Russia, 394087
| | - Ekaterina A Shabanova
- Breeding and Biotechnology, All-Russian Research Institute of Forest Genetics, Voronezh, Russia, 394087
| | - Inna Yu Vitkalova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia, 394036
| | - Vadim V Sitnikov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018
- Breeding and Biotechnology, All-Russian Research Institute of Forest Genetics, Voronezh, Russia, 394087
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia, 394018
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, Voronezh, Russia, 394036
| |
Collapse
|
23
|
Gureev AP, Sadovnikova IS, Shaforostova EA, Starkov AA, Popov VN. Mildronate protects heart mtDNA from oxidative stress toxicity induced by exhaustive physical exercise. Arch Biochem Biophys 2021; 705:108892. [PMID: 33930377 DOI: 10.1016/j.abb.2021.108892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
Exhaustive physical exercises are potentially dangerous for human's physical health and may lead to chronic heart disease. Therefore, individuals involved in such activity require effective and safe cardioprotectors. The goal of this research was to study Mildronate (a cardioprotective drug) effect on the level of oxidative stress markers in hearts of mice under conditions of exhausting physical exercise, such as forced swimming for 1 h per day for 7 days. Forced swimming lead to mtDNA damage accumulation, increase in diene conjugates level and loss of reduced glutathione despite an increase in antioxidant genes expression and activation of mitochondrial biogenesis. Mildronate treatment reduced oxidative stress, probably due to the inhibition of fatty acids transport to mitochondria and an increase in the intensity of glucose oxidation, which in part confirms by increase in glucose transporter expression. Thus, we can assume that Mildronate is an effective cardioprotector in exhaustive physical exercises.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia.
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
24
|
Sadovnikova IS, Gureev AP, Ignatyeva DA, Gryaznova MV, Chernyshova EV, Krutskikh EP, Novikova AG, Popov VN. Nrf2/ARE Activators Improve Memory in Aged Mice via Maintaining of Mitochondrial Quality Control of Brain and the Modulation of Gut Microbiome. Pharmaceuticals (Basel) 2021; 14:607. [PMID: 34201885 PMCID: PMC8308546 DOI: 10.3390/ph14070607] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Aging is one of the most serious factors for central nervous dysfunctions, which lead to cognitive impairment. New highly effective drugs are required to slow the development of cognitive dysfunction. This research studied the effect of dimethyl fumarate (DMF), methylene blue (MB), and resveratrol (RSV) on the cognitive functions of 15-month-old mice and their relationship to the maintenance of mitochondrial quality control in the brain and the bacterial composition of the gut microbiome. We have shown that studied compounds enhance mitochondrial biogenesis, mitophagy, and antioxidant defense in the hippocampus of 15-month-old mice via Nrf2/ARE pathway activation, which reduces the degree of oxidative damage to mtDNA. It is manifested in the improvement of short-term and long-term memory. We have also shown that memory improvement correlates with levels of Roseburia, Oscillibacter, ChristensenellaceaeR-7, Negativibacillus, and Faecalibaculum genera of bacteria. At the same time, long-term treatment by MB induced a decrease in gut microbiome diversity, but the other markers of dysbiosis were not observed. Thus, Nrf2/ARE activators have an impact on mitochondrial quality control and are associated with a positive change in the composition of the gut microbiome, which together lead to an improvement in memory in aged mice.
Collapse
Affiliation(s)
- Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Daria A. Ignatyeva
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Maria V. Gryaznova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| | - Ekaterina V. Chernyshova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Ekaterina P. Krutskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Anastasia G. Novikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia; (I.S.S.); (D.A.I.); (M.V.G.); (E.V.C.); (E.P.K.); (A.G.N.); (V.N.P.)
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| |
Collapse
|
25
|
Ferezin CDC, Basei FL, Melo‐Hanchuk TD, de Oliveira AL, Peres de Oliveira A, Mori MP, de Souza‐Pinto NC, Kobarg J. NEK5 interacts with LonP1 and its kinase activity is essential for the regulation of mitochondrial functions and mtDNA maintenance. FEBS Open Bio 2021; 11:546-563. [PMID: 33547867 PMCID: PMC7931231 DOI: 10.1002/2211-5463.13108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Little is known about Nima-related kinase (NEKs), a widely conserved family of kinases that have key roles in cell-cycle progression. Nevertheless, it is now clear that multiple NEK family members act in networks, not only to regulate specific events of mitosis, but also to regulate metabolic events independently of the cell cycle. NEK5 was shown to act in centrosome disjunction, caspase-3 regulation, myogenesis, and mitochondrial respiration. Here, we demonstrate that NEK5 interacts with LonP1, an AAA+ mitochondrial protease implicated in protein quality control and mtDNA remodeling, within the mitochondria and it might be involved in the LonP1-TFAM signaling module. Moreover, we demonstrate that NEK5 kinase activity is required for maintaining mitochondrial mass and functionality and mtDNA integrity after oxidative damage. Taken together, these results show a new role of NEK5 in the regulation of mitochondrial homeostasis and mtDNA maintenance, possibly due to its interaction with key mitochondrial proteins, such as LonP1.
Collapse
Affiliation(s)
- Camila de Castro Ferezin
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | - Fernanda Luisa Basei
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | | | - Ana Luisa de Oliveira
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| | | | - Mateus P. Mori
- Departamento de BioquímicaInstituto de QuímicaUniversidade de São PauloBrazil
| | | | - Jörg Kobarg
- Faculdade de Ciências FarmacêuticasUniversidade Estadual de CampinasBrazil
- Instituto de BiologiaDepartamento de Bioquímica e Biologia TecidualUniversidade Estadual de CampinasBrazil
| |
Collapse
|
26
|
Wang X, Li M, Zhang X, Li Y, He G, Dinnyés A, Sun Q, Xu W. CYP11A1 Upregulation Leads to Trophoblast Oxidative Stress and Fetal Neurodevelopmental Toxicity That can be Rescued by Vitamin D. Front Mol Biosci 2021; 7:608447. [PMID: 33659272 PMCID: PMC7917044 DOI: 10.3389/fmolb.2020.608447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022] Open
Abstract
During normal pregnancy, the placental trophoblast secretes a variety of steroid hormones and participates in the regulation of maternal physiological functions and fetal development. The CYP11A1 gene encodes the cholesterol side-chain cleavage enzyme P450scc, which catalyzes the production of pregnenolone from cholesterol, which is the first step in the synthesis of all steroid hormones. Under the influence of genetic susceptibility and certain environmental factors, such as drugs and toxins, the expression of CYP11A1 can be upregulated, thereby affecting steroid metabolism and physiological functions in trophoblast cells, as well as fetal development. Here, we demonstrate that upregulation of CYP11A1 in the BeWo cell line triggers excessive mitochondrial oxidative stress, leads to mitochondrial damage and interleukin-6 release, and contributes to the inhibition of proliferation and DNA damage in neuronal stem cells (NSCs). Furthermore, oxidative stress and inflammation can be ameliorated by vitamin D3 in a dose-dependent manner, thereby facilitating the rescue of NSC impairment. Our findings reveal the underlying mechanism in which upregulation of CYP11A1 is detrimental to the physiological function of trophoblasts and demonstrate the beneficial effects of vitamin D supplementation in preventing placental and neurodevelopmental damage associated with CYP11A1 upregulation during pregnancy.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Mengxue Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xueguang Zhang
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yaqian Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, GödöllőChengdu, Hungary
| | - Guolin He
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, GödöllőChengdu, Hungary
| | - Andras Dinnyés
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,BioTalentum Ltd.,, Gödöllő, Hungary
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Snyder RJ, Kleeberger SR. Role of Mitochondrial DNA in Inflammatory Airway Diseases. Compr Physiol 2021; 11:1485-1499. [PMID: 33577124 DOI: 10.1002/cphy.c200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mitochondrial genome is a small, circular, and highly conserved piece of DNA which encodes only 13 protein subunits yet is vital for electron transport in the mitochondrion and, therefore, vital for the existence of multicellular life on Earth. Despite this importance, mitochondrial DNA (mtDNA) is located in one of the least-protected areas of the cell, exposing it to high concentrations of intracellular reactive oxygen species (ROS) and threat from exogenous substances and pathogens. Until recently, the quality control mechanisms which ensured the stability of the nuclear genome were thought to be minimal or nonexistent in the mitochondria, and the thousands of redundant copies of mtDNA in each cell were believed to be the primary mechanism of protecting these genes. However, a vast network of mechanisms has been discovered that repair mtDNA lesions, replace and recycle mitochondrial chromosomes, and conduct alternate RNA processing for previously undescribed mitochondrial proteins. New mtDNA/RNA-dependent signaling pathways reveal a mostly undiscovered biochemical landscape in which the mitochondria interface with their host cells/organisms. As the myriad ways in which the function of the mitochondrial genome can affect human health have become increasingly apparent, the use of mitogenomic biomarkers (such as copy number and heteroplasmy) as toxicological endpoints has become more widely accepted. In this article, we examine several pathologies of human airway epithelium, including particle exposures, inflammatory diseases, and hyperoxia, and discuss the role of mitochondrial genotoxicity in the pathogenesis and/or exacerbation of these conditions. © 2021 American Physiological Society. Compr Physiol 11:1485-1499, 2021.
Collapse
Affiliation(s)
- Ryan J Snyder
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| | - Steven R Kleeberger
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| |
Collapse
|
28
|
Ray B, Bhat A, Mahalakshmi AM, Tuladhar S, Bishir M, Mohan SK, Veeraraghavan VP, Chandra R, Essa MM, Chidambaram SB, Sakharkar MK. Mitochondrial and Organellar Crosstalk in Parkinson's Disease. ASN Neuro 2021; 13:17590914211028364. [PMID: 34304614 PMCID: PMC8317254 DOI: 10.1177/17590914211028364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is a well-established pathological event in Parkinson's disease (PD). Proteins misfolding and its impaired cellular clearance due to altered autophagy/mitophagy/pexophagy contribute to PD progression. It has been shown that mitochondria have contact sites with endoplasmic reticulum (ER), peroxisomes and lysosomes that are involved in regulating various physiological processes. In pathological conditions, the crosstalk at the contact sites initiates alterations in intracellular vesicular transport, calcium homeostasis and causes activation of proteases, protein misfolding and impairment of autophagy. Apart from the well-reported molecular changes like mitochondrial dysfunction, impaired autophagy/mitophagy and oxidative stress in PD, here we have summarized the recent scientific reports to provide the mechanistic insights on the altered communications between ER, peroxisomes, and lysosomes at mitochondrial contact sites. Furthermore, the manuscript elaborates on the contributions of mitochondrial contact sites and organelles dysfunction to the pathogenesis of PD and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai – 600123, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
- Visiting Professor, Biomedical Sciences department, University of Pacific, Sacramento, CA, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK- S7N 5A2, Canada
| |
Collapse
|
29
|
Syromyatnikov MY, Gureev AP, Starkova NN, Savinkova OV, Starkov AA, Lopatin AV, Popov VN. Method for detection of mtDNA damages for evaluating of pesticides toxicity for bumblebees (Bombus terrestris L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104675. [PMID: 32828362 DOI: 10.1016/j.pestbp.2020.104675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Bumblebees are important for crop pollination. Currently, the number of pollinators is decreasing worldwide, which is attributed mostly to the widespread use of pesticides. The aim of this work was to develop a method for assessing the genotoxicity of pesticides for the Bombus terrestris L. bumblebee using long-range PCR of mitochondrial DNA fragments. We have developed a panel of primers and assessed the genotoxicity of the following pesticides: imidacloprid, rotenone, deltamethrin, difenocanozole, malathion, metribuzin, penconazole, esfenvalerate, and dithianon. All pesticides (except imidacloprid) inhibited mitochondrial respiration fueled by pyruvate + malate; the strongest effect was observed for rotenone and difenocanozole. Three pesticides (dithianon, rotenone, and difenocanozole) affected the rate of H2O2 production. To study the pesticide-induced DNA damage in vitro and in vivo, we used three different mtDNA. The mtDNA damage was observed for all studied pesticides. Most of the studied pesticides caused significant damage to mtDNA in vitro and in vivo when ingested. Our results indicate that all tested pesticides, including herbicides and fungicides, can have a toxic effect on pollinators. However, the extent of pesticide-induced mtDNA damage in the flight muscles was significantly less upon the contact compared to the oral administration.
Collapse
Affiliation(s)
- Mikhail Y Syromyatnikov
- Voronezh State University, Voronezh, University sq. 1, Voronezh 394018, Russia; Voronezh State University of Engineering Technologies, Revolution Av. 19, Voronezh 394036, Russia.
| | - Artem P Gureev
- Voronezh State University, Voronezh, University sq. 1, Voronezh 394018, Russia
| | - Natalia N Starkova
- Maritime College, State University of New York, 6 Pennyfield Avenue Throggs Neck, NY 10465, USA
| | - Olga V Savinkova
- Voronezh State University, Voronezh, University sq. 1, Voronezh 394018, Russia
| | - Anatoly A Starkov
- Weill Medical College Cornell University, 525 E 68th street, A501, New York, NY 10065, USA
| | - Alexey V Lopatin
- Voronezh State University, Voronezh, University sq. 1, Voronezh 394018, Russia
| | - Vasily N Popov
- Voronezh State University, Voronezh, University sq. 1, Voronezh 394018, Russia; Voronezh State University of Engineering Technologies, Revolution Av. 19, Voronezh 394036, Russia
| |
Collapse
|
30
|
Darbinian N, Darbinyan A, Merabova N, Selzer ME, Amini S. HIV-1 and HIV-1-Tat Induce Mitochondrial DNA Damage in Human Neurons. JOURNAL OF HIV AND AIDS 2020; 6:176. [PMID: 33506104 PMCID: PMC7837619 DOI: 10.16966/2380-5536.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mitochondrial dysregulation is a key event in HIV-1 infection. Recent studies have suggested that age-related neurodegenerative disorders are associated with increased mitochondrial DNA (mtDNA) damage. As accelerated ageing was found in HIV-1 patients, we hypothesized that HIV-1 infection or HIV-1 proteins can lead to mtDNA damage. Unrepaired mtDNA impairs mitochondrial function, which can lead to oxidative stress and cell death. Investigations of mechanisms of mtDNA damage are limited by the lack of available human models. METHODS We compared mtDNA or nDNA (nuclear DNA) damage in human cortical neurons and PBMC cells. Primary neuronal cultures were incubated with conditioned media from HIV-1 infected PBMC, or HIV-1 viral proteins Tat or Vpr. Total genomic DNA (nuclear and mtDNA) was isolated using the QIAamp Kit. Nuclear and mtDNA were amplified using the long q-PCR/Gene Amp XL Kit. Real-Time RT-PCR using mitochondrial energy metabolism array was performed to assess mitochondrial energy metabolism markers. Superoxide dismutase (SOD) activity in neuronal cells was measured by the OxiSelect SOD Activity Assay. Reactive oxygen species (ROS) were determined by the confocal microscopy. ATP levels were analyzed using ATP determination biochemical assay. Mitochondrial, cytoplasmic and nuclear proteins were studied by quantitative western-blot assay. RESULTS We show that both treatment of neuronal cells with HIV-1 conditioned media, or infection of PBMC with HIV-1 increase mtDNA damage in cells. mtDNA damage was also seen in neuronal cells, incubated with HIV-1 proteins, Tat and Vpr. Next, we confirmed that mtDNA damage was also increased in neuronal cells transfected by Tat expressing plasmids. We showed that mtDNA was not damaged in neuronal cells following treatment with heat inactivated HIV-1 or Tat protein. Further, we demonstrated that HIV-1 or Tat caused more mtDNA damage compared to nuclear DNA damage in neuronal cells. Finally, we showed that Tat dysregulates RNA expression of several genes regulating mitochondrial energy metabolism, suggesting involvement of Tat in mitochondrial bioenergetics in human neurons. Finally, our hypothesis was confirmed by qWestern analysis of mitochondrial and apoptotic proteins demonstrating the accumulation of apoptotic Bax and Bad proteins in mitochondrial fraction of Tat-treated neuronal cells, suggesting toxic effects of Tat on mitochondrial survival. CONCLUSION We showed an increase of mtDNA damage in primary neurons, treated with HIV-1 proteins and in PBMC, infected with HIV-1. Increased mtDNA damage can lead to neurodegeneration, and cause neuronal apoptosis. Our system presents a suitable model to study mtDNA changes during HIV-1 infection.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, USA
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael E Selzer
- Center for Neural Repair and Rehabilitation, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|
31
|
Kolbasina NA, Gureev AP, Serzhantova OV, Mikhailov AA, Moshurov IP, Starkov AA, Popov VN. Lung cancer increases H 2O 2 concentration in the exhaled breath condensate, extent of mtDNA damage, and mtDNA copy number in buccal mucosa. Heliyon 2020; 6:e04303. [PMID: 32637695 PMCID: PMC7327746 DOI: 10.1016/j.heliyon.2020.e04303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/14/2019] [Accepted: 06/22/2020] [Indexed: 01/29/2023] Open
Abstract
We have shown that the H2O2 concentration in exhaled breath condensate (EBC) in lung cancer patients increases significantly compared to the EBC of healthy people and revealed the correlation between the H2O2 level in the EBC and amount of mtDNA damage in buccal mucosa cells. The H2O2 hyper-production may trigger mitochondrial biogenesis, thereby resulting in an increase in mtDNA copy number. However, we did not observe a significant difference in the studied parameters between smokers and non-smokers. Overall, our data suggest that H2O2 concentration in the EBC, the extent of mtDNA damage, and mtDNA copy number in buccal mucosa could be potential as an early diagnostic marker of lung cancer.
Collapse
Affiliation(s)
- Natalya A. Kolbasina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Olga V. Serzhantova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh Regional Clinical Oncological Dispensary, Voronezh, Russia
| | - Andrey A. Mikhailov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh Regional Clinical Oncological Dispensary, Voronezh, Russia
| | - Ivan P. Moshurov
- Voronezh Regional Clinical Oncological Dispensary, Voronezh, Russia
| | - Anatoly A. Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
32
|
Gureev AP, Shaforostova EA, Vitkalova IY, Sadovnikova IS, Kalinina YI, Cherednichenko VR, Reznikova KA, Valuyskikh VV, Popov VN. Long-term mildronate treatment increased Proteobacteria level in gut microbiome, and caused behavioral deviations and transcriptome change in liver, heart and brain of healthy mice. Toxicol Appl Pharmacol 2020; 398:115031. [PMID: 32389661 DOI: 10.1016/j.taap.2020.115031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Mildronate is a cardiac and neuroprotective drug that is widely used in some countries. By inhibiting carnitine biosynthesis, mildronate impairs the fatty acids transport into mitochondria, thereby decreasing the β-oxidation intensity. Since 2016, it has been prohibited by the World Anti-Doping Agency (WADA). However, the information on its safety and its influence on the athletes' health is scarce. There are no published studies on whether mildronate-induced long-term metabolism "rearrangement" may cause negative effects on high-metabolic-rate organs and on the whole organism. Here, we demonstrate that long-term mildronate treatment of healthy mice induced global metabolism change at the transcriptome level in liver, heart, and brain. Mildronate treatment also induced some behavioral changes such as anxiety-related behavior and diminished explorative behavior. We also found that mildronate induced a dysbiosis, as manifested by an increase in Proteobacteria level in gut microbiome. At the same time, the absence of a statistically significant increase in mouse strength and endurance procedures suggests that mildronate effect on productivity is negligible. The sum of our data suggests that long-term treatment of healthy mice with mildronate induces dysbiosis and behavioral deviations despite the effectiveness of mildronate for cardiac and neurological diseases. Thus, we suggest that long-term mildronate treatment is undesirable or at the very least should be accompanied by prebiotics treatments, but this issue should be studied further.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia.
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Inna Yu Vitkalova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| | - Irina S Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Yulia I Kalinina
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vadim R Cherednichenko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Karina A Reznikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Valeria V Valuyskikh
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
33
|
Gonzalez-Hunt CP, Sanders LH. DNA damage and repair in Parkinson's disease: Recent advances and new opportunities. J Neurosci Res 2020; 99:180-189. [PMID: 32048327 DOI: 10.1002/jnr.24592] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is the most common movement neurodegenerative disorder. Although our understanding of the underlying mechanisms of pathogenesis in PD has greatly expanded, this knowledge thus far has failed to translate into disease-modifying therapies. Therefore, it is of the utmost urgency to interrogate further the multifactorial etiology of PD. DNA repair defects cause many neurodegenerative diseases. An exciting new PD research avenue is the role that DNA damage and repair may play in neuronal death. The goal of this mini-review was to discuss the evidence for the types of DNA damage that accumulates in PD, which has provided clues for which DNA repair pathways, such as DNA double-strand break repair, are dysfunctional. We further highlight compelling data for activation of the DNA damage response in familial and idiopathic PD. The significance of DNA damage and repair is emerging in the PD field and linking these insights to PD pathogenesis may provide new insights into PD pathophysiology and consequently lead to new therapies.
Collapse
Affiliation(s)
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
34
|
Khorolskaya VG, Gureev AP, Shaforostova EA, Laver DA, Popov VN. The Fenofibrate Effect on Genotoxicity in Brain and Liver and on the Expression of Genes Regulating Fatty Acids Metabolism of Mice. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2020. [DOI: 10.1134/s1990750820010084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Khorolskaya VG, Gureev AP, Shaforostova EA, Laver DA, Popov VN. [The fenofibrate effect on genotoxicity in brain and liver and on the expression of genes regulating fatty acids metabolism of mice]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:388-397. [PMID: 31666411 DOI: 10.18097/pbmc20196505388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fibrates are well-known agonists of the PPAR family (peroxisome proliferator-activated receptors). This class of drugs is used for the treatment of dyslipidemia and atherosclerosis. Fenofibrate is one of the members of this class of synthetic PPARα receptor ligands. The oral administration of 0.3% fenofibrate caused a decrease in strength due to loss of body weight in laboratory animals when improving behavioural features. Analysis of the mitochondrial DNA of liver cells showed a genotoxic effect of fenofibrate, due to accumulation of reactive oxygen species, which could be attributed to activation of peroxisomal β-oxidation processes, as well as to the lack of increase in the expression of genes encoding antioxidant defense proteins. Treatment with fenofibrate did not cause brain mtDNA damage. It has been shown that fenofibrate induced mitochondrial β-oxidation in the brain, as indicated by the increased expression of the Acadm and Cpt1a and Ppargc1a and Ppara. The study found no effect of fenofibrate on the increase of mitochondrial biogenesis in brain and liver cells. Thus, we can conclude that fenofibrate significantly affects lipid metabolism in the liver and brain, but in the liver it is associated with an increase of oxidative stress, resulting in mtDNA oxidative damage. However, fenofibrate-induced increase in the expression of Ppargc1a is not associated with an increase of mitochondrial biogenesis. This is consistent with the recent suggestion that PGC-1α might not be a master regulator of mitochondrial biogenesis.
Collapse
Affiliation(s)
| | - A P Gureev
- Voronezh State University, Voronezh, Russia
| | | | - D A Laver
- Voronezh State University, Voronezh, Russia
| | - V N Popov
- Voronezh State University, Voronezh, Russia; Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
36
|
Han D, Schomacher L, Schüle KM, Mallick M, Musheev MU, Karaulanov E, Krebs L, von Seggern A, Niehrs C. NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress. eLife 2019; 8:49044. [PMID: 31566562 PMCID: PMC6768664 DOI: 10.7554/elife.49044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Base excision repair (BER) functions not only in the maintenance of genomic integrity but also in active DNA demethylation and epigenetic gene regulation. This dual role raises the question if phenotypic abnormalities resulting from deficiency of BER factors are due to DNA damage or impaired DNA demethylation. Here we investigate the bifunctional DNA glycosylases/lyases NEIL1 and NEIL2, which act in repair of oxidative lesions and in epigenetic demethylation. Neil-deficiency in Xenopus embryos and differentiating mouse embryonic stem cells (mESCs) leads to a surprisingly restricted defect in cranial neural crest cell (cNCC) development. Neil-deficiency elicits an oxidative stress-induced TP53-dependent DNA damage response, which impairs early cNCC specification. Epistasis experiments with Tdg-deficient mESCs show no involvement of epigenetic DNA demethylation. Instead, Neil-deficiency results in oxidative damage specific to mitochondrial DNA, which triggers a TP53-mediated intrinsic apoptosis. Thus, NEIL1 and NEIL2 DNA glycosylases protect mitochondrial DNA against oxidative damage during neural crest differentiation. The face of animals with a backbone is formed in great part by a group of cells called cranial neural crest cells. When too few of these cells are made, the skull and the face can become deformed. For example, the jaw- or cheekbones can be underdeveloped or there may be defects in the eyes or ears. These types of abnormalities are among the most common birth defects known in humans. NEIL1 and NEIL2 are mouse proteins with two roles. On the one hand, they help protect DNA from damage by acting as so-called ‘base excision repair enzymes’, meaning they remove damaged building blocks of DNA. On the other hand, they help remove a chemical group known as a methyl from DNA building blocks in a process called demethylation, which is involved both in development and disease. Previous research by Schomacher et al. in 2016 showed that, in frogs, the absence of a similar protein called Neil2, leads to deformities of the face and skull. Han et al. – who include some of the researchers involved in the 2016 study – have now used frog embryos and mouse embryonic stem cells to examine the role of the NEIL proteins in cranial neural crest cells. Stem cells can become any type of cell in the body, but when NEIL1 and NEIL2 are missing, these cells lose the ability to become cranial neural crest cells. To determine whether the effects of removing NEIL1 and NEIL2 were due to their role in DNA damage repair or demethylation, Han et al. removed two proteins, each involved in one of the two processes. Removing APEX1, which is involved in DNA damage repair, had similar effects to the removal of NEIL1 and NEIL2, while removing TDG, which only works in demethylation, did not. This indicates that NEIL1 and NEIL2’s role in DNA damage repair is likely necessary for stem cells to become cranial neural crest cells. Although NEIL1 and NEIL2 are part of the DNA repair machinery, Han et al. showed that when stem cells turn into cranial neural crest cells, these proteins are not protecting the cell’s genomic DNA. Instead, they are active in the mitochondria, the compartments of the cell responsible for producing energy, which have their own DNA. Mitochondria use oxygen to produce energy, but by-products of these reactions damage mitochondrial DNA, explaining why mitochondria need NEIL1 and NEIL2. These results suggest that antioxidants, which are molecules that protect the cells from the damaging oxygen derivatives, may help prevent deformities in the face and skull. This theory could be tested using mice that do not produce proteins involved in base excision repair, which could be derived from the cells lacking NEIL1 and NEIL2.
Collapse
Affiliation(s)
- Dandan Han
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | | | | | | | - Laura Krebs
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.,Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
37
|
Gureev AP, Shaforostova EA, Laver DA, Khorolskaya VG, Syromyatnikov MY, Popov VN. Methylene blue elicits non-genotoxic H 2O 2 production and protects brain mitochondria from rotenone toxicity. J Appl Biomed 2019; 17:107-114. [DOI: 10.32725/jab.2019.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
|
38
|
Gureev AP, Shaforostova EA, Starkov AA, Popov VN. β-Guanidinopropionic Acid Stimulates Brain Mitochondria Biogenesis and Alters Cognitive Behavior in Nondiseased Mid-Age Mice. J Exp Neurosci 2018; 12:1179069518766524. [PMID: 29636631 PMCID: PMC5888816 DOI: 10.1177/1179069518766524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 01/29/2023] Open
Abstract
β-guanidinopropionic acid (β-GPA) has been used as a nutritional supplement for increasing physical strength and endurance with positive and predictable results. In muscles, it works as a nonadaptive stimulator of mitochondria biogenesis; it also increases lipid metabolism. There are data indicating that β-GPA can be also neuroprotective, but its mechanisms of action in the brain are less understood. We studied the effects of β-GPA on animal behavior and mitochondrial biogenesis in the cortex and midbrain of mid-age healthy mice. We found that even short-term 3-week-long β-GPA treatment increased the mitochondrial DNA (mtDNA) copy number in the cortex and ventral midbrain, as well as the expression of several key antioxidant and metabolic enzymes—indicators of mitochondria proliferation and the activation of Nrf2/ARE signaling cascade. At the same time, β-GPA downregulated the expression of the β-oxidation genes. Administration of β-GPA in mice for 3 weeks improved the animals’ physical strength and endurance health, ie, increased their physical strength and endurance and alleviated anxiety. Thus, β-GPA might be considered an adaptogene affecting both the muscle and brain metabolism in mammals.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Anatoly A Starkov
- Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
39
|
Gonzalez-Hunt CP, Wadhwa M, Sanders LH. DNA damage by oxidative stress: Measurement strategies for two genomes. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|